Patrick Keane
commited on
Commit
·
92f2071
1
Parent(s):
83e9fc1
Add SFace face recognizer cpp demo (#259)
Browse files
models/face_recognition_sface/CMakeLists.txt
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
cmake_minimum_required(VERSION 3.24.0)
|
| 2 |
+
project(opencv_zoo_face_recognition_sface)
|
| 3 |
+
|
| 4 |
+
set(OPENCV_VERSION "4.9.0")
|
| 5 |
+
set(OPENCV_INSTALLATION_PATH "" CACHE PATH "Where to look for OpenCV installation")
|
| 6 |
+
|
| 7 |
+
# Find OpenCV
|
| 8 |
+
find_package(OpenCV ${OPENCV_VERSION} REQUIRED HINTS ${OPENCV_INSTALLATION_PATH})
|
| 9 |
+
|
| 10 |
+
add_executable(demo demo.cpp)
|
| 11 |
+
target_link_libraries(demo ${OpenCV_LIBS})
|
models/face_recognition_sface/README.md
CHANGED
|
@@ -24,6 +24,7 @@ Results of accuracy evaluation with [tools/eval](../../tools/eval).
|
|
| 24 |
|
| 25 |
Run the following command to try the demo:
|
| 26 |
|
|
|
|
| 27 |
```shell
|
| 28 |
# recognize on images
|
| 29 |
python demo.py --target /path/to/image1 --query /path/to/image2
|
|
@@ -32,6 +33,22 @@ python demo.py --target /path/to/image1 --query /path/to/image2
|
|
| 32 |
python demo.py --help
|
| 33 |
```
|
| 34 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
### Example outputs
|
| 36 |
|
| 37 |

|
|
|
|
| 24 |
|
| 25 |
Run the following command to try the demo:
|
| 26 |
|
| 27 |
+
### Python
|
| 28 |
```shell
|
| 29 |
# recognize on images
|
| 30 |
python demo.py --target /path/to/image1 --query /path/to/image2
|
|
|
|
| 33 |
python demo.py --help
|
| 34 |
```
|
| 35 |
|
| 36 |
+
### C++
|
| 37 |
+
Install latest OpenCV and CMake >= 3.24.0 to get started with:
|
| 38 |
+
|
| 39 |
+
```shell
|
| 40 |
+
# A typical and default installation path of OpenCV is /usr/local
|
| 41 |
+
cmake -B build -D OPENCV_INSTALLATION_PATH=/path/to/opencv/installation .
|
| 42 |
+
cmake --build build
|
| 43 |
+
|
| 44 |
+
# detect on camera input
|
| 45 |
+
./build/demo -t=/path/to/target_face
|
| 46 |
+
# detect on an image
|
| 47 |
+
./build/demo -t=/path/to/target_face -q=/path/to/query_face -v
|
| 48 |
+
# get help messages
|
| 49 |
+
./build/demo -h
|
| 50 |
+
```
|
| 51 |
+
|
| 52 |
### Example outputs
|
| 53 |
|
| 54 |

|
models/face_recognition_sface/demo.cpp
ADDED
|
@@ -0,0 +1,322 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#include "opencv2/opencv.hpp"
|
| 2 |
+
#include "opencv2/core/types.hpp"
|
| 3 |
+
|
| 4 |
+
#include <string>
|
| 5 |
+
#include <vector>
|
| 6 |
+
|
| 7 |
+
const std::vector<std::pair<int, int>> backend_target_pairs = {
|
| 8 |
+
{cv::dnn::DNN_BACKEND_OPENCV, cv::dnn::DNN_TARGET_CPU},
|
| 9 |
+
{cv::dnn::DNN_BACKEND_CUDA, cv::dnn::DNN_TARGET_CUDA},
|
| 10 |
+
{cv::dnn::DNN_BACKEND_CUDA, cv::dnn::DNN_TARGET_CUDA_FP16},
|
| 11 |
+
{cv::dnn::DNN_BACKEND_TIMVX, cv::dnn::DNN_TARGET_NPU},
