add results on cpu of khadas edge2, horizon sunrise x3 pi and rv1126
Browse files- benchmark/README.md +168 -0
benchmark/README.md
CHANGED
|
@@ -460,3 +460,171 @@ mean median min input size model
|
|
| 460 |
17.15 17.18 16.83 [640, 480] DB with ['text_detection_DB_IC15_resnet18_2021sep.onnx']
|
| 461 |
17.95 18.61 16.83 [640, 480] DB with ['text_detection_DB_TD500_resnet18_2021sep.onnx']
|
| 462 |
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 460 |
17.15 17.18 16.83 [640, 480] DB with ['text_detection_DB_IC15_resnet18_2021sep.onnx']
|
| 461 |
17.95 18.61 16.83 [640, 480] DB with ['text_detection_DB_TD500_resnet18_2021sep.onnx']
|
| 462 |
```
|
| 463 |
+
|
| 464 |
+
### Toybrick RV1126
|
| 465 |
+
|
| 466 |
+
Specs: [details](https://t.rock-chips.com/en/portal.php?mod=view&aid=26)
|
| 467 |
+
- CPU: Quard core ARM Cortex-A7, up to 1.5GHz
|
| 468 |
+
- NPU (Not supported by OpenCV): TBD
|
| 469 |
+
|
| 470 |
+
CPU:
|
| 471 |
+
|
| 472 |
+
```
|
| 473 |
+
$ python3 benchmark.py --all --cfg_exclude wechat --model_exclude license_plate_detection_lpd_yunet_2023mar_int8.onnx:human_segmentation_pphumanseg_2023mar_int8.onnx
|
| 474 |
+
Benchmarking ...
|
| 475 |
+
backend=cv.dnn.DNN_BACKEND_OPENCV
|
| 476 |
+
target=cv.dnn.DNN_TARGET_CPU
|
| 477 |
+
mean median min input size model
|
| 478 |
+
68.89 68.59 68.23 [160, 120] YuNet with ['face_detection_yunet_2022mar.onnx']
|
| 479 |
+
60.98 61.11 52.00 [160, 120] YuNet with ['face_detection_yunet_2022mar_int8.onnx']
|
| 480 |
+
1550.71 1578.99 1527.58 [150, 150] SFace with ['face_recognition_sface_2021dec.onnx']
|
| 481 |
+
1214.15 1261.66 920.50 [150, 150] SFace with ['face_recognition_sface_2021dec_int8.onnx']
|
| 482 |
+
604.36 611.24 578.99 [112, 112] FacialExpressionRecog with ['facial_expression_recognition_mobilefacenet_2022july.onnx']
|
| 483 |
+
496.42 537.75 397.23 [112, 112] FacialExpressionRecog with ['facial_expression_recognition_mobilefacenet_2022july_int8.onnx']
|
| 484 |
+
460.56 470.15 440.77 [224, 224] MPHandPose with ['handpose_estimation_mediapipe_2023feb.onnx']
|
| 485 |
+
387.63 379.96 318.71 [224, 224] MPHandPose with ['handpose_estimation_mediapipe_2023feb_int8.onnx']
|
| 486 |
+
1610.78 1599.92 1583.95 [192, 192] PPHumanSeg with ['human_segmentation_pphumanseg_2023mar.onnx']
|
| 487 |
+
1546.16 1539.50 1513.14 [224, 224] MobileNet with ['image_classification_mobilenetv1_2022apr.onnx']
|
| 488 |
+
1166.56 1211.97 827.10 [224, 224] MobileNet with ['image_classification_mobilenetv2_2022apr.onnx']
|
| 489 |
+
983.80 868.18 689.32 [224, 224] MobileNet with ['image_classification_mobilenetv1_2022apr_int8.onnx']
|
| 490 |
+
840.38 801.83 504.54 [224, 224] MobileNet with ['image_classification_mobilenetv2_2022apr_int8.onnx']
|
| 491 |
+
11793.09 11817.73 11741.04 [224, 224] PPResNet with ['image_classification_ppresnet50_2022jan.onnx']
|
| 492 |
+
7740.03 8134.99 4464.30 [224, 224] PPResNet with ['image_classification_ppresnet50_2022jan_int8.onnx']
