C++ Demo - Facial Expression Recognition (#233)
Browse files* cpp demo for facial expression recognition
* minor pr fix
* add empty line
* specified cxx version in the cmake list
models/facial_expression_recognition/CMakeLists.txt
ADDED
|
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
cmake_minimum_required(VERSION 3.24)
|
| 2 |
+
set(CMAKE_CXX_STANDARD 11)
|
| 3 |
+
set(project_name "opencv_zoo_face_expression_recognition")
|
| 4 |
+
|
| 5 |
+
PROJECT (${project_name})
|
| 6 |
+
|
| 7 |
+
set(OPENCV_VERSION "4.9.0")
|
| 8 |
+
set(OPENCV_INSTALLATION_PATH "" CACHE PATH "Where to look for OpenCV installation")
|
| 9 |
+
find_package(OpenCV ${OPENCV_VERSION} REQUIRED HINTS ${OPENCV_INSTALLATION_PATH})
|
| 10 |
+
# Find OpenCV, you may need to set OpenCV_DIR variable
|
| 11 |
+
# to the absolute path to the directory containing OpenCVConfig.cmake file
|
| 12 |
+
# via the command line or GUI
|
| 13 |
+
|
| 14 |
+
file(GLOB SourceFile
|
| 15 |
+
"demo.cpp")
|
| 16 |
+
# If the package has been found, several variables will
|
| 17 |
+
# be set, you can find the full list with descriptions
|
| 18 |
+
# in the OpenCVConfig.cmake file.
|
| 19 |
+
# Print some message showing some of them
|
| 20 |
+
message(STATUS "OpenCV library status:")
|
| 21 |
+
message(STATUS " config: ${OpenCV_DIR}")
|
| 22 |
+
message(STATUS " version: ${OpenCV_VERSION}")
|
| 23 |
+
message(STATUS " libraries: ${OpenCV_LIBS}")
|
| 24 |
+
message(STATUS " include path: ${OpenCV_INCLUDE_DIRS}")
|
| 25 |
+
|
| 26 |
+
# Declare the executable target built from your sources
|
| 27 |
+
add_executable(${project_name} ${SourceFile})
|
| 28 |
+
|
| 29 |
+
# Link your application with OpenCV libraries
|
| 30 |
+
target_link_libraries(${project_name} PRIVATE ${OpenCV_LIBS})
|
models/facial_expression_recognition/README.md
CHANGED
|
@@ -19,12 +19,30 @@ Results of accuracy evaluation on [RAF-DB](http://whdeng.cn/RAF/model1.html).
|
|
| 19 |
|
| 20 |
***NOTE***: This demo uses [../face_detection_yunet](../face_detection_yunet) as face detector, which supports 5-landmark detection for now (2021sep).
|
| 21 |
|
|
|
|
| 22 |
Run the following command to try the demo:
|
| 23 |
```shell
|
| 24 |
# recognize the facial expression on images
|
| 25 |
python demo.py --input /path/to/image -v
|
| 26 |
```
|
| 27 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
### Example outputs
|
| 29 |
|
| 30 |
Note: Zoom in to to see the recognized facial expression in the top-left corner of each face boxes.
|
|
|
|
| 19 |
|
| 20 |
***NOTE***: This demo uses [../face_detection_yunet](../face_detection_yunet) as face detector, which supports 5-landmark detection for now (2021sep).
|
| 21 |
|
| 22 |
+
### Python
|
| 23 |
Run the following command to try the demo:
|
| 24 |
```shell
|
| 25 |
# recognize the facial expression on images
|
| 26 |
python demo.py --input /path/to/image -v
|
| 27 |
```
|
| 28 |
|
| 29 |
+
### C++
|
| 30 |
+
|
| 31 |
+
Install latest OpenCV and CMake >= 3.24.0 to get started with:
|
| 32 |
+
|
| 33 |
+
```shell
|
| 34 |
+
# A typical and default installation path of OpenCV is /usr/local
|
| 35 |
+
cmake -B build -D OPENCV_INSTALLATION_PATH=/path/to/opencv/installation .
|
| 36 |
+
cmake --build build
|
| 37 |
+
|
| 38 |
+
# detect on camera input
|
| 39 |
+
./build/opencv_zoo_face_expression_recognition
|
| 40 |
+
# detect on an image
|
| 41 |
+
./build/opencv_zoo_face_expression_recognition -i=/path/to/image
|
| 42 |
+
# get help messages
|
| 43 |
+
./build/opencv_zoo_face_expression_recognition -h
|
| 44 |
+
```
|
| 45 |
+
|
| 46 |
### Example outputs
|
| 47 |
|
| 48 |
Note: Zoom in to to see the recognized facial expression in the top-left corner of each face boxes.
