Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeThe bulk metallicity of giant planets around M stars
The bulk-metallicity determination of giant exoplanets is essential to constrain their formation and evolution pathways and to compare them to the solar system. Previous studies inferred an inverse relation between the mass and bulk metallicity. However, the data almost exclusively contained planets that orbit FGK stars. The recent discoveries of giant exoplanets around M-dwarf stars present an opportunity to probe whether they follow a mass-metallicity trend different from that of their FGK counterparts. Using evolution models we characterised the interiors of giant exoplanets with reliable mass-radius measurements that orbit FGK and M-dwarf stars. We then inferred the mass-metallicity trends for both populations. We found that the bulk metallicity of giant planets around M stars is overall lower compared to those around FGK stars. This yielded mass-metallicity relations for the two populations with similar slopes but significantly different offsets. The lack of metal-rich giant planets around M dwarfs could explain the difference in the inferred offset and be a result of different formation conditions. However, there were only 20 successful bulk-metallicity retrievals for the giant planets around M dwarfs, which resulted in rather large uncertainties. Therefore, it is of great importance to continue detecting these planets with both transit and radial velocities. Additionally, the characterisation of the atmospheres of giant planets around M-stars can further help to constrain their interiors and to investigate the atmosp
Fluctuation Domains in Adaptive Evolution
We derive an expression for the variation between parallel trajectories in phenotypic evolution, extending the well known result that predicts the mean evolutionary path in adaptive dynamics or quantitative genetics. We show how this expression gives rise to the notion of fluctuation domains - parts of the fitness landscape where the rate of evolution is very predictable (due to fluctuation dissipation) and parts where it is highly variable (due to fluctuation enhancement). These fluctuation domains are determined by the curvature of the fitness landscape. Regions of the fitness landscape with positive curvature, such as adaptive valleys or branching points, experience enhancement. Regions with negative curvature, such as adaptive peaks, experience dissipation. We explore these dynamics in the ecological scenarios of implicit and explicit competition for a limiting resource.
Constrained Synthesis with Projected Diffusion Models
This paper introduces an approach to endow generative diffusion processes the ability to satisfy and certify compliance with constraints and physical principles. The proposed method recast the traditional sampling process of generative diffusion models as a constrained optimization problem, steering the generated data distribution to remain within a specified region to ensure adherence to the given constraints. These capabilities are validated on applications featuring both convex and challenging, non-convex, constraints as well as ordinary differential equations, in domains spanning from synthesizing new materials with precise morphometric properties, generating physics-informed motion, optimizing paths in planning scenarios, and human motion synthesis.
Compositional Diffusion-Based Continuous Constraint Solvers
This paper introduces an approach for learning to solve continuous constraint satisfaction problems (CCSP) in robotic reasoning and planning. Previous methods primarily rely on hand-engineering or learning generators for specific constraint types and then rejecting the value assignments when other constraints are violated. By contrast, our model, the compositional diffusion continuous constraint solver (Diffusion-CCSP) derives global solutions to CCSPs by representing them as factor graphs and combining the energies of diffusion models trained to sample for individual constraint types. Diffusion-CCSP exhibits strong generalization to novel combinations of known constraints, and it can be integrated into a task and motion planner to devise long-horizon plans that include actions with both discrete and continuous parameters. Project site: https://diffusion-ccsp.github.io/
SE-Agent: Self-Evolution Trajectory Optimization in Multi-Step Reasoning with LLM-Based Agents
Large Language Model (LLM)-based agents have recently shown impressive capabilities in complex reasoning and tool use via multi-step interactions with their environments. While these agents have the potential to tackle complicated tasks, their problem-solving process, i.e., agents' interaction trajectory leading to task completion, remains underexploited. These trajectories contain rich feedback that can navigate agents toward the right directions for solving problems correctly. Although prevailing approaches, such as Monte Carlo Tree Search (MCTS), can effectively balance exploration and exploitation, they ignore the interdependence among various trajectories and lack the diversity of search spaces, which leads to redundant reasoning and suboptimal outcomes. To address these challenges, we propose SE-Agent, a Self-Evolution framework that enables Agents to optimize their reasoning processes iteratively. Our approach revisits and enhances former pilot trajectories through three key operations: revision, recombination, and refinement. This evolutionary mechanism enables two critical advantages: (1) it expands the search space beyond local optima by intelligently exploring diverse solution paths guided by previous trajectories, and (2) it leverages cross-trajectory inspiration to efficiently enhance performance while mitigating the impact of suboptimal reasoning paths. Through these mechanisms, SE-Agent achieves continuous self-evolution that incrementally improves reasoning quality. We evaluate SE-Agent on SWE-bench Verified to resolve real-world GitHub issues. Experimental results across five strong LLMs show that integrating SE-Agent delivers up to 55% relative improvement, achieving state-of-the-art performance among all open-source agents on SWE-bench Verified. Our code and demonstration materials are publicly available at https://github.com/JARVIS-Xs/SE-Agent.
Text-to-Vector Generation with Neural Path Representation
Vector graphics are widely used in digital art and highly favored by designers due to their scalability and layer-wise properties. However, the process of creating and editing vector graphics requires creativity and design expertise, making it a time-consuming task. Recent advancements in text-to-vector (T2V) generation have aimed to make this process more accessible. However, existing T2V methods directly optimize control points of vector graphics paths, often resulting in intersecting or jagged paths due to the lack of geometry constraints. To overcome these limitations, we propose a novel neural path representation by designing a dual-branch Variational Autoencoder (VAE) that learns the path latent space from both sequence and image modalities. By optimizing the combination of neural paths, we can incorporate geometric constraints while preserving expressivity in generated SVGs. Furthermore, we introduce a two-stage path optimization method to improve the visual and topological quality of generated SVGs. In the first stage, a pre-trained text-to-image diffusion model guides the initial generation of complex vector graphics through the Variational Score Distillation (VSD) process. In the second stage, we refine the graphics using a layer-wise image vectorization strategy to achieve clearer elements and structure. We demonstrate the effectiveness of our method through extensive experiments and showcase various applications. The project page is https://intchous.github.io/T2V-NPR.
R-ConstraintBench: Evaluating LLMs on NP-Complete Scheduling
Effective scheduling under tight resource, timing, and operational constraints underpins large-scale planning across sectors such as capital projects, manufacturing, logistics, and IT fleet transitions. However, the reliability of large language models (LLMs) when reasoning under high-constraint regimes is insufficiently characterized. To address this gap, we present R-ConstraintBench, a scalable framework that evaluates models on Resource-Constrained Project Scheduling Problems (RCPSP), an NP-Complete feasibility class, while difficulty increases via linear growth in constraints. R-ConstraintBench incrementally increases non-redundant precedence constraints in Directed Acyclic Graphs (DAGs) and then introduces downtime, temporal windows, and disjunctive constraints. As an illustrative example, we instantiate the benchmark in a data center migration setting and evaluate multiple LLMs using feasibility and error analysis, identifying degradation thresholds and constraint types most associated with failure. Empirically, strong models are near-ceiling on precedence-only DAGs, but feasibility performance collapses when downtime, temporal windows, and disjunctive constraints interact, implicating constraint interaction, not graph depth, as the principal bottleneck. Performance on clean synthetic ramps also does not guarantee transfer to domain-grounded scenarios, underscoring limited generalization.
CaT: Constraints as Terminations for Legged Locomotion Reinforcement Learning
Deep Reinforcement Learning (RL) has demonstrated impressive results in solving complex robotic tasks such as quadruped locomotion. Yet, current solvers fail to produce efficient policies respecting hard constraints. In this work, we advocate for integrating constraints into robot learning and present Constraints as Terminations (CaT), a novel constrained RL algorithm. Departing from classical constrained RL formulations, we reformulate constraints through stochastic terminations during policy learning: any violation of a constraint triggers a probability of terminating potential future rewards the RL agent could attain. We propose an algorithmic approach to this formulation, by minimally modifying widely used off-the-shelf RL algorithms in robot learning (such as Proximal Policy Optimization). Our approach leads to excellent constraint adherence without introducing undue complexity and computational overhead, thus mitigating barriers to broader adoption. Through empirical evaluation on the real quadruped robot Solo crossing challenging obstacles, we demonstrate that CaT provides a compelling solution for incorporating constraints into RL frameworks. Videos and code are available at https://constraints-as-terminations.github.io.
Tunable Trajectory Planner Using G3 Curves
Trajectory planning is commonly used as part of a local planner in autonomous driving. This paper considers the problem of planning a continuous-curvature-rate trajectory between fixed start and goal states that minimizes a tunable trade-off between passenger comfort and travel time. The problem is an instance of infinite dimensional optimization over two continuous functions: a path, and a velocity profile. We propose a simplification of this problem that facilitates the discretization of both functions. This paper also proposes a method to quickly generate minimal-length paths between start and goal states based on a single tuning parameter: the second derivative of curvature. Furthermore, we discretize the set of velocity profiles along a given path into a selection of acceleration way-points along the path. Gradient-descent is then employed to minimize cost over feasible choices of the second derivative of curvature, and acceleration way-points, resulting in a method that repeatedly solves the path and velocity profiles in an iterative fashion. Numerical examples are provided to illustrate the benefits of the proposed methods.
Hardest Monotone Functions for Evolutionary Algorithms
The study of hardest and easiest fitness landscapes is an active area of research. Recently, Kaufmann, Larcher, Lengler and Zou conjectured that for the self-adjusting (1,lambda)-EA, Adversarial Dynamic BinVal (ADBV) is the hardest dynamic monotone function to optimize. We introduce the function Switching Dynamic BinVal (SDBV) which coincides with ADBV whenever the number of remaining zeros in the search point is strictly less than n/2, where n denotes the dimension of the search space. We show, using a combinatorial argument, that for the (1+1)-EA with any mutation rate p in [0,1], SDBV is drift-minimizing among the class of dynamic monotone functions. Our construction provides the first explicit example of an instance of the partially-ordered evolutionary algorithm (PO-EA) model with parameterized pessimism introduced by Colin, Doerr and F\'erey, building on work of Jansen. We further show that the (1+1)-EA optimizes SDBV in Theta(n^{3/2}) generations. Our simulations demonstrate matching runtimes for both static and self-adjusting (1,lambda) and (1+lambda)-EA. We further show, using an example of fixed dimension, that drift-minimization does not equal maximal runtime.
Lottery Tickets in Evolutionary Optimization: On Sparse Backpropagation-Free Trainability
Is the lottery ticket phenomenon an idiosyncrasy of gradient-based training or does it generalize to evolutionary optimization? In this paper we establish the existence of highly sparse trainable initializations for evolution strategies (ES) and characterize qualitative differences compared to gradient descent (GD)-based sparse training. We introduce a novel signal-to-noise iterative pruning procedure, which incorporates loss curvature information into the network pruning step. This can enable the discovery of even sparser trainable network initializations when using black-box evolution as compared to GD-based optimization. Furthermore, we find that these initializations encode an inductive bias, which transfers across different ES, related tasks and even to GD-based training. Finally, we compare the local optima resulting from the different optimization paradigms and sparsity levels. In contrast to GD, ES explore diverse and flat local optima and do not preserve linear mode connectivity across sparsity levels and independent runs. The results highlight qualitative differences between evolution and gradient-based learning dynamics, which can be uncovered by the study of iterative pruning procedures.
On Kinetic Optimal Probability Paths for Generative Models
Recent successful generative models are trained by fitting a neural network to an a-priori defined tractable probability density path taking noise to training examples. In this paper we investigate the space of Gaussian probability paths, which includes diffusion paths as an instance, and look for an optimal member in some useful sense. In particular, minimizing the Kinetic Energy (KE) of a path is known to make particles' trajectories simple, hence easier to sample, and empirically improve performance in terms of likelihood of unseen data and sample generation quality. We investigate Kinetic Optimal (KO) Gaussian paths and offer the following observations: (i) We show the KE takes a simplified form on the space of Gaussian paths, where the data is incorporated only through a single, one dimensional scalar function, called the data separation function. (ii) We characterize the KO solutions with a one dimensional ODE. (iii) We approximate data-dependent KO paths by approximating the data separation function and minimizing the KE. (iv) We prove that the data separation function converges to 1 in the general case of arbitrary normalized dataset consisting of n samples in d dimension as n/drightarrow 0. A consequence of this result is that the Conditional Optimal Transport (Cond-OT) path becomes kinetic optimal as n/drightarrow 0. We further support this theory with empirical experiments on ImageNet.
ALPINE: Unveiling the Planning Capability of Autoregressive Learning in Language Models
In this paper, we present the findings of our Project ALPINE which stands for ``Autoregressive Learning for Planning In NEtworks." Project ALPINE initiates a theoretical investigation into the development of planning capabilities in Transformer-based language models through their autoregressive learning mechanisms, aiming to identify any potential limitations in their planning abilities. We abstract planning as a network path-finding task where the objective is to generate a valid path from a specified source node to a designated target node. In terms of expressiveness, we show that the Transformer is capable of executing path-finding by embedding the adjacency and reachability matrices within its weights. Our theoretical analysis of the gradient-based learning dynamic of the Transformer reveals that the Transformer is capable of learning both the adjacency matrix and a limited form of the reachability matrix. These theoretical insights are then validated through experiments, which demonstrate that the Transformer indeed learns the adjacency matrix and an incomplete reachability matrix, which aligns with the predictions made in our theoretical analysis. Additionally, when applying our methodology to a real-world planning benchmark, called Blocksworld, our observations remain consistent. Our theoretical and empirical analyses further unveil a potential limitation of Transformer in path-finding: it cannot identify reachability relationships through transitivity, and thus would fail when path concatenation is needed to generate a path. In summary, our findings shed new light on how the internal mechanisms of autoregressive learning enable planning in networks. This study may contribute to our understanding of the general planning capabilities in other related domains.
Compiling Uncertainty Away in Conformant Planning Problems with Bounded Width
Conformant planning is the problem of finding a sequence of actions for achieving a goal in the presence of uncertainty in the initial state or action effects. The problem has been approached as a path-finding problem in belief space where good belief representations and heuristics are critical for scaling up. In this work, a different formulation is introduced for conformant problems with deterministic actions where they are automatically converted into classical ones and solved by an off-the-shelf classical planner. The translation maps literals L and sets of assumptions t about the initial situation, into new literals KL/t that represent that L must be true if t is initially true. We lay out a general translation scheme that is sound and establish the conditions under which the translation is also complete. We show that the complexity of the complete translation is exponential in a parameter of the problem called the conformant width, which for most benchmarks is bounded. The planner based on this translation exhibits good performance in comparison with existing planners, and is the basis for T0, the best performing planner in the Conformant Track of the 2006 International Planning Competition.
Benchmarking global optimization techniques for unmanned aerial vehicle path planning
The Unmanned Aerial Vehicle (UAV) path planning problem is a complex optimization problem in the field of robotics. In this paper, we investigate the possible utilization of this problem in benchmarking global optimization methods. We devise a problem instance generator and pick 56 representative instances, which we compare to established benchmarking suits through Exploratory Landscape Analysis to show their uniqueness. For the computational comparison, we select twelve well-performing global optimization techniques from both subfields of stochastic algorithms (evolutionary computation methods) and deterministic algorithms (Dividing RECTangles, or DIRECT-type methods). The experiments were conducted in settings with varying dimensionality and computational budgets. The results were analyzed through several criteria (number of best-found solutions, mean relative error, Friedman ranks) and utilized established statistical tests. The best-ranking methods for the UAV problems were almost universally the top-performing evolutionary techniques from recent competitions on numerical optimization at the Institute of Electrical and Electronics Engineers Congress on Evolutionary Computation. Lastly, we discussed the variable dimension characteristics of the studied UAV problems that remain still largely under-investigated.
LLM Guided Evolution -- The Automation of Models Advancing Models
In the realm of machine learning, traditional model development and automated approaches like AutoML typically rely on layers of abstraction, such as tree-based or Cartesian genetic programming. Our study introduces "Guided Evolution" (GE), a novel framework that diverges from these methods by utilizing Large Language Models (LLMs) to directly modify code. GE leverages LLMs for a more intelligent, supervised evolutionary process, guiding mutations and crossovers. Our unique "Evolution of Thought" (EoT) technique further enhances GE by enabling LLMs to reflect on and learn from the outcomes of previous mutations. This results in a self-sustaining feedback loop that augments decision-making in model evolution. GE maintains genetic diversity, crucial for evolutionary algorithms, by leveraging LLMs' capability to generate diverse responses from expertly crafted prompts and modulate model temperature. This not only accelerates the evolution process but also injects expert like creativity and insight into the process. Our application of GE in evolving the ExquisiteNetV2 model demonstrates its efficacy: the LLM-driven GE autonomously produced variants with improved accuracy, increasing from 92.52% to 93.34%, without compromising model compactness. This underscores the potential of LLMs to accelerate the traditional model design pipeline, enabling models to autonomously evolve and enhance their own designs.