|
| 493 |
+
3222.92 3225.18 3170.71 [320, 240] LPD_YuNet with ['license_plate_detection_lpd_yunet_2023mar.onnx']
|
| 494 |
+
2303.55 2307.46 2289.41 [416, 416] NanoDet with ['object_detection_nanodet_2022nov.onnx']
|
| 495 |
+
1888.15 1920.41 1528.78 [416, 416] NanoDet with ['object_detection_nanodet_2022nov_int8.onnx']
|
| 496 |
+
38359.93 39021.21 37180.85 [640, 640] YoloX with ['object_detection_yolox_2022nov.onnx']
|
| 497 |
+
24504.50 25439.34 13443.63 [640, 640] YoloX with ['object_detection_yolox_2022nov_int8.onnx']
|
| 498 |
+
14738.64 14764.84 14655.76 [1280, 720] DaSiamRPN with ['object_tracking_dasiamrpn_kernel_cls1_2021nov.onnx', 'object_tracking_dasiamrpn_kernel_r1_2021nov.onnx', 'object_tracking_dasiamrpn_model_2021nov.onnx']
|
| 499 |
+
872.09 877.72 838.99 [192, 192] MPPalmDet with ['palm_detection_mediapipe_2023feb.onnx']
|
| 500 |
+
764.48 775.55 653.25 [192, 192] MPPalmDet with ['palm_detection_mediapipe_2023feb_int8.onnx']
|
| 501 |
+
11117.07 11109.12 11058.49 [128, 256] YoutuReID with ['person_reid_youtu_2021nov.onnx']
|
| 502 |
+
7037.96 7424.89 3750.12 [128, 256] YoutuReID with ['person_reid_youtu_2021nov_int8.onnx']
|
| 503 |
+
49065.03 49144.55 48943.50 [640, 480] DB with ['text_detection_DB_IC15_resnet18_2021sep.onnx']
|
| 504 |
+
49052.24 48992.64 48927.44 [640, 480] DB with ['text_detection_DB_TD500_resnet18_2021sep.onnx']
|
| 505 |
+
2200.08 2193.78 2175.77 [1280, 720] CRNN with ['text_recognition_CRNN_CH_2021sep.onnx']
|
| 506 |
+
2244.03 2240.25 2175.77 [1280, 720] CRNN with ['text_recognition_CRNN_CN_2021nov.onnx']
|
| 507 |
+
2230.12 2290.28 2175.77 [1280, 720] CRNN with ['text_recognition_CRNN_EN_2021sep.onnx']
|
| 508 |
+
[ WARN:0@1315.065] global onnx_graph_simplifier.cpp:804 getMatFromTensor DNN: load FP16 model as FP32 model, and it takes twice the FP16 RAM requirement.
|
| 509 |
+
2220.33 2281.75 2171.61 [1280, 720] CRNN with ['text_recognition_CRNN_CH_2023feb_fp16.onnx']
|
| 510 |
+
2216.44 2212.48 2171.61 [1280, 720] CRNN with ['text_recognition_CRNN_EN_2023feb_fp16.onnx']
|
| 511 |
+
2041.65 2209.50 1268.91 [1280, 720] CRNN with ['text_recognition_CRNN_CH_2022oct_int8.onnx']
|
| 512 |
+
1933.06 2210.81 1268.91 [1280, 720] CRNN with ['text_recognition_CRNN_CN_2021nov_int8.onnx']
|
| 513 |
+
1826.34 2234.66 1184.53 [1280, 720] CRNN with ['text_recognition_CRNN_EN_2022oct_int8.onnx']
|
| 514 |
+
```
|
| 515 |
+
|
| 516 |
+
### Khadas Edge2 (with RK3588)
|
| 517 |
+
|
| 518 |
+
Specs: [details](https://www.khadas.com/edge2)
|
| 519 |
+
- (SoC) CPU: 2.25GHz Quad Core ARM Cortex-A76 + 1.8GHz Quad Core Cortex-A55
|
| 520 |
+
- NPU (Not supported by OpenCV): TBD
|
| 521 |
+
|
| 522 |
+
CPU:
|
| 523 |
+
|
| 524 |
+
```
|
| 525 |
+
$ python3 benchmark.py --all --cfg_exclude wechat --model_exclude license_plate_detection_lpd_yunet_2023mar_int8.onnx:human_segmentation_pphumanseg_2023mar_int8.onnx
|
| 526 |
+
Benchmarking ...