|
| 12 |
+
{cv::dnn::DNN_BACKEND_CANN, cv::dnn::DNN_TARGET_NPU}
|
| 13 |
+
};
|
| 14 |
+
|
| 15 |
+
class YuNet
|
| 16 |
+
{
|
| 17 |
+
public:
|
| 18 |
+
YuNet(const std::string& model_path,
|
| 19 |
+
const cv::Size& input_size,
|
| 20 |
+
const float conf_threshold,
|
| 21 |
+
const float nms_threshold,
|
| 22 |
+
const int top_k,
|
| 23 |
+
const int backend_id,
|
| 24 |
+
const int target_id)
|
| 25 |
+
{
|
| 26 |
+
_detector = cv::FaceDetectorYN::create(
|
| 27 |
+
model_path, "", input_size, conf_threshold, nms_threshold, top_k, backend_id, target_id);
|
| 28 |
+
}
|
| 29 |
+
|
| 30 |
+
void setInputSize(const cv::Size& input_size)
|
| 31 |
+
{
|
| 32 |
+
_detector->setInputSize(input_size);
|
| 33 |
+
}
|
| 34 |
+
|
| 35 |
+
void setTopK(const int top_k)
|
| 36 |
+
{
|
| 37 |
+
_detector->setTopK(top_k);
|
| 38 |
+
}
|
| 39 |
+
|
| 40 |
+
cv::Mat infer(const cv::Mat& image)
|
| 41 |
+
{
|
| 42 |
+
cv::Mat result;
|
| 43 |
+
_detector->detect(image, result);
|
| 44 |
+
return result;
|
| 45 |
+
}
|
| 46 |
+
|
| 47 |
+
private:
|
| 48 |
+
cv::Ptr<cv::FaceDetectorYN> _detector;
|
| 49 |
+
};
|
| 50 |
+
|
| 51 |
+
class SFace
|
| 52 |
+
{
|
| 53 |
+
public:
|
| 54 |
+
SFace(const std::string& model_path,
|
| 55 |
+
const int backend_id,
|
| 56 |
+
const int target_id,
|
| 57 |
+
const int distance_type)
|
| 58 |
+
: _distance_type(static_cast<cv::FaceRecognizerSF::DisType>(distance_type))
|
| 59 |
+
{
|
| 60 |
+
_recognizer = cv::FaceRecognizerSF::create(model_path, "", backend_id, target_id);
|
| 61 |
+
}
|
| 62 |
+
|
| 63 |
+
cv::Mat extractFeatures(const cv::Mat& orig_image, const cv::Mat& face_image)
|
| 64 |
+
{
|
| 65 |
+
// Align and crop detected face from original image
|
| 66 |
+
cv::Mat target_aligned;
|
| 67 |
+
_recognizer->alignCrop(orig_image, face_image, target_aligned);
|
| 68 |
+
// Extract features from cropped detected face
|
| 69 |
+
cv::Mat target_features;
|
| 70 |
+
_recognizer->feature(target_aligned, target_features);
|
| 71 |
+
return target_features.clone();
|
| 72 |
+
}
|
| 73 |
+
|
| 74 |
+
std::pair<double, bool> matchFeatures(const cv::Mat& target_features, const cv::Mat& query_features)
|
| 75 |
+
{
|
| 76 |
+
const double score = _recognizer->match(target_features, query_features, _distance_type);
|
| 77 |
+
if (_distance_type == cv::FaceRecognizerSF::DisType::FR_COSINE)
|
| 78 |
+
{
|
| 79 |
+
return {score, score >= _threshold_cosine};
|
| 80 |
+
}
|
| 81 |
+
return {score, score <= _threshold_norml2};
|
| 82 |
+
}
|
| 83 |
+
|
| 84 |
+
private:
|
| 85 |
+
cv::Ptr<cv::FaceRecognizerSF> _recognizer;
|
| 86 |
+
cv::FaceRecognizerSF::DisType _distance_type;
|
| 87 |
+
double _threshold_cosine = 0.363;
|
| 88 |
+
double _threshold_norml2 = 1.128;
|
| 89 |
+
};
|
| 90 |
+
|
| 91 |
+
