Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeWho Validates the Validators? Aligning LLM-Assisted Evaluation of LLM Outputs with Human Preferences
Due to the cumbersome nature of human evaluation and limitations of code-based evaluation, Large Language Models (LLMs) are increasingly being used to assist humans in evaluating LLM outputs. Yet LLM-generated evaluators simply inherit all the problems of the LLMs they evaluate, requiring further human validation. We present a mixed-initiative approach to ``validate the validators'' -- aligning LLM-generated evaluation functions (be it prompts or code) with human requirements. Our interface, EvalGen, provides automated assistance to users in generating evaluation criteria and implementing assertions. While generating candidate implementations (Python functions, LLM grader prompts), EvalGen asks humans to grade a subset of LLM outputs; this feedback is used to select implementations that better align with user grades. A qualitative study finds overall support for EvalGen but underscores the subjectivity and iterative process of alignment. In particular, we identify a phenomenon we dub criteria drift: users need criteria to grade outputs, but grading outputs helps users define criteria. What is more, some criteria appears dependent on the specific LLM outputs observed (rather than independent criteria that can be defined a priori), raising serious questions for approaches that assume the independence of evaluation from observation of model outputs. We present our interface and implementation details, a comparison of our algorithm with a baseline approach, and implications for the design of future LLM evaluation assistants.
Finding Blind Spots in Evaluator LLMs with Interpretable Checklists
Large Language Models (LLMs) are increasingly relied upon to evaluate text outputs of other LLMs, thereby influencing leaderboards and development decisions. However, concerns persist over the accuracy of these assessments and the potential for misleading conclusions. In this work, we investigate the effectiveness of LLMs as evaluators for text generation tasks. We propose FBI, a novel framework designed to examine the proficiency of Evaluator LLMs in assessing four critical abilities in other LLMs: factual accuracy, instruction following, coherence in long-form writing, and reasoning proficiency. By introducing targeted perturbations in answers generated by LLMs, that clearly impact one of these key capabilities, we test whether an Evaluator LLM can detect these quality drops. By creating a total of 2400 perturbed answers covering 22 perturbation categories, we conduct a comprehensive study using different evaluation strategies on five prominent LLMs commonly used as evaluators in the literature. Our findings reveal significant shortcomings in current Evaluator LLMs, which failed to identify quality drops in over 50\% of cases on average. Single-answer and pairwise evaluations demonstrated notable limitations, whereas reference-based evaluations showed comparatively better performance. These results underscore the unreliable nature of current Evaluator LLMs and advocate for cautious implementation in practical applications. Code and data are available at https://github.com/AI4Bharat/FBI.
Are Large Language Model-based Evaluators the Solution to Scaling Up Multilingual Evaluation?
Large Language Models (LLMs) have demonstrated impressive performance on Natural Language Processing (NLP) tasks, such as Question Answering, Summarization, and Classification. The use of LLMs as evaluators, that can rank or score the output of other models (usually LLMs) has become increasingly popular, due to the limitations of current evaluation techniques including the lack of appropriate benchmarks, metrics, cost, and access to human annotators. While LLMs are capable of handling approximately 100 languages, the majority of languages beyond the top 20 lack systematic evaluation across various tasks, metrics, and benchmarks. This creates an urgent need to scale up multilingual evaluation to ensure a precise understanding of LLM performance across diverse languages. LLM-based evaluators seem like the perfect solution to this problem, as they do not require human annotators, human-created references, or benchmarks and can theoretically be used to evaluate any language covered by the LLM. In this paper, we investigate whether LLM-based evaluators can help scale up multilingual evaluation. Specifically, we calibrate LLM-based evaluation against 20k human judgments of five metrics across three text-generation tasks in eight languages. Our findings indicate that LLM-based evaluators may exhibit bias towards higher scores and should be used with caution and should always be calibrated with a dataset of native speaker judgments, particularly in low-resource and non-Latin script languages.
WebDevJudge: Evaluating (M)LLMs as Critiques for Web Development Quality
The paradigm of LLM-as-a-judge is emerging as a scalable and efficient alternative to human evaluation, demonstrating strong performance on well-defined tasks. However, its reliability in open-ended tasks with dynamic environments and complex interactions remains unexplored. To bridge the gap, we introduce WebDevJudge, a systematic benchmark for assessing LLM-as-a-judge performance in web development, with support for both non-interactive evaluation based on static observations and continuous interactive evaluation with a dynamic web environment. WebDevJudge comprises human preference labels over paired web implementations, annotated with structured and query-grounded rubrics to ensure high-quality ground truth. Using this benchmark, we comprehensively evaluate various evaluators, including LLMs, MLLMs, and agentic workflows. We systematically investigate the impact of different paradigms and guidance mechanisms. Our experiments reveal a significant gap between LLM judges and human experts. In-depth analysis indicates this gap stems from fundamental model limitations, including failures in recognizing functional equivalence, verifying task feasibility, and mitigating bias. Overall, WebDevJudge presents a significant challenge to LLM-as-a-judge, offering insights to guide future research toward developing more reliable and capable automated evaluators for complicated scenarios. Code and data are available at https://github.com/lcy2723/WebDevJudge.
MM-Eval: A Multilingual Meta-Evaluation Benchmark for LLM-as-a-Judge and Reward Models
Large language models (LLMs) are commonly used as evaluators in tasks (e.g., reward modeling, LLM-as-a-judge), where they act as proxies for human preferences or judgments. This leads to the need for meta-evaluation: evaluating the credibility of LLMs as evaluators. However, existing benchmarks primarily focus on English, offering limited insight into LLMs' effectiveness as evaluators in non-English contexts. To address this, we introduce MM-Eval, a multilingual meta-evaluation benchmark that covers 18 languages across six categories. MM-Eval evaluates various dimensions, including language-specific challenges like linguistics and language hallucinations. Evaluation results show that both proprietary and open-source language models have considerable room for improvement. Further analysis reveals a tendency for these models to assign middle-ground scores to low-resource languages. We publicly release our benchmark and code.
Evaluating Large Language Models at Evaluating Instruction Following
As research in large language models (LLMs) continues to accelerate, LLM-based evaluation has emerged as a scalable and cost-effective alternative to human evaluations for comparing the ever increasing list of models. This paper investigates the efficacy of these "LLM evaluators", particularly in using them to assess instruction following, a metric that gauges how closely generated text adheres to the given instruction. We introduce a challenging meta-evaluation benchmark, LLMBar, designed to test the ability of an LLM evaluator in discerning instruction-following outputs. The authors manually curated 419 pairs of outputs, one adhering to instructions while the other diverging, yet may possess deceptive qualities that mislead an LLM evaluator, e.g., a more engaging tone. Contrary to existing meta-evaluation, we discover that different evaluators (i.e., combinations of LLMs and prompts) exhibit distinct performance on LLMBar and even the highest-scoring ones have substantial room for improvement. We also present a novel suite of prompting strategies that further close the gap between LLM and human evaluators. With LLMBar, we hope to offer more insight into LLM evaluators and foster future research in developing better instruction-following models.
Fusion-Eval: Integrating Evaluators with LLMs
Evaluating Large Language Models (LLMs) is a complex task, especially considering the intricacies of natural language understanding and the expectations for high-level reasoning. Traditional evaluations typically lean on human-based, model-based, or automatic-metrics-based paradigms, each with its own advantages and shortcomings. We introduce "Fusion-Eval", a system that employs LLMs not solely for direct evaluations, but to skillfully integrate insights from diverse evaluators. This gives Fusion-Eval flexibility, enabling it to work effectively across diverse tasks and make optimal use of multiple references. In testing on the SummEval dataset, Fusion-Eval achieved a Spearman correlation of 0.96, outperforming other evaluators. The success of Fusion-Eval underscores the potential of LLMs to produce evaluations that closely align human perspectives, setting a new standard in the field of LLM evaluation.
GLIDER: Grading LLM Interactions and Decisions using Explainable Ranking
The LLM-as-judge paradigm is increasingly being adopted for automated evaluation of model outputs. While LLM judges have shown promise on constrained evaluation tasks, closed source LLMs display critical shortcomings when deployed in real world applications due to challenges of fine grained metrics and explainability, while task specific evaluation models lack cross-domain generalization. We introduce GLIDER, a powerful 3B evaluator LLM that can score any text input and associated context on arbitrary user defined criteria. GLIDER shows higher Pearson's correlation than GPT-4o on FLASK and greatly outperforms prior evaluation models, achieving comparable performance to LLMs 17x its size. GLIDER supports fine-grained scoring, multilingual reasoning, span highlighting and was trained on 685 domains and 183 criteria. Extensive qualitative analysis shows that GLIDER scores are highly correlated with human judgments, with 91.3% human agreement. We have open-sourced GLIDER to facilitate future research.
FRABench and GenEval: Scaling Fine-Grained Aspect Evaluation across Tasks, Modalities
Evaluating the open-ended outputs of large language models (LLMs) has become a bottleneck as model capabilities, task diversity, and modality coverage rapidly expand. Existing "LLM-as-a-Judge" evaluators are typically narrow in a few tasks, aspects, or modalities, and easily suffer from low consistency. In this paper, we argue that explicit, fine-grained aspect specification is the key to both generalizability and objectivity in automated evaluation. To this end, we propose a hierarchical aspect taxonomy encompassing 112 distinct aspects that unifies evaluation across four representative settings -- Natural Language Generation, Image Understanding, Image Generation, and Interleaved Text-and-Image Generation. Building upon this taxonomy, we create FRABench, a benchmark comprising 60.4k pairwise samples with 325k evaluation labels obtained from a combination of human and LLM annotations. FRABench provides the first large-scale, multi-modal resource for training and meta-evaluating fine-grained LMM judges. Leveraging FRABench, we develop GenEval, a fine-grained evaluator generalizable across tasks and modalities. Experiments show that GenEval (i) attains high agreement with GPT-4o and expert annotators, (ii) transfers robustly to unseen tasks and modalities, and (iii) reveals systematic weaknesses of current LMMs on evaluation.
LLMs-as-Judges: A Comprehensive Survey on LLM-based Evaluation Methods
The rapid advancement of Large Language Models (LLMs) has driven their expanding application across various fields. One of the most promising applications is their role as evaluators based on natural language responses, referred to as ''LLMs-as-judges''. This framework has attracted growing attention from both academia and industry due to their excellent effectiveness, ability to generalize across tasks, and interpretability in the form of natural language. This paper presents a comprehensive survey of the LLMs-as-judges paradigm from five key perspectives: Functionality, Methodology, Applications, Meta-evaluation, and Limitations. We begin by providing a systematic definition of LLMs-as-Judges and introduce their functionality (Why use LLM judges?). Then we address methodology to construct an evaluation system with LLMs (How to use LLM judges?). Additionally, we investigate the potential domains for their application (Where to use LLM judges?) and discuss methods for evaluating them in various contexts (How to evaluate LLM judges?). Finally, we provide a detailed analysis of the limitations of LLM judges and discuss potential future directions. Through a structured and comprehensive analysis, we aim aims to provide insights on the development and application of LLMs-as-judges in both research and practice. We will continue to maintain the relevant resource list at https://github.com/CSHaitao/Awesome-LLMs-as-Judges.
A Survey on LLM-as-a-Judge
Accurate and consistent evaluation is crucial for decision-making across numerous fields, yet it remains a challenging task due to inherent subjectivity, variability, and scale. Large Language Models (LLMs) have achieved remarkable success across diverse domains, leading to the emergence of "LLM-as-a-Judge," where LLMs are employed as evaluators for complex tasks. With their ability to process diverse data types and provide scalable, cost-effective, and consistent assessments, LLMs present a compelling alternative to traditional expert-driven evaluations. However, ensuring the reliability of LLM-as-a-Judge systems remains a significant challenge that requires careful design and standardization. This paper provides a comprehensive survey of LLM-as-a-Judge, addressing the core question: How can reliable LLM-as-a-Judge systems be built? We explore strategies to enhance reliability, including improving consistency, mitigating biases, and adapting to diverse assessment scenarios. Additionally, we propose methodologies for evaluating the reliability of LLM-as-a-Judge systems, supported by a novel benchmark designed for this purpose. To advance the development and real-world deployment of LLM-as-a-Judge systems, we also discussed practical applications, challenges, and future directions. This survey serves as a foundational reference for researchers and practitioners in this rapidly evolving field.
Can Large Language Models be Trusted for Evaluation? Scalable Meta-Evaluation of LLMs as Evaluators via Agent Debate
Despite the utility of Large Language Models (LLMs) across a wide range of tasks and scenarios, developing a method for reliably evaluating LLMs across varied contexts continues to be challenging. Modern evaluation approaches often use LLMs to assess responses generated by LLMs. However, the meta-evaluation conducted to assess the effectiveness of these LLMs as evaluators is typically constrained by the coverage of existing benchmarks or requires extensive human annotation. This underscores the urgency of methods for scalable meta-evaluation that can effectively, reliably, and efficiently evaluate the performance of LLMs as evaluators across diverse tasks and scenarios, particularly in potentially new, user-defined scenarios. To fill this gap, we propose ScaleEval, an agent-debate-assisted meta-evaluation framework that leverages the capabilities of multiple communicative LLM agents. This framework supports multi-round discussions to assist human annotators in discerning the most capable LLMs as evaluators, which significantly eases their workload in cases that used to require large-scale annotations during meta-evaluation. We release the code for our framework, which is publicly available at: https://github.com/GAIR-NLP/scaleeval.
An Empirical Study of LLM-as-a-Judge: How Design Choices Impact Evaluation Reliability
As large language models (LLMs) continue to advance, reliable evaluation methods are essential particularly for open-ended, instruction-following tasks. LLM-as-a-Judge enables automatic evaluation using LLMs as evaluators, but its reliability remains uncertain. In this work, we analyze key factors affecting its trustworthiness, focusing on alignment with human judgments and evaluation consistency. Using BIGGENBench and EvalBiasBench, we study the effects of evaluation design, decoding strategies, and Chain-of-Tought (CoT) reasoning in evaluation. Our results show that evaluation criteria are critical for reliability, non-deterministic sampling improves alignment with human preferences over deterministic evaluation, and CoT reasoning offers minimal gains when clear evaluation criteria are present.
Vi(E)va LLM! A Conceptual Stack for Evaluating and Interpreting Generative AI-based Visualizations
The automatic generation of visualizations is an old task that, through the years, has shown more and more interest from the research and practitioner communities. Recently, large language models (LLM) have become an interesting option for supporting generative tasks related to visualization, demonstrating initial promising results. At the same time, several pitfalls, like the multiple ways of instructing an LLM to generate the desired result, the different perspectives leading the generation (code-based, image-based, grammar-based), and the presence of hallucinations even for the visualization generation task, make their usage less affordable than expected. Following similar initiatives for benchmarking LLMs, this paper copes with the problem of modeling the evaluation of a generated visualization through an LLM. We propose a theoretical evaluation stack, EvaLLM, that decomposes the evaluation effort in its atomic components, characterizes their nature, and provides an overview of how to implement and interpret them. We also designed and implemented an evaluation platform that provides a benchmarking resource for the visualization generation task. The platform supports automatic and manual scoring conducted by multiple assessors to support a fine-grained and semantic evaluation based on the EvaLLM stack. Two case studies on GPT3.5-turbo with Code Interpreter and Llama2-70-b models show the benefits of EvaLLM and illustrate interesting results on the current state-of-the-art LLM-generated visualizations.
ReIFE: Re-evaluating Instruction-Following Evaluation
The automatic evaluation of instruction following typically involves using large language models (LLMs) to assess response quality. However, there is a lack of comprehensive evaluation of these LLM-based evaluators across two dimensions: the base LLMs and the evaluation protocols. Therefore, we present a thorough meta-evaluation of instruction following, including 25 base LLMs and 15 recently proposed evaluation protocols, on 4 human-annotated datasets, assessing the evaluation accuracy of the LLM-evaluators. Our evaluation allows us to identify the best-performing base LLMs and evaluation protocols with a high degree of robustness. Moreover, our large-scale evaluation reveals: (1) Base LLM performance ranking remains largely consistent across evaluation protocols, with less capable LLMs showing greater improvement from protocol enhancements; (2) Robust evaluation of evaluation protocols requires many base LLMs with varying capability levels, as protocol effectiveness can depend on the base LLM used; (3) Evaluation results on different datasets are not always consistent, so a rigorous evaluation requires multiple datasets with distinctive features. We release our meta-evaluation suite ReIFE, which provides the codebase and evaluation result collection for more than 500 LLM-evaluator configurations, to support future research in instruction-following evaluation.