Adversarial Classification: Necessary conditions and geometric flows
We study a version of adversarial classification where an adversary is empowered to corrupt data inputs up to some distance varepsilon, using tools from variational analysis. In particular, we describe necessary conditions associated with the optimal classifier subject to such an adversary. Using the necessary conditions, we derive a geometric evolution equation which can be used to track the change in classification boundaries as varepsilon varies. This evolution equation may be described as an uncoupled system of differential equations in one dimension, or as a mean curvature type equation in higher dimension. In one dimension, and under mild assumptions on the data distribution, we rigorously prove that one can use the initial value problem starting from varepsilon=0, which is simply the Bayes classifier, in order to solve for the global minimizer of the adversarial problem for small values of varepsilon. In higher dimensions we provide a similar result, albeit conditional to the existence of regular solutions of the initial value problem. In the process of proving our main results we obtain a result of independent interest connecting the original adversarial problem with an optimal transport problem under no assumptions on whether classes are balanced or not. Numerical examples illustrating these ideas are also presented.
Scientific Algorithm Discovery by Augmenting AlphaEvolve with Deep Research
Large language models hold promise as scientific assistants, yet existing agents either rely solely on algorithm evolution or on deep research in isolation, both of which face critical limitations. Pure algorithm evolution, as in AlphaEvolve, depends only on the internal knowledge of LLMs and quickly plateaus in complex domains, while pure deep research proposes ideas without validation, resulting in unrealistic or unimplementable solutions. We present DeepEvolve, an agent that integrates deep research with algorithm evolution, uniting external knowledge retrieval, cross-file code editing, and systematic debugging under a feedback-driven iterative loop. Each iteration not only proposes new hypotheses but also refines, implements, and tests them, avoiding both shallow improvements and unproductive over-refinements. Across nine benchmarks in chemistry, mathematics, biology, materials, and patents, DeepEvolve consistently improves the initial algorithm, producing executable new algorithms with sustained gains. By bridging the gap between unguided evolution and research without grounding, DeepEvolve provides a reliable framework for advancing scientific algorithm discovery. Our code is available at https://github.com/liugangcode/deepevolve.
What type of inference is planning?
Multiple types of inference are available for probabilistic graphical models, e.g., marginal, maximum-a-posteriori, and even marginal maximum-a-posteriori. Which one do researchers mean when they talk about ``planning as inference''? There is no consistency in the literature, different types are used, and their ability to do planning is further entangled with specific approximations or additional constraints. In this work we use the variational framework to show that, just like all commonly used types of inference correspond to different weightings of the entropy terms in the variational problem, planning corresponds exactly to a different set of weights. This means that all the tricks of variational inference are readily applicable to planning. We develop an analogue of loopy belief propagation that allows us to perform approximate planning in factored-state Markov decisions processes without incurring intractability due to the exponentially large state space. The variational perspective shows that the previous types of inference for planning are only adequate in environments with low stochasticity, and allows us to characterize each type by its own merits, disentangling the type of inference from the additional approximations that its practical use requires. We validate these results empirically on synthetic MDPs and tasks posed in the International Planning Competition.
Learn to Follow: Decentralized Lifelong Multi-agent Pathfinding via Planning and Learning
Multi-agent Pathfinding (MAPF) problem generally asks to find a set of conflict-free paths for a set of agents confined to a graph and is typically solved in a centralized fashion. Conversely, in this work, we investigate the decentralized MAPF setting, when the central controller that posses all the information on the agents' locations and goals is absent and the agents have to sequientially decide the actions on their own without having access to a full state of the environment. We focus on the practically important lifelong variant of MAPF, which involves continuously assigning new goals to the agents upon arrival to the previous ones. To address this complex problem, we propose a method that integrates two complementary approaches: planning with heuristic search and reinforcement learning through policy optimization. Planning is utilized to construct and re-plan individual paths. We enhance our planning algorithm with a dedicated technique tailored to avoid congestion and increase the throughput of the system. We employ reinforcement learning to discover the collision avoidance policies that effectively guide the agents along the paths. The policy is implemented as a neural network and is effectively trained without any reward-shaping or external guidance. We evaluate our method on a wide range of setups comparing it to the state-of-the-art solvers. The results show that our method consistently outperforms the learnable competitors, showing higher throughput and better ability to generalize to the maps that were unseen at the training stage. Moreover our solver outperforms a rule-based one in terms of throughput and is an order of magnitude faster than a state-of-the-art search-based solver.
Cutting Slack: Quantum Optimization with Slack-Free Methods for Combinatorial Benchmarks
Constraint handling remains a key bottleneck in quantum combinatorial optimization. While slack-variable-based encodings are straightforward, they significantly increase qubit counts and circuit depth, challenging the scalability of quantum solvers. In this work, we investigate a suite of Lagrangian-based optimization techniques including dual ascent, bundle methods, cutting plane approaches, and augmented Lagrangian formulations for solving constrained combinatorial problems on quantum simulators and hardware. Our framework is applied to three representative NP-hard problems: the Travelling Salesman Problem (TSP), the Multi-Dimensional Knapsack Problem (MDKP), and the Maximum Independent Set (MIS). We demonstrate that MDKP and TSP, with their inequality-based or degree-constrained structures, allow for slack-free reformulations, leading to significant qubit savings without compromising performance. In contrast, MIS does not inherently benefit from slack elimination but still gains in feasibility and objective quality from principled Lagrangian updates. We benchmark these methods across classically hard instances, analyzing trade-offs in qubit usage, feasibility, and optimality gaps. Our results highlight the flexibility of Lagrangian formulations as a scalable alternative to naive QUBO penalization, even when qubit savings are not always achievable. This work provides practical insights for deploying constraint-aware quantum optimization pipelines, with applications in logistics, network design, and resource allocation.
An End-to-End Reinforcement Learning Approach for Job-Shop Scheduling Problems Based on Constraint Programming
Constraint Programming (CP) is a declarative programming paradigm that allows for modeling and solving combinatorial optimization problems, such as the Job-Shop Scheduling Problem (JSSP). While CP solvers manage to find optimal or near-optimal solutions for small instances, they do not scale well to large ones, i.e., they require long computation times or yield low-quality solutions. Therefore, real-world scheduling applications often resort to fast, handcrafted, priority-based dispatching heuristics to find a good initial solution and then refine it using optimization methods. This paper proposes a novel end-to-end approach to solving scheduling problems by means of CP and Reinforcement Learning (RL). In contrast to previous RL methods, tailored for a given problem by including procedural simulation algorithms, complex feature engineering, or handcrafted reward functions, our neural-network architecture and training algorithm merely require a generic CP encoding of some scheduling problem along with a set of small instances. Our approach leverages existing CP solvers to train an agent learning a Priority Dispatching Rule (PDR) that generalizes well to large instances, even from separate datasets. We evaluate our method on seven JSSP datasets from the literature, showing its ability to find higher-quality solutions for very large instances than obtained by static PDRs and by a CP solver within the same time limit.
Situationally-aware Path Planning Exploiting 3D Scene Graphs
3D Scene Graphs integrate both metric and semantic information, yet their structure remains underutilized for improving path planning efficiency and interpretability. In this work, we present S-Path, a situationally-aware path planner that leverages the metric-semantic structure of indoor 3D Scene Graphs to significantly enhance planning efficiency. S-Path follows a two-stage process: it first performs a search over a semantic graph derived from the scene graph to yield a human-understandable high-level path. This also identifies relevant regions for planning, which later allows the decomposition of the problem into smaller, independent subproblems that can be solved in parallel. We also introduce a replanning mechanism that, in the event of an infeasible path, reuses information from previously solved subproblems to update semantic heuristics and prioritize reuse to further improve the efficiency of future planning attempts. Extensive experiments on both real-world and simulated environments show that S-Path achieves average reductions of 5.7x in planning time while maintaining comparable path optimality to classical sampling-based planners and surpassing them in complex scenarios, making it an efficient and interpretable path planner for environments represented by indoor 3D Scene Graphs.
A hybrid deep-learning-metaheuristic framework for bi-level network design problems
This study proposes a hybrid deep-learning-metaheuristic framework with a bi-level architecture for road network design problems (NDPs). We train a graph neural network (GNN) to approximate the solution of the user equilibrium (UE) traffic assignment problem and use inferences made by the trained model to calculate fitness function evaluations of a genetic algorithm (GA) to approximate solutions for NDPs. Using three test networks, two NDP variants and an exact solver as benchmark, we show that on average, our proposed framework can provide solutions within 1.5% gap of the best results in less than 0.5% of the time used by the exact solution procedure. Our framework can be utilized within an expert system for infrastructure planning to determine the best infrastructure planning and management decisions under different scenarios. Given the flexibility of the framework, it can easily be adapted to many other decision problems that can be modeled as bi-level problems on graphs. Moreover, we foreseen interesting future research directions, thus we also put forward a brief research agenda for this topic. The key observation from our research that can shape future research is that the fitness function evaluation time using the inferences made by the GNN model was in the order of milliseconds, which points to an opportunity and a need for novel heuristics that 1) can cope well with noisy fitness function values provided by deep learning models, and 2) can use the significantly enlarged efficiency of the evaluation step to explore the search space effectively (rather than efficiently). This opens a new avenue for a modern class of metaheuristics that are crafted for use with AI-powered predictors.
Diffusion Models are Evolutionary Algorithms
In a convergence of machine learning and biology, we reveal that diffusion models are evolutionary algorithms. By considering evolution as a denoising process and reversed evolution as diffusion, we mathematically demonstrate that diffusion models inherently perform evolutionary algorithms, naturally encompassing selection, mutation, and reproductive isolation. Building on this equivalence, we propose the Diffusion Evolution method: an evolutionary algorithm utilizing iterative denoising -- as originally introduced in the context of diffusion models -- to heuristically refine solutions in parameter spaces. Unlike traditional approaches, Diffusion Evolution efficiently identifies multiple optimal solutions and outperforms prominent mainstream evolutionary algorithms. Furthermore, leveraging advanced concepts from diffusion models, namely latent space diffusion and accelerated sampling, we introduce Latent Space Diffusion Evolution, which finds solutions for evolutionary tasks in high-dimensional complex parameter space while significantly reducing computational steps. This parallel between diffusion and evolution not only bridges two different fields but also opens new avenues for mutual enhancement, raising questions about open-ended evolution and potentially utilizing non-Gaussian or discrete diffusion models in the context of Diffusion Evolution.
Optimizing NOTEARS Objectives via Topological Swaps
Recently, an intriguing class of non-convex optimization problems has emerged in the context of learning directed acyclic graphs (DAGs). These problems involve minimizing a given loss or score function, subject to a non-convex continuous constraint that penalizes the presence of cycles in a graph. In this work, we delve into the optimization challenges associated with this class of non-convex programs. To address these challenges, we propose a bi-level algorithm that leverages the non-convex constraint in a novel way. The outer level of the algorithm optimizes over topological orders by iteratively swapping pairs of nodes within the topological order of a DAG. A key innovation of our approach is the development of an effective method for generating a set of candidate swapping pairs for each iteration. At the inner level, given a topological order, we utilize off-the-shelf solvers that can handle linear constraints. The key advantage of our proposed algorithm is that it is guaranteed to find a local minimum or a KKT point under weaker conditions compared to previous work and finds solutions with lower scores. Extensive experiments demonstrate that our method outperforms state-of-the-art approaches in terms of achieving a better score. Additionally, our method can also be used as a post-processing algorithm to significantly improve the score of other algorithms. Code implementing the proposed method is available at https://github.com/duntrain/topo.
Diffusion Predictive Control with Constraints
Diffusion models have become popular for policy learning in robotics due to their ability to capture high-dimensional and multimodal distributions. However, diffusion policies are stochastic and typically trained offline, limiting their ability to handle unseen and dynamic conditions where novel constraints not represented in the training data must be satisfied. To overcome this limitation, we propose diffusion predictive control with constraints (DPCC), an algorithm for diffusion-based control with explicit state and action constraints that can deviate from those in the training data. DPCC incorporates model-based projections into the denoising process of a trained trajectory diffusion model and uses constraint tightening to account for model mismatch. This allows us to generate constraint-satisfying, dynamically feasible, and goal-reaching trajectories for predictive control. We show through simulations of a robot manipulator that DPCC outperforms existing methods in satisfying novel test-time constraints while maintaining performance on the learned control task.
Maximum Causal Entropy Inverse Constrained Reinforcement Learning
When deploying artificial agents in real-world environments where they interact with humans, it is crucial that their behavior is aligned with the values, social norms or other requirements of that environment. However, many environments have implicit constraints that are difficult to specify and transfer to a learning agent. To address this challenge, we propose a novel method that utilizes the principle of maximum causal entropy to learn constraints and an optimal policy that adheres to these constraints, using demonstrations of agents that abide by the constraints. We prove convergence in a tabular setting and provide an approximation which scales to complex environments. We evaluate the effectiveness of the learned policy by assessing the reward received and the number of constraint violations, and we evaluate the learned cost function based on its transferability to other agents. Our method has been shown to outperform state-of-the-art approaches across a variety of tasks and environments, and it is able to handle problems with stochastic dynamics and a continuous state-action space.
Evolution and The Knightian Blindspot of Machine Learning
This paper claims that machine learning (ML) largely overlooks an important facet of general intelligence: robustness to a qualitatively unknown future in an open world. Such robustness relates to Knightian uncertainty (KU) in economics, i.e. uncertainty that cannot be quantified, which is excluded from consideration in ML's key formalisms. This paper aims to identify this blind spot, argue its importance, and catalyze research into addressing it, which we believe is necessary to create truly robust open-world AI. To help illuminate the blind spot, we contrast one area of ML, reinforcement learning (RL), with the process of biological evolution. Despite staggering ongoing progress, RL still struggles in open-world situations, often failing under unforeseen situations. For example, the idea of zero-shot transferring a self-driving car policy trained only in the US to the UK currently seems exceedingly ambitious. In dramatic contrast, biological evolution routinely produces agents that thrive within an open world, sometimes even to situations that are remarkably out-of-distribution (e.g. invasive species; or humans, who do undertake such zero-shot international driving). Interestingly, evolution achieves such robustness without explicit theory, formalisms, or mathematical gradients. We explore the assumptions underlying RL's typical formalisms, showing how they limit RL's engagement with the unknown unknowns characteristic of an ever-changing complex world. Further, we identify mechanisms through which evolutionary processes foster robustness to novel and unpredictable challenges, and discuss potential pathways to algorithmically embody them. The conclusion is that the intriguing remaining fragility of ML may result from blind spots in its formalisms, and that significant gains may result from direct confrontation with the challenge of KU.
Solving Deep Reinforcement Learning Benchmarks with Linear Policy Networks
Although Deep Reinforcement Learning (DRL) methods can learn effective policies for challenging problems such as Atari games and robotics tasks, algorithms are complex and training times are often long. This study investigates how evolution strategies (ES) perform compared to gradient-based deep reinforcement learning methods. We use ES to optimize the weights of a neural network via neuroevolution, performing direct policy search. We benchmark both regular networks and policy networks consisting of a single linear layer from observations to actions; for three classical ES methods and for three gradient-based methods such as PPO. Our results reveal that ES can find effective linear policies for many RL benchmark tasks, in contrast to DRL methods that can only find successful policies using much larger networks, suggesting that current benchmarks are easier to solve than previously assumed. Interestingly, also for higher complexity tasks, ES achieves results comparable to gradient-based DRL algorithms. Furthermore, we find that by directly accessing the memory state of the game, ES are able to find successful policies in Atari, outperforming DQN. While gradient-based methods have dominated the field in recent years, ES offers an alternative that is easy to implement, parallelize, understand, and tune.
ReEvo: Large Language Models as Hyper-Heuristics with Reflective Evolution
The omnipresence of NP-hard combinatorial optimization problems (COPs) compels domain experts to engage in trial-and-error heuristic design. The long-standing endeavor of design automation has gained new momentum with the rise of large language models (LLMs). This paper introduces Language Hyper-Heuristics (LHHs), an emerging variant of Hyper-Heuristics that leverages LLMs for heuristic generation, featuring minimal manual intervention and open-ended heuristic spaces. To empower LHHs, we present Reflective Evolution (ReEvo), a novel integration of evolutionary search for efficiently exploring the heuristic space, and LLM reflections to provide verbal gradients within the space. Across five heterogeneous algorithmic types, six different COPs, and both white-box and black-box views of COPs, ReEvo yields state-of-the-art and competitive meta-heuristics, evolutionary algorithms, heuristics, and neural solvers, while being more sample-efficient than prior LHHs.