cv::Mat visualize(const cv::Mat& image,
|
| 92 |
+
const cv::Mat& faces,
|
| 93 |
+
const std::vector<std::pair<double, bool>>& matches,
|
| 94 |
+
const float fps = -0.1F,
|
| 95 |
+
const cv::Size& target_size = cv::Size(512, 512))
|
| 96 |
+
{
|
| 97 |
+
static const cv::Scalar matched_box_color{0, 255, 0};
|
| 98 |
+
static const cv::Scalar mismatched_box_color{0, 0, 255};
|
| 99 |
+
|
| 100 |
+
if (fps >= 0)
|
| 101 |
+
{
|
| 102 |
+
cv::Mat output_image = image.clone();
|
| 103 |
+
|
| 104 |
+
const int x1 = static_cast<int>(faces.at<float>(0, 0));
|
| 105 |
+
const int y1 = static_cast<int>(faces.at<float>(0, 1));
|
| 106 |
+
const int w = static_cast<int>(faces.at<float>(0, 2));
|
| 107 |
+
const int h = static_cast<int>(faces.at<float>(0, 3));
|
| 108 |
+
const auto match = matches.at(0);
|
| 109 |
+
|
| 110 |
+
cv::Scalar box_color = match.second ? matched_box_color : mismatched_box_color;
|
| 111 |
+
// Draw bounding box
|
| 112 |
+
cv::rectangle(output_image, cv::Rect(x1, y1, w, h), box_color, 2);
|
| 113 |
+
// Draw match score
|
| 114 |
+
cv::putText(output_image, cv::format("%.4f", match.first), cv::Point(x1, y1+12), cv::FONT_HERSHEY_DUPLEX, 0.30, box_color);
|
| 115 |
+
// Draw FPS
|
| 116 |
+
cv::putText(output_image, cv::format("FPS: %.2f", fps), cv::Point(0, 15), cv::FONT_HERSHEY_SIMPLEX, 0.5, box_color, 2);
|
| 117 |
+
|
| 118 |
+
return output_image;
|
| 119 |
+
}
|
| 120 |
+
|
| 121 |
+
cv::Mat output_image = cv::Mat::zeros(target_size, CV_8UC3);
|
| 122 |
+
|
| 123 |
+
// Determine new height and width of image with aspect ratio of original image
|
| 124 |
+
const double ratio = std::min(static_cast<double>(target_size.height) / image.rows,
|
| 125 |
+
static_cast<double>(target_size.width) / image.cols);
|
| 126 |
+
const int new_height = static_cast<int>(image.rows * ratio);
|
| 127 |
+
const int new_width = static_cast<int>(image.cols * ratio);
|
| 128 |
+
|
| 129 |
+
// Resize the original image, maintaining aspect ratio
|
| 130 |
+
cv::Mat resize_out;
|
| 131 |
+
cv::resize(image, resize_out, cv::Size(new_width, new_height), cv::INTER_LINEAR);
|
| 132 |
+
|
| 133 |
+
// Determine top left corner in resized dimensions
|
| 134 |
+
const int top = std::max(0, target_size.height - new_height) / 2;
|
| 135 |
+
const int left = std::max(0, target_size.width - new_width) / 2;
|
| 136 |
+
|
| 137 |
+
// Copy resized image into target output image
|
| 138 |
+
const cv::Rect roi = cv::Rect(cv::Point(left, top), cv::Size(new_width, new_height));
|
| 139 |
+
cv::Mat out_sub_image = output_image(roi);
|
| 140 |
+
resize_out.copyTo(out_sub_image);
|
| 141 |
+
|
| 142 |
+
for (int i = 0; i < faces.rows; ++i)
|
| 143 |
+
{
|
| 144 |
+
const int x1 = static_cast<int>(faces.at<float>(i, 0) * ratio) + left;
|
| 145 |
+