F-Eval: Asssessing Fundamental Abilities with Refined Evaluation Methods
Large language models (LLMs) garner significant attention for their unprecedented performance, leading to an increasing number of researches evaluating LLMs. However, these evaluation benchmarks are limited to assessing the instruction-following capabilities, overlooking the fundamental abilities that emerge during the pre-training stage. Previous subjective evaluation methods mainly reply on scoring by API models. However, in the absence of references, large models have shown limited ability to discern subtle differences. To bridge the gap, we propose F-Eval, a bilingual evaluation benchmark to evaluate the fundamental abilities, including expression, commonsense and logic. The tasks in F-Eval include multi-choice objective tasks, open-ended objective tasks, reference-based subjective tasks and reference-free subjective tasks. For reference-free subjective tasks, we devise new evaluation methods, serving as alternatives to scoring by API models. We conduct evaluations on 13 advanced LLMs. Results show that our evaluation methods show higher correlation coefficients and larger distinction than other evaluators. Additionally, we discuss the influence of different model sizes, dimensions, and normalization methods. We anticipate that F-Eval will facilitate the study of LLMs' fundamental abilities.
Adaptively evaluating models with task elicitation
Manual curation of evaluation datasets is struggling to keep up with the rapidly expanding capabilities and deployment scenarios of language models. Towards scalable model profiling, we introduce and validate a framework for evaluating LLMs, called Adaptive Evaluations. Adaptive evaluations use scaffolded language models (evaluator agents) to search through a target model's behavior on a domain dataset and create difficult questions (tasks) that can discover and probe the model's failure modes. We find that frontier models lack consistency when adaptively probed with our framework on a diverse suite of datasets and tasks, including but not limited to legal reasoning, forecasting, and online harassment. Generated questions pass human validity checks and often transfer to other models with different capability profiles, demonstrating that adaptive evaluations can also be used to create difficult domain-specific datasets.
From Generation to Judgment: Opportunities and Challenges of LLM-as-a-judge
Assessment and evaluation have long been critical challenges in artificial intelligence (AI) and natural language processing (NLP). However, traditional methods, whether matching-based or embedding-based, often fall short of judging subtle attributes and delivering satisfactory results. Recent advancements in Large Language Models (LLMs) inspire the "LLM-as-a-judge" paradigm, where LLMs are leveraged to perform scoring, ranking, or selection across various tasks and applications. This paper provides a comprehensive survey of LLM-based judgment and assessment, offering an in-depth overview to advance this emerging field. We begin by giving detailed definitions from both input and output perspectives. Then we introduce a comprehensive taxonomy to explore LLM-as-a-judge from three dimensions: what to judge, how to judge and where to judge. Finally, we compile benchmarks for evaluating LLM-as-a-judge and highlight key challenges and promising directions, aiming to provide valuable insights and inspire future research in this promising research area. Paper list and more resources about LLM-as-a-judge can be found at https://github.com/llm-as-a-judge/Awesome-LLM-as-a-judge and https://llm-as-a-judge.github.io.
AbGen: Evaluating Large Language Models in Ablation Study Design and Evaluation for Scientific Research
We introduce AbGen, the first benchmark designed to evaluate the capabilities of LLMs in designing ablation studies for scientific research. AbGen consists of 1,500 expert-annotated examples derived from 807 NLP papers. In this benchmark, LLMs are tasked with generating detailed ablation study designs for a specified module or process based on the given research context. Our evaluation of leading LLMs, such as DeepSeek-R1-0528 and o4-mini, highlights a significant performance gap between these models and human experts in terms of the importance, faithfulness, and soundness of the ablation study designs. Moreover, we demonstrate that current automated evaluation methods are not reliable for our task, as they show a significant discrepancy when compared to human assessment. To better investigate this, we develop AbGen-Eval, a meta-evaluation benchmark designed to assess the reliability of commonly used automated evaluation systems in measuring LLM performance on our task. We investigate various LLM-as-Judge systems on AbGen-Eval, providing insights for future research on developing more effective and reliable LLM-based evaluation systems for complex scientific tasks.
T-Eval: Evaluating the Tool Utilization Capability Step by Step
Large language models (LLM) have achieved remarkable performance on various NLP tasks and are augmented by tools for broader applications. Yet, how to evaluate and analyze the tool-utilization capability of LLMs is still under-explored. In contrast to previous works that evaluate models holistically, we comprehensively decompose the tool utilization into multiple sub-processes, including instruction following, planning, reasoning, retrieval, understanding, and review. Based on that, we further introduce T-Eval to evaluate the tool utilization capability step by step. T-Eval disentangles the tool utilization evaluation into several sub-domains along model capabilities, facilitating the inner understanding of both holistic and isolated competency of LLMs. We conduct extensive experiments on T-Eval and in-depth analysis of various LLMs. T-Eval not only exhibits consistency with the outcome-oriented evaluation but also provides a more fine-grained analysis of the capabilities of LLMs, providing a new perspective in LLM evaluation on tool-utilization ability. The benchmark will be available at https://github.com/open-compass/T-Eval.
LLM-as-a-Judge & Reward Model: What They Can and Cannot Do
LLM-as-a-Judge and reward models are widely used alternatives of multiple-choice questions or human annotators for large language model (LLM) evaluation. Their efficacy shines in evaluating long-form responses, serving a critical role as evaluators of leaderboards and as proxies to align LLMs via reinforcement learning. However, despite their popularity, their effectiveness outside of English remains largely unexplored. In this paper, we conduct a comprehensive analysis on automated evaluators, reporting key findings on their behavior in a non-English environment. First, we discover that English evaluation capabilities significantly influence language-specific capabilities, often more than the language proficiency itself, enabling evaluators trained in English to easily transfer their skills to other languages. Second, we identify critical shortcomings, where LLMs fail to detect and penalize errors, such as factual inaccuracies, cultural misrepresentations, and the presence of unwanted language. Finally, we release Kudge, the first non-English meta-evaluation dataset containing 5,012 human annotations in Korean.
ViLLM-Eval: A Comprehensive Evaluation Suite for Vietnamese Large Language Models
The rapid advancement of large language models (LLMs) necessitates the development of new benchmarks to accurately assess their capabilities. To address this need for Vietnamese, this work aims to introduce ViLLM-Eval, the comprehensive evaluation suite designed to measure the advanced knowledge and reasoning abilities of foundation models within a Vietnamese context. ViLLM-Eval consists of multiple-choice questions and predict next word tasks spanning various difficulty levels and diverse disciplines, ranging from humanities to science and engineering. A thorough evaluation of the most advanced LLMs on ViLLM-Eval revealed that even the best performing models have significant room for improvement in understanding and responding to Vietnamese language tasks. ViLLM-Eval is believed to be instrumental in identifying key strengths and weaknesses of foundation models, ultimately promoting their development and enhancing their performance for Vietnamese users. This paper provides a thorough overview of ViLLM-Eval as part of the Vietnamese Large Language Model shared task, held within the 10th International Workshop on Vietnamese Language and Speech Processing (VLSP 2023).
C-Eval: A Multi-Level Multi-Discipline Chinese Evaluation Suite for Foundation Models
New NLP benchmarks are urgently needed to align with the rapid development of large language models (LLMs). We present C-Eval, the first comprehensive Chinese evaluation suite designed to assess advanced knowledge and reasoning abilities of foundation models in a Chinese context. C-Eval comprises multiple-choice questions across four difficulty levels: middle school, high school, college, and professional. The questions span 52 diverse disciplines, ranging from humanities to science and engineering. C-Eval is accompanied by C-Eval Hard, a subset of very challenging subjects in C-Eval that requires advanced reasoning abilities to solve. We conduct a comprehensive evaluation of the most advanced LLMs on C-Eval, including both English- and Chinese-oriented models. Results indicate that only GPT-4 could achieve an average accuracy of over 60%, suggesting that there is still significant room for improvement for current LLMs. We anticipate C-Eval will help analyze important strengths and shortcomings of foundation models, and foster their development and growth for Chinese users.
Checklist Engineering Empowers Multilingual LLM Judges
Automated text evaluation has long been a central issue in Natural Language Processing (NLP). Recently, the field has shifted toward using Large Language Models (LLMs) as evaluators-a trend known as the LLM-as-a-Judge paradigm. While promising and easily adaptable across tasks, this approach has seen limited exploration in multilingual contexts. Existing multilingual studies often rely on proprietary models or require extensive training data for fine-tuning, raising concerns about cost, time, and efficiency. In this paper, we propose Checklist Engineering based LLM-as-a-Judge (CE-Judge), a training-free framework that uses checklist intuition for multilingual evaluation with an open-source model. Experiments across multiple languages and three benchmark datasets, under both pointwise and pairwise settings, show that our method generally surpasses the baselines and performs on par with the GPT-4o model.
Multi-Agent LLM Judge: automatic personalized LLM judge design for evaluating natural language generation applications
Large Language Models (LLMs) have demonstrated impressive performance across diverse domains, yet they still encounter challenges such as insufficient domain-specific knowledge, biases, and hallucinations. This underscores the need for robust evaluation methodologies to accurately assess LLM-based applications. Traditional evaluation methods, which rely on word overlap or text embeddings, are inadequate for capturing the nuanced semantic information necessary to evaluate dynamic, open-ended text generation. Recent research has explored leveraging LLMs to mimic human reasoning and decision-making processes for evaluation purposes known as LLM-as-a-judge framework. However, these existing frameworks have two significant limitations. First, they lack the flexibility to adapt to different text styles, including various answer and ground truth styles, thereby reducing their generalization performance. Second, the evaluation scores produced by these frameworks are often skewed and hard to interpret, showing a low correlation with human judgment. To address these challenges, we propose a novel dynamic multi-agent system that automatically designs personalized LLM judges for various natural language generation applications. This system iteratively refines evaluation prompts and balances the trade-off between the adaptive requirements of downstream tasks and the alignment with human perception. Our experimental results show that the proposed multi-agent LLM Judge framework not only enhances evaluation accuracy compared to existing methods but also produces evaluation scores that better align with human perception.
Learning to Ask: When LLMs Meet Unclear Instruction
Equipped with the capability to call functions, modern large language models (LLMs) can leverage external tools for addressing a range of tasks unattainable through language skills alone. However, the effective execution of these tools relies heavily not just on the advanced capabilities of LLMs but also on precise user instructions, which often cannot be ensured in the real world. To evaluate the performance of LLMs tool-use under imperfect instructions, we meticulously examine the real-world instructions queried from users, analyze the error patterns, and build a challenging tool-use benchmark called Noisy ToolBench (NoisyToolBench). We find that due to the next-token prediction training objective, LLMs tend to arbitrarily generate the missed argument, which may lead to hallucinations and risks. To address this issue, we propose a novel framework, Ask-when-Needed (AwN), which prompts LLMs to ask questions to users whenever they encounter obstacles due to unclear instructions. Moreover, to reduce the manual labor involved in user-LLM interaction and assess LLMs performance in tool utilization from both accuracy and efficiency perspectives, we design an automated evaluation tool named ToolEvaluator. Our experiments demonstrate that the AwN significantly outperforms existing frameworks for tool learning in the NoisyToolBench. We will release all related code and datasets to support future research.
Learning to Align Multi-Faceted Evaluation: A Unified and Robust Framework
Large Language Models (LLMs) are being used more and more extensively for automated evaluation in various scenarios. Previous studies have attempted to fine-tune open-source LLMs to replicate the evaluation explanations and judgments of powerful proprietary models, such as GPT-4. However, these methods are largely limited to text-based analyses under predefined general criteria, resulting in reduced adaptability for unseen instructions and demonstrating instability in evaluating adherence to quantitative and structural constraints. To address these limitations, we propose a novel evaluation framework, ARJudge, that adaptively formulates evaluation criteria and synthesizes both text-based and code-driven analyses to evaluate LLM responses. ARJudge consists of two components: a fine-tuned Analyzer that generates multi-faceted evaluation analyses and a tuning-free Refiner that combines and refines all analyses to make the final judgment. We construct a Composite Analysis Corpus that integrates tasks for evaluation criteria generation alongside text-based and code-driven analysis generation to train the Analyzer. Our results demonstrate that ARJudge outperforms existing fine-tuned evaluators in effectiveness and robustness. Furthermore, it demonstrates the importance of multi-faceted evaluation and code-driven analyses in enhancing evaluation capabilities.
An Empirical Analysis of Uncertainty in Large Language Model Evaluations
As LLM-as-a-Judge emerges as a new paradigm for assessing large language models (LLMs), concerns have been raised regarding the alignment, bias, and stability of LLM evaluators. While substantial work has focused on alignment and bias, little research has concentrated on the stability of LLM evaluators. In this paper, we conduct extensive experiments involving 9 widely used LLM evaluators across 2 different evaluation settings to investigate the uncertainty in model-based LLM evaluations. We pinpoint that LLM evaluators exhibit varying uncertainty based on model families and sizes. With careful comparative analyses, we find that employing special prompting strategies, whether during inference or post-training, can alleviate evaluation uncertainty to some extent. By utilizing uncertainty to enhance LLM's reliability and detection capability in Out-Of-Distribution (OOD) data, we further fine-tune an uncertainty-aware LLM evaluator named ConfiLM using a human-annotated fine-tuning set and assess ConfiLM's OOD evaluation ability on a manually designed test set sourced from the 2024 Olympics. Experimental results demonstrate that incorporating uncertainty as additional information during the fine-tuning phase can largely improve the model's evaluation performance in OOD scenarios. The code and data are released at: https://github.com/hasakiXie123/LLM-Evaluator-Uncertainty.
EQUATOR: A Deterministic Framework for Evaluating LLM Reasoning with Open-Ended Questions. # v1.0.0-beta
Despite the remarkable coherence of Large Language Models (LLMs), existing evaluation methods often suffer from fluency bias and rely heavily on multiple-choice formats, making it difficult to assess factual accuracy and complex reasoning effectively. LLMs thus frequently generate factually inaccurate responses, especially in complex reasoning tasks, highlighting two prominent challenges: (1) the inadequacy of existing methods to evaluate reasoning and factual accuracy effectively, and (2) the reliance on human evaluators for nuanced judgment, as illustrated by Williams and Huckle (2024)[1], who found manual grading indispensable despite automated grading advancements. To address evaluation gaps in open-ended reasoning tasks, we introduce the EQUATOR Evaluator (Evaluation of Question Answering Thoroughness in Open-ended Reasoning). This framework combines deterministic scoring with a focus on factual accuracy and robust reasoning assessment. Using a vector database, EQUATOR pairs open-ended questions with human-evaluated answers, enabling more precise and scalable evaluations. In practice, EQUATOR significantly reduces reliance on human evaluators for scoring and improves scalability compared to Williams and Huckle's (2004)[1] methods. Our results demonstrate that this framework significantly outperforms traditional multiple-choice evaluations while maintaining high accuracy standards. Additionally, we introduce an automated evaluation process leveraging smaller, locally hosted LLMs. We used LLaMA 3.2B, running on the Ollama binaries to streamline our assessments. This work establishes a new paradigm for evaluating LLM performance, emphasizing factual accuracy and reasoning ability, and provides a robust methodological foundation for future research.
LaajMeter: A Framework for LaaJ Evaluation
Large Language Models (LLMs) are increasingly used as evaluators in natural language processing tasks, a paradigm known as LLM-as-a-Judge (LaaJ). While effective in general domains, LaaJs pose significant challenges in domain-specific contexts, where annotated data is scarce and expert evaluation is costly. In such cases, meta-evaluation is often performed using metrics that have not been validated for the specific domain in which they are applied. As a result, it becomes difficult to determine which metrics effectively identify LaaJ quality, and further, what threshold indicates sufficient evaluator performance. In this work, we introduce LaaJMeter, a simulation-based framework for controlled meta-evaluation of LaaJs. LaaJMeter enables engineers to generate synthetic data representing virtual models and judges, allowing systematic analysis of evaluation metrics under realistic conditions. This helps practitioners validate and refine LaaJs for specific evaluation tasks: they can test whether their metrics correctly distinguish between better and worse (virtual) LaaJs, and estimate appropriate thresholds for evaluator adequacy. We demonstrate the utility of LaaJMeter in a code translation task involving a legacy programming language, showing how different metrics vary in sensitivity to evaluator quality. Our results highlight the limitations of common metrics and the importance of principled metric selection. LaaJMeter provides a scalable and extensible solution for assessing LaaJs in low-resource settings, contributing to the broader effort to ensure trustworthy and reproducible evaluation in NLP.