|
| 527 |
+
backend=cv.dnn.DNN_BACKEND_OPENCV
|
| 528 |
+
target=cv.dnn.DNN_TARGET_CPU
|
| 529 |
+
mean median min input size model
|
| 530 |
+
2.47 2.55 2.44 [160, 120] YuNet with ['face_detection_yunet_2022mar.onnx']
|
| 531 |
+
2.81 2.84 2.44 [160, 120] YuNet with ['face_detection_yunet_2022mar_int8.onnx']
|
| 532 |
+
33.79 33.83 33.24 [150, 150] SFace with ['face_recognition_sface_2021dec.onnx']
|
| 533 |
+
39.96 40.77 33.24 [150, 150] SFace with ['face_recognition_sface_2021dec_int8.onnx']
|
| 534 |
+
15.99 16.12 15.92 [112, 112] FacialExpressionRecog with ['facial_expression_recognition_mobilefacenet_2022july.onnx']
|
| 535 |
+
19.09 19.48 15.92 [112, 112] FacialExpressionRecog with ['facial_expression_recognition_mobilefacenet_2022july_int8.onnx']
|
| 536 |
+
20.27 20.45 20.11 [224, 224] MPHandPose with ['handpose_estimation_mediapipe_2023feb.onnx']
|
| 537 |
+
23.14 23.62 20.11 [224, 224] MPHandPose with ['handpose_estimation_mediapipe_2023feb_int8.onnx']
|
| 538 |
+
34.58 34.53 33.55 [192, 192] PPHumanSeg with ['human_segmentation_pphumanseg_2023mar.onnx']
|
| 539 |
+
32.78 32.94 31.99 [224, 224] MobileNet with ['image_classification_mobilenetv1_2022apr.onnx']
|
| 540 |
+
28.38 28.80 24.59 [224, 224] MobileNet with ['image_classification_mobilenetv2_2022apr.onnx']
|
| 541 |
+
31.49 24.66 24.59 [224, 224] MobileNet with ['image_classification_mobilenetv1_2022apr_int8.onnx']
|
| 542 |
+
31.45 32.34 24.59 [224, 224] MobileNet with ['image_classification_mobilenetv2_2022apr_int8.onnx']
|
| 543 |
+
178.87 178.49 173.57 [224, 224] PPResNet with ['image_classification_ppresnet50_2022jan.onnx']
|
| 544 |
+
197.19 200.06 173.57 [224, 224] PPResNet with ['image_classification_ppresnet50_2022jan_int8.onnx']
|
| 545 |
+
57.57 65.48 51.34 [320, 240] LPD_YuNet with ['license_plate_detection_lpd_yunet_2023mar.onnx']
|
| 546 |
+
118.38 132.59 88.34 [416, 416] NanoDet with ['object_detection_nanodet_2022nov.onnx']
|
| 547 |
+
120.74 110.82 88.34 [416, 416] NanoDet with ['object_detection_nanodet_2022nov_int8.onnx']
|
| 548 |
+
577.93 577.17 553.81 [640, 640] YoloX with ['object_detection_yolox_2022nov.onnx']
|
| 549 |
+
607.96 604.88 553.81 [640, 640] YoloX with ['object_detection_yolox_2022nov_int8.onnx']
|
| 550 |
+
152.78 155.89 121.26 [1280, 720] DaSiamRPN with ['object_tracking_dasiamrpn_kernel_cls1_2021nov.onnx', 'object_tracking_dasiamrpn_kernel_r1_2021nov.onnx', 'object_tracking_dasiamrpn_model_2021nov.onnx']
|
| 551 |
+
38.03 38.26 37.51 [192, 192] MPPalmDet with ['palm_detection_mediapipe_2023feb.onnx']
|
| 552 |
+
47.12 48.12 37.51 [192, 192] MPPalmDet with ['palm_detection_mediapipe_2023feb_int8.onnx']
|
| 553 |
+
195.67 198.02 182.97 [128, 256] YoutuReID with ['person_reid_youtu_2021nov.onnx']
|
| 554 |
+
181.91 182.28 169.98 [128, 256] YoutuReID with ['person_reid_youtu_2021nov_int8.onnx']
|
| 555 |
+
394.77 407.60 371.95 [640, 480] DB with ['text_detection_DB_IC15_resnet18_2021sep.onnx']
|
| 556 |
+
392.52 404.80 367.96 [640, 480] DB with ['text_detection_DB_TD500_resnet18_2021sep.onnx']
|
| 557 |
+
77.32 77.72 75.27 [1280, 720] CRNN with ['text_recognition_CRNN_CH_2021sep.onnx']
|
| 558 |
+
82.93 82.93 75.27 [1280, 720] CRNN with ['text_recognition_CRNN_CN_2021nov.onnx']
|
| 559 |
+
77.51 93.01 67.44 [1280, 720] CRNN with ['text_recognition_CRNN_EN_2021sep.onnx']
|
| 560 |
+
[ WARN:0@598.857] global onnx_graph_simplifier.cpp:804 getMatFromTensor DNN: load FP16 model as FP32 model, and it takes twice the FP16 RAM requirement.