const int y1 = static_cast<int>(faces.at<float>(i, 1) * ratio) + top;
|
| 146 |
+
const int w = static_cast<int>(faces.at<float>(i, 2) * ratio);
|
| 147 |
+
const int h = static_cast<int>(faces.at<float>(i, 3) * ratio);
|
| 148 |
+
const auto match = matches.at(i);
|
| 149 |
+
|
| 150 |
+
cv::Scalar box_color = match.second ? matched_box_color : mismatched_box_color;
|
| 151 |
+
// Draw bounding box
|
| 152 |
+
cv::rectangle(output_image, cv::Rect(x1, y1, w, h), box_color, 2);
|
| 153 |
+
// Draw match score
|
| 154 |
+
cv::putText(output_image, cv::format("%.4f", match.first), cv::Point(x1, y1+12), cv::FONT_HERSHEY_DUPLEX, 0.30, box_color);
|
| 155 |
+
}
|
| 156 |
+
return output_image;
|
| 157 |
+
}
|
| 158 |
+
|
| 159 |
+
int main(int argc, char** argv)
|
| 160 |
+
{
|
| 161 |
+
cv::CommandLineParser parser(argc, argv,
|
| 162 |
+
// General options
|
| 163 |
+
"{help h | | Print this message}"
|
| 164 |
+
"{backend_target b | 0 | Set DNN backend target pair:\n"
|
| 165 |
+
"0: (default) OpenCV implementation + CPU,\n"
|
| 166 |
+
"1: CUDA + GPU (CUDA),\n"
|
| 167 |
+
"2: CUDA + GPU (CUDA FP16),\n"
|
| 168 |
+
"3: TIM-VX + NPU,\n"
|
| 169 |
+
"4: CANN + NPU}"
|
| 170 |
+
"{save s | false | Whether to save result image or not}"
|
| 171 |
+
"{vis v | false | Whether to visualize result image or not}"
|
| 172 |
+
// SFace options
|
| 173 |
+
"{target_face t | | Set path to input image 1 (target face)}"
|
| 174 |
+
"{query_face q | | Set path to input image 2 (query face), omit if using camera}"
|
| 175 |
+
"{model m | face_recognition_sface_2021dec.onnx | Set path to the model}"
|
| 176 |
+
"{distance_type d | 0 | 0 = cosine, 1 = norm_l1}"
|
| 177 |
+
// YuNet options
|
| 178 |
+
"{yunet_model | ../face_detection_yunet/face_detection_yunet_2023mar.onnx | Set path to the YuNet model}"
|
| 179 |
+
"{detect_threshold | 0.9 | Set the minimum confidence for the model\n"
|
| 180 |
+
"to identify a face. Filter out faces of\n"
|
| 181 |
+
"conf < conf_threshold}"
|
| 182 |
+
"{nms_threshold | 0.3 | Set the threshold to suppress overlapped boxes.\n"
|
| 183 |
+
"Suppress boxes if IoU(box1, box2) >= nms_threshold\n"
|
| 184 |
+
", the one of higher score is kept.}"
|
| 185 |
+
"{top_k | 5000 | Keep top_k bounding boxes before NMS}"
|
| 186 |
+
);
|
| 187 |
+
|
| 188 |
+
if (parser.has("help"))
|
| 189 |
+
{
|
| 190 |
+
parser.printMessage();
|
| 191 |
+
return 0;
|
| 192 |
+
}
|
| 193 |
+
// General CLI options
|
| 194 |
+
const int backend = parser.get<int>("backend_target");
|
| 195 |
+
const bool save_flag = parser.get<bool>("save");
|
| 196 |
+
const bool vis_flag = parser.get<bool>("vis");
|
| 197 |
+
const int backend_id = backend_target_pairs.at(backend).first;
|
| 198 |
+
const int target_id = backend_target_pairs.at(backend).second;
|
| 199 |
+
|
