13 A Glimpse to Compress: Dynamic Visual Token Pruning for Large Vision-Language Models Visual token compression is critical for Large Vision-Language Models (LVLMs) to efficiently process high-resolution inputs. Existing methods that typically adopt fixed compression ratios cannot adapt to scenes of varying complexity, often causing imprecise pruning that discards informative visual tokens and results in degraded model performance. To address this issue, we introduce a dynamic pruning framework, GlimpsePrune, inspired by human cognition. It takes a data-driven ''glimpse'' and prunes irrelevant visual tokens in a single forward pass before answer generation. This approach prunes 92.6% of visual tokens while on average fully retaining the baseline performance on free-form VQA tasks. The reduced computational cost also enables more effective fine-tuning: an enhanced GlimpsePrune+ achieves 110% of the baseline performance while maintaining a similarly high pruning rate. Our work paves a new way for building more powerful and efficient LVLMs. 7 authors · Aug 2 2
- AdaGlimpse: Active Visual Exploration with Arbitrary Glimpse Position and Scale Active Visual Exploration (AVE) is a task that involves dynamically selecting observations (glimpses), which is critical to facilitate comprehension and navigation within an environment. While modern AVE methods have demonstrated impressive performance, they are constrained to fixed-scale glimpses from rigid grids. In contrast, existing mobile platforms equipped with optical zoom capabilities can capture glimpses of arbitrary positions and scales. To address this gap between software and hardware capabilities, we introduce AdaGlimpse. It uses Soft Actor-Critic, a reinforcement learning algorithm tailored for exploration tasks, to select glimpses of arbitrary position and scale. This approach enables our model to rapidly establish a general awareness of the environment before zooming in for detailed analysis. Experimental results demonstrate that AdaGlimpse surpasses previous methods across various visual tasks while maintaining greater applicability in realistic AVE scenarios. 6 authors · Apr 4, 2024