|
models/facial_expression_recognition/demo.cpp
ADDED
|
@@ -0,0 +1,304 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#include "opencv2/opencv.hpp"
|
| 2 |
+
|
| 3 |
+
#include <map>
|
| 4 |
+
#include <vector>
|
| 5 |
+
#include <string>
|
| 6 |
+
#include <iostream>
|
| 7 |
+
|
| 8 |
+
using namespace std;
|
| 9 |
+
using namespace cv;
|
| 10 |
+
using namespace dnn;
|
| 11 |
+
|
| 12 |
+
std::vector<std::pair<int, int>> backend_target_pairs = {
|
| 13 |
+
{DNN_BACKEND_OPENCV, DNN_TARGET_CPU},
|
| 14 |
+
{DNN_BACKEND_CUDA, DNN_TARGET_CUDA},
|
| 15 |
+
{DNN_BACKEND_CUDA, DNN_TARGET_CUDA_FP16},
|
| 16 |
+
{DNN_BACKEND_TIMVX, DNN_TARGET_NPU},
|
| 17 |
+
{DNN_BACKEND_CANN, DNN_TARGET_NPU}
|
| 18 |
+
};
|
| 19 |
+
|
| 20 |
+
class FER
|
| 21 |
+
{
|
| 22 |
+
private:
|
| 23 |
+
Net model;
|
| 24 |
+
string modelPath;
|
| 25 |
+
float std[5][2] = {
|
| 26 |
+
{38.2946, 51.6963},
|
| 27 |
+
{73.5318, 51.5014},
|
| 28 |
+
{56.0252, 71.7366},
|
| 29 |
+
{41.5493, 92.3655},
|
| 30 |
+
{70.7299, 92.2041}
|
| 31 |
+
};
|
| 32 |
+
vector<String> expressionEnum = {
|
| 33 |
+
"angry", "disgust", "fearful",
|
| 34 |
+
"happy", "neutral", "sad", "surprised"
|
| 35 |
+
};
|
| 36 |
+
Mat stdPoints = Mat(5, 2, CV_32F, this->std);
|
| 37 |
+
Size patchSize = Size(112,112);
|
| 38 |
+
Scalar imageMean = Scalar(0.5,0.5,0.5);
|
| 39 |
+
Scalar imageStd = Scalar(0.5,0.5,0.5);
|
| 40 |
+
|
| 41 |
+
const String inputNames = "data";
|
| 42 |
+
const String outputNames = "label";
|
| 43 |
+
|
| 44 |
+
int backend_id;
|
| 45 |
+
int target_id;
|
| 46 |
+
|
| 47 |
+
public:
|
| 48 |
+
FER(const string& modelPath,
|
| 49 |
+
int backend_id = 0,
|
| 50 |
+
int target_id = 0)
|
| 51 |
+
: modelPath(modelPath), backend_id(backend_id), target_id(target_id)
|
| 52 |
+
{
|
| 53 |
+
this->model = readNet(modelPath);
|
| 54 |
+
this->model.setPreferableBackend(backend_id);
|
| 55 |
+
this->model.setPreferableTarget(target_id);
|
| 56 |
+
}
|
| 57 |
+
|
| 58 |
+
Mat preprocess(const Mat image, const Mat points)
|
| 59 |
+
{
|
| 60 |
+
// image alignment
|
| 61 |
+
Mat transformation = estimateAffine2D(points, this->stdPoints);
|
| 62 |
+
Mat aligned = Mat::zeros(this->patchSize.height, this->patchSize.width, image.type());
|
| 63 |
+
warpAffine(image, aligned, transformation, this->patchSize);
|
| 64 |
+
|
| 65 |
+
// image normalization
|
| 66 |
+
aligned.convertTo(aligned, CV_32F, 1.0 / 255.0);
|
| 67 |
+
aligned -= imageMean;
|
| 68 |
+
aligned /= imageStd;
|
| 69 |
+
|
| 70 |
+
return blobFromImage(aligned);;
|
| 71 |
+
}
|
| 72 |
+
|
| 73 |
+
String infer(const Mat image, const Mat facePoints)
|
| 74 |
+
{
|
| 75 |
+
Mat points = facePoints(Rect(4, 0, facePoints.cols-5, facePoints.rows)).reshape(2, 5);
|
| 76 |
+
Mat inputBlob = preprocess(image, points);
|
| 77 |
+
|
| 78 |
+
this->model.setInput(inputBlob, this->inputNames);
|
| 79 |