| 200 |
+
// YuNet CLI options
|
| 201 |
+
const std::string detector_model_path = parser.get<std::string>("yunet_model");
|
| 202 |
+
const float detect_threshold = parser.get<float>("detect_threshold");
|
| 203 |
+
const float nms_threshold = parser.get<float>("nms_threshold");
|
| 204 |
+
const int top_k = parser.get<int>("top_k");
|
| 205 |
+
|
| 206 |
+
// Use YuNet as the detector backend
|
| 207 |
+
auto face_detector = YuNet(
|
| 208 |
+
detector_model_path, cv::Size(320, 320), detect_threshold, nms_threshold, top_k, backend_id, target_id);
|
| 209 |
+
|
| 210 |
+
// SFace CLI options
|
| 211 |
+
const std::string target_path = parser.get<std::string>("target_face");
|
| 212 |
+
const std::string query_path = parser.get<std::string>("query_face");
|
| 213 |
+
const std::string model_path = parser.get<std::string>("model");
|
| 214 |
+
const int distance_type = parser.get<int>("distance_type");
|
| 215 |
+
|
| 216 |
+
auto face_recognizer = SFace(model_path, backend_id, target_id, distance_type);
|
| 217 |
+
|
| 218 |
+
if (target_path.empty())
|
| 219 |
+
{
|
| 220 |
+
CV_Error(cv::Error::StsError, "Path to target image " + target_path + " not found");
|
| 221 |
+
}
|
| 222 |
+
|
| 223 |
+
cv::Mat target_image = cv::imread(target_path);
|
| 224 |
+
// Detect single face in target image
|
| 225 |
+
face_detector.setInputSize(target_image.size());
|
| 226 |
+
face_detector.setTopK(1);
|
| 227 |
+
cv::Mat target_face = face_detector.infer(target_image);
|
| 228 |
+
// Extract features from target face
|
| 229 |
+
cv::Mat target_features = face_recognizer.extractFeatures(target_image, target_face.row(0));
|
| 230 |
+
|
| 231 |
+
if (!query_path.empty()) // use image
|
| 232 |
+
{
|
| 233 |
+
// Detect any faces in query image
|
| 234 |
+
cv::Mat query_image = cv::imread(query_path);
|
| 235 |
+
face_detector.setInputSize(query_image.size());
|
| 236 |
+
face_detector.setTopK(5000);
|
| 237 |
+
cv::Mat query_faces = face_detector.infer(query_image);
|
| 238 |
+
|
| 239 |
+
// Store match scores for visualization
|
| 240 |
+
std::vector<std::pair<double, bool>> matches;
|
| 241 |
+
|
| 242 |
+
for (int i = 0; i < query_faces.rows; ++i)
|
| 243 |
+
{
|
| 244 |
+
// Extract features from query face
|
| 245 |
+
cv::Mat query_features = face_recognizer.extractFeatures(query_image, query_faces.row(i));
|
| 246 |
+
// Measure similarity of target face to query face
|
| 247 |
+
const auto match = face_recognizer.matchFeatures(target_features, query_features);
|
| 248 |
+
matches.push_back(match);
|
| 249 |
+
|
| 250 |
+
const int x1 = static_cast<int>(query_faces.at<float>(i, 0));
|
| 251 |
+
const int y1 = static_cast<int>(query_faces.at<float>(i, 1));
|
| 252 |
+
const int w = static_cast<int>(query_faces.at<float>(i, 2));
|
| 253 |
+
