new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Oct 30

Aesthetics is Cheap, Show me the Text: An Empirical Evaluation of State-of-the-Art Generative Models for OCR

Text image is a unique and crucial information medium that integrates visual aesthetics and linguistic semantics in modern e-society. Due to their subtlety and complexity, the generation of text images represents a challenging and evolving frontier in the image generation field. The recent surge of specialized image generators (e.g., Flux-series) and unified generative models (e.g., GPT-4o), which demonstrate exceptional fidelity, raises a natural question: can they master the intricacies of text image generation and editing? Motivated by this, we assess current state-of-the-art generative models' capabilities in terms of text image generation and editing. We incorporate various typical optical character recognition (OCR) tasks into our evaluation and broaden the concept of text-based generation tasks into OCR generative tasks. We select 33 representative tasks and categorize them into five categories: document, handwritten text, scene text, artistic text, and complex \& layout-rich text. For comprehensive evaluation, we examine six models across both closed-source and open-source domains, using tailored, high-quality image inputs and prompts. Through this evaluation, we draw crucial observations and identify the weaknesses of current generative models for OCR tasks. We argue that photorealistic text image generation and editing should be internalized as foundational skills into general-domain generative models, rather than being delegated to specialized solutions, and we hope this empirical analysis can provide valuable insights for the community to achieve this goal. This evaluation is online and will be continuously updated at our GitHub repository.

  • 9 authors
·
Jul 20

General Detection-based Text Line Recognition

We introduce a general detection-based approach to text line recognition, be it printed (OCR) or handwritten (HTR), with Latin, Chinese, or ciphered characters. Detection-based approaches have until now been largely discarded for HTR because reading characters separately is often challenging, and character-level annotation is difficult and expensive. We overcome these challenges thanks to three main insights: (i) synthetic pre-training with sufficiently diverse data enables learning reasonable character localization for any script; (ii) modern transformer-based detectors can jointly detect a large number of instances, and, if trained with an adequate masking strategy, leverage consistency between the different detections; (iii) once a pre-trained detection model with approximate character localization is available, it is possible to fine-tune it with line-level annotation on real data, even with a different alphabet. Our approach, dubbed DTLR, builds on a completely different paradigm than state-of-the-art HTR methods, which rely on autoregressive decoding, predicting character values one by one, while we treat a complete line in parallel. Remarkably, we demonstrate good performance on a large range of scripts, usually tackled with specialized approaches. In particular, we improve state-of-the-art performances for Chinese script recognition on the CASIA v2 dataset, and for cipher recognition on the Borg and Copiale datasets. Our code and models are available at https://github.com/raphael-baena/DTLR.

  • 3 authors
·
Sep 25, 2024

TextSR: Diffusion Super-Resolution with Multilingual OCR Guidance

While recent advancements in Image Super-Resolution (SR) using diffusion models have shown promise in improving overall image quality, their application to scene text images has revealed limitations. These models often struggle with accurate text region localization and fail to effectively model image and multilingual character-to-shape priors. This leads to inconsistencies, the generation of hallucinated textures, and a decrease in the perceived quality of the super-resolved text. To address these issues, we introduce TextSR, a multimodal diffusion model specifically designed for Multilingual Scene Text Image Super-Resolution. TextSR leverages a text detector to pinpoint text regions within an image and then employs Optical Character Recognition (OCR) to extract multilingual text from these areas. The extracted text characters are then transformed into visual shapes using a UTF-8 based text encoder and cross-attention. Recognizing that OCR may sometimes produce inaccurate results in real-world scenarios, we have developed two innovative methods to enhance the robustness of our model. By integrating text character priors with the low-resolution text images, our model effectively guides the super-resolution process, enhancing fine details within the text and improving overall legibility. The superior performance of our model on both the TextZoom and TextVQA datasets sets a new benchmark for STISR, underscoring the efficacy of our approach.

  • 7 authors
·
May 29

Extending TrOCR for Text Localization-Free OCR of Full-Page Scanned Receipt Images

Digitization of scanned receipts aims to extract text from receipt images and save it into structured documents. This is usually split into two sub-tasks: text localization and optical character recognition (OCR). Most existing OCR models only focus on the cropped text instance images, which require the bounding box information provided by a text region detection model. Introducing an additional detector to identify the text instance images in advance adds complexity, however instance-level OCR models have very low accuracy when processing the whole image for the document-level OCR, such as receipt images containing multiple text lines arranged in various layouts. To this end, we propose a localization-free document-level OCR model for transcribing all the characters in a receipt image into an ordered sequence end-to-end. Specifically, we finetune the pretrained instance-level model TrOCR with randomly cropped image chunks, and gradually increase the image chunk size to generalize the recognition ability from instance images to full-page images. In our experiments on the SROIE receipt OCR dataset, the model finetuned with our strategy achieved 64.4 F1-score and a 22.8% character error rate (CER), respectively, which outperforms the baseline results with 48.5 F1-score and 50.6% CER. The best model, which splits the full image into 15 equally sized chunks, gives 87.8 F1-score and 4.98% CER with minimal additional pre or post-processing of the output. Moreover, the characters in the generated document-level sequences are arranged in the reading order, which is practical for real-world applications.

  • 3 authors
·
Dec 11, 2022

ODM: A Text-Image Further Alignment Pre-training Approach for Scene Text Detection and Spotting

In recent years, text-image joint pre-training techniques have shown promising results in various tasks. However, in Optical Character Recognition (OCR) tasks, aligning text instances with their corresponding text regions in images poses a challenge, as it requires effective alignment between text and OCR-Text (referring to the text in images as OCR-Text to distinguish from the text in natural language) rather than a holistic understanding of the overall image content. In this paper, we propose a new pre-training method called OCR-Text Destylization Modeling (ODM) that transfers diverse styles of text found in images to a uniform style based on the text prompt. With ODM, we achieve better alignment between text and OCR-Text and enable pre-trained models to adapt to the complex and diverse styles of scene text detection and spotting tasks. Additionally, we have designed a new labeling generation method specifically for ODM and combined it with our proposed Text-Controller module to address the challenge of annotation costs in OCR tasks, allowing a larger amount of unlabeled data to participate in pre-training. Extensive experiments on multiple public datasets demonstrate that our method significantly improves performance and outperforms current pre-training methods in scene text detection and spotting tasks. Code is available at {https://github.com/PriNing/ODM}.

  • 5 authors
·
Mar 1, 2024

CNN based Cuneiform Sign Detection Learned from Annotated 3D Renderings and Mapped Photographs with Illumination Augmentation

Motivated by the challenges of the Digital Ancient Near Eastern Studies (DANES) community, we develop digital tools for processing cuneiform script being a 3D script imprinted into clay tablets used for more than three millennia and at least eight major languages. It consists of thousands of characters that have changed over time and space. Photographs are the most common representations usable for machine learning, while ink drawings are prone to interpretation. Best suited 3D datasets that are becoming available. We created and used the HeiCuBeDa and MaiCuBeDa datasets, which consist of around 500 annotated tablets. For our novel OCR-like approach to mixed image data, we provide an additional mapping tool for transferring annotations between 3D renderings and photographs. Our sign localization uses a RepPoints detector to predict the locations of characters as bounding boxes. We use image data from GigaMesh's MSII (curvature, see https://gigamesh.eu) based rendering, Phong-shaded 3D models, and photographs as well as illumination augmentation. The results show that using rendered 3D images for sign detection performs better than other work on photographs. In addition, our approach gives reasonably good results for photographs only, while it is best used for mixed datasets. More importantly, the Phong renderings, and especially the MSII renderings, improve the results on photographs, which is the largest dataset on a global scale.

  • 3 authors
·
Aug 22, 2023

VisFocus: Prompt-Guided Vision Encoders for OCR-Free Dense Document Understanding

In recent years, notable advancements have been made in the domain of visual document understanding, with the prevailing architecture comprising a cascade of vision and language models. The text component can either be extracted explicitly with the use of external OCR models in OCR-based approaches, or alternatively, the vision model can be endowed with reading capabilities in OCR-free approaches. Typically, the queries to the model are input exclusively to the language component, necessitating the visual features to encompass the entire document. In this paper, we present VisFocus, an OCR-free method designed to better exploit the vision encoder's capacity by coupling it directly with the language prompt. To do so, we replace the down-sampling layers with layers that receive the input prompt and allow highlighting relevant parts of the document, while disregarding others. We pair the architecture enhancements with a novel pre-training task, using language masking on a snippet of the document text fed to the visual encoder in place of the prompt, to empower the model with focusing capabilities. Consequently, VisFocus learns to allocate its attention to text patches pertinent to the provided prompt. Our experiments demonstrate that this prompt-guided visual encoding approach significantly improves performance, achieving state-of-the-art results on various benchmarks.