Algorithm Discovery With LLMs: Evolutionary Search Meets Reinforcement Learning
Discovering efficient algorithms for solving complex problems has been an outstanding challenge in mathematics and computer science, requiring substantial human expertise over the years. Recent advancements in evolutionary search with large language models (LLMs) have shown promise in accelerating the discovery of algorithms across various domains, particularly in mathematics and optimization. However, existing approaches treat the LLM as a static generator, missing the opportunity to update the model with the signal obtained from evolutionary exploration. In this work, we propose to augment LLM-based evolutionary search by continuously refining the search operator - the LLM - through reinforcement learning (RL) fine-tuning. Our method leverages evolutionary search as an exploration strategy to discover improved algorithms, while RL optimizes the LLM policy based on these discoveries. Our experiments on three combinatorial optimization tasks - bin packing, traveling salesman, and the flatpack problem - show that combining RL and evolutionary search improves discovery efficiency of improved algorithms, showcasing the potential of RL-enhanced evolutionary strategies to assist computer scientists and mathematicians for more efficient algorithm design.
Robot Conga: A Leader-Follower Walking Approach to Sequential Path Following in Multi-Agent Systems
Coordinated path following in multi-agent systems is a key challenge in robotics, with applications in automated logistics, surveillance, and collaborative exploration. Traditional formation control techniques often rely on time-parameterized trajectories and path integrals, which can result in synchronization issues and rigid behavior. In this work, we address the problem of sequential path following, where agents maintain fixed spatial separation along a common trajectory, guided by a leader under centralized control. We introduce Robot Conga, a leader-follower control strategy that updates each agent's desired state based on the leader's spatial displacement rather than time, assuming access to a global position reference, an assumption valid in indoor environments equipped with motion capture, vision-based tracking, or UWB localization systems. The algorithm was validated in simulation using both TurtleBot3 and quadruped (Laikago) robots. Results demonstrate accurate trajectory tracking, stable inter-agent spacing, and fast convergence, with all agents aligning within 250 time steps (approx. 0.25 seconds) in the quadruped case, and almost instantaneously in the TurtleBot3 implementation.
Shortest Edit Path Crossover: A Theory-driven Solution to the Permutation Problem in Evolutionary Neural Architecture Search
Population-based search has recently emerged as a possible alternative to Reinforcement Learning (RL) for black-box neural architecture search (NAS). It performs well in practice even though it is not theoretically well understood. In particular, whereas traditional population-based search methods such as evolutionary algorithms (EAs) draw much power from crossover operations, it is difficult to take advantage of them in NAS. The main obstacle is believed to be the permutation problem: The mapping between genotype and phenotype in traditional graph representations is many-to-one, leading to a disruptive effect of standard crossover. This paper presents the first theoretical analysis of the behaviors of mutation, crossover and RL in black-box NAS, and proposes a new crossover operator based on the shortest edit path (SEP) in graph space. The SEP crossover is shown theoretically to overcome the permutation problem, and as a result, have a better expected improvement compared to mutation, standard crossover and RL. Further, it empirically outperform these other methods on state-of-the-art NAS benchmarks. The SEP crossover therefore allows taking full advantage of population-based search in NAS, and the underlying theory can serve as a foundation for deeper understanding of black-box NAS methods in general.
Learning Iterative Reasoning through Energy Diffusion
We introduce iterative reasoning through energy diffusion (IRED), a novel framework for learning to reason for a variety of tasks by formulating reasoning and decision-making problems with energy-based optimization. IRED learns energy functions to represent the constraints between input conditions and desired outputs. After training, IRED adapts the number of optimization steps during inference based on problem difficulty, enabling it to solve problems outside its training distribution -- such as more complex Sudoku puzzles, matrix completion with large value magnitudes, and pathfinding in larger graphs. Key to our method's success is two novel techniques: learning a sequence of annealed energy landscapes for easier inference and a combination of score function and energy landscape supervision for faster and more stable training. Our experiments show that IRED outperforms existing methods in continuous-space reasoning, discrete-space reasoning, and planning tasks, particularly in more challenging scenarios. Code and visualizations at https://energy-based-model.github.io/ired/
Constraint-Free Structure Learning with Smooth Acyclic Orientations
The structure learning problem consists of fitting data generated by a Directed Acyclic Graph (DAG) to correctly reconstruct its arcs. In this context, differentiable approaches constrain or regularize the optimization problem using a continuous relaxation of the acyclicity property. The computational cost of evaluating graph acyclicity is cubic on the number of nodes and significantly affects scalability. In this paper we introduce COSMO, a constraint-free continuous optimization scheme for acyclic structure learning. At the core of our method, we define a differentiable approximation of an orientation matrix parameterized by a single priority vector. Differently from previous work, our parameterization fits a smooth orientation matrix and the resulting acyclic adjacency matrix without evaluating acyclicity at any step. Despite the absence of explicit constraints, we prove that COSMO always converges to an acyclic solution. In addition to being asymptotically faster, our empirical analysis highlights how COSMO performance on graph reconstruction compares favorably with competing structure learning methods.
PlanGEN: A Multi-Agent Framework for Generating Planning and Reasoning Trajectories for Complex Problem Solving
Recent agent frameworks and inference-time algorithms often struggle with complex planning problems due to limitations in verifying generated plans or reasoning and varying complexity of instances within a single task. Many existing methods for these tasks either perform task-level verification without considering constraints or apply inference-time algorithms without adapting to instance-level complexity. To address these limitations, we propose PlanGEN, a model-agnostic and easily scalable agent framework with three key components: constraint, verification, and selection agents. Specifically, our approach proposes constraint-guided iterative verification to enhance performance of inference-time algorithms--Best of N, Tree-of-Thought, and REBASE. In PlanGEN framework, the selection agent optimizes algorithm choice based on instance complexity, ensuring better adaptability to complex planning problems. Experimental results demonstrate significant improvements over the strongest baseline across multiple benchmarks, achieving state-of-the-art results on NATURAL PLAN (sim8%uparrow), OlympiadBench (sim4%uparrow), DocFinQA (sim7%uparrow), and GPQA (sim1%uparrow). Our key finding highlights that constraint-guided iterative verification improves inference-time algorithms, and adaptive selection further boosts performance on complex planning and reasoning problems.
A Comprehensive Survey of Self-Evolving AI Agents: A New Paradigm Bridging Foundation Models and Lifelong Agentic Systems
Recent advances in large language models have sparked growing interest in AI agents capable of solving complex, real-world tasks. However, most existing agent systems rely on manually crafted configurations that remain static after deployment, limiting their ability to adapt to dynamic and evolving environments. To this end, recent research has explored agent evolution techniques that aim to automatically enhance agent systems based on interaction data and environmental feedback. This emerging direction lays the foundation for self-evolving AI agents, which bridge the static capabilities of foundation models with the continuous adaptability required by lifelong agentic systems. In this survey, we provide a comprehensive review of existing techniques for self-evolving agentic systems. Specifically, we first introduce a unified conceptual framework that abstracts the feedback loop underlying the design of self-evolving agentic systems. The framework highlights four key components: System Inputs, Agent System, Environment, and Optimisers, serving as a foundation for understanding and comparing different strategies. Based on this framework, we systematically review a wide range of self-evolving techniques that target different components of the agent system. We also investigate domain-specific evolution strategies developed for specialised fields such as biomedicine, programming, and finance, where optimisation objectives are tightly coupled with domain constraints. In addition, we provide a dedicated discussion on the evaluation, safety, and ethical considerations for self-evolving agentic systems, which are critical to ensuring their effectiveness and reliability. This survey aims to provide researchers and practitioners with a systematic understanding of self-evolving AI agents, laying the foundation for the development of more adaptive, autonomous, and lifelong agentic systems.
Home Run: Finding Your Way Home by Imagining Trajectories
When studying unconstrained behaviour and allowing mice to leave their cage to navigate a complex labyrinth, the mice exhibit foraging behaviour in the labyrinth searching for rewards, returning to their home cage now and then, e.g. to drink. Surprisingly, when executing such a ``home run'', the mice do not follow the exact reverse path, in fact, the entry path and home path have very little overlap. Recent work proposed a hierarchical active inference model for navigation, where the low level model makes inferences about hidden states and poses that explain sensory inputs, whereas the high level model makes inferences about moving between locations, effectively building a map of the environment. However, using this ``map'' for planning, only allows the agent to find trajectories that it previously explored, far from the observed mice's behaviour. In this paper, we explore ways of incorporating before-unvisited paths in the planning algorithm, by using the low level generative model to imagine potential, yet undiscovered paths. We demonstrate a proof of concept in a grid-world environment, showing how an agent can accurately predict a new, shorter path in the map leading to its starting point, using a generative model learnt from pixel-based observations.
Conditions and Assumptions for Constraint-based Causal Structure Learning
We formalize constraint-based structure learning of the "true" causal graph from observed data when unobserved variables are also existent. We provide conditions for a "natural" family of constraint-based structure-learning algorithms that output graphs that are Markov equivalent to the causal graph. Under the faithfulness assumption, this natural family contains all exact structure-learning algorithms. We also provide a set of assumptions, under which any natural structure-learning algorithm outputs Markov equivalent graphs to the causal graph. These assumptions can be thought of as a relaxation of faithfulness, and most of them can be directly tested from (the underlying distribution) of the data, particularly when one focuses on structural causal models. We specialize the definitions and results for structural causal models.
Chance-Constrained Gaussian Mixture Steering to a Terminal Gaussian Distribution
We address the problem of finite-horizon control of a discrete-time linear system, where the initial state distribution follows a Gaussian mixture model, the terminal state must follow a specified Gaussian distribution, and the state and control inputs must obey chance constraints. We show that, throughout the time horizon, the state and control distributions are fully characterized by Gaussian mixtures. We then formulate the cost, distributional terminal constraint, and affine/2-norm chance constraints on the state and control, as convex functions of the decision variables. This is leveraged to formulate the chance-constrained path planning problem as a single convex optimization problem. A numerical example demonstrates the effectiveness of the proposed method.
PFGM++: Unlocking the Potential of Physics-Inspired Generative Models
We introduce a new family of physics-inspired generative models termed PFGM++ that unifies diffusion models and Poisson Flow Generative Models (PFGM). These models realize generative trajectories for N dimensional data by embedding paths in N{+}D dimensional space while still controlling the progression with a simple scalar norm of the D additional variables. The new models reduce to PFGM when D{=}1 and to diffusion models when D{to}infty. The flexibility of choosing D allows us to trade off robustness against rigidity as increasing D results in more concentrated coupling between the data and the additional variable norms. We dispense with the biased large batch field targets used in PFGM and instead provide an unbiased perturbation-based objective similar to diffusion models. To explore different choices of D, we provide a direct alignment method for transferring well-tuned hyperparameters from diffusion models (D{to} infty) to any finite D values. Our experiments show that models with finite D can be superior to previous state-of-the-art diffusion models on CIFAR-10/FFHQ 64{times}64 datasets, with FID scores of 1.91/2.43 when D{=}2048/128. In class-conditional setting, D{=}2048 yields current state-of-the-art FID of 1.74 on CIFAR-10. In addition, we demonstrate that models with smaller D exhibit improved robustness against modeling errors. Code is available at https://github.com/Newbeeer/pfgmpp
Projected Coupled Diffusion for Test-Time Constrained Joint Generation
Modifications to test-time sampling have emerged as an important extension to diffusion algorithms, with the goal of biasing the generative process to achieve a given objective without having to retrain the entire diffusion model. However, generating jointly correlated samples from multiple pre-trained diffusion models while simultaneously enforcing task-specific constraints without costly retraining has remained challenging. To this end, we propose Projected Coupled Diffusion (PCD), a novel test-time framework for constrained joint generation. PCD introduces a coupled guidance term into the generative dynamics to encourage coordination between diffusion models and incorporates a projection step at each diffusion step to enforce hard constraints. Empirically, we demonstrate the effectiveness of PCD in application scenarios of image-pair generation, object manipulation, and multi-robot motion planning. Our results show improved coupling effects and guaranteed constraint satisfaction without incurring excessive computational costs.
Traffic Flow Optimisation for Lifelong Multi-Agent Path Finding
Multi-Agent Path Finding (MAPF) is a fundamental problem in robotics that asks us to compute collision-free paths for a team of agents, all moving across a shared map. Although many works appear on this topic, all current algorithms struggle as the number of agents grows. The principal reason is that existing approaches typically plan free-flow optimal paths, which creates congestion. To tackle this issue, we propose a new approach for MAPF where agents are guided to their destination by following congestion-avoiding paths. We evaluate the idea in two large-scale settings: one-shot MAPF, where each agent has a single destination, and lifelong MAPF, where agents are continuously assigned new destinations. Empirically, we report large improvements in solution quality for one-short MAPF and in overall throughput for lifelong MAPF.
One Life to Learn: Inferring Symbolic World Models for Stochastic Environments from Unguided Exploration
Symbolic world modeling requires inferring and representing an environment's transitional dynamics as an executable program. Prior work has focused on largely deterministic environments with abundant interaction data, simple mechanics, and human guidance. We address a more realistic and challenging setting, learning in a complex, stochastic environment where the agent has only "one life" to explore a hostile environment without human guidance. We introduce OneLife, a framework that models world dynamics through conditionally-activated programmatic laws within a probabilistic programming framework. Each law operates through a precondition-effect structure, activating in relevant world states. This creates a dynamic computation graph that routes inference and optimization only through relevant laws, avoiding scaling challenges when all laws contribute to predictions about a complex, hierarchical state, and enabling the learning of stochastic dynamics even with sparse rule activation. To evaluate our approach under these demanding constraints, we introduce a new evaluation protocol that measures (a) state ranking, the ability to distinguish plausible future states from implausible ones, and (b) state fidelity, the ability to generate future states that closely resemble reality. We develop and evaluate our framework on Crafter-OO, our reimplementation of the Crafter environment that exposes a structured, object-oriented symbolic state and a pure transition function that operates on that state alone. OneLife can successfully learn key environment dynamics from minimal, unguided interaction, outperforming a strong baseline on 16 out of 23 scenarios tested. We also test OneLife's planning ability, with simulated rollouts successfully identifying superior strategies. Our work establishes a foundation for autonomously constructing programmatic world models of unknown, complex environments.
Discovering Temporally-Aware Reinforcement Learning Algorithms
Recent advancements in meta-learning have enabled the automatic discovery of novel reinforcement learning algorithms parameterized by surrogate objective functions. To improve upon manually designed algorithms, the parameterization of this learned objective function must be expressive enough to represent novel principles of learning (instead of merely recovering already established ones) while still generalizing to a wide range of settings outside of its meta-training distribution. However, existing methods focus on discovering objective functions that, like many widely used objective functions in reinforcement learning, do not take into account the total number of steps allowed for training, or "training horizon". In contrast, humans use a plethora of different learning objectives across the course of acquiring a new ability. For instance, students may alter their studying techniques based on the proximity to exam deadlines and their self-assessed capabilities. This paper contends that ignoring the optimization time horizon significantly restricts the expressive potential of discovered learning algorithms. We propose a simple augmentation to two existing objective discovery approaches that allows the discovered algorithm to dynamically update its objective function throughout the agent's training procedure, resulting in expressive schedules and increased generalization across different training horizons. In the process, we find that commonly used meta-gradient approaches fail to discover such adaptive objective functions while evolution strategies discover highly dynamic learning rules. We demonstrate the effectiveness of our approach on a wide range of tasks and analyze the resulting learned algorithms, which we find effectively balance exploration and exploitation by modifying the structure of their learning rules throughout the agent's lifetime.
Towards credible visual model interpretation with path attribution
Originally inspired by game-theory, path attribution framework stands out among the post-hoc model interpretation tools due to its axiomatic nature. However, recent developments show that this framework can still suffer from counter-intuitive results. Moreover, specifically for deep visual models, the existing path-based methods also fall short on conforming to the original intuitions that are the basis of the claimed axiomatic properties of this framework. We address these problems with a systematic investigation, and pinpoint the conditions in which the counter-intuitive results can be avoided for deep visual model interpretation with the path attribution strategy. We also devise a scheme to preclude the conditions in which visual model interpretation can invalidate the axiomatic properties of path attribution. These insights are combined into a method that enables reliable visual model interpretation. Our findings are establish empirically with multiple datasets, models and evaluation metrics. Extensive experiments show a consistent performance gain of our method over the baselines.