+
Mat outputBlob = this->model.forward(this->outputNames);
|
| 80 |
+
|
| 81 |
+
Point maxLoc;
|
| 82 |
+
minMaxLoc(outputBlob, nullptr, nullptr, nullptr, &maxLoc);
|
| 83 |
+
|
| 84 |
+
return getDesc(maxLoc.x);
|
| 85 |
+
}
|
| 86 |
+
|
| 87 |
+
String getDesc(int ind)
|
| 88 |
+
{
|
| 89 |
+
|
| 90 |
+
if (ind >= 0 && ind < this->expressionEnum.size())
|
| 91 |
+
{
|
| 92 |
+
return this->expressionEnum[ind];
|
| 93 |
+
}
|
| 94 |
+
else
|
| 95 |
+
{
|
| 96 |
+
cerr << "Error: Index out of bounds." << endl;
|
| 97 |
+
return "";
|
| 98 |
+
}
|
| 99 |
+
}
|
| 100 |
+
|
| 101 |
+
};
|
| 102 |
+
|
| 103 |
+
class YuNet
|
| 104 |
+
{
|
| 105 |
+
public:
|
| 106 |
+
YuNet(const string& model_path,
|
| 107 |
+
const Size& input_size = Size(320, 320),
|
| 108 |
+
float conf_threshold = 0.6f,
|
| 109 |
+
float nms_threshold = 0.3f,
|
| 110 |
+
int top_k = 5000,
|
| 111 |
+
int backend_id = 0,
|
| 112 |
+
int target_id = 0)
|
| 113 |
+
: model_path_(model_path), input_size_(input_size),
|
| 114 |
+
conf_threshold_(conf_threshold), nms_threshold_(nms_threshold),
|
| 115 |
+
top_k_(top_k), backend_id_(backend_id), target_id_(target_id)
|
| 116 |
+
{
|
| 117 |
+
model = FaceDetectorYN::create(model_path_, "", input_size_, conf_threshold_, nms_threshold_, top_k_, backend_id_, target_id_);
|
| 118 |
+
}
|
| 119 |
+
|
| 120 |
+
void setBackendAndTarget(int backend_id, int target_id)
|
| 121 |
+
{
|
| 122 |
+
backend_id_ = backend_id;
|
| 123 |
+
target_id_ = target_id;
|
| 124 |
+
model = FaceDetectorYN::create(model_path_, "", input_size_, conf_threshold_, nms_threshold_, top_k_, backend_id_, target_id_);
|
| 125 |
+
}
|
| 126 |
+
|
| 127 |
+
/* Overwrite the input size when creating the model. Size format: [Width, Height].
|
| 128 |
+
*/
|
| 129 |
+
void setInputSize(const Size& input_size)
|
| 130 |
+
{
|
| 131 |
+
input_size_ = input_size;
|
| 132 |
+
model->setInputSize(input_size_);
|
| 133 |
+
}
|
| 134 |
+
|
| 135 |
+
Mat infer(const Mat image)
|
| 136 |
+
{
|
| 137 |
+
Mat res;
|
| 138 |
+
model->detect(image, res);
|
| 139 |
+
return res;
|
| 140 |
+
}
|
| 141 |
+
|
| 142 |
+
private:
|
| 143 |
+
Ptr<FaceDetectorYN> model;
|
| 144 |
+
|
| 145 |
+
string model_path_;
|
| 146 |
+
Size input_size_;
|
| 147 |
+
float conf_threshold_;
|
| 148 |
+
float nms_threshold_;
|
| 149 |
+
int top_k_;
|
| 150 |
+
int backend_id_;
|
| 151 |
+
int target_id_;
|
| 152 |
+
};
|
| 153 |
+
|
| 154 |
+
cv::Mat visualize(const cv::Mat& image, const cv::Mat& faces, const vector<String> expressions, float fps = -1.f)
|
| 155 |
+
{
|
| 156 |
+
static cv::Scalar box_color{0, 255, 0};
|
| 157 |
+
static std::vector<cv::Scalar> landmark_color{
|
| 158 |
+
cv::Scalar(255, 0, 0), // right eye
|
| 159 |
+
cv::Scalar( 0, 0, 255), // left eye
|
| 160 |
+
cv::Scalar( 0, 255, 0), // nose tip
|
| 161 |
+
cv::Scalar(255, 0, 255), // right mouth corner
