Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeOceanGPT: A Large Language Model for Ocean Science Tasks
Ocean science, which delves into the oceans that are reservoirs of life and biodiversity, is of great significance given that oceans cover over 70% of our planet's surface. Recently, advances in Large Language Models (LLMs) have transformed the paradigm in science. Despite the success in other domains, current LLMs often fall short in catering to the needs of domain experts like oceanographers, and the potential of LLMs for ocean science is under-explored. The intrinsic reasons are the immense and intricate nature of ocean data as well as the necessity for higher granularity and richness in knowledge. To alleviate these issues, we introduce OceanGPT, the first-ever large language model in the ocean domain, which is expert in various ocean science tasks. We also propose OceanGPT, a novel framework to automatically obtain a large volume of ocean domain instruction data, which generates instructions based on multi-agent collaboration. Additionally, we construct the first oceanography benchmark, OceanBench, to evaluate the capabilities of LLMs in the ocean domain. Though comprehensive experiments, OceanGPT not only shows a higher level of knowledge expertise for oceans science tasks but also gains preliminary embodied intelligence capabilities in ocean technology.
OceanGym: A Benchmark Environment for Underwater Embodied Agents
We introduce OceanGym, the first comprehensive benchmark for ocean underwater embodied agents, designed to advance AI in one of the most demanding real-world environments. Unlike terrestrial or aerial domains, underwater settings present extreme perceptual and decision-making challenges, including low visibility, dynamic ocean currents, making effective agent deployment exceptionally difficult. OceanGym encompasses eight realistic task domains and a unified agent framework driven by Multi-modal Large Language Models (MLLMs), which integrates perception, memory, and sequential decision-making. Agents are required to comprehend optical and sonar data, autonomously explore complex environments, and accomplish long-horizon objectives under these harsh conditions. Extensive experiments reveal substantial gaps between state-of-the-art MLLM-driven agents and human experts, highlighting the persistent difficulty of perception, planning, and adaptability in ocean underwater environments. By providing a high-fidelity, rigorously designed platform, OceanGym establishes a testbed for developing robust embodied AI and transferring these capabilities to real-world autonomous ocean underwater vehicles, marking a decisive step toward intelligent agents capable of operating in one of Earth's last unexplored frontiers. The code and data are available at https://github.com/OceanGPT/OceanGym.
OceanSim: A GPU-Accelerated Underwater Robot Perception Simulation Framework
Underwater simulators offer support for building robust underwater perception solutions. Significant work has recently been done to develop new simulators and to advance the performance of existing underwater simulators. Still, there remains room for improvement on physics-based underwater sensor modeling and rendering efficiency. In this paper, we propose OceanSim, a high-fidelity GPU-accelerated underwater simulator to address this research gap. We propose advanced physics-based rendering techniques to reduce the sim-to-real gap for underwater image simulation. We develop OceanSim to fully leverage the computing advantages of GPUs and achieve real-time imaging sonar rendering and fast synthetic data generation. We evaluate the capabilities and realism of OceanSim using real-world data to provide qualitative and quantitative results. The code and detailed documentation are made available on the project website to support the marine robotics community: https://umfieldrobotics.github.io/OceanSim.
Learning Enhanced Structural Representations with Block-Based Uncertainties for Ocean Floor Mapping
Accurate ocean modeling and coastal hazard prediction depend on high-resolution bathymetric data; yet, current worldwide datasets are too coarse for exact numerical simulations. While recent deep learning advances have improved earth observation data resolution, existing methods struggle with the unique challenges of producing detailed ocean floor maps, especially in maintaining physical structure consistency and quantifying uncertainties. This work presents a novel uncertainty-aware mechanism using spatial blocks to efficiently capture local bathymetric complexity based on block-based conformal prediction. Using the Vector Quantized Variational Autoencoder (VQ-VAE) architecture, the integration of this uncertainty quantification framework yields spatially adaptive confidence estimates while preserving topographical features via discrete latent representations. With smaller uncertainty widths in well-characterized areas and appropriately larger bounds in areas of complex seafloor structures, the block-based design adapts uncertainty estimates to local bathymetric complexity. Compared to conventional techniques, experimental results over several ocean regions show notable increases in both reconstruction quality and uncertainty estimation reliability. This framework increases the reliability of bathymetric reconstructions by preserving structural integrity while offering spatially adaptive uncertainty estimates, so opening the path for more solid climate modeling and coastal hazard assessment.