CompassJudger-1: All-in-one Judge Model Helps Model Evaluation and Evolution
Efficient and accurate evaluation is crucial for the continuous improvement of large language models (LLMs). Among various assessment methods, subjective evaluation has garnered significant attention due to its superior alignment with real-world usage scenarios and human preferences. However, human-based evaluations are costly and lack reproducibility, making precise automated evaluators (judgers) vital in this process. In this report, we introduce CompassJudger-1, the first open-source all-in-one judge LLM. CompassJudger-1 is a general-purpose LLM that demonstrates remarkable versatility. It is capable of: 1. Performing unitary scoring and two-model comparisons as a reward model; 2. Conducting evaluations according to specified formats; 3. Generating critiques; 4. Executing diverse tasks like a general LLM. To assess the evaluation capabilities of different judge models under a unified setting, we have also established JudgerBench, a new benchmark that encompasses various subjective evaluation tasks and covers a wide range of topics. CompassJudger-1 offers a comprehensive solution for various evaluation tasks while maintaining the flexibility to adapt to diverse requirements. Both CompassJudger and JudgerBench are released and available to the research community athttps://github.com/open-compass/CompassJudger. We believe that by open-sourcing these tools, we can foster collaboration and accelerate progress in LLM evaluation methodologies.
LLM-as-an-Interviewer: Beyond Static Testing Through Dynamic LLM Evaluation
We introduce LLM-as-an-Interviewer, a novel paradigm for evaluating large language models (LLMs). This approach leverages multi-turn interactions where the LLM interviewer actively provides feedback on responses and poses follow-up questions to the evaluated LLM. At the start of the interview, the LLM interviewer dynamically modifies datasets to generate initial questions, mitigating data contamination. We apply the LLM-as-an-Interviewer framework to evaluate six models on the MATH and DepthQA tasks. Our results show that the framework effectively provides insights into LLM performance, including the quality of initial responses, adaptability to feedback, and ability to address follow-up queries like clarification or additional knowledge requests. The framework also addresses key limitations of conventional methods like LLM-as-a-Judge, including verbosity bias and inconsistency across runs. Finally, we propose the Interview Report, which aggregates insights from the interview process, providing examples and a comprehensive analysis of the LLM's strengths and weaknesses. This report offers a detailed snapshot of the model's real-world applicability. The code for our framework is publicly available at https://github.com/interview-eval/.
G-Eval: NLG Evaluation using GPT-4 with Better Human Alignment
The quality of texts generated by natural language generation (NLG) systems is hard to measure automatically. Conventional reference-based metrics, such as BLEU and ROUGE, have been shown to have relatively low correlation with human judgments, especially for tasks that require creativity and diversity. Recent studies suggest using large language models (LLMs) as reference-free metrics for NLG evaluation, which have the benefit of being applicable to new tasks that lack human references. However, these LLM-based evaluators still have lower human correspondence than medium-size neural evaluators. In this work, we present G-Eval, a framework of using large language models with chain-of-thoughts (CoT) and a form-filling paradigm, to assess the quality of NLG outputs. We experiment with two generation tasks, text summarization and dialogue generation. We show that G-Eval with GPT-4 as the backbone model achieves a Spearman correlation of 0.514 with human on summarization task, outperforming all previous methods by a large margin. We also propose preliminary analysis on the behavior of LLM-based evaluators, and highlight the potential issue of LLM-based evaluators having a bias towards the LLM-generated texts. The code is at https://github.com/nlpyang/geval
RocketEval: Efficient Automated LLM Evaluation via Grading Checklist
Evaluating large language models (LLMs) in diverse and challenging scenarios is essential to align them with human preferences. To mitigate the prohibitive costs associated with human evaluations, utilizing a powerful LLM as a judge has emerged as a favored approach. Nevertheless, this methodology encounters several challenges, including substantial expenses, concerns regarding privacy and security, and reproducibility. In this paper, we propose a straightforward, replicable, and accurate automated evaluation method by leveraging a lightweight LLM as the judge, named RocketEval. Initially, we identify that the performance disparity between lightweight and powerful LLMs in evaluation tasks primarily stems from their ability to conduct comprehensive analyses, which is not easily enhanced through techniques such as chain-of-thought reasoning. By reframing the evaluation task as a multi-faceted Q&A using an instance-specific checklist, we demonstrate that the limited judgment accuracy of lightweight LLMs is largely attributes to high uncertainty and positional bias. To address these challenges, we introduce an automated evaluation process grounded in checklist grading, which is designed to accommodate a variety of scenarios and questions. This process encompasses the creation of checklists, the grading of these checklists by lightweight LLMs, and the reweighting of checklist items to align with the supervised annotations. Our experiments carried out on the automated evaluation benchmarks, MT-Bench and WildBench datasets, reveal that RocketEval, when using Gemma-2-2B as the judge, achieves a high correlation (0.965) with human preferences, which is comparable to GPT-4o. Moreover, RocketEval provides a cost reduction exceeding 50-fold for large-scale evaluation and comparison scenarios. Our code is available at https://github.com/Joinn99/RocketEval-ICLR .
Can LLMs Design Good Questions Based on Context?
This paper evaluates questions generated by LLMs from context, comparing them to human-generated questions across six dimensions. We introduce an automated LLM-based evaluation method, focusing on aspects like question length, type, context coverage, and answerability. Our findings highlight unique characteristics of LLM-generated questions, contributing insights that can support further research in question quality and downstream applications.
EvalLM: Interactive Evaluation of Large Language Model Prompts on User-Defined Criteria
By simply composing prompts, developers can prototype novel generative applications with Large Language Models (LLMs). To refine prototypes into products, however, developers must iteratively revise prompts by evaluating outputs to diagnose weaknesses. Formative interviews (N=8) revealed that developers invest significant effort in manually evaluating outputs as they assess context-specific and subjective criteria. We present EvalLM, an interactive system for iteratively refining prompts by evaluating multiple outputs on user-defined criteria. By describing criteria in natural language, users can employ the system's LLM-based evaluator to get an overview of where prompts excel or fail, and improve these based on the evaluator's feedback. A comparative study (N=12) showed that EvalLM, when compared to manual evaluation, helped participants compose more diverse criteria, examine twice as many outputs, and reach satisfactory prompts with 59% fewer revisions. Beyond prompts, our work can be extended to augment model evaluation and alignment in specific application contexts.
A Survey on Evaluation of Large Language Models
Large language models (LLMs) are gaining increasing popularity in both academia and industry, owing to their unprecedented performance in various applications. As LLMs continue to play a vital role in both research and daily use, their evaluation becomes increasingly critical, not only at the task level, but also at the society level for better understanding of their potential risks. Over the past years, significant efforts have been made to examine LLMs from various perspectives. This paper presents a comprehensive review of these evaluation methods for LLMs, focusing on three key dimensions: what to evaluate, where to evaluate, and how to evaluate. Firstly, we provide an overview from the perspective of evaluation tasks, encompassing general natural language processing tasks, reasoning, medical usage, ethics, educations, natural and social sciences, agent applications, and other areas. Secondly, we answer the `where' and `how' questions by diving into the evaluation methods and benchmarks, which serve as crucial components in assessing performance of LLMs. Then, we summarize the success and failure cases of LLMs in different tasks. Finally, we shed light on several future challenges that lie ahead in LLMs evaluation. Our aim is to offer invaluable insights to researchers in the realm of LLMs evaluation, thereby aiding the development of more proficient LLMs. Our key point is that evaluation should be treated as an essential discipline to better assist the development of LLMs. We consistently maintain the related open-source materials at: https://github.com/MLGroupJLU/LLM-eval-survey.
PRE: A Peer Review Based Large Language Model Evaluator
The impressive performance of large language models (LLMs) has attracted considerable attention from the academic and industrial communities. Besides how to construct and train LLMs, how to effectively evaluate and compare the capacity of LLMs has also been well recognized as an important yet difficult problem. Existing paradigms rely on either human annotators or model-based evaluators to evaluate the performance of LLMs on different tasks. However, these paradigms often suffer from high cost, low generalizability, and inherited biases in practice, which make them incapable of supporting the sustainable development of LLMs in long term. In order to address these issues, inspired by the peer review systems widely used in academic publication process, we propose a novel framework that can automatically evaluate LLMs through a peer-review process. Specifically, for the evaluation of a specific task, we first construct a small qualification exam to select "reviewers" from a couple of powerful LLMs. Then, to actually evaluate the "submissions" written by different candidate LLMs, i.e., the evaluatees, we use the reviewer LLMs to rate or compare the submissions. The final ranking of evaluatee LLMs is generated based on the results provided by all reviewers. We conducted extensive experiments on text summarization tasks with eleven LLMs including GPT-4. The results demonstrate the existence of biasness when evaluating using a single LLM. Also, our PRE model outperforms all the baselines, illustrating the effectiveness of the peer review mechanism.
CheckEval: Robust Evaluation Framework using Large Language Model via Checklist
We introduce CheckEval, a novel evaluation framework using Large Language Models, addressing the challenges of ambiguity and inconsistency in current evaluation methods. CheckEval addresses these challenges by dividing evaluation criteria into detailed sub-aspects and constructing a checklist of Boolean questions for each, simplifying the evaluation. This approach not only renders the process more interpretable but also significantly enhances the robustness and reliability of results by focusing on specific evaluation dimensions. Validated through a focused case study using the SummEval benchmark, CheckEval indicates a strong correlation with human judgments. Furthermore, it demonstrates a highly consistent Inter-Annotator Agreement. These findings highlight the effectiveness of CheckEval for objective, flexible, and precise evaluations. By offering a customizable and interactive framework, CheckEval sets a new standard for the use of LLMs in evaluation, responding to the evolving needs of the field and establishing a clear method for future LLM-based evaluation.
A Closer Look into Automatic Evaluation Using Large Language Models
Using large language models (LLMs) to evaluate text quality has recently gained popularity. Some prior works explore the idea of using LLMs for evaluation, while they differ in some details of the evaluation process. In this paper, we analyze LLM evaluation (Chiang and Lee, 2023) and G-Eval (Liu et al., 2023), and we discuss how those details in the evaluation process change how well the ratings given by LLMs correlate with human ratings. We find that the auto Chain-of-Thought (CoT) used in G-Eval does not always make G-Eval more aligned with human ratings. We also show that forcing the LLM to output only a numeric rating, as in G-Eval, is suboptimal. Last, we reveal that asking the LLM to explain its own ratings consistently improves the correlation between the ChatGPT and human ratings and pushes state-of-the-art (SoTA) correlations on two meta-evaluation datasets.
Through the Lens of Core Competency: Survey on Evaluation of Large Language Models
From pre-trained language model (PLM) to large language model (LLM), the field of natural language processing (NLP) has witnessed steep performance gains and wide practical uses. The evaluation of a research field guides its direction of improvement. However, LLMs are extremely hard to thoroughly evaluate for two reasons. First of all, traditional NLP tasks become inadequate due to the excellent performance of LLM. Secondly, existing evaluation tasks are difficult to keep up with the wide range of applications in real-world scenarios. To tackle these problems, existing works proposed various benchmarks to better evaluate LLMs. To clarify the numerous evaluation tasks in both academia and industry, we investigate multiple papers concerning LLM evaluations. We summarize 4 core competencies of LLM, including reasoning, knowledge, reliability, and safety. For every competency, we introduce its definition, corresponding benchmarks, and metrics. Under this competency architecture, similar tasks are combined to reflect corresponding ability, while new tasks can also be easily added into the system. Finally, we give our suggestions on the future direction of LLM's evaluation.
Judging the Judges: Evaluating Alignment and Vulnerabilities in LLMs-as-Judges
Offering a promising solution to the scalability challenges associated with human evaluation, the LLM-as-a-judge paradigm is rapidly gaining traction as an approach to evaluating large language models (LLMs). However, there are still many open questions about the strengths and weaknesses of this paradigm, and what potential biases it may hold. In this paper, we present a comprehensive study of the performance of various LLMs acting as judges. We leverage TriviaQA as a benchmark for assessing objective knowledge reasoning of LLMs and evaluate them alongside human annotations which we found to have a high inter-annotator agreement. Our study includes 9 judge models and 9 exam taker models -- both base and instruction-tuned. We assess the judge model's alignment across different model sizes, families, and judge prompts. Among other results, our research rediscovers the importance of using Cohen's kappa as a metric of alignment as opposed to simple percent agreement, showing that judges with high percent agreement can still assign vastly different scores. We find that both Llama-3 70B and GPT-4 Turbo have an excellent alignment with humans, but in terms of ranking exam taker models, they are outperformed by both JudgeLM-7B and the lexical judge Contains, which have up to 34 points lower human alignment. Through error analysis and various other studies, including the effects of instruction length and leniency bias, we hope to provide valuable lessons for using LLMs as judges in the future.
Self-Taught Evaluators
Model-based evaluation is at the heart of successful model development -- as a reward model for training, and as a replacement for human evaluation. To train such evaluators, the standard approach is to collect a large amount of human preference judgments over model responses, which is costly and the data becomes stale as models improve. In this work, we present an approach that aims to im-prove evaluators without human annotations, using synthetic training data only. Starting from unlabeled instructions, our iterative self-improvement scheme generates contrasting model outputs and trains an LLM-as-a-Judge to produce reasoning traces and final judgments, repeating this training at each new iteration using the improved predictions. Without any labeled preference data, our Self-Taught Evaluator can improve a strong LLM (Llama3-70B-Instruct) from 75.4 to 88.3 (88.7 with majority vote) on RewardBench. This outperforms commonly used LLM judges such as GPT-4 and matches the performance of the top-performing reward models trained with labeled examples.
Instruction-Following Evaluation for Large Language Models
One core capability of Large Language Models (LLMs) is to follow natural language instructions. However, the evaluation of such abilities is not standardized: Human evaluations are expensive, slow, and not objectively reproducible, while LLM-based auto-evaluation is potentially biased or limited by the ability of the evaluator LLM. To overcome these issues, we introduce Instruction-Following Eval (IFEval) for large language models. IFEval is a straightforward and easy-to-reproduce evaluation benchmark. It focuses on a set of "verifiable instructions" such as "write in more than 400 words" and "mention the keyword of AI at least 3 times". We identified 25 types of those verifiable instructions and constructed around 500 prompts, with each prompt containing one or more verifiable instructions. We show evaluation results of two widely available LLMs on the market. Our code and data can be found at https://github.com/google-research/google-research/tree/master/instruction_following_eval
Enterprise Large Language Model Evaluation Benchmark
Large Language Models (LLMs) ) have demonstrated promise in boosting productivity across AI-powered tools, yet existing benchmarks like Massive Multitask Language Understanding (MMLU) inadequately assess enterprise-specific task complexities. We propose a 14-task framework grounded in Bloom's Taxonomy to holistically evaluate LLM capabilities in enterprise contexts. To address challenges of noisy data and costly annotation, we develop a scalable pipeline combining LLM-as-a-Labeler, LLM-as-a-Judge, and corrective retrieval-augmented generation (CRAG), curating a robust 9,700-sample benchmark. Evaluation of six leading models shows open-source contenders like DeepSeek R1 rival proprietary models in reasoning tasks but lag in judgment-based scenarios, likely due to overthinking. Our benchmark reveals critical enterprise performance gaps and offers actionable insights for model optimization. This work provides enterprises a blueprint for tailored evaluations and advances practical LLM deployment.
Does Context Matter? ContextualJudgeBench for Evaluating LLM-based Judges in Contextual Settings
The large language model (LLM)-as-judge paradigm has been used to meet the demand for a cheap, reliable, and fast evaluation of model outputs during AI system development and post-deployment monitoring. While judge models -- LLMs finetuned to specialize in assessing and critiquing model outputs -- have been touted as general purpose evaluators, they are typically evaluated only on non-contextual scenarios, such as instruction following. The omission of contextual settings -- those where external information is used as context to generate an output -- is surprising given the increasing prevalence of retrieval-augmented generation (RAG) and summarization use cases. Contextual assessment is uniquely challenging, as evaluation often depends on practitioner priorities, leading to conditional evaluation criteria (e.g., comparing responses based on factuality and then considering completeness if they are equally factual). To address the gap, we propose ContextualJudgeBench, a judge benchmark with 2,000 challenging response pairs across eight splits inspired by real-world contextual evaluation scenarios. We build our benchmark with a multi-pronged data construction pipeline that leverages both existing human annotations and model-based perturbations. Our comprehensive study across 11 judge models and 9 general purpose models, reveals that the contextual information and its assessment criteria present a significant challenge to even state-of-the-art models. For example, OpenAI's o1, the best-performing model, barely reaches 55% consistent accuracy.