From Temporal to Contemporaneous Iterative Causal Discovery in the Presence of Latent Confounders
We present a constraint-based algorithm for learning causal structures from observational time-series data, in the presence of latent confounders. We assume a discrete-time, stationary structural vector autoregressive process, with both temporal and contemporaneous causal relations. One may ask if temporal and contemporaneous relations should be treated differently. The presented algorithm gradually refines a causal graph by learning long-term temporal relations before short-term ones, where contemporaneous relations are learned last. This ordering of causal relations to be learnt leads to a reduction in the required number of statistical tests. We validate this reduction empirically and demonstrate that it leads to higher accuracy for synthetic data and more plausible causal graphs for real-world data compared to state-of-the-art algorithms.
Adaptive Graph Shrinking for Quantum Optimization of Constrained Combinatorial Problems
A range of quantum algorithms, especially those leveraging variational parameterization and circuit-based optimization, are being studied as alternatives for solving classically intractable combinatorial optimization problems (COPs). However, their applicability is limited by hardware constraints, including shallow circuit depth, limited qubit counts, and noise. To mitigate these issues, we propose a hybrid classical--quantum framework based on graph shrinking to reduce the number of variables and constraints in QUBO formulations of COPs, while preserving problem structure. Our approach introduces three key ideas: (i) constraint-aware shrinking that prevents merges that will likely violate problem-specific feasibility constraints, (ii) a verification-and-repair pipeline to correct infeasible solutions post-optimization, and (iii) adaptive strategies for recalculating correlations and controlling the graph shrinking process. We apply our approach to three standard benchmark problems: Multidimensional Knapsack (MDKP), Maximum Independent Set (MIS), and the Quadratic Assignment Problem (QAP). Empirical results show that our approach improves solution feasibility, reduces repair complexity, and enhances quantum optimization quality on hardware-limited instances. These findings demonstrate a scalable pathway for applying near-term quantum algorithms to classically challenging constrained optimization problems.
Motion Planning by Learning the Solution Manifold in Trajectory Optimization
The objective function used in trajectory optimization is often non-convex and can have an infinite set of local optima. In such cases, there are diverse solutions to perform a given task. Although there are a few methods to find multiple solutions for motion planning, they are limited to generating a finite set of solutions. To address this issue, we presents an optimization method that learns an infinite set of solutions in trajectory optimization. In our framework, diverse solutions are obtained by learning latent representations of solutions. Our approach can be interpreted as training a deep generative model of collision-free trajectories for motion planning. The experimental results indicate that the trained model represents an infinite set of homotopic solutions for motion planning problems.
Sparse Multilevel Roadmaps for High-Dimensional Robot Motion Planning
Sparse roadmaps are important to compactly represent state spaces, to determine problems to be infeasible and to terminate in finite time. However, sparse roadmaps do not scale well to high-dimensional planning problems. In prior work, we showed improved planning performance on high-dimensional planning problems by using multilevel abstractions to simplify state spaces. In this work, we generalize sparse roadmaps to multilevel abstractions by developing a novel algorithm, the sparse multilevel roadmap planner (SMLR). To this end, we represent multilevel abstractions using the language of fiber bundles, and generalize sparse roadmap planners by using the concept of restriction sampling with visibility regions. We argue SMLR to be probabilistically complete and asymptotically near-optimal by inheritance from sparse roadmap planners. In evaluations, we outperform sparse roadmap planners on challenging planning problems, in particular problems which are high-dimensional, contain narrow passages or are infeasible. We thereby demonstrate sparse multilevel roadmaps as an efficient tool for feasible and infeasible high-dimensional planning problems.
ReLOAD: Reinforcement Learning with Optimistic Ascent-Descent for Last-Iterate Convergence in Constrained MDPs
In recent years, Reinforcement Learning (RL) has been applied to real-world problems with increasing success. Such applications often require to put constraints on the agent's behavior. Existing algorithms for constrained RL (CRL) rely on gradient descent-ascent, but this approach comes with a caveat. While these algorithms are guaranteed to converge on average, they do not guarantee last-iterate convergence, i.e., the current policy of the agent may never converge to the optimal solution. In practice, it is often observed that the policy alternates between satisfying the constraints and maximizing the reward, rarely accomplishing both objectives simultaneously. Here, we address this problem by introducing Reinforcement Learning with Optimistic Ascent-Descent (ReLOAD), a principled CRL method with guaranteed last-iterate convergence. We demonstrate its empirical effectiveness on a wide variety of CRL problems including discrete MDPs and continuous control. In the process we establish a benchmark of challenging CRL problems.
EvolProver: Advancing Automated Theorem Proving by Evolving Formalized Problems via Symmetry and Difficulty
Large Language Models (LLMs) for formal theorem proving have shown significant promise, yet they often lack generalizability and are fragile to even minor transformations of problem statements. To address this limitation, we introduce a novel data augmentation pipeline designed to enhance model robustness from two perspectives: symmetry and difficulty. From the symmetry perspective, we propose two complementary methods: EvolAST, an Abstract Syntax Tree (AST) based approach that targets syntactic symmetry to generate semantically equivalent problem variants, and EvolDomain, which leverages LLMs to address semantic symmetry by translating theorems across mathematical domains. From the difficulty perspective, we propose EvolDifficulty, which uses carefully designed evolutionary instructions to guide LLMs in generating new theorems with a wider range of difficulty. We then use the evolved data to train EvolProver, a 7B-parameter non-reasoning theorem prover. EvolProver establishes a new state-of-the-art (SOTA) on FormalMATH-Lite with a 53.8% pass@32 rate, surpassing all models of comparable size, including reasoning-based models. It also sets new SOTA records for non-reasoning models on MiniF2F-Test (69.8% pass@32), Ineq-Comp-Seed (52.2% pass@32), and Ineq-Comp-Transformed (34.0% pass@32). Ablation studies further confirm our data augmentation pipeline's effectiveness across multiple benchmarks.
Novelty Search makes Evolvability Inevitable
Evolvability is an important feature that impacts the ability of evolutionary processes to find interesting novel solutions and to deal with changing conditions of the problem to solve. The estimation of evolvability is not straightforward and is generally too expensive to be directly used as selective pressure in the evolutionary process. Indirectly promoting evolvability as a side effect of other easier and faster to compute selection pressures would thus be advantageous. In an unbounded behavior space, it has already been shown that evolvable individuals naturally appear and tend to be selected as they are more likely to invade empty behavior niches. Evolvability is thus a natural byproduct of the search in this context. However, practical agents and environments often impose limits on the reach-able behavior space. How do these boundaries impact evolvability? In this context, can evolvability still be promoted without explicitly rewarding it? We show that Novelty Search implicitly creates a pressure for high evolvability even in bounded behavior spaces, and explore the reasons for such a behavior. More precisely we show that, throughout the search, the dynamic evaluation of novelty rewards individuals which are very mobile in the behavior space, which in turn promotes evolvability.
C-MORL: Multi-Objective Reinforcement Learning through Efficient Discovery of Pareto Front
Multi-objective reinforcement learning (MORL) excels at handling rapidly changing preferences in tasks that involve multiple criteria, even for unseen preferences. However, previous dominating MORL methods typically generate a fixed policy set or preference-conditioned policy through multiple training iterations exclusively for sampled preference vectors, and cannot ensure the efficient discovery of the Pareto front. Furthermore, integrating preferences into the input of policy or value functions presents scalability challenges, in particular as the dimension of the state and preference space grow, which can complicate the learning process and hinder the algorithm's performance on more complex tasks. To address these issues, we propose a two-stage Pareto front discovery algorithm called Constrained MORL (C-MORL), which serves as a seamless bridge between constrained policy optimization and MORL. Concretely, a set of policies is trained in parallel in the initialization stage, with each optimized towards its individual preference over the multiple objectives. Then, to fill the remaining vacancies in the Pareto front, the constrained optimization steps are employed to maximize one objective while constraining the other objectives to exceed a predefined threshold. Empirically, compared to recent advancements in MORL methods, our algorithm achieves more consistent and superior performances in terms of hypervolume, expected utility, and sparsity on both discrete and continuous control tasks, especially with numerous objectives (up to nine objectives in our experiments).
Autonomous Code Evolution Meets NP-Completeness
Large language models (LLMs) have recently shown strong coding abilities, enabling not only static code generation but also iterative code self-evolving through agentic frameworks. Recently, AlphaEvolve novikov2025alphaevolve demonstrated that LLM-based coding agents can autonomously improve algorithms and surpass human experts, with scopes limited to isolated kernels spanning hundreds of lines of code. Inspired by AlphaEvolve, we present SATLUTION, the first framework to extend LLM-based code evolution to the full repository scale, encompassing hundreds of files and tens of thousands of lines of C/C++ code. Targeting Boolean Satisfiability (SAT), the canonical NP-complete problem and a cornerstone of both theory and applications. SATLUTION orchestrates LLM agents to directly evolve solver repositories under strict correctness guarantees and distributed runtime feedback, while simultaneously self-evolving its own evolution policies and rules. Starting from SAT Competition 2024 codebases and benchmark, SATLUTION evolved solvers that decisively outperformed the human-designed winners of the SAT Competition 2025, and also surpassed both 2024 and 2025 champions on the 2024 benchmarks.
Algorithm Evolution Using Large Language Model
Optimization can be found in many real-life applications. Designing an effective algorithm for a specific optimization problem typically requires a tedious amount of effort from human experts with domain knowledge and algorithm design skills. In this paper, we propose a novel approach called Algorithm Evolution using Large Language Model (AEL). It utilizes a large language model (LLM) to automatically generate optimization algorithms via an evolutionary framework. AEL does algorithm-level evolution without model training. Human effort and requirements for domain knowledge can be significantly reduced. We take constructive methods for the salesman traveling problem as a test example, we show that the constructive algorithm obtained by AEL outperforms simple hand-crafted and LLM-generated heuristics. Compared with other domain deep learning model-based algorithms, these methods exhibit excellent scalability across different problem sizes. AEL is also very different from previous attempts that utilize LLMs as search operators in algorithms.
ReviBranch: Deep Reinforcement Learning for Branch-and-Bound with Revived Trajectories
The Branch-and-bound (B&B) algorithm is the main solver for Mixed Integer Linear Programs (MILPs), where the selection of branching variable is essential to computational efficiency. However, traditional heuristics for branching often fail to generalize across heterogeneous problem instances, while existing learning-based methods such as imitation learning (IL) suffers from dependence on expert demonstration quality, and reinforcement learning (RL) struggles with limitations in sparse rewards and dynamic state representation challenges. To address these issues, we propose ReviBranch, a novel deep RL framework that constructs revived trajectories by reviving explicit historical correspondences between branching decisions and their corresponding graph states along search-tree paths. During training, ReviBranch enables agents to learn from complete structural evolution and temporal dependencies within the branching process. Additionally, we introduce an importance-weighted reward redistribution mechanism that transforms sparse terminal rewards into dense stepwise feedback, addressing the sparse reward challenge. Extensive experiments on different MILP benchmarks demonstrate that ReviBranch outperforms state-of-the-art RL methods, reducing B&B nodes by 4.0% and LP iterations by 2.2% on large-scale instances. The results highlight the robustness and generalizability of ReviBranch across heterogeneous MILP problem classes.
Aligning Optimization Trajectories with Diffusion Models for Constrained Design Generation
Generative models have had a profound impact on vision and language, paving the way for a new era of multimodal generative applications. While these successes have inspired researchers to explore using generative models in science and engineering to accelerate the design process and reduce the reliance on iterative optimization, challenges remain. Specifically, engineering optimization methods based on physics still outperform generative models when dealing with constrained environments where data is scarce and precision is paramount. To address these challenges, we introduce Diffusion Optimization Models (DOM) and Trajectory Alignment (TA), a learning framework that demonstrates the efficacy of aligning the sampling trajectory of diffusion models with the optimization trajectory derived from traditional physics-based methods. This alignment ensures that the sampling process remains grounded in the underlying physical principles. Our method allows for generating feasible and high-performance designs in as few as two steps without the need for expensive preprocessing, external surrogate models, or additional labeled data. We apply our framework to structural topology optimization, a fundamental problem in mechanical design, evaluating its performance on in- and out-of-distribution configurations. Our results demonstrate that TA outperforms state-of-the-art deep generative models on in-distribution configurations and halves the inference computational cost. When coupled with a few steps of optimization, it also improves manufacturability for out-of-distribution conditions. By significantly improving performance and inference efficiency, DOM enables us to generate high-quality designs in just a few steps and guide them toward regions of high performance and manufacturability, paving the way for the widespread application of generative models in large-scale data-driven design.
QUBE: Enhancing Automatic Heuristic Design via Quality-Uncertainty Balanced Evolution
Solving NP-hard problems traditionally relies on heuristics, yet manually designing effective heuristics for complex problems remains a significant challenge. While recent advancements like FunSearch have shown that large language models (LLMs) can be integrated into evolutionary algorithms (EAs) for heuristic design, their potential is hindered by limitations in balancing exploitation and exploration. We introduce Quality-Uncertainty Balanced Evolution (QUBE), a novel approach that enhances LLM+EA methods by redefining the priority criterion within the FunSearch framework. QUBE employs the Quality-Uncertainty Trade-off Criterion (QUTC), based on our proposed Uncertainty-Inclusive Quality metric, to evaluate and guide the evolutionary process. Through extensive experiments on challenging NP-complete problems, QUBE demonstrates significant performance improvements over FunSearch and baseline methods. Our code are available at https://github.com/zzjchen/QUBE\_code.
DYNOTEARS: Structure Learning from Time-Series Data
We revisit the structure learning problem for dynamic Bayesian networks and propose a method that simultaneously estimates contemporaneous (intra-slice) and time-lagged (inter-slice) relationships between variables in a time-series. Our approach is score-based, and revolves around minimizing a penalized loss subject to an acyclicity constraint. To solve this problem, we leverage a recent algebraic result characterizing the acyclicity constraint as a smooth equality constraint. The resulting algorithm, which we call DYNOTEARS, outperforms other methods on simulated data, especially in high-dimensions as the number of variables increases. We also apply this algorithm on real datasets from two different domains, finance and molecular biology, and analyze the resulting output. Compared to state-of-the-art methods for learning dynamic Bayesian networks, our method is both scalable and accurate on real data. The simple formulation and competitive performance of our method make it suitable for a variety of problems where one seeks to learn connections between variables across time.
Deep Neuroevolution: Genetic Algorithms Are a Competitive Alternative for Training Deep Neural Networks for Reinforcement Learning
Deep artificial neural networks (DNNs) are typically trained via gradient-based learning algorithms, namely backpropagation. Evolution strategies (ES) can rival backprop-based algorithms such as Q-learning and policy gradients on challenging deep reinforcement learning (RL) problems. However, ES can be considered a gradient-based algorithm because it performs stochastic gradient descent via an operation similar to a finite-difference approximation of the gradient. That raises the question of whether non-gradient-based evolutionary algorithms can work at DNN scales. Here we demonstrate they can: we evolve the weights of a DNN with a simple, gradient-free, population-based genetic algorithm (GA) and it performs well on hard deep RL problems, including Atari and humanoid locomotion. The Deep GA successfully evolves networks with over four million free parameters, the largest neural networks ever evolved with a traditional evolutionary algorithm. These results (1) expand our sense of the scale at which GAs can operate, (2) suggest intriguingly that in some cases following the gradient is not the best choice for optimizing performance, and (3) make immediately available the multitude of neuroevolution techniques that improve performance. We demonstrate the latter by showing that combining DNNs with novelty search, which encourages exploration on tasks with deceptive or sparse reward functions, can solve a high-dimensional problem on which reward-maximizing algorithms (e.g.\ DQN, A3C, ES, and the GA) fail. Additionally, the Deep GA is faster than ES, A3C, and DQN (it can train Atari in {raise.17ex\scriptstyle\sim}4 hours on one desktop or {raise.17ex\scriptstyle\sim}1 hour distributed on 720 cores), and enables a state-of-the-art, up to 10,000-fold compact encoding technique.
Optimistic Planning by Regularized Dynamic Programming
We propose a new method for optimistic planning in infinite-horizon discounted Markov decision processes based on the idea of adding regularization to the updates of an otherwise standard approximate value iteration procedure. This technique allows us to avoid contraction and monotonicity arguments typically required by existing analyses of approximate dynamic programming methods, and in particular to use approximate transition functions estimated via least-squares procedures in MDPs with linear function approximation. We use our method to recover known guarantees in tabular MDPs and to provide a computationally efficient algorithm for learning near-optimal policies in discounted linear mixture MDPs from a single stream of experience, and show it achieves near-optimal statistical guarantees.