VISION: Prompting Ocean Vertical Velocity Reconstruction from Incomplete Observations
Reconstructing subsurface ocean dynamics, such as vertical velocity fields, from incomplete surface observations poses a critical challenge in Earth science, a field long hampered by the lack of standardized, analysis-ready benchmarks. To systematically address this issue and catalyze research, we first build and release KD48, a high-resolution ocean dynamics benchmark derived from petascale simulations and curated with expert-driven denoising. Building on this benchmark, we introduce VISION, a novel reconstruction paradigm based on Dynamic Prompting designed to tackle the core problem of missing data in real-world observations. The essence of VISION lies in its ability to generate a visual prompt on-the-fly from any available subset of observations, which encodes both data availability and the ocean's physical state. More importantly, we design a State-conditioned Prompting module that efficiently injects this prompt into a universal backbone, endowed with geometry- and scale-aware operators, to guide its adaptive adjustment of computational strategies. This mechanism enables VISION to precisely handle the challenges posed by varying input combinations. Extensive experiments on the KD48 benchmark demonstrate that VISION not only substantially outperforms state-of-the-art models but also exhibits strong generalization under extreme data missing scenarios. By providing a high-quality benchmark and a robust model, our work establishes a solid infrastructure for ocean science research under data uncertainty. Our codes are available at: https://github.com/YuanGao-YG/VISION.
NeuralOM: Neural Ocean Model for Subseasonal-to-Seasonal Simulation
Accurate Subseasonal-to-Seasonal (S2S) ocean simulation is critically important for marine research, yet remains challenging due to its substantial thermal inertia and extended time delay. Machine learning (ML)-based models have demonstrated significant advancements in simulation accuracy and computational efficiency compared to traditional numerical methods. Nevertheless, a significant limitation of current ML models for S2S ocean simulation is their inadequate incorporation of physical consistency and the slow-changing properties of the ocean system. In this work, we propose a neural ocean model (NeuralOM) for S2S ocean simulation with a multi-scale interactive graph neural network to emulate diverse physical phenomena associated with ocean systems effectively. Specifically, we propose a multi-stage framework tailored to model the ocean's slowly changing nature. Additionally, we introduce a multi-scale interactive messaging module to capture complex dynamical behaviors, such as gradient changes and multiplicative coupling relationships inherent in ocean dynamics. Extensive experimental evaluations confirm that our proposed NeuralOM outperforms state-of-the-art models in S2S and extreme event simulation. The codes are available at https://github.com/YuanGao-YG/NeuralOM.
SOLAQUA: SINTEF Ocean Large Aquaculture Robotics Dataset
This paper presents a dataset gathered with an underwater robot in a sea-based aquaculture setting. Data was gathered from an operational fish farm and includes data from sensors such as the Waterlinked A50 DVL, the Nortek Nucleus 1000 DVL, Sonardyne Micro Ranger 2 USBL, Sonoptix Mulitbeam Sonar, mono and stereo cameras, and vehicle sensor data such as power usage, IMU, pressure, temperature, and more. Data acquisition is performed during both manual and autonomous traversal of the net pen structure. The collected vision data is of undamaged nets with some fish and marine growth presence, and it is expected that both the research community and the aquaculture industry will benefit greatly from the utilization of the proposed SOLAQUA dataset.