  • 10 authors
·
Jul 17, 2024 4

NAF-DPM: A Nonlinear Activation-Free Diffusion Probabilistic Model for Document Enhancement

Real-world documents may suffer various forms of degradation, often resulting in lower accuracy in optical character recognition (OCR) systems. Therefore, a crucial preprocessing step is essential to eliminate noise while preserving text and key features of documents. In this paper, we propose NAF-DPM, a novel generative framework based on a diffusion probabilistic model (DPM) designed to restore the original quality of degraded documents. While DPMs are recognized for their high-quality generated images, they are also known for their large inference time. To mitigate this problem we provide the DPM with an efficient nonlinear activation-free (NAF) network and we employ as a sampler a fast solver of ordinary differential equations, which can converge in a few iterations. To better preserve text characters, we introduce an additional differentiable module based on convolutional recurrent neural networks, simulating the behavior of an OCR system during training. Experiments conducted on various datasets showcase the superiority of our approach, achieving state-of-the-art performance in terms of pixel-level and perceptual similarity metrics. Furthermore, the results demonstrate a notable character error reduction made by OCR systems when transcribing real-world document images enhanced by our framework. Code and pre-trained models are available at https://github.com/ispamm/NAF-DPM.

  • 2 authors
·
Apr 8, 2024

Éclair -- Extracting Content and Layout with Integrated Reading Order for Documents

Optical Character Recognition (OCR) technology is widely used to extract text from images of documents, facilitating efficient digitization and data retrieval. However, merely extracting text is insufficient when dealing with complex documents. Fully comprehending such documents requires an understanding of their structure -- including formatting, formulas, tables, and the reading order of multiple blocks and columns across multiple pages -- as well as semantic information for detecting elements like footnotes and image captions. This comprehensive understanding is crucial for downstream tasks such as retrieval, document question answering, and data curation for training Large Language Models (LLMs) and Vision Language Models (VLMs). To address this, we introduce \'Eclair, a general-purpose text-extraction tool specifically designed to process a wide range of document types. Given an image, \'Eclair is able to extract formatted text in reading order, along with bounding boxes and their corresponding semantic classes. To thoroughly evaluate these novel capabilities, we introduce our diverse human-annotated benchmark for document-level OCR and semantic classification. \'Eclair achieves state-of-the-art accuracy on this benchmark, outperforming other methods across key metrics. Additionally, we evaluate \'Eclair on established benchmarks, demonstrating its versatility and strength across several evaluation standards.

SARD: A Large-Scale Synthetic Arabic OCR Dataset for Book-Style Text Recognition

Arabic Optical Character Recognition (OCR) is essential for converting vast amounts of Arabic print media into digital formats. However, training modern OCR models, especially powerful vision-language models, is hampered by the lack of large, diverse, and well-structured datasets that mimic real-world book layouts. Existing Arabic OCR datasets often focus on isolated words or lines or are limited in scale, typographic variety, or structural complexity found in books. To address this significant gap, we introduce SARD (Large-Scale Synthetic Arabic OCR Dataset). SARD is a massive, synthetically generated dataset specifically designed to simulate book-style documents. It comprises 843,622 document images containing 690 million words, rendered across ten distinct Arabic fonts to ensure broad typographic coverage. Unlike datasets derived from scanned documents, SARD is free from real-world noise and distortions, offering a clean and controlled environment for model training. Its synthetic nature provides unparalleled scalability and allows for precise control over layout and content variation. We detail the dataset's composition and generation process and provide benchmark results for several OCR models, including traditional and deep learning approaches, highlighting the challenges and opportunities presented by this dataset. SARD serves as a valuable resource for developing and evaluating robust OCR and vision-language models capable of processing diverse Arabic book-style texts.

  • 5 authors
·
May 30

Data Generation for Post-OCR correction of Cyrillic handwriting

This paper introduces a novel approach to post-Optical Character Recognition Correction (POC) for handwritten Cyrillic text, addressing a significant gap in current research methodologies. This gap is due to the lack of large text corporas that provide OCR errors for further training of language-based POC models, which are demanding in terms of corpora size. Our study primarily focuses on the development and application of a synthetic handwriting generation engine based on B\'ezier curves. Such an engine generates highly realistic handwritten text in any amounts, which we utilize to create a substantial dataset by transforming Russian text corpora sourced from the internet. We apply a Handwritten Text Recognition (HTR) model to this dataset to identify OCR errors, forming the basis for our POC model training. The correction model is trained on a 90-symbol input context, utilizing a pre-trained T5 architecture with a seq2seq correction task. We evaluate our approach on HWR200 and School_notebooks_RU datasets as they provide significant challenges in the HTR domain. Furthermore, POC can be used to highlight errors for teachers, evaluating student performance. This can be done simply by comparing sentences before and after correction, displaying differences in text. Our primary contribution lies in the innovative use of B\'ezier curves for Cyrillic text generation and subsequent error correction using a specialized POC model. We validate our approach by presenting Word Accuracy Rate (WAR) and Character Accuracy Rate (CAR) results, both with and without post-OCR correction, using real open corporas of handwritten Cyrillic text. These results, coupled with our methodology, are designed to be reproducible, paving the way for further advancements in the field of OCR and handwritten text analysis. Paper contributions can be found in https://github.com/dbrainio/CyrillicHandwritingPOC

  • 5 authors
·
Nov 27, 2023

E-ARMOR: Edge case Assessment and Review of Multilingual Optical Character Recognition

Optical Character Recognition (OCR) in multilingual, noisy, and diverse real-world images remains a significant challenge for optical character recognition systems. With the rise of Large Vision-Language Models (LVLMs), there is growing interest in their ability to generalize and reason beyond fixed OCR pipelines. In this work, we introduce Sprinklr-Edge-OCR, a novel OCR system built specifically optimized for edge deployment in resource-constrained environments. We present a large-scale comparative evaluation of five state-of-the-art LVLMs (InternVL, Qwen, GOT OCR, LLaMA, MiniCPM) and two traditional OCR systems (Sprinklr-Edge-OCR, SuryaOCR) on a proprietary, doubly hand annotated dataset of multilingual (54 languages) images. Our benchmark covers a broad range of metrics including accuracy, semantic consistency, language coverage, computational efficiency (latency, memory, GPU usage), and deployment cost. To better reflect real-world applicability, we also conducted edge case deployment analysis, evaluating model performance on CPU only environments. Among the results, Qwen achieved the highest precision (0.54), while Sprinklr-Edge-OCR delivered the best overall F1 score (0.46) and outperformed others in efficiency, processing images 35 faster (0.17 seconds per image on average) and at less than 0.01 of the cost (0.006 USD per 1,000 images) compared to LVLM. Our findings demonstrate that the most optimal OCR systems for edge deployment are the traditional ones even in the era of LLMs due to their low compute requirements, low latency, and very high affordability.

  • 2 authors
·
Sep 3

KITAB-Bench: A Comprehensive Multi-Domain Benchmark for Arabic OCR and Document Understanding

With the growing adoption of Retrieval-Augmented Generation (RAG) in document processing, robust text recognition has become increasingly critical for knowledge extraction. While OCR (Optical Character Recognition) for English and other languages benefits from large datasets and well-established benchmarks, Arabic OCR faces unique challenges due to its cursive script, right-to-left text flow, and complex typographic and calligraphic features. We present KITAB-Bench, a comprehensive Arabic OCR benchmark that fills the gaps in current evaluation systems. Our benchmark comprises 8,809 samples across 9 major domains and 36 sub-domains, encompassing diverse document types including handwritten text, structured tables, and specialized coverage of 21 chart types for business intelligence. Our findings show that modern vision-language models (such as GPT-4, Gemini, and Qwen) outperform traditional OCR approaches (like EasyOCR, PaddleOCR, and Surya) by an average of 60% in Character Error Rate (CER). Furthermore, we highlight significant limitations of current Arabic OCR models, particularly in PDF-to-Markdown conversion, where the best model Gemini-2.0-Flash achieves only 65% accuracy. This underscores the challenges in accurately recognizing Arabic text, including issues with complex fonts, numeral recognition errors, word elongation, and table structure detection. This work establishes a rigorous evaluation framework that can drive improvements in Arabic document analysis methods and bridge the performance gap with English OCR technologies.

  • 10 authors
·
Feb 20 2

PsOCR: Benchmarking Large Multimodal Models for Optical Character Recognition in Low-resource Pashto Language

This paper evaluates the performance of Large Multimodal Models (LMMs) on Optical Character Recognition (OCR) in the low-resource Pashto language. Natural Language Processing (NLP) in Pashto faces several challenges due to the cursive nature of its script and a scarcity of structured datasets. To address this, we developed a synthetic Pashto OCR dataset, PsOCR, consisting of one million images annotated with bounding boxes at word, line, and document levels, suitable for training and evaluating models based on different architectures, including Convolutional Neural Networks (CNNs) and Transformers. PsOCR covers variations across 1,000 unique font families, colors, image sizes, and layouts. A benchmark subset of 10K images was selected to evaluate the performance of several LMMs, including seven open-source models: DeepSeek's Janus, InternVL, MiniCPM, Florence, and Qwen (3B and 7B), and four closed-source models: GPT-4o, Gemini, Claude, and Grok. Experimental results demonstrate that Gemini achieves the best performance among all models, whereas among open-source models, Qwen-7B stands out. This work provides an insightful assessment of the capabilities and limitations of current LMMs for OCR tasks in Pashto and establishes a foundation for further research not only in Pashto OCR but also for other similar scripts such as Arabic, Persian, and Urdu. PsOCR is available at https://github.com/zirak-ai/PashtoOCR.