TICKing All the Boxes: Generated Checklists Improve LLM Evaluation and Generation
Given the widespread adoption and usage of Large Language Models (LLMs), it is crucial to have flexible and interpretable evaluations of their instruction-following ability. Preference judgments between model outputs have become the de facto evaluation standard, despite distilling complex, multi-faceted preferences into a single ranking. Furthermore, as human annotation is slow and costly, LLMs are increasingly used to make these judgments, at the expense of reliability and interpretability. In this work, we propose TICK (Targeted Instruct-evaluation with ChecKlists), a fully automated, interpretable evaluation protocol that structures evaluations with LLM-generated, instruction-specific checklists. We first show that, given an instruction, LLMs can reliably produce high-quality, tailored evaluation checklists that decompose the instruction into a series of YES/NO questions. Each question asks whether a candidate response meets a specific requirement of the instruction. We demonstrate that using TICK leads to a significant increase (46.4% to 52.2%) in the frequency of exact agreements between LLM judgements and human preferences, as compared to having an LLM directly score an output. We then show that STICK (Self-TICK) can be used to improve generation quality across multiple benchmarks via self-refinement and Best-of-N selection. STICK self-refinement on LiveBench reasoning tasks leads to an absolute gain of +7.8%, whilst Best-of-N selection with STICK attains +6.3% absolute improvement on the real-world instruction dataset, WildBench. In light of this, structured, multi-faceted self-improvement is shown to be a promising way to further advance LLM capabilities. Finally, by providing LLM-generated checklists to human evaluators tasked with directly scoring LLM responses to WildBench instructions, we notably increase inter-annotator agreement (0.194 to 0.256).
Eye of Judgement: Dissecting the Evaluation of Russian-speaking LLMs with POLLUX
We introduce POLLUX, a comprehensive open-source benchmark designed to evaluate the generative capabilities of large language models (LLMs) in Russian. Our main contribution is a novel evaluation methodology that enhances the interpretability of LLM assessment. For each task type, we define a set of detailed criteria and develop a scoring protocol where models evaluate responses and provide justifications for their ratings. This enables transparent, criteria-driven evaluation beyond traditional resource-consuming, side-by-side human comparisons. POLLUX includes a detailed, fine-grained taxonomy of 35 task types covering diverse generative domains such as code generation, creative writing, and practical assistant use cases, totaling 2,100 manually crafted and professionally authored prompts. Each task is categorized by difficulty (easy/medium/hard), with experts constructing the dataset entirely from scratch. We also release a family of LLM-as-a-Judge (7B and 32B) evaluators trained for nuanced assessment of generative outputs. This approach provides scalable, interpretable evaluation and annotation tools for model development, effectively replacing costly and less precise human judgments.
Judging the Judges: A Collection of LLM-Generated Relevance Judgements
Using Large Language Models (LLMs) for relevance assessments offers promising opportunities to improve Information Retrieval (IR), Natural Language Processing (NLP), and related fields. Indeed, LLMs hold the promise of allowing IR experimenters to build evaluation collections with a fraction of the manual human labor currently required. This could help with fresh topics on which there is still limited knowledge and could mitigate the challenges of evaluating ranking systems in low-resource scenarios, where it is challenging to find human annotators. Given the fast-paced recent developments in the domain, many questions concerning LLMs as assessors are yet to be answered. Among the aspects that require further investigation, we can list the impact of various components in a relevance judgment generation pipeline, such as the prompt used or the LLM chosen. This paper benchmarks and reports on the results of a large-scale automatic relevance judgment evaluation, the LLMJudge challenge at SIGIR 2024, where different relevance assessment approaches were proposed. In detail, we release and benchmark 42 LLM-generated labels of the TREC 2023 Deep Learning track relevance judgments produced by eight international teams who participated in the challenge. Given their diverse nature, these automatically generated relevance judgments can help the community not only investigate systematic biases caused by LLMs but also explore the effectiveness of ensemble models, analyze the trade-offs between different models and human assessors, and advance methodologies for improving automated evaluation techniques. The released resource is available at the following link: https://llm4eval.github.io/LLMJudge-benchmark/
MM-Vet: Evaluating Large Multimodal Models for Integrated Capabilities
We propose MM-Vet, an evaluation benchmark that examines large multimodal models (LMMs) on complicated multimodal tasks. Recent LMMs have shown various intriguing abilities, such as solving math problems written on the blackboard, reasoning about events and celebrities in news images, and explaining visual jokes. Rapid model advancements pose challenges to evaluation benchmark development. Problems include: (1) How to systematically structure and evaluate the complicated multimodal tasks; (2) How to design evaluation metrics that work well across question and answer types; and (3) How to give model insights beyond a simple performance ranking. To this end, we present MM-Vet, designed based on the insight that the intriguing ability to solve complicated tasks is often achieved by a generalist model being able to integrate different core vision-language (VL) capabilities. MM-Vet defines 6 core VL capabilities and examines the 16 integrations of interest derived from the capability combination. For evaluation metrics, we propose an LLM-based evaluator for open-ended outputs. The evaluator enables the evaluation across different question types and answer styles, resulting in a unified scoring metric. We evaluate representative LMMs on MM-Vet, providing insights into the capabilities of different LMM system paradigms and models. Code and data are available at https://github.com/yuweihao/MM-Vet.
MME-Survey: A Comprehensive Survey on Evaluation of Multimodal LLMs
As a prominent direction of Artificial General Intelligence (AGI), Multimodal Large Language Models (MLLMs) have garnered increased attention from both industry and academia. Building upon pre-trained LLMs, this family of models further develops multimodal perception and reasoning capabilities that are impressive, such as writing code given a flow chart or creating stories based on an image. In the development process, evaluation is critical since it provides intuitive feedback and guidance on improving models. Distinct from the traditional train-eval-test paradigm that only favors a single task like image classification, the versatility of MLLMs has spurred the rise of various new benchmarks and evaluation methods. In this paper, we aim to present a comprehensive survey of MLLM evaluation, discussing four key aspects: 1) the summarised benchmarks types divided by the evaluation capabilities, including foundation capabilities, model self-analysis, and extented applications; 2) the typical process of benchmark counstruction, consisting of data collection, annotation, and precautions; 3) the systematic evaluation manner composed of judge, metric, and toolkit; 4) the outlook for the next benchmark. This work aims to offer researchers an easy grasp of how to effectively evaluate MLLMs according to different needs and to inspire better evaluation methods, thereby driving the progress of MLLM research.
SAGEval: The frontiers of Satisfactory Agent based NLG Evaluation for reference-free open-ended text
Large Language Model (LLM) integrations into applications like Microsoft365 suite and Google Workspace for creating/processing documents, emails, presentations, etc. has led to considerable enhancements in productivity and time savings. But as these integrations become more more complex, it is paramount to ensure that the quality of output from the LLM-integrated applications are relevant and appropriate for use. Identifying the need to develop robust evaluation approaches for natural language generation, wherein references/ground labels doesn't exist or isn't amply available, this paper introduces a novel framework called "SAGEval" which utilizes a critiquing Agent to provide feedback on scores generated by LLM evaluators. We show that the critiquing Agent is able to rectify scores from LLM evaluators, in absence of references/ground-truth labels, thereby reducing the need for labeled data even for complex NLG evaluation scenarios, like the generation of JSON-structured forms/surveys with responses in different styles like multiple choice, likert ratings, single choice questions, etc.
Contrastive Decoding Mitigates Score Range Bias in LLM-as-a-Judge
Large Language Models (LLMs) are commonly used as evaluators in various applications, but the reliability of the outcomes remains a challenge. One such challenge is using LLMs-as-judges for direct assessment, i.e., assigning scores from a specified range without any references. We first show that this challenge stems from LLM judge outputs being associated with score range bias, i.e., LLM judge outputs are highly sensitive to pre-defined score ranges, preventing the search for optimal score ranges. We also show that similar biases exist among models from the same family. We then mitigate this bias through contrastive decoding, achieving up to 11.3% relative improvement on average in Spearman correlation with human judgments across different score ranges.
MixEval: Deriving Wisdom of the Crowd from LLM Benchmark Mixtures
Evaluating large language models (LLMs) is challenging. Traditional ground-truth-based benchmarks fail to capture the comprehensiveness and nuance of real-world queries, while LLM-as-judge benchmarks suffer from grading biases and limited query quantity. Both of them may also become contaminated over time. User-facing evaluation, such as Chatbot Arena, provides reliable signals but is costly and slow. In this work, we propose MixEval, a new paradigm for establishing efficient, gold-standard LLM evaluation by strategically mixing off-the-shelf benchmarks. It bridges (1) comprehensive and well-distributed real-world user queries and (2) efficient and fairly-graded ground-truth-based benchmarks, by matching queries mined from the web with similar queries from existing benchmarks. Based on MixEval, we further build MixEval-Hard, which offers more room for model improvement. Our benchmarks' advantages lie in (1) a 0.96 model ranking correlation with Chatbot Arena arising from the highly impartial query distribution and grading mechanism, (2) fast, cheap, and reproducible execution (6% of the time and cost of MMLU), and (3) dynamic evaluation enabled by the rapid and stable data update pipeline. We provide extensive meta-evaluation and analysis for our and existing LLM benchmarks to deepen the community's understanding of LLM evaluation and guide future research directions.
Auto Arena of LLMs: Automating LLM Evaluations with Agent Peer-battles and Committee Discussions
As LLMs evolve on a daily basis, there is an urgent need for a trustworthy evaluation method that can provide robust evaluation results in a timely fashion. Currently, as static benchmarks are prone to contamination concerns, users tend to trust human voting platforms, such as Chatbot Arena. However, human annotations require extensive manual efforts. To provide an automatic, robust, and trustworthy evaluation framework, we innovatively propose the Auto-Arena of LLMs, which automates the entire evaluation process with LLM agents. Firstly, an examiner LLM devises queries. Then, a pair of candidate LLMs engage in a multi-round peer-battle around the query, during which the LLM's true performance gaps become visible. Finally, a committee of LLM judges collectively discuss and determine the winner, which alleviates bias and promotes fairness. In our extensive experiment on the 17 newest LLMs, Auto-Arena shows the highest correlation with human preferences, providing a promising alternative to human evaluation platforms.
FreeEval: A Modular Framework for Trustworthy and Efficient Evaluation of Large Language Models
The rapid development of large language model (LLM) evaluation methodologies and datasets has led to a profound challenge: integrating state-of-the-art evaluation techniques cost-effectively while ensuring reliability, reproducibility, and efficiency. Currently, there is a notable absence of a unified and adaptable framework that seamlessly integrates various evaluation approaches. Moreover, the reliability of evaluation findings is often questionable due to potential data contamination, with the evaluation efficiency commonly overlooked when facing the substantial costs associated with LLM inference. In response to these challenges, we introduce FreeEval, a modular and scalable framework crafted to enable trustworthy and efficient automatic evaluations of LLMs. Firstly, FreeEval's unified abstractions simplify the integration and improve the transparency of diverse evaluation methodologies, encompassing dynamic evaluation that demand sophisticated LLM interactions. Secondly, the framework integrates meta-evaluation techniques like human evaluation and data contamination detection, which, along with dynamic evaluation modules in the platform, enhance the fairness of the evaluation outcomes. Lastly, FreeEval is designed with a high-performance infrastructure, including distributed computation and caching strategies, enabling extensive evaluations across multi-node, multi-GPU clusters for open-source and proprietary LLMs.
LLM-as-a-qualitative-judge: automating error analysis in natural language generation
Prompting large language models (LLMs) to evaluate generated text, known as LLM-as-a-judge, has become a standard evaluation approach in natural language generation (NLG), but is primarily used as a quantitative tool, i.e. with numerical scores as main outputs. In this work, we propose LLM-as-a-qualitative-judge, an LLM-based evaluation approach with the main output being a structured report of common issue types in the NLG system outputs. Our approach is targeted at providing developers with meaningful insights on what improvements can be done to a given NLG system and consists of two main steps, namely open-ended per-instance issue analysis and clustering of the discovered issues using an intuitive cumulative algorithm. We also introduce a strategy for evaluating the proposed approach, coupled with ~300 annotations of issues in instances from 12 NLG datasets. Our results show that LLM-as-a-qualitative-judge correctly recognizes instance-specific issues in 2/3 cases and is capable of producing error type reports resembling the reports composed by human annotators. Our code and data are publicly available at https://github.com/tunde-ajayi/llm-as-a-qualitative-judge.
tinyBenchmarks: evaluating LLMs with fewer examples
The versatility of large language models (LLMs) led to the creation of diverse benchmarks that thoroughly test a variety of language models' abilities. These benchmarks consist of tens of thousands of examples making evaluation of LLMs very expensive. In this paper, we investigate strategies to reduce the number of evaluations needed to assess the performance of an LLM on several key benchmarks. For example, we show that to accurately estimate the performance of an LLM on MMLU, a popular multiple-choice QA benchmark consisting of 14K examples, it is sufficient to evaluate this LLM on 100 curated examples. We release evaluation tools and tiny versions of popular benchmarks: Open LLM Leaderboard, MMLU, HELM, and AlpacaEval 2.0. Our empirical analysis demonstrates that these tools and tiny benchmarks are sufficient to reliably and efficiently reproduce the original evaluation results.
KoBLEX: Open Legal Question Answering with Multi-hop Reasoning
Large Language Models (LLM) have achieved remarkable performances in general domains and are now extending into the expert domain of law. Several benchmarks have been proposed to evaluate LLMs' legal capabilities. However, these benchmarks fail to evaluate open-ended and provision-grounded Question Answering (QA). To address this, we introduce a Korean Benchmark for Legal EXplainable QA (KoBLEX), designed to evaluate provision-grounded, multi-hop legal reasoning. KoBLEX includes 226 scenario-based QA instances and their supporting provisions, created using a hybrid LLM-human expert pipeline. We also propose a method called Parametric provision-guided Selection Retrieval (ParSeR), which uses LLM-generated parametric provisions to guide legally grounded and reliable answers. ParSeR facilitates multi-hop reasoning on complex legal questions by generating parametric provisions and employing a three-stage sequential retrieval process. Furthermore, to better evaluate the legal fidelity of the generated answers, we propose Legal Fidelity Evaluation (LF-Eval). LF-Eval is an automatic metric that jointly considers the question, answer, and supporting provisions and shows a high correlation with human judgments. Experimental results show that ParSeR consistently outperforms strong baselines, achieving the best results across multiple LLMs. Notably, compared to standard retrieval with GPT-4o, ParSeR achieves +37.91 higher F1 and +30.81 higher LF-Eval. Further analyses reveal that ParSeR efficiently delivers consistent performance across reasoning depths, with ablations confirming the effectiveness of ParSeR.
Safer or Luckier? LLMs as Safety Evaluators Are Not Robust to Artifacts
Large Language Models (LLMs) are increasingly employed as automated evaluators to assess the safety of generated content, yet their reliability in this role remains uncertain. This study evaluates a diverse set of 11 LLM judge models across critical safety domains, examining three key aspects: self-consistency in repeated judging tasks, alignment with human judgments, and susceptibility to input artifacts such as apologetic or verbose phrasing. Our findings reveal that biases in LLM judges can significantly distort the final verdict on which content source is safer, undermining the validity of comparative evaluations. Notably, apologetic language artifacts alone can skew evaluator preferences by up to 98\%. Contrary to expectations, larger models do not consistently exhibit greater robustness, while smaller models sometimes show higher resistance to specific artifacts. To mitigate LLM evaluator robustness issues, we investigate jury-based evaluations aggregating decisions from multiple models. Although this approach both improves robustness and enhances alignment to human judgements, artifact sensitivity persists even with the best jury configurations. These results highlight the urgent need for diversified, artifact-resistant methodologies to ensure reliable safety assessments.