Samudra: An AI Global Ocean Emulator for Climate
AI emulators for forecasting have emerged as powerful tools that can outperform conventional numerical predictions. The next frontier is to build emulators for long-term climate projections with robust skill across a wide range of spatiotemporal scales, a particularly important goal for the ocean. Our work builds a skillful global emulator of the ocean component of a state-of-the-art climate model. We emulate key ocean variables, sea surface height, horizontal velocities, temperature, and salinity, across their full depth. We use a modified ConvNeXt UNet architecture trained on multidepth levels of ocean data. We show that the ocean emulator - Samudra - which exhibits no drift relative to the truth, can reproduce the depth structure of ocean variables and their interannual variability. Samudra is stable for centuries and 150 times faster than the original ocean model. Samudra struggles to capture the correct magnitude of the forcing trends and simultaneously remains stable, requiring further work.
Transfer Learning for Emulating Ocean Climate Variability across $CO_2$ forcing
With the success of machine learning (ML) applied to climate reaching further every day, emulators have begun to show promise not only for weather but for multi-year time scales in the atmosphere. Similar work for the ocean remains nascent, with state-of-the-art limited to models running for shorter time scales or only for regions of the globe. In this work, we demonstrate high-skill global emulation for surface ocean fields over 5-8 years of model rollout, accurately representing modes of variability for two different ML architectures (ConvNext and Transformers). In addition, we address the outstanding question of generalization, an essential consideration if the end-use of emulation is to model warming scenarios outside of the model training data. We show that 1) generalization is not an intrinsic feature of a data-driven emulator, 2) fine-tuning the emulator on only small amounts of additional data from a distribution similar to the test set can enable the emulator to perform well in a warmed climate, and 3) the forced emulators are robust to noise in the forcing.
Emptying the Ocean with a Spoon: Should We Edit Models?
We call into question the recently popularized method of direct model editing as a means of correcting factual errors in LLM generations. We contrast model editing with three similar but distinct approaches that pursue better defined objectives: (1) retrieval-based architectures, which decouple factual memory from inference and linguistic capabilities embodied in LLMs; (2) concept erasure methods, which aim at preventing systemic bias in generated text; and (3) attribution methods, which aim at grounding generations into identified textual sources. We argue that direct model editing cannot be trusted as a systematic remedy for the disadvantages inherent to LLMs, and while it has proven potential in improving model explainability, it opens risks by reinforcing the notion that models can be trusted for factuality. We call for cautious promotion and application of model editing as part of the LLM deployment process, and for responsibly limiting the use cases of LLMs to those not relying on editing as a critical component.
LiveMCPBench: Can Agents Navigate an Ocean of MCP Tools?
With the rapid development of Model Context Protocol (MCP), the number of MCP servers has surpassed 10,000. However, existing MCP benchmarks are limited to single-server settings with only a few tools, hindering effective evaluation of agent capabilities in large-scale, real-world scenarios. To address this limitation, we present LiveMCPBench, the first comprehensive benchmark comprising 95 real-world tasks grounded in the MCP ecosystem, designed to evaluate LLM agents at scale across diverse servers. To support a scalable and reproducible evaluation pipeline in large-scale MCP environments, we curate LiveMCPTool, a diverse and readily deployable collection of 70 MCP servers and 527 tools. Furthermore, we introduce LiveMCPEval, an LLM-as-a-Judge framework that enables automated and adaptive evaluation in dynamic, time-varying task environments, achieving 81% agreement with human reviewers. Finally, we propose the MCP Copilot Agent, a multi-step agent that routes tools for dynamic planning and executes tools for API interaction across the entire LiveMCPTool suite. Our evaluation covers 10 leading models, with the best-performing model (Claude-Sonnet-4) reaching a 78.95% success rate. However, we observe large performance variance across models, and several widely-used models perform poorly in LiveMCPBench's complex, tool-rich environments. Overall, LiveMCPBench offers the first unified framework for benchmarking LLM agents in realistic, tool-rich, and dynamic MCP environments, laying a solid foundation for scalable and reproducible research on agent capabilities. Our code and data will be publicly available at https://icip-cas.github.io/LiveMCPBench.