Bridging Evolutionary Algorithms and Reinforcement Learning: A Comprehensive Survey on Hybrid Algorithms
Evolutionary Reinforcement Learning (ERL), which integrates Evolutionary Algorithms (EAs) and Reinforcement Learning (RL) for optimization, has demonstrated remarkable performance advancements. By fusing both approaches, ERL has emerged as a promising research direction. This survey offers a comprehensive overview of the diverse research branches in ERL. Specifically, we systematically summarize recent advancements in related algorithms and identify three primary research directions: EA-assisted Optimization of RL, RL-assisted Optimization of EA, and synergistic optimization of EA and RL. Following that, we conduct an in-depth analysis of each research direction, organizing multiple research branches. We elucidate the problems that each branch aims to tackle and how the integration of EAs and RL addresses these challenges. In conclusion, we discuss potential challenges and prospective future research directions across various research directions. To facilitate researchers in delving into ERL, we organize the algorithms and codes involved on https://github.com/yeshenpy/Awesome-Evolutionary-Reinforcement-Learning.
Learning H-Infinity Locomotion Control
Stable locomotion in precipitous environments is an essential capability of quadruped robots, demanding the ability to resist various external disturbances. However, recent learning-based policies only use basic domain randomization to improve the robustness of learned policies, which cannot guarantee that the robot has adequate disturbance resistance capabilities. In this paper, we propose to model the learning process as an adversarial interaction between the actor and a newly introduced disturber and ensure their optimization with H_{infty} constraint. In contrast to the actor that maximizes the discounted overall reward, the disturber is responsible for generating effective external forces and is optimized by maximizing the error between the task reward and its oracle, i.e., "cost" in each iteration. To keep joint optimization between the actor and the disturber stable, our H_{infty} constraint mandates the bound of ratio between the cost to the intensity of the external forces. Through reciprocal interaction throughout the training phase, the actor can acquire the capability to navigate increasingly complex physical disturbances. We verify the robustness of our approach on quadrupedal locomotion tasks with Unitree Aliengo robot, and also a more challenging task with Unitree A1 robot, where the quadruped is expected to perform locomotion merely on its hind legs as if it is a bipedal robot. The simulated quantitative results show improvement against baselines, demonstrating the effectiveness of the method and each design choice. On the other hand, real-robot experiments qualitatively exhibit how robust the policy is when interfering with various disturbances on various terrains, including stairs, high platforms, slopes, and slippery terrains. All code, checkpoints, and real-world deployment guidance will be made public.
Less is More Tokens: Efficient Math Reasoning via Difficulty-Aware Chain-of-Thought Distillation
Chain-of-thought reasoning, while powerful, can produce unnecessarily verbose output for simpler problems. We present a framework for difficulty-aware reasoning that teaches models to dynamically adjust reasoning depth based on problem complexity. Remarkably, we show that models can be endowed with such dynamic inference pathways without any architectural modifications; we simply post-train on data that is carefully curated to include chain-of-thought traces that are proportional in length to problem difficulty. Our analysis reveals that post-training via supervised fine-tuning (SFT) primarily captures patterns like reasoning length and format, while direct preference optimization (DPO) preserves reasoning accuracy, with their combination reducing length and maintaining or improving performance. Both quantitative metrics and qualitative assessments confirm that models can learn to "think proportionally", reasoning minimally on simple problems while maintaining depth for complex ones.
Transition Models: Rethinking the Generative Learning Objective
A fundamental dilemma in generative modeling persists: iterative diffusion models achieve outstanding fidelity, but at a significant computational cost, while efficient few-step alternatives are constrained by a hard quality ceiling. This conflict between generation steps and output quality arises from restrictive training objectives that focus exclusively on either infinitesimal dynamics (PF-ODEs) or direct endpoint prediction. We address this challenge by introducing an exact, continuous-time dynamics equation that analytically defines state transitions across any finite time interval. This leads to a novel generative paradigm, Transition Models (TiM), which adapt to arbitrary-step transitions, seamlessly traversing the generative trajectory from single leaps to fine-grained refinement with more steps. Despite having only 865M parameters, TiM achieves state-of-the-art performance, surpassing leading models such as SD3.5 (8B parameters) and FLUX.1 (12B parameters) across all evaluated step counts. Importantly, unlike previous few-step generators, TiM demonstrates monotonic quality improvement as the sampling budget increases. Additionally, when employing our native-resolution strategy, TiM delivers exceptional fidelity at resolutions up to 4096x4096.
MAPF-GPT: Imitation Learning for Multi-Agent Pathfinding at Scale
Multi-agent pathfinding (MAPF) is a challenging computational problem that typically requires to find collision-free paths for multiple agents in a shared environment. Solving MAPF optimally is NP-hard, yet efficient solutions are critical for numerous applications, including automated warehouses and transportation systems. Recently, learning-based approaches to MAPF have gained attention, particularly those leveraging deep reinforcement learning. Following current trends in machine learning, we have created a foundation model for the MAPF problems called MAPF-GPT. Using imitation learning, we have trained a policy on a set of pre-collected sub-optimal expert trajectories that can generate actions in conditions of partial observability without additional heuristics, reward functions, or communication with other agents. The resulting MAPF-GPT model demonstrates zero-shot learning abilities when solving the MAPF problem instances that were not present in the training dataset. We show that MAPF-GPT notably outperforms the current best-performing learnable-MAPF solvers on a diverse range of problem instances and is efficient in terms of computation (in the inference mode).
An elasticity-based mesh morphing technique with application to reduced-order modeling
The aim of this article is to introduce a new methodology for constructing morphings between shapes that have identical topology. This morphing is obtained by deforming a reference shape, through the resolution of a sequence of linear elasticity equations, onto the target shape. In particular, our approach does not assume any knowledge of a boundary parametrization. Furthermore, we demonstrate how constraints can be imposed on specific points, lines and surfaces in the reference domain to ensure alignment with their counterparts in the target domain after morphing. Additionally, we show how the proposed methodology can be integrated in an offline and online paradigm, which is useful in reduced-order modeling scenarii involving variable shapes. This framework facilitates the efficient computation of the morphings in various geometric configurations, thus improving the versatility and applicability of the approach. The methodology is illustrated on the regression problem of the drag and lift coefficients of airfoils of non-parameterized variable shapes.
Towards Foundation Models for Mixed Integer Linear Programming
Mixed Integer Linear Programming (MILP) is essential for modeling complex decision-making problems but faces challenges in computational tractability and requires expert formulation. Current deep learning approaches for MILP focus on specific problem classes and do not generalize to unseen classes. To address this shortcoming, we take a foundation model training approach, where we train a single deep learning model on a diverse set of MILP problems to generalize across problem classes. As existing datasets for MILP lack diversity and volume, we introduce MILP-Evolve, a novel LLM-based evolutionary framework that is capable of generating a large set of diverse MILP classes with an unlimited amount of instances. We study our methodology on three key learning tasks that capture diverse aspects of MILP: (1) integrality gap prediction, (2) learning to branch, and (3) a new task of aligning MILP instances with natural language descriptions. Our empirical results show that models trained on the data generated by MILP-Evolve achieve significant improvements on unseen problems, including MIPLIB benchmarks. Our work highlights the potential of moving towards a foundation model approach for MILP that can generalize to a broad range of MILP applications. Our code and data are publicly available at https://github.com/microsoft/OptiGuide.
Rectified Flow: A Marginal Preserving Approach to Optimal Transport
We present a flow-based approach to the optimal transport (OT) problem between two continuous distributions pi_0,pi_1 on R^d, of minimizing a transport cost E[c(X_1-X_0)] in the set of couplings (X_0,X_1) whose marginal distributions on X_0,X_1 equals pi_0,pi_1, respectively, where c is a cost function. Our method iteratively constructs a sequence of neural ordinary differentiable equations (ODE), each learned by solving a simple unconstrained regression problem, which monotonically reduce the transport cost while automatically preserving the marginal constraints. This yields a monotonic interior approach that traverses inside the set of valid couplings to decrease the transport cost, which distinguishes itself from most existing approaches that enforce the coupling constraints from the outside. The main idea of the method draws from rectified flow, a recent approach that simultaneously decreases the whole family of transport costs induced by convex functions c (and is hence multi-objective in nature), but is not tailored to minimize a specific transport cost. Our method is a single-object variant of rectified flow that guarantees to solve the OT problem for a fixed, user-specified convex cost function c.
Column Generation for Interaction Coverage in Combinatorial Software Testing
This paper proposes a novel column generation framework for combinatorial software testing. In particular, it combines Mathematical Programming and Constraint Programming in a hybrid decomposition to generate covering arrays. The approach allows generating parameterized test cases with coverage guarantees between parameter interactions of a given application. Compared to exhaustive testing, combinatorial test case generation reduces the number of tests to run significantly. Our column generation algorithm is generic and can accommodate mixed coverage arrays over heterogeneous alphabets. The algorithm is realized in practice as a cloud service and recognized as one of the five winners of the company-wide cloud application challenge at Oracle. The service is currently helping software developers from a range of different product teams in their testing efforts while exposing declarative constraint models and hybrid optimization techniques to a broader audience.
Automated Dynamic Algorithm Configuration
The performance of an algorithm often critically depends on its parameter configuration. While a variety of automated algorithm configuration methods have been proposed to relieve users from the tedious and error-prone task of manually tuning parameters, there is still a lot of untapped potential as the learned configuration is static, i.e., parameter settings remain fixed throughout the run. However, it has been shown that some algorithm parameters are best adjusted dynamically during execution, e.g., to adapt to the current part of the optimization landscape. Thus far, this is most commonly achieved through hand-crafted heuristics. A promising recent alternative is to automatically learn such dynamic parameter adaptation policies from data. In this article, we give the first comprehensive account of this new field of automated dynamic algorithm configuration (DAC), present a series of recent advances, and provide a solid foundation for future research in this field. Specifically, we (i) situate DAC in the broader historical context of AI research; (ii) formalize DAC as a computational problem; (iii) identify the methods used in prior-art to tackle this problem; (iv) conduct empirical case studies for using DAC in evolutionary optimization, AI planning, and machine learning.
Modified LAB Algorithm with Clustering-based Search Space Reduction Method for solving Engineering Design Problems
A modified LAB algorithm is introduced in this paper. It builds upon the original LAB algorithm (Reddy et al. 2023), which is a socio-inspired algorithm that models competitive and learning behaviours within a group, establishing hierarchical roles. The proposed algorithm incorporates the roulette wheel approach and a reduction factor introducing inter-group competition and iteratively narrowing down the sample space. The algorithm is validated by solving the benchmark test problems from CEC 2005 and CEC 2017. The solutions are validated using standard statistical tests such as two-sided and pairwise signed rank Wilcoxon test and Friedman rank test. The algorithm exhibited improved and superior robustness as well as search space exploration capabilities. Furthermore, a Clustering-Based Search Space Reduction (C-SSR) method is proposed, making the algorithm capable to solve constrained problems. The C-SSR method enables the algorithm to identify clusters of feasible regions, satisfying the constraints and contributing to achieve the optimal solution. This method demonstrates its effectiveness as a potential alternative to traditional constraint handling techniques. The results obtained using the Modified LAB algorithm are then compared with those achieved by other recent metaheuristic algorithms.
AlphaEvolve: A coding agent for scientific and algorithmic discovery
In this white paper, we present AlphaEvolve, an evolutionary coding agent that substantially enhances capabilities of state-of-the-art LLMs on highly challenging tasks such as tackling open scientific problems or optimizing critical pieces of computational infrastructure. AlphaEvolve orchestrates an autonomous pipeline of LLMs, whose task is to improve an algorithm by making direct changes to the code. Using an evolutionary approach, continuously receiving feedback from one or more evaluators, AlphaEvolve iteratively improves the algorithm, potentially leading to new scientific and practical discoveries. We demonstrate the broad applicability of this approach by applying it to a number of important computational problems. When applied to optimizing critical components of large-scale computational stacks at Google, AlphaEvolve developed a more efficient scheduling algorithm for data centers, found a functionally equivalent simplification in the circuit design of hardware accelerators, and accelerated the training of the LLM underpinning AlphaEvolve itself. Furthermore, AlphaEvolve discovered novel, provably correct algorithms that surpass state-of-the-art solutions on a spectrum of problems in mathematics and computer science, significantly expanding the scope of prior automated discovery methods (Romera-Paredes et al., 2023). Notably, AlphaEvolve developed a search algorithm that found a procedure to multiply two 4 times 4 complex-valued matrices using 48 scalar multiplications; offering the first improvement, after 56 years, over Strassen's algorithm in this setting. We believe AlphaEvolve and coding agents like it can have a significant impact in improving solutions of problems across many areas of science and computation.
Decentralized Monte Carlo Tree Search for Partially Observable Multi-agent Pathfinding
The Multi-Agent Pathfinding (MAPF) problem involves finding a set of conflict-free paths for a group of agents confined to a graph. In typical MAPF scenarios, the graph and the agents' starting and ending vertices are known beforehand, allowing the use of centralized planning algorithms. However, in this study, we focus on the decentralized MAPF setting, where the agents may observe the other agents only locally and are restricted in communications with each other. Specifically, we investigate the lifelong variant of MAPF, where new goals are continually assigned to the agents upon completion of previous ones. Drawing inspiration from the successful AlphaZero approach, we propose a decentralized multi-agent Monte Carlo Tree Search (MCTS) method for MAPF tasks. Our approach utilizes the agent's observations to recreate the intrinsic Markov decision process, which is then used for planning with a tailored for multi-agent tasks version of neural MCTS. The experimental results show that our approach outperforms state-of-the-art learnable MAPF solvers. The source code is available at https://github.com/AIRI-Institute/mats-lp.
Learning Two-agent Motion Planning Strategies from Generalized Nash Equilibrium for Model Predictive Control
We introduce an Implicit Game-Theoretic MPC (IGT-MPC), a decentralized algorithm for two-agent motion planning that uses a learned value function that predicts the game-theoretic interaction outcomes as the terminal cost-to-go function in a model predictive control (MPC) framework, guiding agents to implicitly account for interactions with other agents and maximize their reward. This approach applies to competitive and cooperative multi-agent motion planning problems which we formulate as constrained dynamic games. Given a constrained dynamic game, we randomly sample initial conditions and solve for the generalized Nash equilibrium (GNE) to generate a dataset of GNE solutions, computing the reward outcome of each game-theoretic interaction from the GNE. The data is used to train a simple neural network to predict the reward outcome, which we use as the terminal cost-to-go function in an MPC scheme. We showcase emerging competitive and coordinated behaviors using IGT-MPC in scenarios such as two-vehicle head-to-head racing and un-signalized intersection navigation. IGT-MPC offers a novel method integrating machine learning and game-theoretic reasoning into model-based decentralized multi-agent motion planning.
Multi-Agent Pathfinding with Continuous Time
Multi-Agent Pathfinding (MAPF) is the problem of finding paths for multiple agents such that every agent reaches its goal and the agents do not collide. Most prior work on MAPF was on grids, assumed agents' actions have uniform duration, and that time is discretized into timesteps. We propose a MAPF algorithm that does not rely on these assumptions, is complete, and provides provably optimal solutions. This algorithm is based on a novel adaptation of Safe interval path planning (SIPP), a continuous time single-agent planning algorithm, and a modified version of Conflict-based search (CBS), a state of the art multi-agent pathfinding algorithm. We analyze this algorithm, discuss its pros and cons, and evaluate it experimentally on several standard benchmarks.
Novel Policy Seeking with Constrained Optimization
In problem-solving, we humans can come up with multiple novel solutions to the same problem. However, reinforcement learning algorithms can only produce a set of monotonous policies that maximize the cumulative reward but lack diversity and novelty. In this work, we address the problem of generating novel policies in reinforcement learning tasks. Instead of following the multi-objective framework used in existing methods, we propose to rethink the problem under a novel perspective of constrained optimization. We first introduce a new metric to evaluate the difference between policies and then design two practical novel policy generation methods following the new perspective. The two proposed methods, namely the Constrained Task Novel Bisector (CTNB) and the Interior Policy Differentiation (IPD), are derived from the feasible direction method and the interior point method commonly known in the constrained optimization literature. Experimental comparisons on the MuJoCo control suite show our methods can achieve substantial improvement over previous novelty-seeking methods in terms of both the novelty of policies and their performances in the primal task.
Reinforcement Learning for Variable Selection in a Branch and Bound Algorithm
Mixed integer linear programs are commonly solved by Branch and Bound algorithms. A key factor of the efficiency of the most successful commercial solvers is their fine-tuned heuristics. In this paper, we leverage patterns in real-world instances to learn from scratch a new branching strategy optimised for a given problem and compare it with a commercial solver. We propose FMSTS, a novel Reinforcement Learning approach specifically designed for this task. The strength of our method lies in the consistency between a local value function and a global metric of interest. In addition, we provide insights for adapting known RL techniques to the Branch and Bound setting, and present a new neural network architecture inspired from the literature. To our knowledge, it is the first time Reinforcement Learning has been used to fully optimise the branching strategy. Computational experiments show that our method is appropriate and able to generalise well to new instances.