|
| 162 |
+
cv::Scalar( 0, 255, 255) // left mouth corner
|
| 163 |
+
};
|
| 164 |
+
static cv::Scalar text_color{0, 255, 0};
|
| 165 |
+
|
| 166 |
+
auto output_image = image.clone();
|
| 167 |
+
|
| 168 |
+
if (fps >= 0)
|
| 169 |
+
{
|
| 170 |
+
cv::putText(output_image, cv::format("FPS: %.2f", fps), cv::Point(0, 15), cv::FONT_HERSHEY_SIMPLEX, 0.5, text_color, 2);
|
| 171 |
+
}
|
| 172 |
+
|
| 173 |
+
for (int i = 0; i < faces.rows; ++i)
|
| 174 |
+
{
|
| 175 |
+
// Draw bounding boxes
|
| 176 |
+
int x1 = static_cast<int>(faces.at<float>(i, 0));
|
| 177 |
+
int y1 = static_cast<int>(faces.at<float>(i, 1));
|
| 178 |
+
int w = static_cast<int>(faces.at<float>(i, 2));
|
| 179 |
+
int h = static_cast<int>(faces.at<float>(i, 3));
|
| 180 |
+
cv::rectangle(output_image, cv::Rect(x1, y1, w, h), box_color, 2);
|
| 181 |
+
|
| 182 |
+
// Expression as text
|
| 183 |
+
String exp = expressions[i];
|
| 184 |
+
cv::putText(output_image, exp, cv::Point(x1, y1+12), cv::FONT_HERSHEY_DUPLEX, 0.5, text_color);
|
| 185 |
+
|
| 186 |
+
// Draw landmarks
|
| 187 |
+
for (int j = 0; j < landmark_color.size(); ++j)
|
| 188 |
+
{
|
| 189 |
+
int x = static_cast<int>(faces.at<float>(i, 2*j+4)), y = static_cast<int>(faces.at<float>(i, 2*j+5));
|
| 190 |
+
cv::circle(output_image, cv::Point(x, y), 2, landmark_color[j], 2);
|
| 191 |
+
}
|
| 192 |
+
}
|
| 193 |
+
return output_image;
|
| 194 |
+
}
|
| 195 |
+
|
| 196 |
+
string keys =
|
| 197 |
+
"{ help h | | Print help message. }"
|
| 198 |
+
"{ model m | facial_expression_recognition_mobilefacenet_2022july.onnx | Usage: Path to the model, defaults to facial_expression_recognition_mobilefacenet_2022july.onnx }"
|
| 199 |
+
"{ yunet_model ym | ../face_detection_yunet/face_detection_yunet_2023mar.onnx | Usage: Path to the face detection yunet model, defaults to face_detection_yunet_2023mar.onnx }"
|
| 200 |
+
"{ input i | | Path to input image or video file. Skip this argument to capture frames from a camera.}"
|
| 201 |
+
"{ backend_target t | 0 | Choose one of the backend-target pair to run this demo:\n"
|
| 202 |
+
"0: (default) OpenCV implementation + CPU,\n"
|
| 203 |
+
"1: CUDA + GPU (CUDA),\n"
|
| 204 |
+
"2: CUDA + GPU (CUDA FP16),\n"
|
| 205 |
+
"3: TIM-VX + NPU,\n"
|
| 206 |
+
"4: CANN + NPU}"
|
| 207 |
+
"{ save s | false | Specify to save results.}"
|
| 208 |
+
"{ vis v | true | Specify to open a window for result visualization.}"
|
| 209 |
+
;
|
| 210 |
+
|
| 211 |
+
|
| 212 |
+
int main(int argc, char** argv)
|
| 213 |
+
{
|
| 214 |
+
CommandLineParser parser(argc, argv, keys);
|
| 215 |
+
|
| 216 |
+
parser.about("Facial Expression Recognition");
|
| 217 |
+
if (parser.has("help"))
|
| 218 |
+
{
|
| 219 |
+
parser.printMessage();
|
| 220 |
+
return 0;
|
| 221 |
+
}
|
| 222 |
+
|
| 223 |
+
string modelPath = parser.get<string>("model");
|
| 224 |
+