Siren's Song in the AI Ocean: A Survey on Hallucination in Large Language Models
While large language models (LLMs) have demonstrated remarkable capabilities across a range of downstream tasks, a significant concern revolves around their propensity to exhibit hallucinations: LLMs occasionally generate content that diverges from the user input, contradicts previously generated context, or misaligns with established world knowledge. This phenomenon poses a substantial challenge to the reliability of LLMs in real-world scenarios. In this paper, we survey recent efforts on the detection, explanation, and mitigation of hallucination, with an emphasis on the unique challenges posed by LLMs. We present taxonomies of the LLM hallucination phenomena and evaluation benchmarks, analyze existing approaches aiming at mitigating LLM hallucination, and discuss potential directions for future research.
A Sentinel-3 foundation model for ocean colour
Artificial Intelligence (AI) Foundation models (FMs), pre-trained on massive unlabelled datasets, have the potential to drastically change AI applications in ocean science, where labelled data are often sparse and expensive to collect. In this work, we describe a new foundation model using the Prithvi-EO Vision Transformer architecture which has been pre-trained to reconstruct data from the Sentinel-3 Ocean and Land Colour Instrument (OLCI). We evaluate the model by fine-tuning on two downstream marine earth observation tasks. We first assess model performance compared to current baseline models used to quantify chlorophyll concentration. We then evaluate the FMs ability to refine remote sensing-based estimates of ocean primary production. Our results demonstrate the utility of self-trained FMs for marine monitoring, in particular for making use of small amounts of high quality labelled data and in capturing detailed spatial patterns of ocean colour whilst matching point observations. We conclude that this new generation of geospatial AI models has the potential to provide more robust, data-driven insights into ocean ecosystems and their role in global climate processes.
ACE2-SOM: Coupling to a slab ocean and learning the sensitivity of climate to changes in CO$_2$
While autoregressive machine-learning-based emulators have been trained to produce stable and accurate rollouts in the climate of the present-day and recent past, none so far have been trained to emulate the sensitivity of climate to substantial changes in CO_2 or other greenhouse gases. As an initial step we couple the Ai2 Climate Emulator version 2 to a slab ocean model (hereafter ACE2-SOM) and train it on output from a collection of equilibrium-climate physics-based reference simulations with varying levels of CO_2. We test it in equilibrium and non-equilibrium climate scenarios with CO_2 concentrations seen and unseen in training. ACE2-SOM performs well in equilibrium-climate inference with both in-sample and out-of-sample CO_2 concentrations, accurately reproducing the emergent time-mean spatial patterns of surface temperature and precipitation change with CO_2 doubling, tripling, or quadrupling. In addition, the vertical profile of atmospheric warming and change in extreme precipitation rates with increased CO_2 closely agree with the reference model. Non-equilibrium-climate inference is more challenging. With CO_2 increasing gradually at a rate of 2% year^{-1}, ACE2-SOM can accurately emulate the global annual mean trends of surface and lower-to-middle atmosphere fields but produces unphysical jumps in stratospheric fields. With an abrupt quadrupling of CO_2, ML-controlled fields transition unrealistically quickly to the 4xCO_2 regime. In doing so they violate global energy conservation and exhibit unphysical sensitivities of and surface and top of atmosphere radiative fluxes to instantaneous changes in CO_2. Future emulator development needed to address these issues should improve its generalizability to diverse climate change scenarios.
Gaussian processes at the Helm(holtz): A more fluid model for ocean currents
Given sparse observations of buoy velocities, oceanographers are interested in reconstructing ocean currents away from the buoys and identifying divergences in a current vector field. As a first and modular step, we focus on the time-stationary case - for instance, by restricting to short time periods. Since we expect current velocity to be a continuous but highly non-linear function of spatial location, Gaussian processes (GPs) offer an attractive model. But we show that applying a GP with a standard stationary kernel directly to buoy data can struggle at both current reconstruction and divergence identification, due to some physically unrealistic prior assumptions. To better reflect known physical properties of currents, we propose to instead put a standard stationary kernel on the divergence and curl-free components of a vector field obtained through a Helmholtz decomposition. We show that, because this decomposition relates to the original vector field just via mixed partial derivatives, we can still perform inference given the original data with only a small constant multiple of additional computational expense. We illustrate the benefits of our method with theory and experiments on synthetic and real ocean data.