Constrained Efficient Global Optimization of Expensive Black-box Functions
We study the problem of constrained efficient global optimization, where both the objective and constraints are expensive black-box functions that can be learned with Gaussian processes. We propose CONFIG (CONstrained efFIcient Global Optimization), a simple and effective algorithm to solve it. Under certain regularity assumptions, we show that our algorithm enjoys the same cumulative regret bound as that in the unconstrained case and similar cumulative constraint violation upper bounds. For commonly used Matern and Squared Exponential kernels, our bounds are sublinear and allow us to derive a convergence rate to the optimal solution of the original constrained problem. In addition, our method naturally provides a scheme to declare infeasibility when the original black-box optimization problem is infeasible. Numerical experiments on sampled instances from the Gaussian process, artificial numerical problems, and a black-box building controller tuning problem all demonstrate the competitive performance of our algorithm. Compared to the other state-of-the-art methods, our algorithm significantly improves the theoretical guarantees, while achieving competitive empirical performance.
Your Agent May Misevolve: Emergent Risks in Self-evolving LLM Agents
Advances in Large Language Models (LLMs) have enabled a new class of self-evolving agents that autonomously improve through interaction with the environment, demonstrating strong capabilities. However, self-evolution also introduces novel risks overlooked by current safety research. In this work, we study the case where an agent's self-evolution deviates in unintended ways, leading to undesirable or even harmful outcomes. We refer to this as Misevolution. To provide a systematic investigation, we evaluate misevolution along four key evolutionary pathways: model, memory, tool, and workflow. Our empirical findings reveal that misevolution is a widespread risk, affecting agents built even on top-tier LLMs (e.g., Gemini-2.5-Pro). Different emergent risks are observed in the self-evolutionary process, such as the degradation of safety alignment after memory accumulation, or the unintended introduction of vulnerabilities in tool creation and reuse. To our knowledge, this is the first study to systematically conceptualize misevolution and provide empirical evidence of its occurrence, highlighting an urgent need for new safety paradigms for self-evolving agents. Finally, we discuss potential mitigation strategies to inspire further research on building safer and more trustworthy self-evolving agents. Our code and data are available at https://github.com/ShaoShuai0605/Misevolution . Warning: this paper includes examples that may be offensive or harmful in nature.
Accelerating db-A^* for Kinodynamic Motion Planning Using Diffusion
We present a novel approach for generating motion primitives for kinodynamic motion planning using diffusion models. The motions generated by our approach are adapted to each problem instance by utilizing problem-specific parameters, allowing for finding solutions faster and of better quality. The diffusion models used in our approach are trained on randomly cut solution trajectories. These trajectories are created by solving randomly generated problem instances with a kinodynamic motion planner. Experimental results show significant improvements up to 30 percent in both computation time and solution quality across varying robot dynamics such as second-order unicycle or car with trailer.
Trace is the New AutoDiff -- Unlocking Efficient Optimization of Computational Workflows
We study a class of optimization problems motivated by automating the design and update of AI systems like coding assistants, robots, and copilots. We propose an end-to-end optimization framework, Trace, which treats the computational workflow of an AI system as a graph akin to neural networks, based on a generalization of back-propagation. Optimization of computational workflows often involves rich feedback (e.g. console output or user's responses), heterogeneous parameters (e.g. prompts, hyper-parameters, codes), and intricate objectives (beyond maximizing a score). Moreover, its computation graph can change dynamically with the inputs and parameters. We frame a new mathematical setup of iterative optimization, Optimization with Trace Oracle (OPTO), to capture and abstract these properties so as to design optimizers that work across many domains. In OPTO, an optimizer receives an execution trace along with feedback on the computed output and updates parameters iteratively. Trace is the tool to implement OPTO in practice. Trace has a Python interface that efficiently converts a computational workflow into an OPTO instance using a PyTorch-like interface. Using Trace, we develop a general-purpose LLM-based optimizer called OptoPrime that can effectively solve OPTO problems. In empirical studies, we find that OptoPrime is capable of first-order numerical optimization, prompt optimization, hyper-parameter tuning, robot controller design, code debugging, etc., and is often competitive with specialized optimizers for each domain. We believe that Trace, OptoPrime and the OPTO framework will enable the next generation of interactive agents that automatically adapt using various kinds of feedback. Website: https://microsoft.github.io/Trace
SPaRC: A Spatial Pathfinding Reasoning Challenge
Existing reasoning datasets saturate and fail to test abstract, multi-step problems, especially pathfinding and complex rule constraint satisfaction. We introduce SPaRC (Spatial Pathfinding Reasoning Challenge), a dataset of 1,000 2D grid pathfinding puzzles to evaluate spatial and symbolic reasoning, requiring step-by-step planning with arithmetic and geometric rules. Humans achieve near-perfect accuracy (98.0%; 94.5% on hard puzzles), while the best reasoning models, such as o4-mini, struggle (15.8%; 1.1% on hard puzzles). Models often generate invalid paths (>50% of puzzles for o4-mini), and reasoning tokens reveal they make errors in navigation and spatial logic. Unlike humans, who take longer on hard puzzles, models fail to scale test-time compute with difficulty. Allowing models to make multiple solution attempts improves accuracy, suggesting potential for better spatial reasoning with improved training and efficient test-time scaling methods. SPaRC can be used as a window into models' spatial reasoning limitations and drive research toward new methods that excel in abstract, multi-step problem-solving.
Path-based Algebraic Foundations of Graph Query Languages
Graph databases are gaining momentum thanks to the flexibility and expressiveness of their data models and query languages. A standardization activity driven by the ISO/IEC standardization body is also ongoing and has already conducted to the specification of the first versions of two standard graph query languages, namely SQL/PGQ and GQL, respectively in 2023 and 2024. Apart from the standards, there exists a panoply of concrete graph query languages provided by current graph database systems, each offering different query features. A common limitation of current graph query engines is the absence of an algebraic approach for evaluating path queries. To address this, we introduce an abstract algebra for evaluating path queries, allowing paths to be treated as first-class entities within the query processing pipeline. We demonstrate that our algebra can express a core fragment of path queries defined in GQL and SQL/PGQ, thereby serving as a formal framework for studying both standards and supporting their implementation in current graph database systems. We also show that evaluation trees for path algebra expressions can function as logical plans for evaluating path queries and enable the application of query optimization techniques. Our algebraic framework has the potential to act as a lingua franca for path query evaluation, enabling different implementations to be expressed and compared.
Optimal Seeding and Self-Reproduction from a Mathematical Point of View
P. Kabamba developed generation theory as a tool for studying self-reproducing systems. We provide an alternative definition of a generation system and give a complete solution to the problem of finding optimal seeds for a finite self-replicating system. We also exhibit examples illustrating a connection between self-replication and fixed-point theory.
Low-Variance Gradient Estimation in Unrolled Computation Graphs with ES-Single
We propose an evolution strategies-based algorithm for estimating gradients in unrolled computation graphs, called ES-Single. Similarly to the recently-proposed Persistent Evolution Strategies (PES), ES-Single is unbiased, and overcomes chaos arising from recursive function applications by smoothing the meta-loss landscape. ES-Single samples a single perturbation per particle, that is kept fixed over the course of an inner problem (e.g., perturbations are not re-sampled for each partial unroll). Compared to PES, ES-Single is simpler to implement and has lower variance: the variance of ES-Single is constant with respect to the number of truncated unrolls, removing a key barrier in applying ES to long inner problems using short truncations. We show that ES-Single is unbiased for quadratic inner problems, and demonstrate empirically that its variance can be substantially lower than that of PES. ES-Single consistently outperforms PES on a variety of tasks, including a synthetic benchmark task, hyperparameter optimization, training recurrent neural networks, and training learned optimizers.
Unified Software Design Patterns for Simulated Annealing
Any optimization algorithm programming interface can be seen as a black-box function with additional free parameters. In this spirit, simulated annealing (SA) can be implemented in pseudo-code within the dimensions of a single slide with free parameters relating to the annealing schedule. Such an implementation, however, necessarily neglects much of the structure necessary to take advantage of advances in computing resources and algorithmic breakthroughs. Simulated annealing is often introduced in myriad disciplines, from discrete examples like the Traveling Salesman Problem (TSP) to molecular cluster potential energy exploration or even explorations of a protein's configurational space. Theoretical guarantees also demand a stricter structure in terms of statistical quantities, which cannot simply be left to the user. We will introduce several standard paradigms and demonstrate how these can be "lifted" into a unified framework using object-oriented programming in Python. We demonstrate how clean, interoperable, reproducible programming libraries can be used to access and rapidly iterate on variants of Simulated Annealing in a manner which can be extended to serve as a best practices blueprint or design pattern for a data-driven optimization library.
Towards an Understanding of Stepwise Inference in Transformers: A Synthetic Graph Navigation Model
Stepwise inference protocols, such as scratchpads and chain-of-thought, help language models solve complex problems by decomposing them into a sequence of simpler subproblems. Despite the significant gain in performance achieved via these protocols, the underlying mechanisms of stepwise inference have remained elusive. To address this, we propose to study autoregressive Transformer models on a synthetic task that embodies the multi-step nature of problems where stepwise inference is generally most useful. Specifically, we define a graph navigation problem wherein a model is tasked with traversing a path from a start to a goal node on the graph. Despite is simplicity, we find we can empirically reproduce and analyze several phenomena observed at scale: (i) the stepwise inference reasoning gap, the cause of which we find in the structure of the training data; (ii) a diversity-accuracy tradeoff in model generations as sampling temperature varies; (iii) a simplicity bias in the model's output; and (iv) compositional generalization and a primacy bias with in-context exemplars. Overall, our work introduces a grounded, synthetic framework for studying stepwise inference and offers mechanistic hypotheses that can lay the foundation for a deeper understanding of this phenomenon.
AgentGym: Evolving Large Language Model-based Agents across Diverse Environments
Building generalist agents that can handle diverse tasks and evolve themselves across different environments is a long-term goal in the AI community. Large language models (LLMs) are considered a promising foundation to build such agents due to their generalized capabilities. Current approaches either have LLM-based agents imitate expert-provided trajectories step-by-step, requiring human supervision, which is hard to scale and limits environmental exploration; or they let agents explore and learn in isolated environments, resulting in specialist agents with limited generalization. In this paper, we take the first step towards building generally-capable LLM-based agents with self-evolution ability. We identify a trinity of ingredients: 1) diverse environments for agent exploration and learning, 2) a trajectory set to equip agents with basic capabilities and prior knowledge, and 3) an effective and scalable evolution method. We propose AgentGym, a new framework featuring a variety of environments and tasks for broad, real-time, uni-format, and concurrent agent exploration. AgentGym also includes a database with expanded instructions, a benchmark suite, and high-quality trajectories across environments. Next, we propose a novel method, AgentEvol, to investigate the potential of agent self-evolution beyond previously seen data across tasks and environments. Experimental results show that the evolved agents can achieve results comparable to SOTA models. We release the AgentGym suite, including the platform, dataset, benchmark, checkpoints, and algorithm implementations. The AgentGym suite is available on https://github.com/WooooDyy/AgentGym.
Learning Shared Safety Constraints from Multi-task Demonstrations
Regardless of the particular task we want them to perform in an environment, there are often shared safety constraints we want our agents to respect. For example, regardless of whether it is making a sandwich or clearing the table, a kitchen robot should not break a plate. Manually specifying such a constraint can be both time-consuming and error-prone. We show how to learn constraints from expert demonstrations of safe task completion by extending inverse reinforcement learning (IRL) techniques to the space of constraints. Intuitively, we learn constraints that forbid highly rewarding behavior that the expert could have taken but chose not to. Unfortunately, the constraint learning problem is rather ill-posed and typically leads to overly conservative constraints that forbid all behavior that the expert did not take. We counter this by leveraging diverse demonstrations that naturally occur in multi-task settings to learn a tighter set of constraints. We validate our method with simulation experiments on high-dimensional continuous control tasks.
Infinite Feature Selection: A Graph-based Feature Filtering Approach
We propose a filtering feature selection framework that considers subsets of features as paths in a graph, where a node is a feature and an edge indicates pairwise (customizable) relations among features, dealing with relevance and redundancy principles. By two different interpretations (exploiting properties of power series of matrices and relying on Markov chains fundamentals) we can evaluate the values of paths (i.e., feature subsets) of arbitrary lengths, eventually go to infinite, from which we dub our framework Infinite Feature Selection (Inf-FS). Going to infinite allows to constrain the computational complexity of the selection process, and to rank the features in an elegant way, that is, considering the value of any path (subset) containing a particular feature. We also propose a simple unsupervised strategy to cut the ranking, so providing the subset of features to keep. In the experiments, we analyze diverse settings with heterogeneous features, for a total of 11 benchmarks, comparing against 18 widely-known comparative approaches. The results show that Inf-FS behaves better in almost any situation, that is, when the number of features to keep are fixed a priori, or when the decision of the subset cardinality is part of the process.
Landscaping Linear Mode Connectivity
The presence of linear paths in parameter space between two different network solutions in certain cases, i.e., linear mode connectivity (LMC), has garnered interest from both theoretical and practical fronts. There has been significant research that either practically designs algorithms catered for connecting networks by adjusting for the permutation symmetries as well as some others that more theoretically construct paths through which networks can be connected. Yet, the core reasons for the occurrence of LMC, when in fact it does occur, in the highly non-convex loss landscapes of neural networks are far from clear. In this work, we take a step towards understanding it by providing a model of how the loss landscape needs to behave topographically for LMC (or the lack thereof) to manifest. Concretely, we present a `mountainside and ridge' perspective that helps to neatly tie together different geometric features that can be spotted in the loss landscape along the training runs. We also complement this perspective by providing a theoretical analysis of the barrier height, for which we provide empirical support, and which additionally extends as a faithful predictor of layer-wise LMC. We close with a toy example that provides further intuition on how barriers arise in the first place, all in all, showcasing the larger aim of the work -- to provide a working model of the landscape and its topography for the occurrence of LMC.
On Two Orderings of Lattice Paths
The Markov numbers are positive integers appearing as solutions to the Diophantine equation x^2 + y^2 + z^2 = 3xyz. These numbers are very well-studied and have many combinatorial properties, as well as being the source of the long-standing unicity conjecture. In 2018, Canakc{\i} and Schiffler showed that the Markov number m_{a{b}} is the number of perfect matchings of a certain snake graph corresponding to the Christoffel path from (0,0) to (a,b). Based on this correspondence, Schiffler in 2023 introduced two orderings on lattice paths. For any path omega, associate a snake graph G(omega) and a continued fraction g(omega). The ordering <_M is given by the number of perfect matchings on G(omega), and the ordering <_L is given by the Lagrange number of g(omega). In this work, we settle two conjectures of Schiffler. First, we show that the path omega(a,b) = RRcdots R UU cdots U is the unique maximum over all lattice paths from (0,0) to (a,b) with respect to both orderings <_M and <_L. We then use this result to prove that sup L(omega) over all lattice paths is exactly 1+sqrt5.
Near-Optimal Solutions of Constrained Learning Problems
With the widespread adoption of machine learning systems, the need to curtail their behavior has become increasingly apparent. This is evidenced by recent advancements towards developing models that satisfy robustness, safety, and fairness requirements. These requirements can be imposed (with generalization guarantees) by formulating constrained learning problems that can then be tackled by dual ascent algorithms. Yet, though these algorithms converge in objective value, even in non-convex settings, they cannot guarantee that their outcome is feasible. Doing so requires randomizing over all iterates, which is impractical in virtually any modern applications. Still, final iterates have been observed to perform well in practice. In this work, we address this gap between theory and practice by characterizing the constraint violation of Lagrangian minimizers associated with optimal dual variables, despite lack of convexity. To do this, we leverage the fact that non-convex, finite-dimensional constrained learning problems can be seen as parametrizations of convex, functional problems. Our results show that rich parametrizations effectively mitigate the issue of feasibility in dual methods, shedding light on prior empirical successes of dual learning. We illustrate our findings in fair learning tasks.
CO-Bench: Benchmarking Language Model Agents in Algorithm Search for Combinatorial Optimization
Although LLM-based agents have attracted significant attention in domains such as software engineering and machine learning research, their role in advancing combinatorial optimization (CO) remains relatively underexplored. This gap underscores the need for a deeper understanding of their potential in tackling structured, constraint-intensive problems-a pursuit currently limited by the absence of comprehensive benchmarks for systematic investigation. To address this, we introduce CO-Bench, a benchmark suite featuring 36 real-world CO problems drawn from a broad range of domains and complexity levels. CO-Bench includes structured problem formulations and curated data to support rigorous investigation of LLM agents. We evaluate multiple agent frameworks against established human-designed algorithms, revealing key strengths and limitations of current approaches and identifying promising directions for future research. CO-Bench is publicly available at https://github.com/sunnweiwei/CO-Bench.