  • 3 authors
·
May 15

OCR Hinders RAG: Evaluating the Cascading Impact of OCR on Retrieval-Augmented Generation

Retrieval-augmented Generation (RAG) enhances Large Language Models (LLMs) by integrating external knowledge to reduce hallucinations and incorporate up-to-date information without retraining. As an essential part of RAG, external knowledge bases are commonly built by extracting structured data from unstructured PDF documents using Optical Character Recognition (OCR). However, given the imperfect prediction of OCR and the inherent non-uniform representation of structured data, knowledge bases inevitably contain various OCR noises. In this paper, we introduce OHRBench, the first benchmark for understanding the cascading impact of OCR on RAG systems. OHRBench includes 350 carefully selected unstructured PDF documents from six real-world RAG application domains, along with Q&As derived from multimodal elements in documents, challenging existing OCR solutions used for RAG To better understand OCR's impact on RAG systems, we identify two primary types of OCR noise: Semantic Noise and Formatting Noise and apply perturbation to generate a set of structured data with varying degrees of each OCR noise. Using OHRBench, we first conduct a comprehensive evaluation of current OCR solutions and reveal that none is competent for constructing high-quality knowledge bases for RAG systems. We then systematically evaluate the impact of these two noise types and demonstrate the vulnerability of RAG systems. Furthermore, we discuss the potential of employing Vision-Language Models (VLMs) without OCR in RAG systems. Code: https://github.com/opendatalab/OHR-Bench

  • 9 authors
·
Dec 3, 2024 2

Handwritten Code Recognition for Pen-and-Paper CS Education

Teaching Computer Science (CS) by having students write programs by hand on paper has key pedagogical advantages: It allows focused learning and requires careful thinking compared to the use of Integrated Development Environments (IDEs) with intelligent support tools or "just trying things out". The familiar environment of pens and paper also lessens the cognitive load of students with no prior experience with computers, for whom the mere basic usage of computers can be intimidating. Finally, this teaching approach opens learning opportunities to students with limited access to computers. However, a key obstacle is the current lack of teaching methods and support software for working with and running handwritten programs. Optical character recognition (OCR) of handwritten code is challenging: Minor OCR errors, perhaps due to varied handwriting styles, easily make code not run, and recognizing indentation is crucial for languages like Python but is difficult to do due to inconsistent horizontal spacing in handwriting. Our approach integrates two innovative methods. The first combines OCR with an indentation recognition module and a language model designed for post-OCR error correction without introducing hallucinations. This method, to our knowledge, surpasses all existing systems in handwritten code recognition. It reduces error from 30\% in the state of the art to 5\% with minimal hallucination of logical fixes to student programs. The second method leverages a multimodal language model to recognize handwritten programs in an end-to-end fashion. We hope this contribution can stimulate further pedagogical research and contribute to the goal of making CS education universally accessible. We release a dataset of handwritten programs and code to support future research at https://github.com/mdoumbouya/codeocr

  • 4 authors
·
Aug 7, 2024

Refining Text-to-Image Generation: Towards Accurate Training-Free Glyph-Enhanced Image Generation

Over the past few years, Text-to-Image (T2I) generation approaches based on diffusion models have gained significant attention. However, vanilla diffusion models often suffer from spelling inaccuracies in the text displayed within the generated images. The capability to generate visual text is crucial, offering both academic interest and a wide range of practical applications. To produce accurate visual text images, state-of-the-art techniques adopt a glyph-controlled image generation approach, consisting of a text layout generator followed by an image generator that is conditioned on the generated text layout. Nevertheless, our study reveals that these models still face three primary challenges, prompting us to develop a testbed to facilitate future research. We introduce a benchmark, LenCom-Eval, specifically designed for testing models' capability in generating images with Lengthy and Complex visual text. Subsequently, we introduce a training-free framework to enhance the two-stage generation approaches. We examine the effectiveness of our approach on both LenCom-Eval and MARIO-Eval benchmarks and demonstrate notable improvements across a range of evaluation metrics, including CLIPScore, OCR precision, recall, F1 score, accuracy, and edit distance scores. For instance, our proposed framework improves the backbone model, TextDiffuser, by more than 23\% and 13.5\% in terms of OCR word F1 on LenCom-Eval and MARIO-Eval, respectively. Our work makes a unique contribution to the field by focusing on generating images with long and rare text sequences, a niche previously unexplored by existing literature

  • 5 authors
·
Mar 25, 2024

Enhanced Generative Structure Prior for Chinese Text Image Super-resolution

Faithful text image super-resolution (SR) is challenging because each character has a unique structure and usually exhibits diverse font styles and layouts. While existing methods primarily focus on English text, less attention has been paid to more complex scripts like Chinese. In this paper, we introduce a high-quality text image SR framework designed to restore the precise strokes of low-resolution (LR) Chinese characters. Unlike methods that rely on character recognition priors to regularize the SR task, we propose a novel structure prior that offers structure-level guidance to enhance visual quality. Our framework incorporates this structure prior within a StyleGAN model, leveraging its generative capabilities for restoration. To maintain the integrity of character structures while accommodating various font styles and layouts, we implement a codebook-based mechanism that restricts the generative space of StyleGAN. Each code in the codebook represents the structure of a specific character, while the vector w in StyleGAN controls the character's style, including typeface, orientation, and location. Through the collaborative interaction between the codebook and style, we generate a high-resolution structure prior that aligns with LR characters both spatially and structurally. Experiments demonstrate that this structure prior provides robust, character-specific guidance, enabling the accurate restoration of clear strokes in degraded characters, even for real-world LR Chinese text with irregular layouts. Our code and pre-trained models will be available at https://github.com/csxmli2016/MARCONetPlusPlus

  • 3 authors
·
Aug 10

Image-text matching for large-scale book collections

We address the problem of detecting and mapping all books in a collection of images to entries in a given book catalogue. Instead of performing independent retrieval for each book detected, we treat the image-text mapping problem as a many-to-many matching process, looking for the best overall match between the two sets. We combine a state-of-the-art segmentation method (SAM) to detect book spines and extract book information using a commercial OCR. We then propose a two-stage approach for text-image matching, where CLIP embeddings are used first for fast matching, followed by a second slower stage to refine the matching, employing either the Hungarian Algorithm or a BERT-based model trained to cope with noisy OCR input and partial text matches. To evaluate our approach, we publish a new dataset of annotated bookshelf images that covers the whole book collection of a public library in Spain. In addition, we provide two target lists of book metadata, a closed-set of 15k book titles that corresponds to the known library inventory, and an open-set of 2.3M book titles to simulate an open-world scenario. We report results on two settings, on one hand on a matching-only task, where the book segments and OCR is given and the objective is to perform many-to-many matching against the target lists, and a combined detection and matching task, where books must be first detected and recognised before they are matched to the target list entries. We show that both the Hungarian Matching and the proposed BERT-based model outperform a fuzzy string matching baseline, and we highlight inherent limitations of the matching algorithms as the target increases in size, and when either of the two sets (detected books or target book list) is incomplete. The dataset and code are available at https://github.com/llabres/library-dataset

  • 4 authors
·
Jul 29, 2024

Spanish TrOCR: Leveraging Transfer Learning for Language Adaptation

This study explores the transfer learning capabilities of the TrOCR architecture to Spanish. TrOCR is a transformer-based Optical Character Recognition (OCR) model renowned for its state-of-the-art performance in English benchmarks. Inspired by Li et al. assertion regarding its adaptability to multilingual text recognition, we investigate two distinct approaches to adapt the model to a new language: integrating an English TrOCR encoder with a language specific decoder and train the model on this specific language, and fine-tuning the English base TrOCR model on a new language data. Due to the scarcity of publicly available datasets, we present a resource-efficient pipeline for creating OCR datasets in any language, along with a comprehensive benchmark of the different image generation methods employed with a focus on Visual Rich Documents (VRDs). Additionally, we offer a comparative analysis of the two approaches for the Spanish language, demonstrating that fine-tuning the English TrOCR on Spanish yields superior recognition than the language specific decoder for a fixed dataset size. We evaluate our model employing character and word error rate metrics on a public available printed dataset, comparing the performance against other open-source and cloud OCR spanish models. As far as we know, these resources represent the best open-source model for OCR in Spanish. The Spanish TrOCR models are publicly available on HuggingFace [20] and the code to generate the dataset is available on Github [25].

  • 2 authors
·
Jul 9, 2024

Text Detection and Recognition in the Wild: A Review

Detection and recognition of text in natural images are two main problems in the field of computer vision that have a wide variety of applications in analysis of sports videos, autonomous driving, industrial automation, to name a few. They face common challenging problems that are factors in how text is represented and affected by several environmental conditions. The current state-of-the-art scene text detection and/or recognition methods have exploited the witnessed advancement in deep learning architectures and reported a superior accuracy on benchmark datasets when tackling multi-resolution and multi-oriented text. However, there are still several remaining challenges affecting text in the wild images that cause existing methods to underperform due to there models are not able to generalize to unseen data and the insufficient labeled data. Thus, unlike previous surveys in this field, the objectives of this survey are as follows: first, offering the reader not only a review on the recent advancement in scene text detection and recognition, but also presenting the results of conducting extensive experiments using a unified evaluation framework that assesses pre-trained models of the selected methods on challenging cases, and applies the same evaluation criteria on these techniques. Second, identifying several existing challenges for detecting or recognizing text in the wild images, namely, in-plane-rotation, multi-oriented and multi-resolution text, perspective distortion, illumination reflection, partial occlusion, complex fonts, and special characters. Finally, the paper also presents insight into the potential research directions in this field to address some of the mentioned challenges that are still encountering scene text detection and recognition techniques.