SamudrACE: Fast and Accurate Coupled Climate Modeling with 3D Ocean and Atmosphere Emulators
Traditional numerical global climate models simulate the full Earth system by exchanging boundary conditions between separate simulators of the atmosphere, ocean, sea ice, land surface, and other geophysical processes. This paradigm allows for distributed development of individual components within a common framework, unified by a coupler that handles translation between realms via spatial or temporal alignment and flux exchange. Following a similar approach adapted for machine learning-based emulators, we present SamudrACE: a coupled global climate model emulator which produces centuries-long simulations at 1-degree horizontal, 6-hourly atmospheric, and 5-daily oceanic resolution, with 145 2D fields spanning 8 atmospheric and 19 oceanic vertical levels, plus sea ice, surface, and top-of-atmosphere variables. SamudrACE is highly stable and has low climate biases comparable to those of its components with prescribed boundary forcing, with realistic variability in coupled climate phenomena such as ENSO that is not possible to simulate in uncoupled mode.
Benchmarks for Pirá 2.0, a Reading Comprehension Dataset about the Ocean, the Brazilian Coast, and Climate Change
Pir\'a is a reading comprehension dataset focused on the ocean, the Brazilian coast, and climate change, built from a collection of scientific abstracts and reports on these topics. This dataset represents a versatile language resource, particularly useful for testing the ability of current machine learning models to acquire expert scientific knowledge. Despite its potential, a detailed set of baselines has not yet been developed for Pir\'a. By creating these baselines, researchers can more easily utilize Pir\'a as a resource for testing machine learning models across a wide range of question answering tasks. In this paper, we define six benchmarks over the Pir\'a dataset, covering closed generative question answering, machine reading comprehension, information retrieval, open question answering, answer triggering, and multiple choice question answering. As part of this effort, we have also produced a curated version of the original dataset, where we fixed a number of grammar issues, repetitions, and other shortcomings. Furthermore, the dataset has been extended in several new directions, so as to face the aforementioned benchmarks: translation of supporting texts from English into Portuguese, classification labels for answerability, automatic paraphrases of questions and answers, and multiple choice candidates. The results described in this paper provide several points of reference for researchers interested in exploring the challenges provided by the Pir\'a dataset.
A projection based Variational Multiscale Method for Atmosphere-Ocean Interaction
The proposed method aims to approximate a solution of a fluid-fluid interaction problem in case of low viscosities. The nonlinear interface condition on the joint boundary allows for this problem to be viewed as a simplified version of the atmosphere-ocean coupling. Thus, the proposed method should be viewed as potentially applicable to air-sea coupled flows in turbulent regime. The method consists of two key ingredients. The geometric averaging approach is used for efficient and stable decoupling of the problem, which would allow for the usage of preexisting codes for the air and sea domain separately, as "black boxes". This is combined with the variational multiscale stabilization technique for treating flows at high Reynolds numbers. We prove the stability and accuracy of the method and provide several numerical tests to assess both the quantitative and qualitative features of the computed solution.
Extreme Event Prediction with Multi-agent Reinforcement Learning-based Parametrization of Atmospheric and Oceanic Turbulence
Global climate models (GCMs) are the main tools for understanding and predicting climate change. However, due to limited numerical resolutions, these models suffer from major structural uncertainties; e.g., they cannot resolve critical processes such as small-scale eddies in atmospheric and oceanic turbulence. Thus, such small-scale processes have to be represented as a function of the resolved scales via closures (parametrization). The accuracy of these closures is particularly important for capturing climate extremes. Traditionally, such closures are based on heuristics and simplifying assumptions about the unresolved physics. Recently, supervised-learned closures, trained offline on high-fidelity data, have been shown to outperform the classical physics-based closures. However, this approach requires a significant amount of high-fidelity training data and can also lead to instabilities. Reinforcement learning is emerging as a potent alternative for developing such closures as it requires only low-order statistics and leads to stable closures. In Scientific Multi-Agent Reinforcement Learning (SMARL) computational elements serve a dual role of discretization points and learning agents. We leverage SMARL and fundamentals of turbulence physics to learn closures for prototypes of atmospheric and oceanic turbulence. The policy is trained using only the enstrophy spectrum, which is nearly invariant and can be estimated from a few high-fidelity samples (these few samples are far from enough for supervised/offline learning). We show that these closures lead to stable low-resolution simulations that, at a fraction of the cost, can reproduce the high-fidelity simulations' statistics, including the tails of the probability density functions. The results demonstrate the high potential of SMARL for closure modeling for GCMs, especially in the regime of scarce data and indirect observations.