|
| 561 |
+
77.02 84.11 67.44 [1280, 720] CRNN with ['text_recognition_CRNN_CH_2023feb_fp16.onnx']
|
| 562 |
+
75.11 69.82 63.98 [1280, 720] CRNN with ['text_recognition_CRNN_EN_2023feb_fp16.onnx']
|
| 563 |
+
74.55 73.36 63.98 [1280, 720] CRNN with ['text_recognition_CRNN_CH_2022oct_int8.onnx']
|
| 564 |
+
75.06 77.44 63.98 [1280, 720] CRNN with ['text_recognition_CRNN_CN_2021nov_int8.onnx']
|
| 565 |
+
73.91 74.25 63.98 [1280, 720] CRNN with ['text_recognition_CRNN_EN_2022oct_int8.onnx']
|
| 566 |
+
```
|
| 567 |
+
|
| 568 |
+
### Horizon Sunrise X3 PI
|
| 569 |
+
|
| 570 |
+
Specs: [details_cn](https://developer.horizon.ai/sunrise)
|
| 571 |
+
- CPU: ARM Cortex-A53,4xCore, 1.2G
|
| 572 |
+
- BPU (aka NPU, not supported by OpenCV): (Bernoulli Arch) 2×Core,up to 1.0G, ~5Tops
|
| 573 |
+
|
| 574 |
+
CPU:
|
| 575 |
+
|
| 576 |
+
```
|
| 577 |
+
$ python3 benchmark.py --all --cfg_exclude wechat --model_exclude license_plate_detection_lpd_yunet_2023mar_int8.onnx:human_segmentation_pphumanseg_2023mar_int8.onnx
|
| 578 |
+
Benchmarking ...
|
| 579 |
+
backend=cv.dnn.DNN_BACKEND_OPENCV
|
| 580 |
+
target=cv.dnn.DNN_TARGET_CPU
|
| 581 |
+
mean median min input size model
|
| 582 |
+
11.04 11.01 10.98 [160, 120] YuNet with ['face_detection_yunet_2022mar.onnx']
|
| 583 |
+
12.59 12.75 10.98 [160, 120] YuNet with ['face_detection_yunet_2022mar_int8.onnx']
|
| 584 |
+
140.83 140.85 140.52 [150, 150] SFace with ['face_recognition_sface_2021dec.onnx']
|
| 585 |
+
171.71 175.65 140.52 [150, 150] SFace with ['face_recognition_sface_2021dec_int8.onnx']
|
| 586 |
+
64.96 64.94 64.77 [112, 112] FacialExpressionRecog with ['facial_expression_recognition_mobilefacenet_2022july.onnx']
|
| 587 |
+
80.20 81.82 64.77 [112, 112] FacialExpressionRecog with ['facial_expression_recognition_mobilefacenet_2022july_int8.onnx']
|
| 588 |
+
80.67 80.72 80.45 [224, 224] MPHandPose with ['handpose_estimation_mediapipe_2023feb.onnx']
|
| 589 |
+
89.25 90.39 80.45 [224, 224] MPHandPose with ['handpose_estimation_mediapipe_2023feb_int8.onnx']
|
| 590 |
+
144.23 144.34 143.84 [192, 192] PPHumanSeg with ['human_segmentation_pphumanseg_2023mar.onnx']
|
| 591 |
+
140.60 140.62 140.33 [224, 224] MobileNet with ['image_classification_mobilenetv1_2022apr.onnx']
|
| 592 |
+
122.53 124.23 107.71 [224, 224] MobileNet with ['image_classification_mobilenetv2_2022apr.onnx']
|
| 593 |
+
128.22 107.87 107.71 [224, 224] MobileNet with ['image_classification_mobilenetv1_2022apr_int8.onnx']
|
| 594 |
+
125.77 123.77 107.71 [224, 224] MobileNet with ['image_classification_mobilenetv2_2022apr_int8.onnx']
|
| 595 |
+
759.81 760.01 759.11 [224, 224] PPResNet with ['image_classification_ppresnet50_2022jan.onnx']
|
| 596 |
+
764.17 764.43 759.11 [224, 224] PPResNet with ['image_classification_ppresnet50_2022jan_int8.onnx']