  • 5 authors
·
Jun 7, 2020

Few Shots Are All You Need: A Progressive Few Shot Learning Approach for Low Resource Handwritten Text Recognition

Handwritten text recognition in low resource scenarios, such as manuscripts with rare alphabets, is a challenging problem. The main difficulty comes from the very few annotated data and the limited linguistic information (e.g. dictionaries and language models). Thus, we propose a few-shot learning-based handwriting recognition approach that significantly reduces the human labor annotation process, requiring only few images of each alphabet symbol. The method consists in detecting all the symbols of a given alphabet in a textline image and decoding the obtained similarity scores to the final sequence of transcribed symbols. Our model is first pretrained on synthetic line images generated from any alphabet, even though different from the target domain. A second training step is then applied to diminish the gap between the source and target data. Since this retraining would require annotation of thousands of handwritten symbols together with their bounding boxes, we propose to avoid such human effort through an unsupervised progressive learning approach that automatically assigns pseudo-labels to the non-annotated data. The evaluation on different manuscript datasets show that our model can lead to competitive results with a significant reduction in human effort. The code will be publicly available in this repository: https://github.com/dali92002/HTRbyMatching

  • 4 authors
·
Jul 21, 2021

CDM: A Reliable Metric for Fair and Accurate Formula Recognition Evaluation

Formula recognition presents significant challenges due to the complicated structure and varied notation of mathematical expressions. Despite continuous advancements in formula recognition models, the evaluation metrics employed by these models, such as BLEU and Edit Distance, still exhibit notable limitations. They overlook the fact that the same formula has diverse representations and is highly sensitive to the distribution of training data, thereby causing the unfairness in formula recognition evaluation. To this end, we propose a Character Detection Matching (CDM) metric, ensuring the evaluation objectivity by designing a image-level rather than LaTex-level metric score. Specifically, CDM renders both the model-predicted LaTeX and the ground-truth LaTeX formulas into image-formatted formulas, then employs visual feature extraction and localization techniques for precise character-level matching, incorporating spatial position information. Such a spatially-aware and character-matching method offers a more accurate and equitable evaluation compared with previous BLEU and Edit Distance metrics that rely solely on text-based character matching. Experimentally, we evaluated various formula recognition models using CDM, BLEU, and ExpRate metrics. Their results demonstrate that the CDM aligns more closely with human evaluation standards and provides a fairer comparison across different models by eliminating discrepancies caused by diverse formula representations.

  • 8 authors
·
Sep 5, 2024 3

Text Image Inpainting via Global Structure-Guided Diffusion Models

Real-world text can be damaged by corrosion issues caused by environmental or human factors, which hinder the preservation of the complete styles of texts, e.g., texture and structure. These corrosion issues, such as graffiti signs and incomplete signatures, bring difficulties in understanding the texts, thereby posing significant challenges to downstream applications, e.g., scene text recognition and signature identification. Notably, current inpainting techniques often fail to adequately address this problem and have difficulties restoring accurate text images along with reasonable and consistent styles. Formulating this as an open problem of text image inpainting, this paper aims to build a benchmark to facilitate its study. In doing so, we establish two specific text inpainting datasets which contain scene text images and handwritten text images, respectively. Each of them includes images revamped by real-life and synthetic datasets, featuring pairs of original images, corrupted images, and other assistant information. On top of the datasets, we further develop a novel neural framework, Global Structure-guided Diffusion Model (GSDM), as a potential solution. Leveraging the global structure of the text as a prior, the proposed GSDM develops an efficient diffusion model to recover clean texts. The efficacy of our approach is demonstrated by thorough empirical study, including a substantial boost in both recognition accuracy and image quality. These findings not only highlight the effectiveness of our method but also underscore its potential to enhance the broader field of text image understanding and processing. Code and datasets are available at: https://github.com/blackprotoss/GSDM.

  • 6 authors
·
Jan 26, 2024

Visual Text Processing: A Comprehensive Review and Unified Evaluation

Visual text is a crucial component in both document and scene images, conveying rich semantic information and attracting significant attention in the computer vision community. Beyond traditional tasks such as text detection and recognition, visual text processing has witnessed rapid advancements driven by the emergence of foundation models, including text image reconstruction and text image manipulation. Despite significant progress, challenges remain due to the unique properties that differentiate text from general objects. Effectively capturing and leveraging these distinct textual characteristics is essential for developing robust visual text processing models. In this survey, we present a comprehensive, multi-perspective analysis of recent advancements in visual text processing, focusing on two key questions: (1) What textual features are most suitable for different visual text processing tasks? (2) How can these distinctive text features be effectively incorporated into processing frameworks? Furthermore, we introduce VTPBench, a new benchmark that encompasses a broad range of visual text processing datasets. Leveraging the advanced visual quality assessment capabilities of multimodal large language models (MLLMs), we propose VTPScore, a novel evaluation metric designed to ensure fair and reliable evaluation. Our empirical study with more than 20 specific models reveals substantial room for improvement in the current techniques. Our aim is to establish this work as a fundamental resource that fosters future exploration and innovation in the dynamic field of visual text processing. The relevant repository is available at https://github.com/shuyansy/Visual-Text-Processing-survey.

  • 12 authors
·
Apr 30

An Investigation into Pre-Training Object-Centric Representations for Reinforcement Learning

Unsupervised object-centric representation (OCR) learning has recently drawn attention as a new paradigm of visual representation. This is because of its potential of being an effective pre-training technique for various downstream tasks in terms of sample efficiency, systematic generalization, and reasoning. Although image-based reinforcement learning (RL) is one of the most important and thus frequently mentioned such downstream tasks, the benefit in RL has surprisingly not been investigated systematically thus far. Instead, most of the evaluations have focused on rather indirect metrics such as segmentation quality and object property prediction accuracy. In this paper, we investigate the effectiveness of OCR pre-training for image-based reinforcement learning via empirical experiments. For systematic evaluation, we introduce a simple object-centric visual RL benchmark and conduct experiments to answer questions such as ``Does OCR pre-training improve performance on object-centric tasks?'' and ``Can OCR pre-training help with out-of-distribution generalization?''. Our results provide empirical evidence for valuable insights into the effectiveness of OCR pre-training for RL and the potential limitations of its use in certain scenarios. Additionally, this study also examines the critical aspects of incorporating OCR pre-training in RL, including performance in a visually complex environment and the appropriate pooling layer to aggregate the object representations.

  • 4 authors
·
Feb 8, 2023

Self-supervised Character-to-Character Distillation for Text Recognition

When handling complicated text images (e.g., irregular structures, low resolution, heavy occlusion, and uneven illumination), existing supervised text recognition methods are data-hungry. Although these methods employ large-scale synthetic text images to reduce the dependence on annotated real images, the domain gap still limits the recognition performance. Therefore, exploring the robust text feature representations on unlabeled real images by self-supervised learning is a good solution. However, existing self-supervised text recognition methods conduct sequence-to-sequence representation learning by roughly splitting the visual features along the horizontal axis, which limits the flexibility of the augmentations, as large geometric-based augmentations may lead to sequence-to-sequence feature inconsistency. Motivated by this, we propose a novel self-supervised Character-to-Character Distillation method, CCD, which enables versatile augmentations to facilitate general text representation learning. Specifically, we delineate the character structures of unlabeled real images by designing a self-supervised character segmentation module. Following this, CCD easily enriches the diversity of local characters while keeping their pairwise alignment under flexible augmentations, using the transformation matrix between two augmented views from images. Experiments demonstrate that CCD achieves state-of-the-art results, with average performance gains of 1.38% in text recognition, 1.7% in text segmentation, 0.24 dB (PSNR) and 0.0321 (SSIM) in text super-resolution. Code is available at https://github.com/TongkunGuan/CCD.

  • 6 authors
·
Nov 1, 2022

Bidirectional Trained Tree-Structured Decoder for Handwritten Mathematical Expression Recognition

The Handwritten Mathematical Expression Recognition (HMER) task is a critical branch in the field of OCR. Recent studies have demonstrated that incorporating bidirectional context information significantly improves the performance of HMER models. However, existing methods fail to effectively utilize bidirectional context information during the inference stage. Furthermore, current bidirectional training methods are primarily designed for string decoders and cannot adequately generalize to tree decoders, which offer superior generalization capabilities and structural analysis capacity. In order to overcome these limitations, we propose the Mirror-Flipped Symbol Layout Tree (MF-SLT) and Bidirectional Asynchronous Training (BAT) structure. Our method extends the bidirectional training strategy to the tree decoder, allowing for more effective training by leveraging bidirectional information. Additionally, we analyze the impact of the visual and linguistic perception of the HMER model separately and introduce the Shared Language Modeling (SLM) mechanism. Through the SLM, we enhance the model's robustness and generalization when dealing with visual ambiguity, particularly in scenarios with abundant training data. Our approach has been validated through extensive experiments, demonstrating its ability to achieve new state-of-the-art results on the CROHME 2014, 2016, and 2019 datasets, as well as the HME100K dataset. The code used in our experiments will be publicly available.