string yunetModelPath = parser.get<string>("yunet_model");
|
| 225 |
+
string inputPath = parser.get<string>("input");
|
| 226 |
+
uint8_t backendTarget = parser.get<uint8_t>("backend_target");
|
| 227 |
+
bool saveFlag = parser.get<bool>("save");
|
| 228 |
+
bool visFlag = parser.get<bool>("vis");
|
| 229 |
+
|
| 230 |
+
if (modelPath.empty())
|
| 231 |
+
CV_Error(Error::StsError, "Model file " + modelPath + " not found");
|
| 232 |
+
|
| 233 |
+
if (yunetModelPath.empty())
|
| 234 |
+
CV_Error(Error::StsError, "Face Detection Model file " + yunetModelPath + " not found");
|
| 235 |
+
|
| 236 |
+
YuNet faceDetectionModel(yunetModelPath);
|
| 237 |
+
FER expressionRecognitionModel(modelPath, backend_target_pairs[backendTarget].first, backend_target_pairs[backendTarget].second);
|
| 238 |
+
|
| 239 |
+
VideoCapture cap;
|
| 240 |
+
if (!inputPath.empty())
|
| 241 |
+
cap.open(samples::findFile(inputPath));
|
| 242 |
+
else
|
| 243 |
+
cap.open(0);
|
| 244 |
+
|
| 245 |
+
if (!cap.isOpened())
|
| 246 |
+
CV_Error(Error::StsError, "Cannot opend video or file");
|
| 247 |
+
|
| 248 |
+
Mat frame;
|
| 249 |
+
static const std::string kWinName = "Facial Expression Demo";
|
| 250 |
+
|
| 251 |
+
|
| 252 |
+
while (waitKey(1) < 0)
|
| 253 |
+
{
|
| 254 |
+
cap >> frame;
|
| 255 |
+
|
| 256 |
+
if (frame.empty())
|
| 257 |
+
{
|
| 258 |
+
if(inputPath.empty())
|
| 259 |
+
cout << "Frame is empty" << endl;
|
| 260 |
+
break;
|
| 261 |
+
}
|
| 262 |
+
|
| 263 |
+
faceDetectionModel.setInputSize(frame.size());
|
| 264 |
+
|
| 265 |
+
Mat faces = faceDetectionModel.infer(frame);
|
| 266 |
+
vector<String> expressions;
|
| 267 |
+
|
| 268 |
+
for (int i = 0; i < faces.rows; ++i)
|
| 269 |
+
{
|
| 270 |
+
Mat face = faces.row(i);
|
| 271 |
+
String exp = expressionRecognitionModel.infer(frame, face);
|
| 272 |
+
expressions.push_back(exp);
|
| 273 |
+
|
| 274 |
+
int x1 = static_cast<int>(faces.at<float>(i, 0));
|
| 275 |
+
int y1 = static_cast<int>(faces.at<float>(i, 1));
|
| 276 |
+
int w = static_cast<int>(faces.at<float>(i, 2));
|
| 277 |
+
int h = static_cast<int>(faces.at<float>(i, 3));
|
| 278 |
+
float conf = faces.at<float>(i, 14);
|
| 279 |
+
|
| 280 |
+
std::cout << cv::format("%d: x1=%d, y1=%d, w=%d, h=%d, conf=%.4f expression=%s\n", i, x1, y1, w, h, conf, exp.c_str());
|
| 281 |
+
|
| 282 |
+
}
|
| 283 |
+
|
| 284 |
+
Mat res_frame = visualize(frame, faces, expressions);
|
| 285 |
+
|
| 286 |
+
if(visFlag || inputPath.empty())
|
| 287 |
+
{
|
| 288 |
+
imshow(kWinName, res_frame);
|
| 289 |
+
if(!inputPath.empty())
|
| 290 |
+
waitKey(0);
|
| 291 |
+
}
|
| 292 |
+
if(saveFlag)
|
| 293 |
+
{
|
| 294 |
+
cout << "Results are saved to result.jpg" << endl;
|
| 295 |
+
|
| 296 |
+
cv::imwrite("result.jpg", res_frame);
|
| 297 |
+
}
|
| 298 |
+
}
|
| 299 |
+
|
| 300 |
+
|
| 301 |
+
return 0;
|
| 302 |
+
|
| 303 |
+
}
|
| 304 |
+
|