Systematic Evaluation of LLM-as-a-Judge in LLM Alignment Tasks: Explainable Metrics and Diverse Prompt Templates
LLM-as-a-Judge has been widely applied to evaluate and compare different LLM alignmnet approaches (e.g., RLHF and DPO). However, concerns regarding its reliability have emerged, due to LLM judges' biases and inconsistent decision-making. Previous research has developed evaluation frameworks to assess reliability of LLM judges and their alignment with human preferences. However, the employed evaluation metrics often lack adequate explainability and fail to address LLM internal inconsistency. Additionally, existing studies inadequately explore the impact of various prompt templates when applying LLM-as-a-Judge methods, leading to potentially inconsistent comparisons between different alignment algorithms. In this work, we systematically evaluate LLM-as-a-Judge on alignment tasks by defining more theoretically interpretable evaluation metrics and explicitly mitigating LLM internal inconsistency from reliability metrics. We develop an open-source framework to evaluate, compare, and visualize the reliability and alignment of LLM judges, which facilitates practitioners to choose LLM judges for alignment tasks. In the experiments, we examine effects of diverse prompt templates on LLM-judge reliability and also demonstrate our developed framework by comparing various LLM judges on two common alignment datasets (i.e., TL;DR Summarization and HH-RLHF-Helpfulness). Our results indicate a significant impact of prompt templates on LLM judge performance, as well as a mediocre alignment level between the tested LLM judges and human evaluators.
CIBench: Evaluating Your LLMs with a Code Interpreter Plugin
While LLM-Based agents, which use external tools to solve complex problems, have made significant progress, benchmarking their ability is challenging, thereby hindering a clear understanding of their limitations. In this paper, we propose an interactive evaluation framework, named CIBench, to comprehensively assess LLMs' ability to utilize code interpreters for data science tasks. Our evaluation framework includes an evaluation dataset and two evaluation modes. The evaluation dataset is constructed using an LLM-human cooperative approach and simulates an authentic workflow by leveraging consecutive and interactive IPython sessions. The two evaluation modes assess LLMs' ability with and without human assistance. We conduct extensive experiments to analyze the ability of 24 LLMs on CIBench and provide valuable insights for future LLMs in code interpreter utilization.
Mitigating Judgment Preference Bias in Large Language Models through Group-Based Polling
Large Language Models (LLMs) as automatic evaluators, commonly referred to as LLM-as-a-Judge, have also attracted growing attention. This approach plays a vital role in aligning LLMs with human judgments, providing accurate and reliable assessments. However, LLM-based judgment models often exhibit judgment preference bias during the evaluation phase, tending to favor responses generated by themselves, undermining the reliability of their judgments. This paper introduces the Group-Based Polling Optimization (Genii), an unsupervised multi-agent collaborative optimization framework that mitigates the inherent judgment preference bias of judgment models. Specifically, Genii integrates various LLM-based judgment models into a multi-agent system and simulates the interactive client-server polling mechanism to optimize each client agent unsupervisedly. Our experiments demonstrate that Genii outperforms supervised models trained on annotated judgment data, while requiring no human-labeled annotations. Genii consistently improves performance across different client agents during the polling, even when weaker models act as server agents. Further analysis reveals that Genii effectively mitigates judgment preference bias of LLM-based judgment models, demonstrating its effectiveness. All codes are available at https://github.com/NEUIR/Genii.
Can Language Models Evaluate Human Written Text? Case Study on Korean Student Writing for Education
Large language model (LLM)-based evaluation pipelines have demonstrated their capability to robustly evaluate machine-generated text. Extending this methodology to assess human-written text could significantly benefit educational settings by providing direct feedback to enhance writing skills, although this application is not straightforward. In this paper, we investigate whether LLMs can effectively assess human-written text for educational purposes. We collected 100 texts from 32 Korean students across 15 types of writing and employed GPT-4-Turbo to evaluate them using grammaticality, fluency, coherence, consistency, and relevance as criteria. Our analyses indicate that LLM evaluators can reliably assess grammaticality and fluency, as well as more objective types of writing, though they struggle with other criteria and types of writing. We publicly release our dataset and feedback.
State of What Art? A Call for Multi-Prompt LLM Evaluation
Recent advances in large language models (LLMs) have led to the development of various evaluation benchmarks. These benchmarks typically rely on a single instruction template for evaluating all LLMs on a specific task. In this paper, we comprehensively analyze the brittleness of results obtained via single-prompt evaluations across 6.5M instances, involving 20 different LLMs and 39 tasks from 3 benchmarks. To improve robustness of the analysis, we propose to evaluate LLMs with a set of diverse prompts instead. We discuss tailored evaluation metrics for specific use cases (e.g., LLM developers vs. developers interested in a specific downstream task), ensuring a more reliable and meaningful assessment of LLM capabilities. We then implement these criteria and conduct evaluations of multiple models, providing insights into the true strengths and limitations of current LLMs.
Any Large Language Model Can Be a Reliable Judge: Debiasing with a Reasoning-based Bias Detector
LLM-as-a-Judge has emerged as a promising tool for automatically evaluating generated outputs, but its reliability is often undermined by potential biases in judgment. Existing efforts to mitigate these biases face key limitations: in-context learning-based methods fail to address rooted biases due to the evaluator's limited capacity for self-reflection, whereas fine-tuning is not applicable to all evaluator types, especially closed-source models. To address this challenge, we introduce the Reasoning-based Bias Detector (RBD), which is a plug-in module that identifies biased evaluations and generates structured reasoning to guide evaluator self-correction. Rather than modifying the evaluator itself, RBD operates externally and engages in an iterative process of bias detection and feedback-driven revision. To support its development, we design a complete pipeline consisting of biased dataset construction, supervision collection, distilled reasoning-based fine-tuning of RBD, and integration with LLM evaluators. We fine-tune four sizes of RBD models, ranging from 1.5B to 14B, and observe consistent performance improvements across all scales. Experimental results on 4 bias types--verbosity, position, bandwagon, and sentiment--evaluated using 8 LLM evaluators demonstrate RBD's strong effectiveness. For example, the RBD-8B model improves evaluation accuracy by an average of 18.5% and consistency by 10.9%, and surpasses prompting-based baselines and fine-tuned judges by 12.8% and 17.2%, respectively. These results highlight RBD's effectiveness and scalability. Additional experiments further demonstrate its strong generalization across biases and domains, as well as its efficiency.
GroUSE: A Benchmark to Evaluate Evaluators in Grounded Question Answering
Retrieval-Augmented Generation (RAG) has emerged as a common paradigm to use Large Language Models (LLMs) alongside private and up-to-date knowledge bases. In this work, we address the challenges of using LLM-as-a-Judge when evaluating grounded answers generated by RAG systems. To assess the calibration and discrimination capabilities of judge models, we identify 7 generator failure modes and introduce GroUSE (Grounded QA Unitary Scoring of Evaluators), a meta-evaluation benchmark of 144 unit tests. This benchmark reveals that existing automated RAG evaluation frameworks often overlook important failure modes, even when using GPT-4 as a judge. To improve on the current design of automated RAG evaluation frameworks, we propose a novel pipeline and find that while closed models perform well on GroUSE, state-of-the-art open-source judges do not generalize to our proposed criteria, despite strong correlation with GPT-4's judgement. Our findings suggest that correlation with GPT-4 is an incomplete proxy for the practical performance of judge models and should be supplemented with evaluations on unit tests for precise failure mode detection. We further show that finetuning Llama-3 on GPT-4's reasoning traces significantly boosts its evaluation capabilities, improving upon both correlation with GPT-4's evaluations and calibration on reference situations.
Style Over Substance: Evaluation Biases for Large Language Models
As large language models (LLMs) continue to advance, accurately and comprehensively evaluating their performance becomes increasingly challenging. Human evaluations are conventionally considered the gold standard in natural language generation, but recent advancements incorporate state-of-the-art LLMs as proxies for human judges in evaluation processes. However, the extent to which humans and LLMs are capable evaluators remains uncertain. This study investigates the behavior of crowd-sourced and expert annotators, as well as LLMs, when comparing outputs from different models. To achieve this, we curate a dataset of intentionally flawed machine-generated answers. Our findings reveal a concerning bias in the evaluation process, as answers with factual errors are rated more favorably than answers that are too short or contained grammatical errors. To address this issue, we propose independently evaluating machine-generated text across multiple dimensions, rather than merging all the evaluation aspects into a single score. We instantiate this idea with the Elo rating system, resulting in the Multi-Elo Rating System. Empirical results from our study reveal that this proposed approach significantly enhances the quality of LLM-based evaluations, particularly in terms of factual accuracy. However, there is no significant improvement in crowd-sourced-based evaluations, indicating the need for further investigation and refinement.
Small LLMs Are Weak Tool Learners: A Multi-LLM Agent
Large Language Model (LLM) agents significantly extend the capabilities of standalone LLMs, empowering them to interact with external tools (e.g., APIs, functions) and complete complex tasks in a self-directed fashion. The challenge of tool use demands that LLMs not only understand user queries and generate answers but also excel in task planning, memory management, tool invocation, and result summarization. While traditional approaches focus on training a single LLM with all these capabilities, performance limitations become apparent, particularly with smaller models. Moreover, the entire LLM may require retraining when tools are updated. To overcome these challenges, we propose a novel strategy that decomposes the aforementioned capabilities into a planner, caller, and summarizer. Each component is implemented by a single LLM that focuses on a specific capability and collaborates with other components to accomplish the task. This modular framework facilitates individual updates and the potential use of smaller LLMs for building each capability. To effectively train this framework, we introduce a two-stage training paradigm. First, we fine-tune a backbone LLM on the entire dataset without discriminating sub-tasks, providing the model with a comprehensive understanding of the task. Second, the fine-tuned LLM is used to instantiate the planner, caller, and summarizer respectively, which are continually fine-tuned on respective sub-tasks. Evaluation across various tool-use benchmarks illustrates that our proposed multi-LLM framework surpasses the traditional single-LLM approach, highlighting its efficacy and advantages in tool learning.
JudgeBench: A Benchmark for Evaluating LLM-based Judges
LLM-based judges have emerged as a scalable alternative to human evaluation and are increasingly used to assess, compare, and improve models. However, the reliability of LLM-based judges themselves is rarely scrutinized. As LLMs become more advanced, their responses grow more sophisticated, requiring stronger judges to evaluate them. Existing benchmarks primarily focus on a judge's alignment with human preferences, but often fail to account for more challenging tasks where crowdsourced human preference is a poor indicator of factual and logical correctness. To address this, we propose a novel evaluation framework to objectively evaluate LLM-based judges. Based on this framework, we propose JudgeBench, a benchmark for evaluating LLM-based judges on challenging response pairs spanning knowledge, reasoning, math, and coding. JudgeBench leverages a novel pipeline for converting existing difficult datasets into challenging response pairs with preference labels reflecting objective correctness. Our comprehensive evaluation on a collection of prompted judges, fine-tuned judges, multi-agent judges, and reward models shows that JudgeBench poses a significantly greater challenge than previous benchmarks, with many strong models (e.g., GPT-4o) performing just slightly better than random guessing. Overall, JudgeBench offers a reliable platform for assessing increasingly advanced LLM-based judges. Data and code are available at https://github.com/ScalerLab/JudgeBench .
An Illusion of Progress? Assessing the Current State of Web Agents
As digitalization and cloud technologies evolve, the web is becoming increasingly important in the modern society. Autonomous web agents based on large language models (LLMs) hold a great potential in work automation. It is therefore important to accurately measure and monitor the progression of their capabilities. In this work, we conduct a comprehensive and rigorous assessment of the current state of web agents. Our results depict a very different picture of the competency of current agents, suggesting over-optimism in previously reported results. This gap can be attributed to shortcomings in existing benchmarks. We introduce Online-Mind2Web, an online evaluation benchmark consisting of 300 diverse and realistic tasks spanning 136 websites. It enables us to evaluate web agents under a setting that approximates how real users use these agents. To facilitate more scalable evaluation and development, we also develop a novel LLM-as-a-Judge automatic evaluation method and show that it can achieve around 85% agreement with human judgment, substantially higher than existing methods. Finally, we present the first comprehensive comparative analysis of current web agents, highlighting both their strengths and limitations to inspire future research.
LV-Eval: A Balanced Long-Context Benchmark with 5 Length Levels Up to 256K
State-of-the-art large language models (LLMs) are now claiming remarkable supported context lengths of 256k or even more. In contrast, the average context lengths of mainstream benchmarks are insufficient (5k-21k), and they suffer from potential knowledge leakage and inaccurate metrics, resulting in biased evaluation. This paper introduces LV-Eval, a challenging long-context benchmark with five length levels (16k, 32k, 64k, 128k, and 256k) reaching up to 256k words. LV-Eval features two main tasks, single-hop QA and multi-hop QA, comprising 11 bilingual datasets. The design of LV-Eval has incorporated three key techniques, namely confusing facts insertion, keyword and phrase replacement, and keyword-recall-based metric design. The advantages of LV-Eval include controllable evaluation across different context lengths, challenging test instances with confusing facts, mitigated knowledge leakage, and more objective evaluations. We evaluate 10 LLMs on LV-Eval and conduct ablation studies on the techniques used in LV-Eval construction. The results reveal that: (i) Commercial LLMs generally outperform open-source LLMs when evaluated within length levels shorter than their claimed context length. However, their overall performance is surpassed by open-source LLMs with longer context lengths. (ii) Extremely long-context LLMs, such as Yi-6B-200k, exhibit a relatively gentle degradation of performance, but their absolute performances may not necessarily be higher than those of LLMs with shorter context lengths. (iii) LLMs' performances can significantly degrade in the presence of confusing information, especially in the pressure test of "needle in a haystack". (iv) Issues related to knowledge leakage and inaccurate metrics introduce bias in evaluation, and these concerns are alleviated in LV-Eval. All datasets and evaluation codes are released at: https://github.com/infinigence/LVEval.
JudgeBoard: Benchmarking and Enhancing Small Language Models for Reasoning Evaluation
While small language models (SLMs) have shown promise on various reasoning tasks, their ability to judge the correctness of answers remains unclear compared to large language models (LLMs). Prior work on LLM-as-a-judge frameworks typically relies on comparing candidate answers against ground-truth labels or other candidate answers using predefined metrics like entailment. However, this approach is inherently indirect and difficult to fully automate, offering limited support for fine-grained and scalable evaluation of reasoning outputs. In this work, we propose JudgeBoard, a novel evaluation pipeline that directly queries models to assess the correctness of candidate answers without requiring extra answer comparisons. We focus on two core reasoning domains: mathematical reasoning and science/commonsense reasoning, and construct task-specific evaluation leaderboards using both accuracy-based ranking and an Elo-based rating system across five benchmark datasets, enabling consistent model comparison as judges rather than comparators. To improve judgment performance in lightweight models, we propose MAJ (Multi-Agent Judging), a novel multi-agent evaluation framework that leverages multiple interacting SLMs with distinct reasoning profiles to approximate LLM-level judgment accuracy through collaborative deliberation. Experimental results reveal a significant performance gap between SLMs and LLMs in isolated judging tasks. However, our MAJ framework substantially improves the reliability and consistency of SLMs. On the MATH dataset, MAJ using smaller-sized models as backbones performs comparatively well or even better than their larger-sized counterparts. Our findings highlight that multi-agent SLM systems can potentially match or exceed LLM performance in judgment tasks, with implications for scalable and efficient assessment.
Can LLMs Generate High-Quality Test Cases for Algorithm Problems? TestCase-Eval: A Systematic Evaluation of Fault Coverage and Exposure
We introduce TestCase-Eval, a new benchmark for systematic evaluation of LLMs in test-case generation. TestCase-Eval includes 500 algorithm problems and 100,000 human-crafted solutions from the Codeforces platform. It focuses on two pivotal tasks: (1) Fault Coverage, which measures how well LLM-generated test sets probe diverse input scenarios and cover a wide range of potential failure modes. (2) Fault Exposure, which evaluates whether LLMs can craft a tailored test input that reveals a specific incorrect code implementation. We provide a comprehensive assessment of 19 state-of-the-art open-source and proprietary LLMs on TestCase-Eval, offering insights into their strengths and limitations in generating effective test cases for algorithm problems.
Wider and Deeper LLM Networks are Fairer LLM Evaluators
Measuring the quality of responses generated by LLMs is a challenging task, particularly when it comes to evaluating whether the response is aligned with human preference. A novel approach involves using the LLM itself to make evaluation and stabilizing the results through multiple independent evaluations, similar to a single-layer narrow LLM network. This network consists of a fixed number of neurons, with each neuron being the same LLM. In this paper, we draw upon the extensive research on deep neural networks to explore whether deeper and wider networks can lead to fairer evaluations. Specifically, inspired by the observation that different neurons in a neural network are responsible for detecting different concepts, we first adaptively generate as many neuron roles as possible for each evaluation sample. Each perspective corresponds to the role of a specific LLM neuron in the first layer. In subsequent layers, we follow the idea that higher layers in deep networks are responsible for more comprehensive features, each layer receives representations from all neurons in the previous layer, integrating the locally learned evaluation information to obtain a more comprehensive evaluation result. Interestingly, this network design resembles the process of academic paper reviewing. To validate the effectiveness of our method, we construct the largest and most diverse English evaluation benchmark LLMEval^2 for LLM evaluators, comprising 15 tasks, 8 abilities, and 2,553 samples. Experimental results demonstrate that a wider network (involving many reviewers) with 2 layers (one round of discussion) performs the best, improving kappa correlation coefficient from 0.28 to 0.34. We also leverage WideDeep to aid in the assessment of Chinese LLMs, which has accelerated the evaluation time by 4.6 times, resulting in a 60% cost saving. WideDeep achieves a remarkable 93% agreement level among humans.