  • 6 authors
·
Dec 31, 2023

CalliReader: Contextualizing Chinese Calligraphy via an Embedding-Aligned Vision-Language Model

Chinese calligraphy, a UNESCO Heritage, remains computationally challenging due to visual ambiguity and cultural complexity. Existing AI systems fail to contextualize their intricate scripts, because of limited annotated data and poor visual-semantic alignment. We propose CalliReader, a vision-language model (VLM) that solves the Chinese Calligraphy Contextualization (CC^2) problem through three innovations: (1) character-wise slicing for precise character extraction and sorting, (2) CalliAlign for visual-text token compression and alignment, (3) embedding instruction tuning (e-IT) for improving alignment and addressing data scarcity. We also build CalliBench, the first benchmark for full-page calligraphic contextualization, addressing three critical issues in previous OCR and VQA approaches: fragmented context, shallow reasoning, and hallucination. Extensive experiments including user studies have been conducted to verify our CalliReader's superiority to other state-of-the-art methods and even human professionals in page-level calligraphy recognition and interpretation, achieving higher accuracy while reducing hallucination. Comparisons with reasoning models highlight the importance of accurate recognition as a prerequisite for reliable comprehension. Quantitative analyses validate CalliReader's efficiency; evaluations on document and real-world benchmarks confirm its robust generalization ability.

  • 5 authors
·
Mar 9

Open-vocabulary vs. Closed-set: Best Practice for Few-shot Object Detection Considering Text Describability

Open-vocabulary object detection (OVD), detecting specific classes of objects using only their linguistic descriptions (e.g., class names) without any image samples, has garnered significant attention. However, in real-world applications, the target class concepts is often hard to describe in text and the only way to specify target objects is to provide their image examples, yet it is often challenging to obtain a good number of samples. Thus, there is a high demand from practitioners for few-shot object detection (FSOD). A natural question arises: Can the benefits of OVD extend to FSOD for object classes that are difficult to describe in text? Compared to traditional methods that learn only predefined classes (referred to in this paper as closed-set object detection, COD), can the extra cost of OVD be justified? To answer these questions, we propose a method to quantify the ``text-describability'' of object detection datasets using the zero-shot image classification accuracy with CLIP. This allows us to categorize various OD datasets with different text-describability and emprically evaluate the FSOD performance of OVD and COD methods within each category. Our findings reveal that: i) there is little difference between OVD and COD for object classes with low text-describability under equal conditions in OD pretraining; and ii) although OVD can learn from more diverse data than OD-specific data, thereby increasing the volume of training data, it can be counterproductive for classes with low-text-describability. These findings provide practitioners with valuable guidance amidst the recent advancements of OVD methods.

  • 3 authors
·
Oct 20, 2024

Siamese based Neural Network for Offline Writer Identification on word level data

Handwriting recognition is one of the desirable attributes of document comprehension and analysis. It is concerned with the documents writing style and characteristics that distinguish the authors. The diversity of text images, notably in images with varying handwriting, makes the process of learning good features difficult in cases where little data is available. In this paper, we propose a novel scheme to identify the author of a document based on the input word image. Our method is text independent and does not impose any constraint on the size of the input image under examination. To begin with, we detect crucial components in handwriting and extract regions surrounding them using Scale Invariant Feature Transform (SIFT). These patches are designed to capture individual writing features (including allographs, characters, or combinations of characters) that are likely to be unique for an individual writer. These features are then passed through a deep Convolutional Neural Network (CNN) in which the weights are learned by applying the concept of Similarity learning using Siamese network. Siamese network enhances the discrimination power of CNN by mapping similarity between different pairs of input image. Features learned at different scales of the extracted SIFT key-points are encoded using Sparse PCA, each components of the Sparse PCA is assigned a saliency score signifying its level of significance in discriminating different writers effectively. Finally, the weighted Sparse PCA corresponding to each SIFT key-points is combined to arrive at a final classification score for each writer. The proposed algorithm was evaluated on two publicly available databases (namely IAM and CVL) and is able to achieve promising result, when compared with other deep learning based algorithm.

  • 2 authors
·
Nov 17, 2022

IDPL-PFOD2: A New Large-Scale Dataset for Printed Farsi Optical Character Recognition

Optical Character Recognition is a technique that converts document images into searchable and editable text, making it a valuable tool for processing scanned documents. While the Farsi language stands as a prominent and official language in Asia, efforts to develop efficient methods for recognizing Farsi printed text have been relatively limited. This is primarily attributed to the languages distinctive features, such as cursive form, the resemblance between certain alphabet characters, and the presence of numerous diacritics and dot placement. On the other hand, given the substantial training sample requirements of deep-based architectures for effective performance, the development of such datasets holds paramount significance. In light of these concerns, this paper aims to present a novel large-scale dataset, IDPL-PFOD2, tailored for Farsi printed text recognition. The dataset comprises 2003541 images featuring a wide variety of fonts, styles, and sizes. This dataset is an extension of the previously introduced IDPL-PFOD dataset, offering a substantial increase in both volume and diversity. Furthermore, the datasets effectiveness is assessed through the utilization of both CRNN-based and Vision Transformer architectures. The CRNN-based model achieves a baseline accuracy rate of 78.49% and a normalized edit distance of 97.72%, while the Vision Transformer architecture attains an accuracy of 81.32% and a normalized edit distance of 98.74%.

  • 5 authors
·
Dec 2, 2023

Detecting and recognizing characters in Greek papyri with YOLOv8, DeiT and SimCLR

Purpose: The capacity to isolate and recognize individual characters from facsimile images of papyrus manuscripts yields rich opportunities for digital analysis. For this reason the `ICDAR 2023 Competition on Detection and Recognition of Greek Letters on Papyri' was held as part of the 17th International Conference on Document Analysis and Recognition. This paper discusses our submission to the competition. Methods: We used an ensemble of YOLOv8 models to detect and classify individual characters and employed two different approaches for refining the character predictions, including a transformer based DeiT approach and a ResNet-50 model trained on a large corpus of unlabelled data using SimCLR, a self-supervised learning method. Results: Our submission won the recognition challenge with a mAP of 42.2%, and was runner-up in the detection challenge with a mean average precision (mAP) of 51.4%. At the more relaxed intersection over union threshold of 0.5, we achieved the highest mean average precision and mean average recall results for both detection and classification. Conclusion: The results demonstrate the potential for these techniques for automated character recognition on historical manuscripts. We ran the prediction pipeline on more than 4,500 images from the Oxyrhynchus Papyri to illustrate the utility of our approach, and we release the results publicly in multiple formats.

  • 2 authors
·
Jan 23, 2024

The Surprisingly Straightforward Scene Text Removal Method With Gated Attention and Region of Interest Generation: A Comprehensive Prominent Model Analysis

Scene text removal (STR), a task of erasing text from natural scene images, has recently attracted attention as an important component of editing text or concealing private information such as ID, telephone, and license plate numbers. While there are a variety of different methods for STR actively being researched, it is difficult to evaluate superiority because previously proposed methods do not use the same standardized training/evaluation dataset. We use the same standardized training/testing dataset to evaluate the performance of several previous methods after standardized re-implementation. We also introduce a simple yet extremely effective Gated Attention (GA) and Region-of-Interest Generation (RoIG) methodology in this paper. GA uses attention to focus on the text stroke as well as the textures and colors of the surrounding regions to remove text from the input image much more precisely. RoIG is applied to focus on only the region with text instead of the entire image to train the model more efficiently. Experimental results on the benchmark dataset show that our method significantly outperforms existing state-of-the-art methods in almost all metrics with remarkably higher-quality results. Furthermore, because our model does not generate a text stroke mask explicitly, there is no need for additional refinement steps or sub-models, making our model extremely fast with fewer parameters. The dataset and code are available at this https://github.com/naver/garnet.