const int h = static_cast<int>(query_faces.at<float>(i, 3));
|
| 254 |
+
const float conf = query_faces.at<float>(i, 14);
|
| 255 |
+
|
| 256 |
+
std::cout << cv::format("%d: x1=%d, y1=%d, w=%d, h=%d, conf=%.4f, match=%.4f\n", i, x1, y1, w, h, conf, match.first);
|
| 257 |
+
}
|
| 258 |
+
|
| 259 |
+
if (save_flag || vis_flag)
|
| 260 |
+
{
|
| 261 |
+
auto vis_target = visualize(target_image, target_face, {{1.0, true}});
|
| 262 |
+
auto vis_query = visualize(query_image, query_faces, matches);
|
| 263 |
+
cv::Mat output_image;
|
| 264 |
+
cv::hconcat(vis_target, vis_query, output_image);
|
| 265 |
+
|
| 266 |
+
if (save_flag)
|
| 267 |
+
{
|
| 268 |
+
std::cout << "Results are saved to result.jpg\n";
|
| 269 |
+
cv::imwrite("result.jpg", output_image);
|
| 270 |
+
}
|
| 271 |
+
if (vis_flag)
|
| 272 |
+
{
|
| 273 |
+
cv::namedWindow(query_path, cv::WINDOW_AUTOSIZE);
|
| 274 |
+
cv::imshow(query_path, output_image);
|
| 275 |
+
cv::waitKey(0);
|
| 276 |
+
}
|
| 277 |
+
}
|
| 278 |
+
}
|
| 279 |
+
else // use video capture
|
| 280 |
+
{
|
| 281 |
+
const int device_id = 0;
|
| 282 |
+
auto cap = cv::VideoCapture(device_id);
|
| 283 |
+
const int w = static_cast<int>(cap.get(cv::CAP_PROP_FRAME_WIDTH));
|
| 284 |
+
const int h = static_cast<int>(cap.get(cv::CAP_PROP_FRAME_HEIGHT));
|
| 285 |
+
face_detector.setInputSize(cv::Size(w, h));
|
| 286 |
+
|
| 287 |
+
auto tick_meter = cv::TickMeter();
|
| 288 |
+
cv::Mat query_frame;
|
| 289 |
+
|
| 290 |
+
while (cv::waitKey(1) < 0)
|
| 291 |
+
{
|
| 292 |
+
bool has_frame = cap.read(query_frame);
|
| 293 |
+
if (!has_frame)
|
| 294 |
+
{
|
| 295 |
+
std::cout << "No frames grabbed! Exiting ...\n";
|
| 296 |
+
break;
|
| 297 |
+
}
|
| 298 |
+
tick_meter.start();
|
| 299 |
+
// Detect faces from webcam image
|
| 300 |
+
cv::Mat query_faces = face_detector.infer(query_frame);
|
| 301 |
+
tick_meter.stop();
|
| 302 |
+
|
| 303 |
+
// Extract features from query face
|
| 304 |
+
cv::Mat query_features = face_recognizer.extractFeatures(query_frame, query_faces.row(0));
|
| 305 |
+
// Measure similarity of target face to query face
|
| 306 |
+
const auto match = face_recognizer.matchFeatures(target_features, query_features);
|
| 307 |
+
|
| 308 |
+
const auto fps = static_cast<float>(tick_meter.getFPS());
|
| 309 |
+
|
| 310 |
+
auto vis_target = visualize(target_image, target_face, {{1.0, true}}, -0.1F, cv::Size(w, h));
|
| 311 |
+
auto vis_query = visualize(query_frame, query_faces, {match}, fps);
|
| 312 |
+
cv::Mat output_image;
|
| 313 |
+
cv::hconcat(vis_target, vis_query, output_image);
|
| 314 |
+
|
| 315 |
+
// Visualize in a new window
|
| 316 |
+
cv::imshow("SFace Demo", output_image);
|
| 317 |
+
|
| 318 |
+
tick_meter.reset();
|
| 319 |
+
}
|
| 320 |
+
}
|
| 321 |
+
return 0;
|
| 322 |
+
}
|