M-MAD: Multidimensional Multi-Agent Debate for Advanced Machine Translation Evaluation
Recent advancements in large language models (LLMs) have given rise to the LLM-as-a-judge paradigm, showcasing their potential to deliver human-like judgments. However, in the field of machine translation (MT) evaluation, current LLM-as-a-judge methods fall short of learned automatic metrics. In this paper, we propose Multidimensional Multi-Agent Debate (M-MAD), a systematic LLM-based multi-agent framework for advanced LLM-as-a-judge MT evaluation. Our findings demonstrate that M-MAD achieves significant advancements by (1) decoupling heuristic MQM criteria into distinct evaluation dimensions for fine-grained assessments; (2) employing multi-agent debates to harness the collaborative reasoning capabilities of LLMs; (3) synthesizing dimension-specific results into a final evaluation judgment to ensure robust and reliable outcomes. Comprehensive experiments show that M-MAD not only outperforms all existing LLM-as-a-judge methods but also competes with state-of-the-art reference-based automatic metrics, even when powered by a suboptimal model like GPT-4o mini. Detailed ablations and analysis highlight the superiority of our framework design, offering a fresh perspective for LLM-as-a-judge paradigm. Our code and data are publicly available at https://github.com/SU-JIAYUAN/M-MAD.
Bayesian Calibration of Win Rate Estimation with LLM Evaluators
Recent advances in large language models (LLMs) show the potential of using LLMs as evaluators for assessing the quality of text generations from LLMs. However, applying LLM evaluators naively to compare or judge between different systems can lead to unreliable results due to the intrinsic win rate estimation bias of LLM evaluators. In order to mitigate this problem, we propose two calibration methods, Bayesian Win Rate Sampling (BWRS) and Bayesian Dawid-Skene, both of which leverage Bayesian inference to more accurately infer the true win rate of generative language models. We empirically validate our methods on six datasets covering story generation, summarization, and instruction following tasks. We show that both our methods are effective in improving the accuracy of win rate estimation using LLMs as evaluators, offering a promising direction for reliable automatic text quality evaluation.
The Alternative Annotator Test for LLM-as-a-Judge: How to Statistically Justify Replacing Human Annotators with LLMs
The "LLM-as-a-judge" paradigm employs Large Language Models (LLMs) as annotators and evaluators in tasks traditionally performed by humans. LLM annotations are widely used, not only in NLP research but also in fields like medicine, psychology, and social science. Despite their role in shaping study results and insights, there is no standard or rigorous procedure to determine whether LLMs can replace human annotators. In this paper, we propose a novel statistical procedure -- the Alternative Annotator Test (alt-test) -- that requires only a modest subset of annotated examples to justify using LLM annotations. Additionally, we introduce a versatile and interpretable measure for comparing LLM judges. To demonstrate our procedure, we curated a diverse collection of ten datasets, consisting of language and vision-language tasks, and conducted experiments with six LLMs and four prompting techniques. Our results show that LLMs can sometimes replace humans with closed-source LLMs (such as GPT-4o), outperforming open-source LLMs, and that prompting techniques yield judges of varying quality. We hope this study encourages more rigorous and reliable practices.
PRD: Peer Rank and Discussion Improve Large Language Model based Evaluations
Nowadays, the quality of responses generated by different modern large language models (LLMs) are hard to evaluate and compare automatically. Recent studies suggest and predominantly use LLMs as a reference-free metric for open-ended question answering. More specifically, they use the recognized "strongest" LLM as the evaluator, which conducts pairwise comparisons of candidate models' answers and provides a ranking score. However, this intuitive method has multiple problems, such as bringing in self-enhancement (favoring its own answers) and positional bias. We draw insights and lessons from the educational domain (Cho and MacArthur, 2011; Walsh, 2014) to improve LLM-based evaluations. Specifically, we propose the (1) peer rank (PR) algorithm that takes into account each peer LLM's pairwise preferences of all answer pairs, and outputs a final ranking of models; and (2) peer discussion (PD), where we prompt two LLMs to discuss and try to reach a mutual agreement on preferences of two answers. We conduct experiments on two benchmark datasets. We find that our approaches achieve higher accuracy and align better with human judgments, respectively. Interestingly, PR can induce a relatively accurate self-ranking of models under the anonymous setting, where each model's name is unrevealed. Our work provides space to explore evaluating models that are hard to compare for humans.
J4R: Learning to Judge with Equivalent Initial State Group Relative Policy Optimization
To keep pace with the increasing pace of large language models (LLM) development, model output evaluation has transitioned away from time-consuming human evaluation to automatic evaluation, where LLMs themselves are tasked with assessing and critiquing other model outputs. LLM-as-judge models are a class of generative evaluators that excel in evaluating relatively simple domains, like chat quality, but struggle in reasoning intensive domains where model responses contain more substantive and challenging content. To remedy existing judge shortcomings, we explore training judges with reinforcement learning (RL). We make three key contributions: (1) We propose the Equivalent Initial State Group Relative Policy Optimization (EIS-GRPO) algorithm, which allows us to train our judge to be robust to positional biases that arise in more complex evaluation settings. (2) We introduce ReasoningJudgeBench, a benchmark that evaluates judges in diverse reasoning settings not covered by prior work. (3) We train Judge for Reasoning (J4R), a 7B judge trained with EIS-GRPO that outperforms GPT-4o and the next best small judge by 6.7% and 9%, matching or exceeding the performance of larger GRPO-trained judges on both JudgeBench and ReasoningJudgeBench.
From Rankings to Insights: Evaluation Should Shift Focus from Leaderboard to Feedback
Automatic evaluation benchmarks such as MT-Bench, Arena-Hard, and Auto-Arena are seeing growing adoption for the evaluation of Large Language Models (LLMs). Existing research has primarily focused on approximating human-based model rankings using limited data and LLM-as-a-Judge. However, the fundamental premise of these studies, which attempts to replicate human rankings, is flawed. Specifically, these benchmarks typically offer only overall scores, limiting their utility to leaderboard rankings, rather than providing feedback that can guide model optimization and support model profiling. Therefore, we advocate for an evaluation paradigm shift from approximating human-based model rankings to providing feedback with analytical value. To this end, we introduce Feedbacker, an evaluation framework that provides comprehensive and fine-grained results, thereby enabling thorough identification of a model's specific strengths and weaknesses. Such feedback not only supports the targeted optimization of the model but also enhances the understanding of its behavior. Feedbacker comprises three key components: an extensible tree-based query taxonomy builder, an automated query synthesis scheme, and a suite of visualization and analysis tools. Furthermore, we propose a novel LLM-as-a-Judge method: PC2 (Pre-Comparison-derived Criteria) pointwise evaluation. This method derives evaluation criteria by pre-comparing the differences between several auxiliary responses, achieving the accuracy of pairwise evaluation while maintaining the time complexity of pointwise evaluation. Finally, leveraging the evaluation results of 17 mainstream LLMs, we demonstrate the usage of Feedbacker and highlight its effectiveness and potential. Our homepage project is available at https://liudan193.github.io/Feedbacker.
Evaluating Large Language Models: A Comprehensive Survey
Large language models (LLMs) have demonstrated remarkable capabilities across a broad spectrum of tasks. They have attracted significant attention and been deployed in numerous downstream applications. Nevertheless, akin to a double-edged sword, LLMs also present potential risks. They could suffer from private data leaks or yield inappropriate, harmful, or misleading content. Additionally, the rapid progress of LLMs raises concerns about the potential emergence of superintelligent systems without adequate safeguards. To effectively capitalize on LLM capacities as well as ensure their safe and beneficial development, it is critical to conduct a rigorous and comprehensive evaluation of LLMs. This survey endeavors to offer a panoramic perspective on the evaluation of LLMs. We categorize the evaluation of LLMs into three major groups: knowledge and capability evaluation, alignment evaluation and safety evaluation. In addition to the comprehensive review on the evaluation methodologies and benchmarks on these three aspects, we collate a compendium of evaluations pertaining to LLMs' performance in specialized domains, and discuss the construction of comprehensive evaluation platforms that cover LLM evaluations on capabilities, alignment, safety, and applicability. We hope that this comprehensive overview will stimulate further research interests in the evaluation of LLMs, with the ultimate goal of making evaluation serve as a cornerstone in guiding the responsible development of LLMs. We envision that this will channel their evolution into a direction that maximizes societal benefit while minimizing potential risks. A curated list of related papers has been publicly available at https://github.com/tjunlp-lab/Awesome-LLMs-Evaluation-Papers.
ELMES: An Automated Framework for Evaluating Large Language Models in Educational Scenarios
The emergence of Large Language Models (LLMs) presents transformative opportunities for education, generating numerous novel application scenarios. However, significant challenges remain: evaluation metrics vary substantially across different educational scenarios, while many emerging scenarios lack appropriate assessment metrics. Current benchmarks predominantly measure general intelligence rather than pedagogical capabilities. To address this gap, we introduce ELMES, an open-source automated evaluation framework specifically designed for assessing LLMs in educational settings. ELMES features a modular architecture that enables researchers to create dynamic, multi-agent dialogues through simple configuration files, facilitating flexible scenario design without requiring extensive programming expertise. The framework incorporates a hybrid evaluation engine that objectively quantifies traditionally subjective pedagogical metrics using an LLM-as-a-Judge methodology. We conduct systematic benchmarking of state-of-the-art LLMs across four critical educational scenarios: Knowledge Point Explanation, Guided Problem-Solving Teaching, Interdisciplinary Lesson Plan Generation, and Contextualized Question Generation, employing fine-grained metrics developed in collaboration with education specialists. Our results demonstrate distinct capability distributions among models, revealing context-specific strengths and limitations. ELMES provides educators and researchers with an accessible evaluation framework that significantly reduces adaptation barriers for diverse educational applications while advancing the practical implementation of LLMs in pedagogy. The framework is publicly available at https://github.com/sii-research/elmes.git.
RAGtifier: Evaluating RAG Generation Approaches of State-of-the-Art RAG Systems for the SIGIR LiveRAG Competition
Retrieval-Augmented Generation (RAG) enriches Large Language Models (LLMs) by combining their internal, parametric knowledge with external, non-parametric sources, with the goal of improving factual correctness and minimizing hallucinations. The LiveRAG 2025 challenge explores RAG solutions to maximize accuracy on DataMorgana's QA pairs, which are composed of single-hop and multi-hop questions. The challenge provides access to sparse OpenSearch and dense Pinecone indices of the Fineweb 10BT dataset. It restricts model use to LLMs with up to 10B parameters and final answer generation with Falcon-3-10B. A judge-LLM assesses the submitted answers along with human evaluators. By exploring distinct retriever combinations and RAG solutions under the challenge conditions, our final solution emerged using InstructRAG in combination with a Pinecone retriever and a BGE reranker. Our solution achieved a correctness score of 1.13 and a faithfulness score of 0.55, placing fourth in the SIGIR 2025 LiveRAG Challenge.
From Crowdsourced Data to High-Quality Benchmarks: Arena-Hard and BenchBuilder Pipeline
The rapid evolution of language models has necessitated the development of more challenging benchmarks. Current static benchmarks often struggle to consistently distinguish between the capabilities of different models and fail to align with real-world user preferences. On the other hand, live crowd-sourced platforms like the Chatbot Arena collect a wide range of natural prompts and user feedback. However, these prompts vary in sophistication and the feedback cannot be applied offline to new models. In order to ensure that benchmarks keep up with the pace of LLM development, we address how one can evaluate benchmarks on their ability to confidently separate models and their alignment with human preference. Under these principles, we developed BenchBuilder, a living benchmark that filters high-quality prompts from live data sources to enable offline evaluation on fresh, challenging prompts. BenchBuilder identifies seven indicators of a high-quality prompt, such as the requirement for domain knowledge, and utilizes an LLM annotator to select a high-quality subset of prompts from various topic clusters. The LLM evaluation process employs an LLM judge to ensure a fully automated, high-quality, and constantly updating benchmark. We apply BenchBuilder on prompts from the Chatbot Arena to create Arena-Hard-Auto v0.1: 500 challenging user prompts from a wide range of tasks. Arena-Hard-Auto v0.1 offers 3x tighter confidence intervals than MT-Bench and achieves a state-of-the-art 89.1% agreement with human preference rankings, all at a cost of only $25 and without human labelers. The BenchBuilder pipeline enhances evaluation benchmarks and provides a valuable tool for developers, enabling them to extract high-quality benchmarks from extensive data with minimal effort.
TableLLM: Enabling Tabular Data Manipulation by LLMs in Real Office Usage Scenarios
We introduce TableLLM, a robust large language model (LLM) with 13 billion parameters, purpose-built for proficiently handling tabular data manipulation tasks, whether they are embedded within documents or spreadsheets, catering to real-world office scenarios. We propose a distant supervision method for training, which comprises a reasoning process extension strategy, aiding in training LLMs to understand reasoning patterns more effectively as well as a cross-way validation strategy, ensuring the quality of the automatically generated data. To evaluate the performance of TableLLM, we have crafted a benchmark tailored to address both document and spreadsheet formats as well as constructed a well-organized evaluation pipeline capable of handling both scenarios. Thorough evaluations underscore the advantages of TableLLM when compared to various existing general-purpose and tabular data-focused LLMs. We have publicly released the model checkpoint, source code, benchmarks, and a web application for user interaction.
Replacing Judges with Juries: Evaluating LLM Generations with a Panel of Diverse Models
As Large Language Models (LLMs) have become more advanced, they have outpaced our abilities to accurately evaluate their quality. Not only is finding data to adequately probe particular model properties difficult, but evaluating the correctness of a model's freeform generation alone is a challenge. To address this, many evaluations now rely on using LLMs themselves as judges to score the quality of outputs from other LLMs. Evaluations most commonly use a single large model like GPT4. While this method has grown in popularity, it is costly, has been shown to introduce intramodel bias, and in this work, we find that very large models are often unnecessary. We propose instead to evaluate models using a Panel of LLm evaluators (PoLL). Across three distinct judge settings and spanning six different datasets, we find that using a PoLL composed of a larger number of smaller models outperforms a single large judge, exhibits less intra-model bias due to its composition of disjoint model families, and does so while being over seven times less expensive.
MLLM-as-a-Judge: Assessing Multimodal LLM-as-a-Judge with Vision-Language Benchmark
Multimodal Large Language Models (MLLMs) have gained significant attention recently, showing remarkable potential in artificial general intelligence. However, assessing the utility of MLLMs presents considerable challenges, primarily due to the absence of multimodal benchmarks that align with human preferences. Drawing inspiration from the concept of LLM-as-a-Judge within LLMs, this paper introduces a novel benchmark, termed MLLM-as-a-Judge, to assess the ability of MLLMs in assisting judges across diverse modalities, encompassing three distinct tasks: Scoring Evaluation, Pair Comparison, and Batch Ranking. Our study reveals that, while MLLMs demonstrate remarkable human-like discernment in Pair Comparison, there is a significant divergence from human preferences in Scoring Evaluation and Batch Ranking. Furthermore, a closer examination reveals persistent challenges in the judgment capacities of LLMs, including diverse biases, hallucinatory responses, and inconsistencies in judgment, even in advanced models such as GPT-4V. These findings emphasize the pressing need for enhancements and further research efforts to be undertaken before regarding MLLMs as fully reliable evaluators. In light of this, we advocate for additional efforts dedicated to supporting the continuous development within the domain of MLLM functioning as judges. The code and dataset are publicly available at our project homepage: https://mllm-judge.github.io/.