  • 2 authors
·
Oct 13, 2022

TEXTRON: Weakly Supervised Multilingual Text Detection through Data Programming

Several recent deep learning (DL) based techniques perform considerably well on image-based multilingual text detection. However, their performance relies heavily on the availability and quality of training data. There are numerous types of page-level document images consisting of information in several modalities, languages, fonts, and layouts. This makes text detection a challenging problem in the field of computer vision (CV), especially for low-resource or handwritten languages. Furthermore, there is a scarcity of word-level labeled data for text detection, especially for multilingual settings and Indian scripts that incorporate both printed and handwritten text. Conventionally, Indian script text detection requires training a DL model on plenty of labeled data, but to the best of our knowledge, no relevant datasets are available. Manual annotation of such data requires a lot of time, effort, and expertise. In order to solve this problem, we propose TEXTRON, a Data Programming-based approach, where users can plug various text detection methods into a weak supervision-based learning framework. One can view this approach to multilingual text detection as an ensemble of different CV-based techniques and DL approaches. TEXTRON can leverage the predictions of DL models pre-trained on a significant amount of language data in conjunction with CV-based methods to improve text detection in other languages. We demonstrate that TEXTRON can improve the detection performance for documents written in Indian languages, despite the absence of corresponding labeled data. Further, through extensive experimentation, we show improvement brought about by our approach over the current State-of-the-art (SOTA) models, especially for handwritten Devanagari text. Code and dataset has been made available at https://github.com/IITB-LEAP-OCR/TEXTRON

  • 5 authors
·
Feb 15, 2024

Layout and Task Aware Instruction Prompt for Zero-shot Document Image Question Answering

Layout-aware pre-trained models has achieved significant progress on document image question answering. They introduce extra learnable modules into existing language models to capture layout information within document images from text bounding box coordinates obtained by OCR tools. However, extra modules necessitate pre-training on extensive document images. This prevents these methods from directly utilizing off-the-shelf instruction-tuning language foundation models, which have recently shown promising potential in zero-shot learning. Instead, in this paper, we find that instruction-tuning language models like Claude and ChatGPT can understand layout by spaces and line breaks. Based on this observation, we propose the LAyout and Task aware Instruction Prompt (LATIN-Prompt), which consists of layout-aware document content and task-aware instruction. Specifically, the former uses appropriate spaces and line breaks to recover the layout information among text segments obtained by OCR tools, and the latter ensures that generated answers adhere to formatting requirements. Moreover, we propose the LAyout and Task aware Instruction Tuning (LATIN-Tuning) to improve the performance of small instruction-tuning models like Alpaca. Experimental results show that LATIN-Prompt enables zero-shot performance of Claude and ChatGPT to be comparable to the fine-tuning performance of SOTAs on document image question answering, and LATIN-Tuning enhances the zero-shot performance of Alpaca significantly. For example, LATIN-Prompt improves the performance of Claude and ChatGPT on DocVQA by 263% and 20% respectively. LATIN-Tuning improves the performance of Alpaca on DocVQA by 87.7%. Quantitative and qualitative analyses demonstrate the effectiveness of LATIN-Prompt and LATIN-Tuning. We provide the code in supplementary and will release it to facilitate future research.

  • 4 authors
·
Jun 1, 2023

Logics-Parsing Technical Report

Recent advances in Large Vision-Language models (LVLM) have spurred significant progress in document parsing task. Compared to traditional pipeline-based methods, end-to-end paradigms have shown their excellence in converting PDF images into structured outputs through integrated Optical Character Recognition (OCR), table recognition, mathematical formula recognition and so on. However, the absence of explicit analytical stages for document layouts and reading orders limits the LVLM's capability in handling complex document types such as multi-column newspapers or posters. To address this limitation, we propose in this report Logics-Parsing: an end-to-end LVLM-based model augmented with reinforcement learning. Our model incorporates meticulously designed reward mechanisms to optimize complex layout analysis and reading order inference. In addition, we expand the model's versatility by incorporating diverse data types such as chemical formulas and handwritten Chinese characters into supervised fine-tuning. Finally, to enable rigorous evaluation of our approach, we introduce LogicsParsingBench, a curated set of 1,078 page-level PDF images spanning nine major categories and over twenty sub-categories, which will be released later. Comprehensive experiments conducted on LogicsParsingBench have validated the efficacy and State-of-the-art (SOTA) performance of our proposed model across diverse document analysis scenarios. Project Page: https://github.com/alibaba/Logics-Parsing

American Stories: A Large-Scale Structured Text Dataset of Historical U.S. Newspapers

Existing full text datasets of U.S. public domain newspapers do not recognize the often complex layouts of newspaper scans, and as a result the digitized content scrambles texts from articles, headlines, captions, advertisements, and other layout regions. OCR quality can also be low. This study develops a novel, deep learning pipeline for extracting full article texts from newspaper images and applies it to the nearly 20 million scans in Library of Congress's public domain Chronicling America collection. The pipeline includes layout detection, legibility classification, custom OCR, and association of article texts spanning multiple bounding boxes. To achieve high scalability, it is built with efficient architectures designed for mobile phones. The resulting American Stories dataset provides high quality data that could be used for pre-training a large language model to achieve better understanding of historical English and historical world knowledge. The dataset could also be added to the external database of a retrieval-augmented language model to make historical information - ranging from interpretations of political events to minutiae about the lives of people's ancestors - more widely accessible. Furthermore, structured article texts facilitate using transformer-based methods for popular social science applications like topic classification, detection of reproduced content, and news story clustering. Finally, American Stories provides a massive silver quality dataset for innovating multimodal layout analysis models and other multimodal applications.

  • 10 authors
·
Aug 23, 2023

Focus, Distinguish, and Prompt: Unleashing CLIP for Efficient and Flexible Scene Text Retrieval

Scene text retrieval aims to find all images containing the query text from an image gallery. Current efforts tend to adopt an Optical Character Recognition (OCR) pipeline, which requires complicated text detection and/or recognition processes, resulting in inefficient and inflexible retrieval. Different from them, in this work we propose to explore the intrinsic potential of Contrastive Language-Image Pre-training (CLIP) for OCR-free scene text retrieval. Through empirical analysis, we observe that the main challenges of CLIP as a text retriever are: 1) limited text perceptual scale, and 2) entangled visual-semantic concepts. To this end, a novel model termed FDP (Focus, Distinguish, and Prompt) is developed. FDP first focuses on scene text via shifting the attention to the text area and probing the hidden text knowledge, and then divides the query text into content word and function word for processing, in which a semantic-aware prompting scheme and a distracted queries assistance module are utilized. Extensive experiments show that FDP significantly enhances the inference speed while achieving better or competitive retrieval accuracy compared to existing methods. Notably, on the IIIT-STR benchmark, FDP surpasses the state-of-the-art model by 4.37% with a 4 times faster speed. Furthermore, additional experiments under phrase-level and attribute-aware scene text retrieval settings validate FDP's particular advantages in handling diverse forms of query text. The source code will be publicly available at https://github.com/Gyann-z/FDP.

  • 8 authors
·
Aug 1, 2024

An Automatic Approach for Generating Rich, Linked Geo-Metadata from Historical Map Images

Historical maps contain detailed geographic information difficult to find elsewhere covering long-periods of time (e.g., 125 years for the historical topographic maps in the US). However, these maps typically exist as scanned images without searchable metadata. Existing approaches making historical maps searchable rely on tedious manual work (including crowd-sourcing) to generate the metadata (e.g., geolocations and keywords). Optical character recognition (OCR) software could alleviate the required manual work, but the recognition results are individual words instead of location phrases (e.g., "Black" and "Mountain" vs. "Black Mountain"). This paper presents an end-to-end approach to address the real-world problem of finding and indexing historical map images. This approach automatically processes historical map images to extract their text content and generates a set of metadata that is linked to large external geospatial knowledge bases. The linked metadata in the RDF (Resource Description Framework) format support complex queries for finding and indexing historical maps, such as retrieving all historical maps covering mountain peaks higher than 1,000 meters in California. We have implemented the approach in a system called mapKurator. We have evaluated mapKurator using historical maps from several sources with various map styles, scales, and coverage. Our results show significant improvement over the state-of-the-art methods. The code has been made publicly available as modules of the Kartta Labs project at https://github.com/kartta-labs/Project.

  • 7 authors
·
Dec 2, 2021

OrigamiNet: Weakly-Supervised, Segmentation-Free, One-Step, Full Page Text Recognition by learning to unfold

Text recognition is a major computer vision task with a big set of associated challenges. One of those traditional challenges is the coupled nature of text recognition and segmentation. This problem has been progressively solved over the past decades, going from segmentation based recognition to segmentation free approaches, which proved more accurate and much cheaper to annotate data for. We take a step from segmentation-free single line recognition towards segmentation-free multi-line / full page recognition. We propose a novel and simple neural network module, termed OrigamiNet, that can augment any CTC-trained, fully convolutional single line text recognizer, to convert it into a multi-line version by providing the model with enough spatial capacity to be able to properly collapse a 2D input signal into 1D without losing information. Such modified networks can be trained using exactly their same simple original procedure, and using only unsegmented image and text pairs. We carry out a set of interpretability experiments that show that our trained models learn an accurate implicit line segmentation. We achieve state-of-the-art character error rate on both IAM \& ICDAR 2017 HTR benchmarks for handwriting recognition, surpassing all other methods in the literature. On IAM we even surpass single line methods that use accurate localization information during training. Our code is available online at https://github.com/IntuitionMachines/OrigamiNet.

  • 2 authors
·
Jun 12, 2020

CORU: Comprehensive Post-OCR Parsing and Receipt Understanding Dataset

In the fields of Optical Character Recognition (OCR) and Natural Language Processing (NLP), integrating multilingual capabilities remains a critical challenge, especially when considering languages with complex scripts such as Arabic. This paper introduces the Comprehensive Post-OCR Parsing and Receipt Understanding Dataset (CORU), a novel dataset specifically designed to enhance OCR and information extraction from receipts in multilingual contexts involving Arabic and English. CORU consists of over 20,000 annotated receipts from diverse retail settings, including supermarkets and clothing stores, alongside 30,000 annotated images for OCR that were utilized to recognize each detected line, and 10,000 items annotated for detailed information extraction. These annotations capture essential details such as merchant names, item descriptions, total prices, receipt numbers, and dates. They are structured to support three primary computational tasks: object detection, OCR, and information extraction. We establish the baseline performance for a range of models on CORU to evaluate the effectiveness of traditional methods, like Tesseract OCR, and more advanced neural network-based approaches. These baselines are crucial for processing the complex and noisy document layouts typical of real-world receipts and for advancing the state of automated multilingual document processing. Our datasets are publicly accessible (https://github.com/Update-For-Integrated-Business-AI/CORU).