|
| 597 |
+
283.75 284.17 282.15 [320, 240] LPD_YuNet with ['license_plate_detection_lpd_yunet_2023mar.onnx']
|
| 598 |
+
408.16 408.31 402.71 [416, 416] NanoDet with ['object_detection_nanodet_2022nov.onnx']
|
| 599 |
+
408.82 407.99 402.71 [416, 416] NanoDet with ['object_detection_nanodet_2022nov_int8.onnx']
|
| 600 |
+
2749.22 2756.23 2737.96 [640, 640] YoloX with ['object_detection_yolox_2022nov.onnx']
|
| 601 |
+
2671.54 2692.18 2601.24 [640, 640] YoloX with ['object_detection_yolox_2022nov_int8.onnx']
|
| 602 |
+
929.63 936.01 914.86 [1280, 720] DaSiamRPN with ['object_tracking_dasiamrpn_kernel_cls1_2021nov.onnx', 'object_tracking_dasiamrpn_kernel_r1_2021nov.onnx', 'object_tracking_dasiamrpn_model_2021nov.onnx']
|
| 603 |
+
142.23 142.03 141.78 [192, 192] MPPalmDet with ['palm_detection_mediapipe_2023feb.onnx']
|
| 604 |
+
179.74 184.79 141.78 [192, 192] MPPalmDet with ['palm_detection_mediapipe_2023feb_int8.onnx']
|
| 605 |
+
898.23 897.52 896.58 [128, 256] YoutuReID with ['person_reid_youtu_2021nov.onnx']
|
| 606 |
+
749.83 765.90 630.39 [128, 256] YoutuReID with ['person_reid_youtu_2021nov_int8.onnx']
|
| 607 |
+
1908.87 1905.00 1903.13 [640, 480] DB with ['text_detection_DB_IC15_resnet18_2021sep.onnx']
|
| 608 |
+
1922.34 1920.65 1896.97 [640, 480] DB with ['text_detection_DB_TD500_resnet18_2021sep.onnx']
|
| 609 |
+
470.78 469.17 467.92 [1280, 720] CRNN with ['text_recognition_CRNN_CH_2021sep.onnx']
|
| 610 |
+
495.94 497.12 467.92 [1280, 720] CRNN with ['text_recognition_CRNN_CN_2021nov.onnx']
|
| 611 |
+
464.58 528.72 408.69 [1280, 720] CRNN with ['text_recognition_CRNN_EN_2021sep.onnx']
|
| 612 |
+
[ WARN:0@2820.735] global onnx_graph_simplifier.cpp:804 getMatFromTensor DNN: load FP16 model as FP32 model, and it takes twice the FP16 RAM requirement.
|
| 613 |
+
465.04 467.01 408.69 [1280, 720] CRNN with ['text_recognition_CRNN_CH_2023feb_fp16.onnx']
|
| 614 |
+
452.90 409.34 408.69 [1280, 720] CRNN with ['text_recognition_CRNN_EN_2023feb_fp16.onnx']
|
| 615 |
+
450.23 438.57 408.69 [1280, 720] CRNN with ['text_recognition_CRNN_CH_2022oct_int8.onnx']
|
| 616 |
+
453.52 468.72 408.69 [1280, 720] CRNN with ['text_recognition_CRNN_CN_2021nov_int8.onnx']
|
| 617 |
+
443.38 447.29 381.90 [1280, 720] CRNN with ['text_recognition_CRNN_EN_2022oct_int8.onnx']
|
| 618 |
+
```
|
| 619 |
+
|
| 620 |
+
### MAIX-III AX-PI
|
| 621 |
+
|
| 622 |
+
Specs: [details_en](https://wiki.sipeed.com/hardware/en/maixIII/ax-pi/axpi.html#Hardware), [details_cn](https://wiki.sipeed.com/hardware/zh/maixIII/ax-pi/axpi.html#%E7%A1%AC%E4%BB%B6%E5%8F%82%E6%95%B0)
|
| 623 |
+
- CPU: Quad cores ARM Cortex-A7
|
| 624 |
+
- NPU (Not supported by OpenCV): TBD
|
| 625 |
+
|
| 626 |
+
CPU:
|
| 627 |
+
|
| 628 |
+
```
|
| 629 |
+
TBD
|
| 630 |
+
```
|