IQA-EVAL: Automatic Evaluation of Human-Model Interactive Question Answering
To evaluate Large Language Models (LLMs) for question answering (QA), traditional methods typically focus on directly assessing the immediate responses generated by the models based on the given question and context. In the common use case of humans seeking AI assistant's help in finding information, these non-interactive evaluations do not account for the dynamic nature of human-model conversations, and interaction-aware evaluations have shown that accurate QA models are preferred by humans (Lee et al., 2023). Recent works in human-computer interaction (HCI) have employed human evaluators to conduct interactions and evaluations, but they are often prohibitively expensive and time-consuming to scale. In this work, we introduce an automatic evaluation framework IQA-EVAL to Interactive Question Answering Evaluation. More specifically, we introduce LLM-based Evaluation Agent (LEA) that can: (1) simulate human behaviors to generate interactions with IQA models; (2) automatically evaluate the generated interactions. Moreover, we propose assigning personas to LEAs to better simulate groups of real human evaluators. We show that: (1) our evaluation framework with GPT-4 (or Claude) as the backbone model achieves a high correlation with human evaluations on the IQA task; (2) assigning personas to LEA to better represent the crowd further significantly improves correlations. Finally, we use our automatic metric to evaluate five recent representative LLMs with over 1000 questions from complex and ambiguous question answering tasks, which comes with a substantial cost of $5k if evaluated by humans.
LMMs-Eval: Reality Check on the Evaluation of Large Multimodal Models
The advances of large foundation models necessitate wide-coverage, low-cost, and zero-contamination benchmarks. Despite continuous exploration of language model evaluations, comprehensive studies on the evaluation of Large Multi-modal Models (LMMs) remain limited. In this work, we introduce LMMS-EVAL, a unified and standardized multimodal benchmark framework with over 50 tasks and more than 10 models to promote transparent and reproducible evaluations. Although LMMS-EVAL offers comprehensive coverage, we find it still falls short in achieving low cost and zero contamination. To approach this evaluation trilemma, we further introduce LMMS-EVAL LITE, a pruned evaluation toolkit that emphasizes both coverage and efficiency. Additionally, we present Multimodal LIVEBENCH that utilizes continuously updating news and online forums to assess models' generalization abilities in the wild, featuring a low-cost and zero-contamination evaluation approach. In summary, our work highlights the importance of considering the evaluation trilemma and provides practical solutions to navigate the trade-offs in evaluating large multi-modal models, paving the way for more effective and reliable benchmarking of LMMs. We opensource our codebase and maintain leaderboard of LIVEBENCH at https://github.com/EvolvingLMMs-Lab/lmms-eval and https://huggingface.co/spaces/lmms-lab/LiveBench.
Reference-Guided Verdict: LLMs-as-Judges in Automatic Evaluation of Free-Form Text
The emergence of Large Language Models (LLMs) as chat assistants capable of generating human-like conversations has amplified the need for robust evaluation methods, particularly for open-ended tasks. Conventional metrics like BLEU and ROUGE, while useful, are increasingly inadequate for capturing the subtle semantics and contextual richness of such generative outputs. We propose a reference-guided verdict method that automates the evaluation process by leveraging multiple LLMs-as-judges. Through experiments on three open-ended question-answering tasks, we demonstrate that combining multiple LLMs-as-judges significantly improves the reliability and accuracy of evaluations, particularly in complex tasks where a single model might struggle. Our findings reveal a strong correlation with human evaluations, establishing our method as a viable and effective alternative to traditional metrics and human judgments, particularly in the context of LLM-based chat assistants where the complexity and diversity of responses challenge existing benchmarks.
The illusion of a perfect metric: Why evaluating AI's words is harder than it looks
Evaluating Natural Language Generation (NLG) is crucial for the practical adoption of AI, but has been a longstanding research challenge. While human evaluation is considered the de-facto standard, it is expensive and lacks scalability. Practical applications have driven the development of various automatic evaluation metrics (AEM), designed to compare the model output with human-written references, generating a score which approximates human judgment. Over time, AEMs have evolved from simple lexical comparisons, to semantic similarity models and, more recently, to LLM-based evaluators. However, it seems that no single metric has emerged as a definitive solution, resulting in studies using different ones without fully considering the implications. This paper aims to show this by conducting a thorough examination of the methodologies of existing metrics, their documented strengths and limitations, validation methods, and correlations with human judgment. We identify several key challenges: metrics often capture only specific aspects of text quality, their effectiveness varies by task and dataset, validation practices remain unstructured, and correlations with human judgment are inconsistent. Importantly, we find that these challenges persist in the most recent type of metric, LLM-as-a-Judge, as well as in the evaluation of Retrieval Augmented Generation (RAG), an increasingly relevant task in academia and industry. Our findings challenge the quest for the 'perfect metric'. We propose selecting metrics based on task-specific needs and leveraging complementary evaluations and advocate that new metrics should focus on enhanced validation methodologies.
Potential and Perils of Large Language Models as Judges of Unstructured Textual Data
Rapid advancements in large language models have unlocked remarkable capabilities when it comes to processing and summarizing unstructured text data. This has implications for the analysis of rich, open-ended datasets, such as survey responses, where LLMs hold the promise of efficiently distilling key themes and sentiments. However, as organizations increasingly turn to these powerful AI systems to make sense of textual feedback, a critical question arises, can we trust LLMs to accurately represent the perspectives contained within these text based datasets? While LLMs excel at generating human-like summaries, there is a risk that their outputs may inadvertently diverge from the true substance of the original responses. Discrepancies between the LLM-generated outputs and the actual themes present in the data could lead to flawed decision-making, with far-reaching consequences for organizations. This research investigates the effectiveness of LLMs as judge models to evaluate the thematic alignment of summaries generated by other LLMs. We utilized an Anthropic Claude model to generate thematic summaries from open-ended survey responses, with Amazon's Titan Express, Nova Pro, and Meta's Llama serving as LLM judges. The LLM-as-judge approach was compared to human evaluations using Cohen's kappa, Spearman's rho, and Krippendorff's alpha, validating a scalable alternative to traditional human centric evaluation methods. Our findings reveal that while LLMs as judges offer a scalable solution comparable to human raters, humans may still excel at detecting subtle, context-specific nuances. This research contributes to the growing body of knowledge on AI assisted text analysis. We discuss limitations and provide recommendations for future research, emphasizing the need for careful consideration when generalizing LLM judge models across various contexts and use cases.
GPT-Fathom: Benchmarking Large Language Models to Decipher the Evolutionary Path towards GPT-4 and Beyond
With the rapid advancement of large language models (LLMs), there is a pressing need for a comprehensive evaluation suite to assess their capabilities and limitations. Existing LLM leaderboards often reference scores reported in other papers without consistent settings and prompts, which may inadvertently encourage cherry-picking favored settings and prompts for better results. In this work, we introduce GPT-Fathom, an open-source and reproducible LLM evaluation suite built on top of OpenAI Evals. We systematically evaluate 10+ leading LLMs as well as OpenAI's legacy models on 20+ curated benchmarks across 7 capability categories, all under aligned settings. Our retrospective study on OpenAI's earlier models offers valuable insights into the evolutionary path from GPT-3 to GPT-4. Currently, the community is eager to know how GPT-3 progressively improves to GPT-4, including technical details like whether adding code data improves LLM's reasoning capability, which aspects of LLM capability can be improved by SFT and RLHF, how much is the alignment tax, etc. Our analysis sheds light on many of these questions, aiming to improve the transparency of advanced LLMs.
PiCO: Peer Review in LLMs based on the Consistency Optimization
Existing large language models (LLMs) evaluation methods typically focus on testing the performance on some closed-environment and domain-specific benchmarks with human annotations. In this paper, we explore a novel unsupervised evaluation direction, utilizing peer-review mechanisms to measure LLMs automatically. In this setting, both open-source and closed-source LLMs lie in the same environment, capable of answering unlabeled questions and evaluating each other, where each LLM's response score is jointly determined by other anonymous ones. To obtain the ability hierarchy among these models, we assign each LLM a learnable capability parameter to adjust the final ranking. We formalize it as a constrained optimization problem, intending to maximize the consistency of each LLM's capabilities and scores. The key assumption behind is that high-level LLM can evaluate others' answers more accurately than low-level ones, while higher-level LLM can also achieve higher response scores. Moreover, we propose three metrics called PEN, CIN, and LIS to evaluate the gap in aligning human rankings. We perform experiments on multiple datasets with these metrics, validating the effectiveness of the proposed approach.
Justice or Prejudice? Quantifying Biases in LLM-as-a-Judge
LLM-as-a-Judge has been widely utilized as an evaluation method in various benchmarks and served as supervised rewards in model training. However, despite their excellence in many domains, potential issues are under-explored, undermining their reliability and the scope of their utility. Therefore, we identify 12 key potential biases and propose a new automated bias quantification framework-CALM-which systematically quantifies and analyzes each type of bias in LLM-as-a-Judge by using automated and principle-guided modification. Our experiments cover multiple popular language models, and the results indicate that while advanced models have achieved commendable overall performance, significant biases persist in certain specific tasks. Empirical results suggest that there remains room for improvement in the reliability of LLM-as-a-Judge. Moreover, we also discuss the explicit and implicit influence of these biases and give some suggestions for the reliable application of LLM-as-a-Judge. Our work highlights the need for stakeholders to address these issues and remind users to exercise caution in LLM-as-a-Judge applications.
Quantitative LLM Judges
LLM-as-a-judge is a framework in which a large language model (LLM) automatically evaluates the output of another LLM. We propose quantitative LLM judges, which align evaluation scores of existing LLM judges to human scores in a given domain using regression models. The models are trained to improve the score of the original judge by using the judge's textual evaluation and score. We present four quantitative judges for different types of absolute and relative feedback, which showcases the generality and versatility of our framework. Our framework is more computationally efficient than supervised fine-tuning and can be more statistically efficient when human feedback is limited, which is expected in most applications of our work. We validate these claims empirically on four datasets using two base judges. Our experiments show that quantitative judges can effectively improve the predictive power of existing judges through post-hoc modeling.
Disce aut Deficere: Evaluating LLMs Proficiency on the INVALSI Italian Benchmark
Recent advancements in Large Language Models (LLMs) have significantly enhanced their ability to generate and manipulate human language, highlighting their potential across various applications. Evaluating LLMs in languages other than English is crucial for ensuring their linguistic versatility, cultural relevance, and applicability in diverse global contexts, thus broadening their usability and effectiveness. We tackle this challenge by introducing a structured benchmark using the INVALSI tests, a set of well-established assessments designed to measure educational competencies across Italy. Our study makes three primary contributions: Firstly, we adapt the INVALSI benchmark for automated LLM evaluation, which involves rigorous adaptation of the test format to suit automated processing while retaining the essence of the original tests. Secondly, we provide a detailed assessment of current LLMs, offering a crucial reference point for the academic community. Finally, we visually compare the performance of these models against human results. Additionally, researchers are invited to submit their models for ongoing evaluation, ensuring the benchmark remains a current and valuable resource.
Cross-Lingual Auto Evaluation for Assessing Multilingual LLMs
Evaluating machine-generated text remains a significant challenge in NLP, especially for non-English languages. Current methodologies, including automated metrics, human assessments, and LLM-based evaluations, predominantly focus on English, revealing a significant gap in multilingual evaluation frameworks. We introduce the Cross Lingual Auto Evaluation (CIA) Suite, an extensible framework that includes evaluator LLMs (Hercule) and a novel test set (Recon) specifically designed for multilingual evaluation. Our test set features 500 human-annotated instructions spanning various task capabilities along with human judgment scores across six languages. This would enable benchmarking of general-purpose multilingual LLMs and facilitate meta-evaluation of Evaluator LLMs. The proposed model, Hercule, is a cross-lingual evaluation model that addresses the scarcity of reference answers in the target language by learning to assign scores to responses based on easily available reference answers in English. Our experiments demonstrate that Hercule aligns more closely with human judgments compared to proprietary models, demonstrating the effectiveness of such cross-lingual evaluation in low resource scenarios. Further, it is also effective in zero-shot evaluation on unseen languages. This study is the first comprehensive examination of cross-lingual evaluation using LLMs, presenting a scalable and effective approach for multilingual assessment. All code, datasets, and models will be publicly available to enable further research in this important area.
MLLM-Bench: Evaluating Multimodal LLMs with Per-sample Criteria
Multimodal large language models (MLLMs) have broadened the scope of AI applications. Existing automatic evaluation methodologies for MLLMs are mainly limited in evaluating queries without considering user experiences, inadequately addressing the nuances of creative and associative multimodal tasks. However, the open-ended and subjective nature of such tasks poses a significant challenge to the evaluation methodology, where it is difficult to define the ground-truth answers for them. To this end, in our paper, we propose a new evaluation paradigm for MLLMs, which is evaluating MLLMs with per-sample criteria using potent MLLM as the judge. To validate the feasibility and effectiveness of this paradigm, we design a benchmark, dubbed MLLM-Bench, by curating the evaluation samples across six comprehensive cognitive levels. We benchmark 21 popular MLLMs in a pairwise-comparison fashion, showing diverse performance across models. Moreover, the validity of our benchmark manifests itself in reaching 88.02% agreement with human evaluation. We contend that the proposed paradigm explores the potential of MLLMs as effective evaluation tools with the help of per-sample criteria. See online leaderboard at https://mllm-bench.llmzoo.com.
Parrot: Efficient Serving of LLM-based Applications with Semantic Variable
The rise of large language models (LLMs) has enabled LLM-based applications (a.k.a. AI agents or co-pilots), a new software paradigm that combines the strength of LLM and conventional software. Diverse LLM applications from different tenants could design complex workflows using multiple LLM requests to accomplish one task. However, they have to use the over-simplified request-level API provided by today's public LLM services, losing essential application-level information. Public LLM services have to blindly optimize individual LLM requests, leading to sub-optimal end-to-end performance of LLM applications. This paper introduces Parrot, an LLM service system that focuses on the end-to-end experience of LLM-based applications. Parrot proposes Semantic Variable, a unified abstraction to expose application-level knowledge to public LLM services. A Semantic Variable annotates an input/output variable in the prompt of a request, and creates the data pipeline when connecting multiple LLM requests, providing a natural way to program LLM applications. Exposing Semantic Variables to the public LLM service allows it to perform conventional data flow analysis to uncover the correlation across multiple LLM requests. This correlation opens a brand-new optimization space for the end-to-end performance of LLM-based applications. Extensive evaluations demonstrate that Parrot can achieve up to an order-of-magnitude improvement for popular and practical use cases of LLM applications.
Aligning with Human Judgement: The Role of Pairwise Preference in Large Language Model Evaluators
Large Language Models (LLMs) have demonstrated promising capabilities as automatic evaluators in assessing the quality of generated natural language. However, LLMs still exhibit biases in evaluation and often struggle to generate coherent evaluations that align with human assessments. In this work, we first conduct a systematic study of the misalignment between LLM evaluators and human judgement, revealing that existing calibration methods aimed at mitigating biases are insufficient for effectively aligning LLM evaluators. Inspired by the use of preference data in RLHF, we formulate the evaluation as a ranking problem and introduce Pairwise-preference Search (PairS), an uncertainty-guided search method that employs LLMs to conduct pairwise comparisons and efficiently ranks candidate texts. PairS achieves state-of-the-art performance on representative evaluation tasks and demonstrates significant improvements over direct scoring. Furthermore, we provide insights into the role of pairwise preference in quantifying the transitivity of LLMs and demonstrate how PairS benefits from calibration.
Reverse Engineering Human Preferences with Reinforcement Learning
The capabilities of Large Language Models (LLMs) are routinely evaluated by other LLMs trained to predict human preferences. This framework--known as LLM-as-a-judge--is highly scalable and relatively low cost. However, it is also vulnerable to malicious exploitation, as LLM responses can be tuned to overfit the preferences of the judge. Previous work shows that the answers generated by a candidate-LLM can be edited post hoc to maximise the score assigned to them by a judge-LLM. In this study, we adopt a different approach and use the signal provided by judge-LLMs as a reward to adversarially tune models that generate text preambles designed to boost downstream performance. We find that frozen LLMs pipelined with these models attain higher LLM-evaluation scores than existing frameworks. Crucially, unlike other frameworks which intervene directly on the model's response, our method is virtually undetectable. We also demonstrate that the effectiveness of the tuned preamble generator transfers when the candidate-LLM and the judge-LLM are replaced with models that are not used during training. These findings raise important questions about the design of more reliable LLM-as-a-judge evaluation settings. They also demonstrate that human preferences can be reverse engineered effectively, by pipelining LLMs to optimise upstream preambles via reinforcement learning--an approach that could find future applications in diverse tasks and domains beyond adversarial attacks.