  • 8 authors
·
Jun 6, 2024 1

Reviving Cultural Heritage: A Novel Approach for Comprehensive Historical Document Restoration

Historical documents represent an invaluable cultural heritage, yet have undergone significant degradation over time through tears, water erosion, and oxidation. Existing Historical Document Restoration (HDR) methods primarily focus on single modality or limited-size restoration, failing to meet practical needs. To fill this gap, we present a full-page HDR dataset (FPHDR) and a novel automated HDR solution (AutoHDR). Specifically, FPHDR comprises 1,633 real and 6,543 synthetic images with character-level and line-level locations, as well as character annotations in different damage grades. AutoHDR mimics historians' restoration workflows through a three-stage approach: OCR-assisted damage localization, vision-language context text prediction, and patch autoregressive appearance restoration. The modular architecture of AutoHDR enables seamless human-machine collaboration, allowing for flexible intervention and optimization at each restoration stage. Experiments demonstrate AutoHDR's remarkable performance in HDR. When processing severely damaged documents, our method improves OCR accuracy from 46.83\% to 84.05\%, with further enhancement to 94.25\% through human-machine collaboration. We believe this work represents a significant advancement in automated historical document restoration and contributes substantially to cultural heritage preservation. The model and dataset are available at https://github.com/SCUT-DLVCLab/AutoHDR.

DocVLM: Make Your VLM an Efficient Reader

Vision-Language Models (VLMs) excel in diverse visual tasks but face challenges in document understanding, which requires fine-grained text processing. While typical visual tasks perform well with low-resolution inputs, reading-intensive applications demand high-resolution, resulting in significant computational overhead. Using OCR-extracted text in VLM prompts partially addresses this issue but underperforms compared to full-resolution counterpart, as it lacks the complete visual context needed for optimal performance. We introduce DocVLM, a method that integrates an OCR-based modality into VLMs to enhance document processing while preserving original weights. Our approach employs an OCR encoder to capture textual content and layout, compressing these into a compact set of learned queries incorporated into the VLM. Comprehensive evaluations across leading VLMs show that DocVLM significantly reduces reliance on high-resolution images for document understanding. In limited-token regimes (448times448), DocVLM with 64 learned queries improves DocVQA results from 56.0% to 86.6% when integrated with InternVL2 and from 84.4% to 91.2% with Qwen2-VL. In LLaVA-OneVision, DocVLM achieves improved results while using 80% less image tokens. The reduced token usage allows processing multiple pages effectively, showing impressive zero-shot results on DUDE and state-of-the-art performance on MP-DocVQA, highlighting DocVLM's potential for applications requiring high-performance and efficiency.

  • 8 authors
·
Dec 11, 2024 1

Zero-Shot Styled Text Image Generation, but Make It Autoregressive

Styled Handwritten Text Generation (HTG) has recently received attention from the computer vision and document analysis communities, which have developed several solutions, either GAN- or diffusion-based, that achieved promising results. Nonetheless, these strategies fail to generalize to novel styles and have technical constraints, particularly in terms of maximum output length and training efficiency. To overcome these limitations, in this work, we propose a novel framework for text image generation, dubbed Emuru. Our approach leverages a powerful text image representation model (a variational autoencoder) combined with an autoregressive Transformer. Our approach enables the generation of styled text images conditioned on textual content and style examples, such as specific fonts or handwriting styles. We train our model solely on a diverse, synthetic dataset of English text rendered in over 100,000 typewritten and calligraphy fonts, which gives it the capability to reproduce unseen styles (both fonts and users' handwriting) in zero-shot. To the best of our knowledge, Emuru is the first autoregressive model for HTG, and the first designed specifically for generalization to novel styles. Moreover, our model generates images without background artifacts, which are easier to use for downstream applications. Extensive evaluation on both typewritten and handwritten, any-length text image generation scenarios demonstrates the effectiveness of our approach.

  • 5 authors
·
Mar 21

OCR-Reasoning Benchmark: Unveiling the True Capabilities of MLLMs in Complex Text-Rich Image Reasoning

Recent advancements in multimodal slow-thinking systems have demonstrated remarkable performance across diverse visual reasoning tasks. However, their capabilities in text-rich image reasoning tasks remain understudied due to the lack of a systematic benchmark. To address this gap, we propose OCR-Reasoning, a comprehensive benchmark designed to systematically assess Multimodal Large Language Models on text-rich image reasoning tasks. The benchmark comprises 1,069 human-annotated examples spanning 6 core reasoning abilities and 18 practical reasoning tasks in text-rich visual scenarios. Furthermore, unlike other text-rich image understanding benchmarks that only annotate the final answers, OCR-Reasoning also annotates the reasoning process simultaneously. With the annotated reasoning process and the final answers, OCR-Reasoning evaluates not only the final answers generated by models but also their reasoning processes, enabling a holistic analysis of their problem-solving abilities. Leveraging this benchmark, we conducted a comprehensive evaluation of state-of-the-art MLLMs. Our results demonstrate the limitations of existing methodologies. Notably, even state-of-the-art MLLMs exhibit substantial difficulties, with none achieving accuracy surpassing 50\% across OCR-Reasoning, indicating that the challenges of text-rich image reasoning are an urgent issue to be addressed. The benchmark and evaluation scripts are available at https://github.com/SCUT-DLVCLab/OCR-Reasoning.

  • 6 authors
·
May 22

BiblioPage: A Dataset of Scanned Title Pages for Bibliographic Metadata Extraction

Manual digitization of bibliographic metadata is time consuming and labor intensive, especially for historical and real-world archives with highly variable formatting across documents. Despite advances in machine learning, the absence of dedicated datasets for metadata extraction hinders automation. To address this gap, we introduce BiblioPage, a dataset of scanned title pages annotated with structured bibliographic metadata. The dataset consists of approximately 2,000 monograph title pages collected from 14 Czech libraries, spanning a wide range of publication periods, typographic styles, and layout structures. Each title page is annotated with 16 bibliographic attributes, including title, contributors, and publication metadata, along with precise positional information in the form of bounding boxes. To extract structured information from this dataset, we valuated object detection models such as YOLO and DETR combined with transformer-based OCR, achieving a maximum mAP of 52 and an F1 score of 59. Additionally, we assess the performance of various visual large language models, including LlamA 3.2-Vision and GPT-4o, with the best model reaching an F1 score of 67. BiblioPage serves as a real-world benchmark for bibliographic metadata extraction, contributing to document understanding, document question answering, and document information extraction. Dataset and evaluation scripts are availible at: https://github.com/DCGM/biblio-dataset

  • 4 authors
·
Mar 25 2

Sparse Concept Coded Tetrolet Transform for Unconstrained Odia Character Recognition

Feature representation in the form of spatio-spectral decomposition is one of the robust techniques adopted in automatic handwritten character recognition systems. In this regard, we propose a new image representation approach for unconstrained handwritten alphanumeric characters using sparse concept coded Tetrolets. Tetrolets, which does not use fixed dyadic square blocks for spectral decomposition like conventional wavelets, preserve the localized variations in handwritings by adopting tetrominoes those capture the shape geometry. The sparse concept coding of low entropy Tetrolet representation is found to extract the important hidden information (concept) for superior pattern discrimination. Large scale experimentation using ten databases in six different scripts (Bangla, Devanagari, Odia, English, Arabic and Telugu) has been performed. The proposed feature representation along with standard classifiers such as random forest, support vector machine (SVM), nearest neighbor and modified quadratic discriminant function (MQDF) is found to achieve state-of-the-art recognition performance in all the databases, viz. 99.40% (MNIST); 98.72% and 93.24% (IITBBS); 99.38% and 99.22% (ISI Kolkata). The proposed OCR system is shown to perform better than other sparse based techniques such as PCA, SparsePCA and SparseLDA, as well as better than existing transforms (Wavelet, Slantlet and Stockwell).

  • 3 authors
·
Apr 3, 2020

Fourier Contour Embedding for Arbitrary-Shaped Text Detection

One of the main challenges for arbitrary-shaped text detection is to design a good text instance representation that allows networks to learn diverse text geometry variances. Most of existing methods model text instances in image spatial domain via masks or contour point sequences in the Cartesian or the polar coordinate system. However, the mask representation might lead to expensive post-processing, while the point sequence one may have limited capability to model texts with highly-curved shapes. To tackle these problems, we model text instances in the Fourier domain and propose one novel Fourier Contour Embedding (FCE) method to represent arbitrary shaped text contours as compact signatures. We further construct FCENet with a backbone, feature pyramid networks (FPN) and a simple post-processing with the Inverse Fourier Transformation (IFT) and Non-Maximum Suppression (NMS). Different from previous methods, FCENet first predicts compact Fourier signatures of text instances, and then reconstructs text contours via IFT and NMS during test. Extensive experiments demonstrate that FCE is accurate and robust to fit contours of scene texts even with highly-curved shapes, and also validate the effectiveness and the good generalization of FCENet for arbitrary-shaped text detection. Furthermore, experimental results show that our FCENet is superior to the state-of-the-art (SOTA) methods on CTW1500 and Total-Text, especially on challenging highly-curved text subset.