Deep learning-based hyperspectral image reconstruction for quality assessment of agro-product
Hyperspectral imaging (HSI) has recently emerged as a promising tool for many agricultural applications; however, the technology cannot be directly used in a real-time system due to the extensive time needed to process large volumes of data. Consequently, the development of a simple, compact, and cost-effective imaging system is not possible with the current HSI systems. Therefore, the overall goal of this study was to reconstruct hyperspectral images from RGB images through deep learning for agricultural applications. Specifically, this study used Hyperspectral Convolutional Neural Network - Dense (HSCNN-D) to reconstruct hyperspectral images from RGB images for predicting soluble solid content (SSC) in sweet potatoes. The algorithm accurately reconstructed the hyperspectral images from RGB images, with the resulting spectra closely matching the ground-truth. The partial least squares regression (PLSR) model based on reconstructed spectra outperformed the model using the full spectral range, demonstrating its potential for SSC prediction in sweet potatoes. These findings highlight the potential of deep learning-based hyperspectral image reconstruction as a low-cost, efficient tool for various agricultural uses.
Generating Physically-Consistent Satellite Imagery for Climate Visualizations
Deep generative vision models are now able to synthesize realistic-looking satellite imagery. But, the possibility of hallucinations prevents their adoption for risk-sensitive applications, such as generating materials for communicating climate change. To demonstrate this issue, we train a generative adversarial network (pix2pixHD) to create synthetic satellite imagery of future flooding and reforestation events. We find that a pure deep learning-based model can generate photorealistic flood visualizations but hallucinates floods at locations that were not susceptible to flooding. To address this issue, we propose to condition and evaluate generative vision models on segmentation maps of physics-based flood models. We show that our physics-conditioned model outperforms the pure deep learning-based model and a handcrafted baseline. We evaluate the generalization capability of our method to different remote sensing data and different climate-related events (reforestation). We publish our code and dataset which includes the data for a third case study of melting Arctic sea ice and >30,000 labeled HD image triplets -- or the equivalent of 5.5 million images at 128x128 pixels -- for segmentation guided image-to-image translation in Earth observation. Code and data is available at https://github.com/blutjens/eie-earth-public.
The X-ray Integral Field Unit at the end of the Athena reformulation phase
The Athena mission entered a redefinition phase in July 2022, driven by the imperative to reduce the mission cost at completion for the European Space Agency below an acceptable target, while maintaining the flagship nature of its science return. This notably called for a complete redesign of the X-ray Integral Field Unit (X-IFU) cryogenic architecture towards a simpler active cooling chain. Passive cooling via successive radiative panels at spacecraft level is now used to provide a 50 K thermal environment to an X-IFU owned cryostat. 4.5 K cooling is achieved via a single remote active cryocooler unit, while a multi-stage Adiabatic Demagnetization Refrigerator ensures heat lift down to the 50 mK required by the detectors. Amidst these changes, the core concept of the readout chain remains robust, employing Transition Edge Sensor microcalorimeters and a SQUID-based Time-Division Multiplexing scheme. Noteworthy is the introduction of a slower pixel. This enables an increase in the multiplexing factor (from 34 to 48) without compromising the instrument energy resolution, hence keeping significant system margins to the new 4 eV resolution requirement. This allows reducing the number of channels by more than a factor two, and thus the resource demands on the system, while keeping a 4' field of view (compared to 5' before). In this article, we will give an overview of this new architecture, before detailing its anticipated performances. Finally, we will present the new X-IFU schedule, with its short term focus on demonstration activities towards a mission adoption in early 2027.