Eka-Eval : A Comprehensive Evaluation Framework for Large Language Models in Indian Languages
The rapid advancement of Large Language Models (LLMs) has intensified the need for evaluation frameworks that go beyond English centric benchmarks and address the requirements of linguistically diverse regions such as India. We present EKA-EVAL, a unified and production-ready evaluation framework that integrates over 35 benchmarks, including 10 Indic-specific datasets, spanning categories like reasoning, mathematics, tool use, long-context understanding, and reading comprehension. Compared to existing Indian language evaluation tools, EKA-EVAL offers broader benchmark coverage, with built-in support for distributed inference, quantization, and multi-GPU usage. Our systematic comparison positions EKA-EVAL as the first end-to-end, extensible evaluation suite tailored for both global and Indic LLMs, significantly lowering the barrier to multilingual benchmarking. The framework is open-source and publicly available at https://github.com/lingo-iitgn/ eka-eval and a part of ongoing EKA initiative (https://eka.soket.ai), which aims to scale up to over 100 benchmarks and establish a robust, multilingual evaluation ecosystem for LLMs.
AgentRewardBench: Evaluating Automatic Evaluations of Web Agent Trajectories
Web agents enable users to perform tasks on web browsers through natural language interaction. Evaluating web agents trajectories is an important problem, since it helps us determine whether the agent successfully completed the tasks. Rule-based methods are widely used for this purpose, but they are challenging to extend to new tasks and may not always recognize successful trajectories. We may achieve higher accuracy through human evaluation, but the process would be substantially slower and more expensive. Automatic evaluations with LLMs may avoid the challenges of designing new rules and manually annotating trajectories, enabling faster and cost-effective evaluation. However, it is unclear how effective they are at evaluating web agents. To this end, we propose AgentRewardBench, the first benchmark to assess the effectiveness of LLM judges for evaluating web agents. AgentRewardBench contains 1302 trajectories across 5 benchmarks and 4 LLMs. Each trajectory in AgentRewardBench is reviewed by an expert, who answers questions pertaining to the success, side effects, and repetitiveness of the agent. Using our benchmark, we evaluate 12 LLM judges and find that no single LLM excels across all benchmarks. We also find that the rule-based evaluation used by common benchmarks tends to underreport the success rate of web agents, highlighting a key weakness of rule-based evaluation and the need to develop more flexible automatic evaluations. We release the benchmark at: https://agent-reward-bench.github.io
A Systematic Survey and Critical Review on Evaluating Large Language Models: Challenges, Limitations, and Recommendations
Large Language Models (LLMs) have recently gained significant attention due to their remarkable capabilities in performing diverse tasks across various domains. However, a thorough evaluation of these models is crucial before deploying them in real-world applications to ensure they produce reliable performance. Despite the well-established importance of evaluating LLMs in the community, the complexity of the evaluation process has led to varied evaluation setups, causing inconsistencies in findings and interpretations. To address this, we systematically review the primary challenges and limitations causing these inconsistencies and unreliable evaluations in various steps of LLM evaluation. Based on our critical review, we present our perspectives and recommendations to ensure LLM evaluations are reproducible, reliable, and robust.
Time To Impeach LLM-as-a-Judge: Programs are the Future of Evaluation
Large language models (LLMs) are widely used to evaluate the quality of LLM generations and responses, but this leads to significant challenges: high API costs, uncertain reliability, inflexible pipelines, and inherent biases. To address these, we introduce PAJAMA (Program-As-a-Judge for Automated Model Assessment), a new alternative that uses LLMs to synthesize executable judging programs instead of directly scoring responses. These synthesized programs can be stored and run locally, costing orders of magnitude less while providing interpretable, and auditable judging logic that can be easily adapted. Program-based judges mitigate biases, improving judgment consistency by 15.83% and reducing biased responses by 23.7% on average compared to a Qwen2.5-14B-based LLM-as-a-judge. When program judgments are distilled into a model, PAJAMA outperforms LLM-as-a-judge on the challenging CHAT-HARD subset of RewardBench, outperforming metrics by 2.19% on Prometheus and 8.67% on the JudgeLM dataset, all at three orders of magnitude lower cost.
Better Instruction-Following Through Minimum Bayes Risk
General-purpose LLM judges capable of human-level evaluation provide not only a scalable and accurate way of evaluating instruction-following LLMs but also new avenues for supervising and improving their performance. One promising way of leveraging LLM judges for supervision is through Minimum Bayes Risk (MBR) decoding, which uses a reference-based evaluator to select a high-quality output from amongst a set of candidate outputs. In the first part of this work, we explore using MBR decoding as a method for improving the test-time performance of instruction-following LLMs. We find that MBR decoding with reference-based LLM judges substantially improves over greedy decoding, best-of-N decoding with reference-free judges and MBR decoding with lexical and embedding-based metrics on AlpacaEval and MT-Bench. These gains are consistent across LLMs with up to 70B parameters, demonstrating that smaller LLM judges can be used to supervise much larger LLMs. Then, seeking to retain the improvements from MBR decoding while mitigating additional test-time costs, we explore iterative self-training on MBR-decoded outputs. We find that self-training using Direct Preference Optimisation leads to significant performance gains, such that the self-trained models with greedy decoding generally match and sometimes exceed the performance of their base models with MBR decoding.
An Empirical Study of LLM-as-a-Judge for LLM Evaluation: Fine-tuned Judge Models are Task-specific Classifiers
Recently, there has been a growing trend of utilizing Large Language Model (LLM) to evaluate the quality of other LLMs. Many studies have employed proprietary close-source models, especially GPT4, as the evaluator. Alternatively, other works have fine-tuned judge models based on open-source LLMs as the evaluator. In this study, we conduct an empirical study of different judge models on their evaluation capability. Our findings indicate that although the fine-tuned judge models achieve high accuracy on in-domain test sets, even surpassing GPT4, they are inherently task-specific classifiers, and their generalizability and fairness severely underperform GPT4.
Leveraging Large Language Models for NLG Evaluation: A Survey
In the rapidly evolving domain of Natural Language Generation (NLG) evaluation, introducing Large Language Models (LLMs) has opened new avenues for assessing generated content quality, e.g., coherence, creativity, and context relevance. This survey aims to provide a thorough overview of leveraging LLMs for NLG evaluation, a burgeoning area that lacks a systematic analysis. We propose a coherent taxonomy for organizing existing LLM-based evaluation metrics, offering a structured framework to understand and compare these methods. Our detailed exploration includes critically assessing various LLM-based methodologies, as well as comparing their strengths and limitations in evaluating NLG outputs. By discussing unresolved challenges, including bias, robustness, domain-specificity, and unified evaluation, this survey seeks to offer insights to researchers and advocate for fairer and more advanced NLG evaluation techniques.
Benchmarking Large Language Models on Controllable Generation under Diversified Instructions
While large language models (LLMs) have exhibited impressive instruction-following capabilities, it is still unclear whether and to what extent they can respond to explicit constraints that might be entailed in various instructions. As a significant aspect of LLM alignment, it is thus important to formulate such a specialized set of instructions as well as investigate the resulting behavior of LLMs. To address this vacancy, we propose a new benchmark CoDI-Eval to systematically and comprehensively evaluate LLMs' responses to instructions with various constraints. We construct a large collection of constraints-attributed instructions as a test suite focused on both generalization and coverage. Specifically, we advocate an instruction diversification process to synthesize diverse forms of constraint expression and also deliberate the candidate task taxonomy with even finer-grained sub-categories. Finally, we automate the entire evaluation process to facilitate further developments. Different from existing studies on controllable text generation, CoDI-Eval extends the scope to the prevalent instruction-following paradigm for the first time. We provide extensive evaluations of representative LLMs (e.g., ChatGPT, Vicuna) on CoDI-Eval, revealing their limitations in following instructions with specific constraints and there is still a significant gap between open-source and commercial closed-source LLMs. We believe this benchmark will facilitate research into improving the controllability of LLMs' responses to instructions. Our data and code are available at https://github.com/Xt-cyh/CoDI-Eval.
GreekBarBench: A Challenging Benchmark for Free-Text Legal Reasoning and Citations
We introduce GreekBarBench, a benchmark that evaluates LLMs on legal questions across five different legal areas from the Greek Bar exams, requiring citations to statutory articles and case facts. To tackle the challenges of free-text evaluation, we propose a three-dimensional scoring system combined with an LLM-as-a-judge approach. We also develop a meta-evaluation benchmark to assess the correlation between LLM-judges and human expert evaluations, revealing that simple, span-based rubrics improve their alignment. Our systematic evaluation of 13 proprietary and open-weight LLMs shows that even though the best models outperform average expert scores, they fall short of the 95th percentile of experts.
Learning an Efficient Multi-Turn Dialogue Evaluator from Multiple Judges
Evaluating the conversational abilities of large language models (LLMs) remains a challenging task. Current mainstream approaches primarily rely on the ``LLM-as-a-judge" paradigm, where an LLM is prompted to serve as an evaluator to assess dialogue quality. However, such methods often suffer from various biases, which undermine the reliability and consistency of the evaluation results. To mitigate these biases, recent methods employ multiple LLMs as judges and aggregate their judgments to select the optimal assessment. Although effective, this multi-judge approach incurs significant computational overhead during inference. In this paper, we propose an efficient multi-turn dialogue evaluator that captures the collective wisdom of multiple LLM judges by aggregating their preference knowledge into a single model. Our approach preserves the advantages of diverse multi-judge feedback while drastically reducing the evaluation cost, enabling fast and flexible dialogue quality assessment. Extensive experiments on seven single rating and pairwise comparison dialogue evaluation benchmarks demonstrate that our method outperforms existing baselines across diverse scenarios, showcasing its efficiency and robustness.
FLM-101B: An Open LLM and How to Train It with $100K Budget
Large language models (LLMs) have achieved remarkable success in NLP and multimodal tasks. Despite these successes, their development faces two main challenges: (i) high computational cost; and (ii) difficulty in conducting fair and objective evaluations. LLMs are prohibitively expensive, making it feasible for only a few major players to undertake their training, thereby constraining both research and application opportunities. This underscores the importance of cost-effective LLM training. In this paper, we utilize a growth strategy to significantly reduce LLM training cost. We demonstrate that an LLM with 101B parameters and 0.31TB tokens can be trained on a 100K budget. We also adopt a systematic evaluation paradigm for the IQ evaluation of LLMs, in complement to existing evaluations that focus more on knowledge-oriented abilities. We introduce our benchmark including evaluations on important aspects of intelligence including symbolic mapping, itrule understanding, pattern mining, and anti-interference. Such evaluations minimize the potential impact of memorization. Experimental results show that our model FLM-101B, trained with a budget of 100K, achieves comparable performance to powerful and well-known models, eg GPT-3 and GLM-130B, especially in the IQ benchmark evaluations with contexts unseen in training data. The checkpoint of FLM-101B will be open-sourced at https://huggingface.co/CofeAI/FLM-101B.
Improve LLM-as-a-Judge Ability as a General Ability
LLM-as-a-Judge leverages the generative and reasoning capabilities of large language models (LLMs) to evaluate LLM responses across diverse scenarios, providing accurate preference signals. This approach plays a vital role in aligning LLMs with human values, ensuring ethical and reliable AI outputs that align with societal norms. Recent studies have raised many methods to train LLM as generative judges, but most of them are data consuming or lack accuracy, and only focus on LLM's judge ability. In this work, we regard judge ability as a general ability of LLM and implement a two-stage training approach, comprising supervised fine-tuning (SFT) warm-up and direct preference optimization (DPO) enhancement, to achieve judge style adaptation and improve judgment accuracy. Additionally, we introduce an efficient data synthesis method to generate judgmental content. Experimental results demonstrate that our approach, utilizing only about 2% to 40% of the data required by other methods, achieves SOTA performance on RewardBench. Furthermore, our training method enhances the general capabilities of the model by constructing complicated judge task, and the judge signals provided by our model have significantly enhanced the downstream DPO training performance of our internal models in our test to optimize policy model with Judge Model. We also open-source our model weights and training data to facilitate further research.
AECBench: A Hierarchical Benchmark for Knowledge Evaluation of Large Language Models in the AEC Field
Large language models (LLMs), as a novel information technology, are seeing increasing adoption in the Architecture, Engineering, and Construction (AEC) field. They have shown their potential to streamline processes throughout the building lifecycle. However, the robustness and reliability of LLMs in such a specialized and safety-critical domain remain to be evaluated. To address this challenge, this paper establishes AECBench, a comprehensive benchmark designed to quantify the strengths and limitations of current LLMs in the AEC domain. The benchmark defines 23 representative tasks within a five-level cognition-oriented evaluation framework encompassing Knowledge Memorization, Understanding, Reasoning, Calculation, and Application. These tasks were derived from authentic AEC practice, with scope ranging from codes retrieval to specialized documents generation. Subsequently, a 4,800-question dataset encompassing diverse formats, including open-ended questions, was crafted primarily by engineers and validated through a two-round expert review. Furthermore, an LLM-as-a-Judge approach was introduced to provide a scalable and consistent methodology for evaluating complex, long-form responses leveraging expert-derived rubrics. Through the evaluation of nine LLMs, a clear performance decline across five cognitive levels was revealed. Despite demonstrating proficiency in foundational tasks at the Knowledge Memorization and Understanding levels, the models showed significant performance deficits, particularly in interpreting knowledge from tables in building codes, executing complex reasoning and calculation, and generating domain-specific documents. Consequently, this study lays the groundwork for future research and development aimed at the robust and reliable integration of LLMs into safety-critical engineering practices.
DeepReview: Improving LLM-based Paper Review with Human-like Deep Thinking Process
Large Language Models (LLMs) are increasingly utilized in scientific research assessment, particularly in automated paper review. However, existing LLM-based review systems face significant challenges, including limited domain expertise, hallucinated reasoning, and a lack of structured evaluation. To address these limitations, we introduce DeepReview, a multi-stage framework designed to emulate expert reviewers by incorporating structured analysis, literature retrieval, and evidence-based argumentation. Using DeepReview-13K, a curated dataset with structured annotations, we train DeepReviewer-14B, which outperforms CycleReviewer-70B with fewer tokens. In its best mode, DeepReviewer-14B achieves win rates of 88.21\% and 80.20\% against GPT-o1 and DeepSeek-R1 in evaluations. Our work sets a new benchmark for LLM-based paper review, with all resources publicly available. The code, model, dataset and demo have be released in http://ai-researcher.net.
On the Design and Analysis of LLM-Based Algorithms
We initiate a formal investigation into the design and analysis of LLM-based algorithms, i.e. algorithms that contain one or multiple calls of large language models (LLMs) as sub-routines and critically rely on the capabilities of LLMs. While LLM-based algorithms, ranging from basic LLM calls with prompt engineering to complicated LLM-powered agent systems and compound AI systems, have achieved remarkable empirical success, the design and optimization of them have mostly relied on heuristics and trial-and-errors, which is largely due to a lack of formal and analytical study for these algorithms. To fill this gap, we start by identifying the computational-graph representation of LLM-based algorithms, the design principle of task decomposition, and some key abstractions, which then facilitate our formal analysis for the accuracy and efficiency of LLM-based algorithms, despite the black-box nature of LLMs. Through extensive analytical and empirical investigation in a series of case studies, we demonstrate that the proposed framework is broadly applicable to a wide range of scenarios and diverse patterns of LLM-based algorithms, such as parallel, hierarchical and recursive task decomposition. Our proposed framework holds promise for advancing LLM-based algorithms, by revealing the reasons behind curious empirical phenomena, guiding the choices of hyperparameters, predicting the empirical performance of algorithms, and inspiring new algorithm design. To promote further study of LLM-based algorithms, we release our source code at https://github.com/modelscope/agentscope/tree/main/examples/paper_llm_based_algorithm.
AgentSims: An Open-Source Sandbox for Large Language Model Evaluation
With ChatGPT-like large language models (LLM) prevailing in the community, how to evaluate the ability of LLMs is an open question. Existing evaluation methods suffer from following shortcomings: (1) constrained evaluation abilities, (2) vulnerable benchmarks, (3) unobjective metrics. We suggest that task-based evaluation, where LLM agents complete tasks in a simulated environment, is a one-for-all solution to solve above problems. We present AgentSims, an easy-to-use infrastructure for researchers from all disciplines to test the specific capacities they are interested in. Researchers can build their evaluation tasks by adding agents and buildings on an interactive GUI or deploy and test new support mechanisms, i.e. memory, planning and tool-use systems, by a few lines of codes. Our demo is available at https://agentsims.com .