  • 6 authors
·
Apr 21, 2021

UDiffText: A Unified Framework for High-quality Text Synthesis in Arbitrary Images via Character-aware Diffusion Models

Text-to-Image (T2I) generation methods based on diffusion model have garnered significant attention in the last few years. Although these image synthesis methods produce visually appealing results, they frequently exhibit spelling errors when rendering text within the generated images. Such errors manifest as missing, incorrect or extraneous characters, thereby severely constraining the performance of text image generation based on diffusion models. To address the aforementioned issue, this paper proposes a novel approach for text image generation, utilizing a pre-trained diffusion model (i.e., Stable Diffusion [27]). Our approach involves the design and training of a light-weight character-level text encoder, which replaces the original CLIP encoder and provides more robust text embeddings as conditional guidance. Then, we fine-tune the diffusion model using a large-scale dataset, incorporating local attention control under the supervision of character-level segmentation maps. Finally, by employing an inference stage refinement process, we achieve a notably high sequence accuracy when synthesizing text in arbitrarily given images. Both qualitative and quantitative results demonstrate the superiority of our method to the state of the art. Furthermore, we showcase several potential applications of the proposed UDiffText, including text-centric image synthesis, scene text editing, etc. Code and model will be available at https://github.com/ZYM-PKU/UDiffText .

  • 2 authors
·
Dec 8, 2023

On the Hidden Mystery of OCR in Large Multimodal Models

Large models have recently played a dominant role in natural language processing and multimodal vision-language learning. It remains less explored about their efficacy in text-related visual tasks. We conducted a comprehensive study of existing publicly available multimodal models, evaluating their performance in text recognition (document text, artistic text, handwritten text, scene text), text-based visual question answering (document text, scene text, and bilingual text), key information extraction (receipts, documents, and nutrition facts) and handwritten mathematical expression recognition. Our findings reveal strengths and weaknesses in these models, which primarily rely on semantic understanding for word recognition and exhibit inferior perception of individual character shapes. They also display indifference towards text length and have limited capabilities in detecting finegrained features in images. Consequently, these results demonstrate that even the current most powerful large multimodal models cannot match domain-specific methods in traditional text tasks and face greater challenges in more complex tasks. Most importantly, the baseline results showcased in this study could provide a foundational framework for the conception and assessment of innovative strategies targeted at enhancing zero-shot multimodal techniques. Evaluation pipeline is available at https://github.com/Yuliang-Liu/MultimodalOCR.

  • 15 authors
·
May 13, 2023

GlyphMastero: A Glyph Encoder for High-Fidelity Scene Text Editing

Scene text editing, a subfield of image editing, requires modifying texts in images while preserving style consistency and visual coherence with the surrounding environment. While diffusion-based methods have shown promise in text generation, they still struggle to produce high-quality results. These methods often generate distorted or unrecognizable characters, particularly when dealing with complex characters like Chinese. In such systems, characters are composed of intricate stroke patterns and spatial relationships that must be precisely maintained. We present GlyphMastero, a specialized glyph encoder designed to guide the latent diffusion model for generating texts with stroke-level precision. Our key insight is that existing methods, despite using pretrained OCR models for feature extraction, fail to capture the hierarchical nature of text structures - from individual strokes to stroke-level interactions to overall character-level structure. To address this, our glyph encoder explicitly models and captures the cross-level interactions between local-level individual characters and global-level text lines through our novel glyph attention module. Meanwhile, our model implements a feature pyramid network to fuse the multi-scale OCR backbone features at the global-level. Through these cross-level and multi-scale fusions, we obtain more detailed glyph-aware guidance, enabling precise control over the scene text generation process. Our method achieves an 18.02\% improvement in sentence accuracy over the state-of-the-art multi-lingual scene text editing baseline, while simultaneously reducing the text-region Fr\'echet inception distance by 53.28\%.

  • 6 authors
·
May 7

Linking Representations with Multimodal Contrastive Learning

Many applications require grouping instances contained in diverse document datasets into classes. Most widely used methods do not employ deep learning and do not exploit the inherently multimodal nature of documents. Notably, record linkage is typically conceptualized as a string-matching problem. This study develops CLIPPINGS, (Contrastively Linking Pooled Pre-trained Embeddings), a multimodal framework for record linkage. CLIPPINGS employs end-to-end training of symmetric vision and language bi-encoders, aligned through contrastive language-image pre-training, to learn a metric space where the pooled image-text representation for a given instance is close to representations in the same class and distant from representations in different classes. At inference time, instances can be linked by retrieving their nearest neighbor from an offline exemplar embedding index or by clustering their representations. The study examines two challenging applications: constructing comprehensive supply chains for mid-20th century Japan through linking firm level financial records - with each firm name represented by its crop in the document image and the corresponding OCR - and detecting which image-caption pairs in a massive corpus of historical U.S. newspapers came from the same underlying photo wire source. CLIPPINGS outperforms widely used string matching methods by a wide margin and also outperforms unimodal methods. Moreover, a purely self-supervised model trained on only image-OCR pairs also outperforms popular string-matching methods without requiring any labels.

  • 4 authors
·
Apr 6, 2023

UniGlyph: Unified Segmentation-Conditioned Diffusion for Precise Visual Text Synthesis

Text-to-image generation has greatly advanced content creation, yet accurately rendering visual text remains a key challenge due to blurred glyphs, semantic drift, and limited style control. Existing methods often rely on pre-rendered glyph images as conditions, but these struggle to retain original font styles and color cues, necessitating complex multi-branch designs that increase model overhead and reduce flexibility. To address these issues, we propose a segmentation-guided framework that uses pixel-level visual text masks -- rich in glyph shape, color, and spatial detail -- as unified conditional inputs. Our method introduces two core components: (1) a fine-tuned bilingual segmentation model for precise text mask extraction, and (2) a streamlined diffusion model augmented with adaptive glyph conditioning and a region-specific loss to preserve textual fidelity in both content and style. Our approach achieves state-of-the-art performance on the AnyText benchmark, significantly surpassing prior methods in both Chinese and English settings. To enable more rigorous evaluation, we also introduce two new benchmarks: GlyphMM-benchmark for testing layout and glyph consistency in complex typesetting, and MiniText-benchmark for assessing generation quality in small-scale text regions. Experimental results show that our model outperforms existing methods by a large margin in both scenarios, particularly excelling at small text rendering and complex layout preservation, validating its strong generalization and deployment readiness.

  • 11 authors
·
Jul 1

Out of Length Text Recognition with Sub-String Matching

Scene Text Recognition (STR) methods have demonstrated robust performance in word-level text recognition. However, in real applications the text image is sometimes long due to detected with multiple horizontal words. It triggers the requirement to build long text recognition models from readily available short (i.e., word-level) text datasets, which has been less studied previously. In this paper, we term this task Out of Length (OOL) text recognition. We establish the first Long Text Benchmark (LTB) to facilitate the assessment of different methods in long text recognition. Meanwhile, we propose a novel method called OOL Text Recognition with sub-String Matching (SMTR). SMTR comprises two cross-attention-based modules: one encodes a sub-string containing multiple characters into next and previous queries, and the other employs the queries to attend to the image features, matching the sub-string and simultaneously recognizing its next and previous character. SMTR can recognize text of arbitrary length by iterating the process above. To avoid being trapped in recognizing highly similar sub-strings, we introduce a regularization training to compel SMTR to effectively discover subtle differences between similar sub-strings for precise matching. In addition, we propose an inference augmentation strategy to alleviate confusion caused by identical sub-strings in the same text and improve the overall recognition efficiency. Extensive experimental results reveal that SMTR, even when trained exclusively on short text, outperforms existing methods in public short text benchmarks and exhibits a clear advantage on LTB. Code: https://github.com/Topdu/OpenOCR.

  • 5 authors
·
Jul 17, 2024

Chinese Text Recognition with A Pre-Trained CLIP-Like Model Through Image-IDS Aligning

Scene text recognition has been studied for decades due to its broad applications. However, despite Chinese characters possessing different characteristics from Latin characters, such as complex inner structures and large categories, few methods have been proposed for Chinese Text Recognition (CTR). Particularly, the characteristic of large categories poses challenges in dealing with zero-shot and few-shot Chinese characters. In this paper, inspired by the way humans recognize Chinese texts, we propose a two-stage framework for CTR. Firstly, we pre-train a CLIP-like model through aligning printed character images and Ideographic Description Sequences (IDS). This pre-training stage simulates humans recognizing Chinese characters and obtains the canonical representation of each character. Subsequently, the learned representations are employed to supervise the CTR model, such that traditional single-character recognition can be improved to text-line recognition through image-IDS matching. To evaluate the effectiveness of the proposed method, we conduct extensive experiments on both Chinese character recognition (CCR) and CTR. The experimental results demonstrate that the proposed method performs best in CCR and outperforms previous methods in most scenarios of the CTR benchmark. It is worth noting that the proposed method can recognize zero-shot Chinese characters in text images without fine-tuning, whereas previous methods require fine-tuning when new classes appear. The code is available at https://github.com/FudanVI/FudanOCR/tree/main/image-ids-CTR.

  • 4 authors
·
Sep 3, 2023