Finding Increasingly Large Extremal Graphs with AlphaZero and Tabu Search
This work studies a central extremal graph theory problem inspired by a 1975 conjecture of Erdos, which aims to find graphs with a given size (number of nodes) that maximize the number of edges without having 3- or 4-cycles. We formulate this problem as a sequential decision-making problem and compare AlphaZero, a neural network-guided tree search, with tabu search, a heuristic local search method. Using either method, by introducing a curriculum -- jump-starting the search for larger graphs using good graphs found at smaller sizes -- we improve the state-of-the-art lower bounds for several sizes. We also propose a flexible graph-generation environment and a permutation-invariant network architecture for learning to search in the space of graphs.
On the Forward Invariance of Neural ODEs
We propose a new method to ensure neural ordinary differential equations (ODEs) satisfy output specifications by using invariance set propagation. Our approach uses a class of control barrier functions to transform output specifications into constraints on the parameters and inputs of the learning system. This setup allows us to achieve output specification guarantees simply by changing the constrained parameters/inputs both during training and inference. Moreover, we demonstrate that our invariance set propagation through data-controlled neural ODEs not only maintains generalization performance but also creates an additional degree of robustness by enabling causal manipulation of the system's parameters/inputs. We test our method on a series of representation learning tasks, including modeling physical dynamics and convexity portraits, as well as safe collision avoidance for autonomous vehicles.
Discovering General Reinforcement Learning Algorithms with Adversarial Environment Design
The past decade has seen vast progress in deep reinforcement learning (RL) on the back of algorithms manually designed by human researchers. Recently, it has been shown that it is possible to meta-learn update rules, with the hope of discovering algorithms that can perform well on a wide range of RL tasks. Despite impressive initial results from algorithms such as Learned Policy Gradient (LPG), there remains a generalization gap when these algorithms are applied to unseen environments. In this work, we examine how characteristics of the meta-training distribution impact the generalization performance of these algorithms. Motivated by this analysis and building on ideas from Unsupervised Environment Design (UED), we propose a novel approach for automatically generating curricula to maximize the regret of a meta-learned optimizer, in addition to a novel approximation of regret, which we name algorithmic regret (AR). The result is our method, General RL Optimizers Obtained Via Environment Design (GROOVE). In a series of experiments, we show that GROOVE achieves superior generalization to LPG, and evaluate AR against baseline metrics from UED, identifying it as a critical component of environment design in this setting. We believe this approach is a step towards the discovery of truly general RL algorithms, capable of solving a wide range of real-world environments.
AutoML-Zero: Evolving Machine Learning Algorithms From Scratch
Machine learning research has advanced in multiple aspects, including model structures and learning methods. The effort to automate such research, known as AutoML, has also made significant progress. However, this progress has largely focused on the architecture of neural networks, where it has relied on sophisticated expert-designed layers as building blocks---or similarly restrictive search spaces. Our goal is to show that AutoML can go further: it is possible today to automatically discover complete machine learning algorithms just using basic mathematical operations as building blocks. We demonstrate this by introducing a novel framework that significantly reduces human bias through a generic search space. Despite the vastness of this space, evolutionary search can still discover two-layer neural networks trained by backpropagation. These simple neural networks can then be surpassed by evolving directly on tasks of interest, e.g. CIFAR-10 variants, where modern techniques emerge in the top algorithms, such as bilinear interactions, normalized gradients, and weight averaging. Moreover, evolution adapts algorithms to different task types: e.g., dropout-like techniques appear when little data is available. We believe these preliminary successes in discovering machine learning algorithms from scratch indicate a promising new direction for the field.
Accelerating Vehicle Routing via AI-Initialized Genetic Algorithms
Vehicle Routing Problems (VRP) are an extension of the Traveling Salesperson Problem and are a fundamental NP-hard challenge in combinatorial optimization. Solving VRP in real-time at large scale has become critical in numerous applications, from growing markets like last-mile delivery to emerging use-cases like interactive logistics planning. Such applications involve solving similar problem instances repeatedly, yet current state-of-the-art solvers treat each instance on its own without leveraging previous examples. We introduce a novel optimization framework that uses a reinforcement learning agent - trained on prior instances - to quickly generate initial solutions, which are then further optimized by genetic algorithms. Our framework, Evolutionary Algorithm with Reinforcement Learning Initialization (EARLI), consistently outperforms current state-of-the-art solvers across various time scales. For example, EARLI handles vehicle routing with 500 locations within 1s, 10x faster than current solvers for the same solution quality, enabling applications like real-time and interactive routing. EARLI can generalize to new data, as demonstrated on real e-commerce delivery data of a previously unseen city. Our hybrid framework presents a new way to combine reinforcement learning and genetic algorithms, paving the road for closer interdisciplinary collaboration between AI and optimization communities towards real-time optimization in diverse domains.
Symbol: Generating Flexible Black-Box Optimizers through Symbolic Equation Learning
Recent Meta-learning for Black-Box Optimization (MetaBBO) methods harness neural networks to meta-learn configurations of traditional black-box optimizers. Despite their success, they are inevitably restricted by the limitations of predefined hand-crafted optimizers. In this paper, we present Symbol, a novel framework that promotes the automated discovery of black-box optimizers through symbolic equation learning. Specifically, we propose a Symbolic Equation Generator (SEG) that allows closed-form optimization rules to be dynamically generated for specific tasks and optimization steps. Within Symbol, we then develop three distinct strategies based on reinforcement learning, so as to meta-learn the SEG efficiently. Extensive experiments reveal that the optimizers generated by Symbol not only surpass the state-of-the-art BBO and MetaBBO baselines, but also exhibit exceptional zero-shot generalization abilities across entirely unseen tasks with different problem dimensions, population sizes, and optimization horizons. Furthermore, we conduct in-depth analyses of our Symbol framework and the optimization rules that it generates, underscoring its desirable flexibility and interpretability.
Star-Searcher: A Complete and Efficient Aerial System for Autonomous Target Search in Complex Unknown Environments
This paper tackles the challenge of autonomous target search using unmanned aerial vehicles (UAVs) in complex unknown environments. To fill the gap in systematic approaches for this task, we introduce Star-Searcher, an aerial system featuring specialized sensor suites, mapping, and planning modules to optimize searching. Path planning challenges due to increased inspection requirements are addressed through a hierarchical planner with a visibility-based viewpoint clustering method. This simplifies planning by breaking it into global and local sub-problems, ensuring efficient global and local path coverage in real-time. Furthermore, our global path planning employs a history-aware mechanism to reduce motion inconsistency from frequent map changes, significantly enhancing search efficiency. We conduct comparisons with state-of-the-art methods in both simulation and the real world, demonstrating shorter flight paths, reduced time, and higher target search completeness. Our approach will be open-sourced for community benefit at https://github.com/SYSU-STAR/STAR-Searcher.
Spatio-Temporal Lattice Planning Using Optimal Motion Primitives
Lattice-based planning techniques simplify the motion planning problem for autonomous vehicles by limiting available motions to a pre-computed set of primitives. These primitives are then combined online to generate more complex maneuvers. A set of motion primitives t-span a lattice if, given a real number t at least 1, any configuration in the lattice can be reached via a sequence of motion primitives whose cost is no more than a factor of t from optimal. Computing a minimal t-spanning set balances a trade-off between computed motion quality and motion planning performance. In this work, we formulate this problem for an arbitrary lattice as a mixed integer linear program. We also propose an A*-based algorithm to solve the motion planning problem using these primitives. Finally, we present an algorithm that removes the excessive oscillations from planned motions -- a common problem in lattice-based planning. Our method is validated for autonomous driving in both parking lot and highway scenarios.
Paired Open-Ended Trailblazer (POET): Endlessly Generating Increasingly Complex and Diverse Learning Environments and Their Solutions
While the history of machine learning so far largely encompasses a series of problems posed by researchers and algorithms that learn their solutions, an important question is whether the problems themselves can be generated by the algorithm at the same time as they are being solved. Such a process would in effect build its own diverse and expanding curricula, and the solutions to problems at various stages would become stepping stones towards solving even more challenging problems later in the process. The Paired Open-Ended Trailblazer (POET) algorithm introduced in this paper does just that: it pairs the generation of environmental challenges and the optimization of agents to solve those challenges. It simultaneously explores many different paths through the space of possible problems and solutions and, critically, allows these stepping-stone solutions to transfer between problems if better, catalyzing innovation. The term open-ended signifies the intriguing potential for algorithms like POET to continue to create novel and increasingly complex capabilities without bound. Our results show that POET produces a diverse range of sophisticated behaviors that solve a wide range of environmental challenges, many of which cannot be solved by direct optimization alone, or even through a direct-path curriculum-building control algorithm introduced to highlight the critical role of open-endedness in solving ambitious challenges. The ability to transfer solutions from one environment to another proves essential to unlocking the full potential of the system as a whole, demonstrating the unpredictable nature of fortuitous stepping stones. We hope that POET will inspire a new push towards open-ended discovery across many domains, where algorithms like POET can blaze a trail through their interesting possible manifestations and solutions.
Understanding Optimization in Deep Learning with Central Flows
Traditional theories of optimization cannot describe the dynamics of optimization in deep learning, even in the simple setting of deterministic training. The challenge is that optimizers typically operate in a complex, oscillatory regime called the "edge of stability." In this paper, we develop theory that can describe the dynamics of optimization in this regime. Our key insight is that while the *exact* trajectory of an oscillatory optimizer may be challenging to analyze, the *time-averaged* (i.e. smoothed) trajectory is often much more tractable. To analyze an optimizer, we derive a differential equation called a "central flow" that characterizes this time-averaged trajectory. We empirically show that these central flows can predict long-term optimization trajectories for generic neural networks with a high degree of numerical accuracy. By interpreting these central flows, we are able to understand how gradient descent makes progress even as the loss sometimes goes up; how adaptive optimizers "adapt" to the local loss landscape; and how adaptive optimizers implicitly navigate towards regions where they can take larger steps. Our results suggest that central flows can be a valuable theoretical tool for reasoning about optimization in deep learning.
Learning to Decouple Complex Systems
A complex system with cluttered observations may be a coupled mixture of multiple simple sub-systems corresponding to latent entities. Such sub-systems may hold distinct dynamics in the continuous-time domain; therein, complicated interactions between sub-systems also evolve over time. This setting is fairly common in the real world but has been less considered. In this paper, we propose a sequential learning approach under this setting by decoupling a complex system for handling irregularly sampled and cluttered sequential observations. Such decoupling brings about not only subsystems describing the dynamics of each latent entity but also a meta-system capturing the interaction between entities over time. Specifically, we argue that the meta-system evolving within a simplex is governed by projected differential equations (ProjDEs). We further analyze and provide neural-friendly projection operators in the context of Bregman divergence. Experimental results on synthetic and real-world datasets show the advantages of our approach when facing complex and cluttered sequential data compared to the state-of-the-art.
A Theory of Topological Derivatives for Inverse Rendering of Geometry
We introduce a theoretical framework for differentiable surface evolution that allows discrete topology changes through the use of topological derivatives for variational optimization of image functionals. While prior methods for inverse rendering of geometry rely on silhouette gradients for topology changes, such signals are sparse. In contrast, our theory derives topological derivatives that relate the introduction of vanishing holes and phases to changes in image intensity. As a result, we enable differentiable shape perturbations in the form of hole or phase nucleation. We validate the proposed theory with optimization of closed curves in 2D and surfaces in 3D to lend insights into limitations of current methods and enable improved applications such as image vectorization, vector-graphics generation from text prompts, single-image reconstruction of shape ambigrams and multi-view 3D reconstruction.
Optimizing AI Reasoning: A Hamiltonian Dynamics Approach to Multi-Hop Question Answering
This paper introduces an innovative approach to analyzing and improving multi-hop reasoning in AI systems by drawing inspiration from Hamiltonian mechanics. We propose a novel framework that maps reasoning chains in embedding spaces to Hamiltonian systems, allowing us to leverage powerful analytical tools from classical physics. Our method defines a Hamiltonian function that balances the progression of reasoning (kinetic energy) against the relevance to the question at hand (potential energy). Using this framework, we analyze a large dataset of reasoning chains from a multi-hop question-answering task, revealing intriguing patterns that distinguish valid from invalid reasoning. We show that valid reasoning chains have lower Hamiltonian energy and move in ways that make the best trade-off between getting more information and answering the right question. Furthermore, we demonstrate the application of this framework to steer the creation of more efficient reasoning algorithms within AI systems. Our results not only provide new insights into the nature of valid reasoning but also open up exciting possibilities for physics-inspired approaches to understanding and improving artificial intelligence.
Advanced Quantum Annealing Approach to Vehicle Routing Problems with Time Windows
In this paper, we explore the potential for quantum annealing to solve realistic routing problems. We focus on two NP-Hard problems, including the Traveling Salesman Problem with Time Windows and the Capacitated Vehicle Routing Problem with Time Windows. We utilize D-Wave's Quantum Annealer and Constrained Quadratic Model (CQM) solver within a hybrid framework to solve these problems. We demonstrate that while the CQM solver effectively minimizes route costs, it struggles to maintain time window feasibility as the problem size increases. To address this limitation, we implement a heuristic method that fixes infeasible solutions through a series of swapping operations. Testing on benchmark instances shows our method achieves promising results with an average optimality gap of 3.86%.
Transformation-based Feature Computation for Algorithm Portfolios
Instance-specific algorithm configuration and algorithm portfolios have been shown to offer significant improvements over single algorithm approaches in a variety of application domains. In the SAT and CSP domains algorithm portfolios have consistently dominated the main competitions in these fields for the past five years. For a portfolio approach to be effective there are two crucial conditions that must be met. First, there needs to be a collection of complementary solvers with which to make a portfolio. Second, there must be a collection of problem features that can accurately identify structural differences between instances. This paper focuses on the latter issue: feature representation, because, unlike SAT, not every problem has well-studied features. We employ the well-known SATzilla feature set, but compute alternative sets on different SAT encodings of CSPs. We show that regardless of what encoding is used to convert the instances, adequate structural information is maintained to differentiate between problem instances, and that this can be exploited to make an effective portfolio-based CSP solver.
Latent Field Discovery In Interacting Dynamical Systems With Neural Fields
Systems of interacting objects often evolve under the influence of field effects that govern their dynamics, yet previous works have abstracted away from such effects, and assume that systems evolve in a vacuum. In this work, we focus on discovering these fields, and infer them from the observed dynamics alone, without directly observing them. We theorize the presence of latent force fields, and propose neural fields to learn them. Since the observed dynamics constitute the net effect of local object interactions and global field effects, recently popularized equivariant networks are inapplicable, as they fail to capture global information. To address this, we propose to disentangle local object interactions -- which are SE(n) equivariant and depend on relative states -- from external global field effects -- which depend on absolute states. We model interactions with equivariant graph networks, and combine them with neural fields in a novel graph network that integrates field forces. Our experiments show that we can accurately discover the underlying fields in charged particles settings, traffic scenes, and gravitational n-body problems, and effectively use them to learn the system and forecast future trajectories.
Advancing Learnable Multi-Agent Pathfinding Solvers with Active Fine-Tuning
Multi-agent pathfinding (MAPF) is a common abstraction of multi-robot trajectory planning problems, where multiple homogeneous robots simultaneously move in the shared environment. While solving MAPF optimally has been proven to be NP-hard, scalable, and efficient, solvers are vital for real-world applications like logistics, search-and-rescue, etc. To this end, decentralized suboptimal MAPF solvers that leverage machine learning have come on stage. Building on the success of the recently introduced MAPF-GPT, a pure imitation learning solver, we introduce MAPF-GPT-DDG. This novel approach effectively fine-tunes the pre-trained MAPF model using centralized expert data. Leveraging a novel delta-data generation mechanism, MAPF-GPT-DDG accelerates training while significantly improving performance at test time. Our experiments demonstrate that MAPF-GPT-DDG surpasses all existing learning-based MAPF solvers, including the original MAPF-GPT, regarding solution quality across many testing scenarios. Remarkably, it can work with MAPF instances involving up to 1 million agents in a single environment, setting a new milestone for scalability in MAPF domains.
ShinkaEvolve: Towards Open-Ended And Sample-Efficient Program Evolution
We introduce ShinkaEvolve: a new open-source framework leveraging large language models (LLMs) to advance scientific discovery with state-of-the-art performance and unprecedented efficiency. Recent advances in scaling inference time compute of LLMs have enabled significant progress in generalized scientific discovery. These approaches rely on evolutionary agentic harnesses that leverage LLMs as mutation operators to generate candidate solutions. However, current code evolution methods suffer from critical limitations: they are sample inefficient, requiring thousands of samples to identify effective solutions, and remain closed-source, hindering broad adoption and extension. ShinkaEvolve addresses these limitations, introducing three key innovations: a parent sampling technique balancing exploration and exploitation, code novelty rejection-sampling for efficient search space exploration, and a bandit-based LLM ensemble selection strategy. We evaluate ShinkaEvolve across diverse tasks, demonstrating consistent improvements in sample efficiency and solution quality. ShinkaEvolve discovers a new state-of-the-art circle packing solution using only 150 samples, designs high-performing agentic harnesses for AIME mathematical reasoning tasks, identifies improvements to ALE-Bench competitive programming solutions, and discovers novel mixture-of-expert load balancing loss functions that illuminate the space of optimization strategies. Our results demonstrate that ShinkaEvolve achieves broad applicability with exceptional sample efficiency. By providing open-source accessibility and cost-efficiency, this work democratizes open-ended discovery across diverse computational problems.
Off-Policy Primal-Dual Safe Reinforcement Learning
Primal-dual safe RL methods commonly perform iterations between the primal update of the policy and the dual update of the Lagrange Multiplier. Such a training paradigm is highly susceptible to the error in cumulative cost estimation since this estimation serves as the key bond connecting the primal and dual update processes. We show that this problem causes significant underestimation of cost when using off-policy methods, leading to the failure to satisfy the safety constraint. To address this issue, we propose conservative policy optimization, which learns a policy in a constraint-satisfying area by considering the uncertainty in cost estimation. This improves constraint satisfaction but also potentially hinders reward maximization. We then introduce local policy convexification to help eliminate such suboptimality by gradually reducing the estimation uncertainty. We provide theoretical interpretations of the joint coupling effect of these two ingredients and further verify them by extensive experiments. Results on benchmark tasks show that our method not only achieves an asymptotic performance comparable to state-of-the-art on-policy methods while using much fewer samples, but also significantly reduces constraint violation during training. Our code is available at https://github.com/ZifanWu/CAL.
AutoNumerics-Zero: Automated Discovery of State-of-the-Art Mathematical Functions
Computers calculate transcendental functions by approximating them through the composition of a few limited-precision instructions. For example, an exponential can be calculated with a Taylor series. These approximation methods were developed over the centuries by mathematicians, who emphasized the attainability of arbitrary precision. Computers, however, operate on few limited precision types, such as the popular float32. In this study, we show that when aiming for limited precision, existing approximation methods can be outperformed by programs automatically discovered from scratch by a simple evolutionary algorithm. In particular, over real numbers, our method can approximate the exponential function reaching orders of magnitude more precision for a given number of operations when compared to previous approaches. More practically, over float32 numbers and constrained to less than 1 ULP of error, the same method attains a speedup over baselines by generating code that triggers better XLA/LLVM compilation paths. In other words, in both cases, evolution searched a vast space of possible programs, without knowledge of mathematics, to discover previously unknown optimized approximations to high precision, for the first time. We also give evidence that these results extend beyond the exponential. The ubiquity of transcendental functions suggests that our method has the potential to reduce the cost of scientific computing applications.
Centaur: Robust End-to-End Autonomous Driving with Test-Time Training
How can we rely on an end-to-end autonomous vehicle's complex decision-making system during deployment? One common solution is to have a ``fallback layer'' that checks the planned trajectory for rule violations and replaces it with a pre-defined safe action if necessary. Another approach involves adjusting the planner's decisions to minimize a pre-defined ``cost function'' using additional system predictions such as road layouts and detected obstacles. However, these pre-programmed rules or cost functions cannot learn and improve with new training data, often resulting in overly conservative behaviors. In this work, we propose Centaur (Cluster Entropy for Test-time trAining using Uncertainty) which updates a planner's behavior via test-time training, without relying on hand-engineered rules or cost functions. Instead, we measure and minimize the uncertainty in the planner's decisions. For this, we develop a novel uncertainty measure, called Cluster Entropy, which is simple, interpretable, and compatible with state-of-the-art planning algorithms. Using data collected at prior test-time time-steps, we perform an update to the model's parameters using a gradient that minimizes the Cluster Entropy. With only this sole gradient update prior to inference, Centaur exhibits significant improvements, ranking first on the navtest leaderboard with notable gains in safety-critical metrics such as time to collision. To provide detailed insights on a per-scenario basis, we also introduce navsafe, a challenging new benchmark, which highlights previously undiscovered failure modes of driving models.
BQ-NCO: Bisimulation Quotienting for Efficient Neural Combinatorial Optimization
Despite the success of neural-based combinatorial optimization methods for end-to-end heuristic learning, out-of-distribution generalization remains a challenge. In this paper, we present a novel formulation of Combinatorial Optimization Problems (COPs) as Markov Decision Processes (MDPs) that effectively leverages common symmetries of COPs to improve out-of-distribution robustness. Starting from a direct MDP formulation of a constructive method, we introduce a generic way to reduce the state space, based on Bisimulation Quotienting (BQ) in MDPs. Then, for COPs with a recursive nature, we specialize the bisimulation and show how the reduced state exploits the symmetries of these problems and facilitates MDP solving. Our approach is principled and we prove that an optimal policy for the proposed BQ-MDP actually solves the associated COPs. We illustrate our approach on five classical problems: the Euclidean and Asymmetric Traveling Salesman, Capacitated Vehicle Routing, Orienteering and Knapsack Problems. Furthermore, for each problem, we introduce a simple attention-based policy network for the BQ-MDPs, which we train by imitation of (near) optimal solutions of small instances from a single distribution. We obtain new state-of-the-art results for the five COPs on both synthetic and realistic benchmarks. Notably, in contrast to most existing neural approaches, our learned policies show excellent generalization performance to much larger instances than seen during training, without any additional search procedure.
On Zero-Shot Reinforcement Learning
Modern reinforcement learning (RL) systems capture deep truths about general, human problem-solving. In domains where new data can be simulated cheaply, these systems uncover sequential decision-making policies that far exceed the ability of any human. Society faces many problems whose solutions require this skill, but they are often in domains where new data cannot be cheaply simulated. In such scenarios, we can learn simulators from existing data, but these will only ever be approximately correct, and can be pathologically incorrect when queried outside of their training distribution. As a result, a misalignment between the environments in which we train our agents and the real-world in which we wish to deploy our agents is inevitable. Dealing with this misalignment is the primary concern of zero-shot reinforcement learning, a problem setting where the agent must generalise to a new task or domain with zero practice shots. Whilst impressive progress has been made on methods that perform zero-shot RL in idealised settings, new work is needed if these results are to be replicated in real-world settings. In this thesis, we argue that doing so requires us to navigate (at least) three constraints. First, the data quality constraint: real-world datasets are small and homogeneous. Second, the observability constraint: states, dynamics and rewards in the real-world are often only partially observed. And third, the data availability constraint: a priori access to data cannot always be assumed. This work proposes a suite of methods that perform zero-shot RL subject to these constraints. In a series of empirical studies we expose the failings of existing methods, and justify our techniques for remedying them. We believe these designs take us a step closer to RL methods that can be deployed to solve real-world problems.
Understanding Reinforcement Learning for Model Training, and future directions with GRAPE
This paper provides a self-contained, from-scratch, exposition of key algorithms for instruction tuning of models: SFT, Rejection Sampling, REINFORCE, Trust Region Policy Optimization (TRPO), Proximal Policy Optimization (PPO), Group Relative Policy Optimization (GRPO), and Direct Preference Optimization (DPO). Explanations of these algorithms often assume prior knowledge, lack critical details, and/or are overly generalized and complex. Here, each method is discussed and developed step by step using simplified and explicit notation focused on LLMs, aiming to eliminate ambiguity and provide a clear and intuitive understanding of the concepts. By minimizing detours into the broader RL literature and connecting concepts to LLMs, we eliminate superfluous abstractions and reduce cognitive overhead. Following this exposition, we provide a literature review of new techniques and approaches beyond those detailed. Finally, new ideas for research and exploration in the form of GRAPE (Generalized Relative Advantage Policy Evolution) are presented.
Convergent Graph Solvers
We propose the convergent graph solver (CGS), a deep learning method that learns iterative mappings to predict the properties of a graph system at its stationary state (fixed point) with guaranteed convergence. CGS systematically computes the fixed points of a target graph system and decodes them to estimate the stationary properties of the system without the prior knowledge of existing solvers or intermediate solutions. The forward propagation of CGS proceeds in three steps: (1) constructing the input dependent linear contracting iterative maps, (2) computing the fixed-points of the linear maps, and (3) decoding the fixed-points to estimate the properties. The contractivity of the constructed linear maps guarantees the existence and uniqueness of the fixed points following the Banach fixed point theorem. To train CGS efficiently, we also derive a tractable analytical expression for its gradient by leveraging the implicit function theorem. We evaluate the performance of CGS by applying it to various network-analytic and graph benchmark problems. The results indicate that CGS has competitive capabilities for predicting the stationary properties of graph systems, irrespective of whether the target systems are linear or non-linear. CGS also shows high performance for graph classification problems where the existence or the meaning of a fixed point is hard to be clearly defined, which highlights the potential of CGS as a general graph neural network architecture.
Adjacency constraint for efficient hierarchical reinforcement learning
Goal-conditioned Hierarchical Reinforcement Learning (HRL) is a promising approach for scaling up reinforcement learning (RL) techniques. However, it often suffers from training inefficiency as the action space of the high-level, i.e., the goal space, is large. Searching in a large goal space poses difficulty for both high-level subgoal generation and low-level policy learning. In this paper, we show that this problem can be effectively alleviated by restricting the high-level action space from the whole goal space to a k-step adjacent region of the current state using an adjacency constraint. We theoretically prove that in a deterministic Markov Decision Process (MDP), the proposed adjacency constraint preserves the optimal hierarchical policy, while in a stochastic MDP the adjacency constraint induces a bounded state-value suboptimality determined by the MDP's transition structure. We further show that this constraint can be practically implemented by training an adjacency network that can discriminate between adjacent and non-adjacent subgoals. Experimental results on discrete and continuous control tasks including challenging simulated robot locomotion and manipulation tasks show that incorporating the adjacency constraint significantly boosts the performance of state-of-the-art goal-conditioned HRL approaches.
Constrained Graphic Layout Generation via Latent Optimization
It is common in graphic design humans visually arrange various elements according to their design intent and semantics. For example, a title text almost always appears on top of other elements in a document. In this work, we generate graphic layouts that can flexibly incorporate such design semantics, either specified implicitly or explicitly by a user. We optimize using the latent space of an off-the-shelf layout generation model, allowing our approach to be complementary to and used with existing layout generation models. Our approach builds on a generative layout model based on a Transformer architecture, and formulates the layout generation as a constrained optimization problem where design constraints are used for element alignment, overlap avoidance, or any other user-specified relationship. We show in the experiments that our approach is capable of generating realistic layouts in both constrained and unconstrained generation tasks with a single model. The code is available at https://github.com/ktrk115/const_layout .
Convergent Reinforcement Learning Algorithms for Stochastic Shortest Path Problem
In this paper we propose two algorithms in the tabular setting and an algorithm for the function approximation setting for the Stochastic Shortest Path (SSP) problem. SSP problems form an important class of problems in Reinforcement Learning (RL), as other types of cost-criteria in RL can be formulated in the setting of SSP. We show asymptotic almost-sure convergence for all our algorithms. We observe superior performance of our tabular algorithms compared to other well-known convergent RL algorithms. We further observe reliable performance of our function approximation algorithm compared to other algorithms in the function approximation setting.
Towards QD-suite: developing a set of benchmarks for Quality-Diversity algorithms
While the field of Quality-Diversity (QD) has grown into a distinct branch of stochastic optimization, a few problems, in particular locomotion and navigation tasks, have become de facto standards. Are such benchmarks sufficient? Are they representative of the key challenges faced by QD algorithms? Do they provide the ability to focus on one particular challenge by properly disentangling it from others? Do they have much predictive power in terms of scalability and generalization? Existing benchmarks are not standardized, and there is currently no MNIST equivalent for QD. Inspired by recent works on Reinforcement Learning benchmarks, we argue that the identification of challenges faced by QD methods and the development of targeted, challenging, scalable but affordable benchmarks is an important step. As an initial effort, we identify three problems that are challenging in sparse reward settings, and propose associated benchmarks: (1) Behavior metric bias, which can result from the use of metrics that do not match the structure of the behavior space. (2) Behavioral Plateaus, with varying characteristics, such that escaping them would require adaptive QD algorithms and (3) Evolvability Traps, where small variations in genotype result in large behavioral changes. The environments that we propose satisfy the properties listed above.
Scaling physics-informed hard constraints with mixture-of-experts
Imposing known physical constraints, such as conservation laws, during neural network training introduces an inductive bias that can improve accuracy, reliability, convergence, and data efficiency for modeling physical dynamics. While such constraints can be softly imposed via loss function penalties, recent advancements in differentiable physics and optimization improve performance by incorporating PDE-constrained optimization as individual layers in neural networks. This enables a stricter adherence to physical constraints. However, imposing hard constraints significantly increases computational and memory costs, especially for complex dynamical systems. This is because it requires solving an optimization problem over a large number of points in a mesh, representing spatial and temporal discretizations, which greatly increases the complexity of the constraint. To address this challenge, we develop a scalable approach to enforce hard physical constraints using Mixture-of-Experts (MoE), which can be used with any neural network architecture. Our approach imposes the constraint over smaller decomposed domains, each of which is solved by an "expert" through differentiable optimization. During training, each expert independently performs a localized backpropagation step by leveraging the implicit function theorem; the independence of each expert allows for parallelization across multiple GPUs. Compared to standard differentiable optimization, our scalable approach achieves greater accuracy in the neural PDE solver setting for predicting the dynamics of challenging non-linear systems. We also improve training stability and require significantly less computation time during both training and inference stages.
DAGs with NO TEARS: Continuous Optimization for Structure Learning
Estimating the structure of directed acyclic graphs (DAGs, also known as Bayesian networks) is a challenging problem since the search space of DAGs is combinatorial and scales superexponentially with the number of nodes. Existing approaches rely on various local heuristics for enforcing the acyclicity constraint. In this paper, we introduce a fundamentally different strategy: We formulate the structure learning problem as a purely continuous optimization problem over real matrices that avoids this combinatorial constraint entirely. This is achieved by a novel characterization of acyclicity that is not only smooth but also exact. The resulting problem can be efficiently solved by standard numerical algorithms, which also makes implementation effortless. The proposed method outperforms existing ones, without imposing any structural assumptions on the graph such as bounded treewidth or in-degree. Code implementing the proposed algorithm is open-source and publicly available at https://github.com/xunzheng/notears.
Lion Secretly Solves Constrained Optimization: As Lyapunov Predicts
Lion (Evolved Sign Momentum), a new optimizer discovered through program search, has shown promising results in training large AI models. It performs comparably or favorably to AdamW but with greater memory efficiency. As we can expect from the results of a random search program, Lion incorporates elements from several existing algorithms, including signed momentum, decoupled weight decay, Polak, and Nesterov momentum, but does not fit into any existing category of theoretically grounded optimizers. Thus, even though Lion appears to perform well as a general-purpose optimizer for a wide range of tasks, its theoretical basis remains uncertain. This lack of theoretical clarity limits opportunities to further enhance and expand Lion's efficacy. This work aims to demystify Lion. Based on both continuous-time and discrete-time analysis, we demonstrate that Lion is a theoretically novel and principled approach for minimizing a general loss function f(x) while enforcing a bound constraint |x|_infty leq 1/lambda. Lion achieves this through the incorporation of decoupled weight decay, where lambda represents the weight decay coefficient. Our analysis is made possible by the development of a new Lyapunov function for the Lion updates. It applies to a broader family of Lion-kappa algorithms, where the sign(cdot) operator in Lion is replaced by the subgradient of a convex function kappa, leading to the solution of a general composite optimization problem of min_x f(x) + kappa^*(x). Our findings provide valuable insights into the dynamics of Lion and pave the way for further improvements and extensions of Lion-related algorithms.
Tree-OPO: Off-policy Monte Carlo Tree-Guided Advantage Optimization for Multistep Reasoning
Recent advances in reasoning with large language models (LLMs) have shown the effectiveness of Monte Carlo Tree Search (MCTS) for generating high-quality intermediate trajectories, particularly in math and symbolic domains. Inspired by this, we explore how MCTS-derived trajectories, traditionally used for training value or reward models, can be repurposed to improve policy optimization in preference-based reinforcement learning (RL). Specifically, we focus on Group Relative Policy Optimization (GRPO), a recent algorithm that enables preference-consistent policy learning without value networks. We propose a staged GRPO training paradigm where completions are derived from partially revealed MCTS rollouts, introducing a novel tree-structured setting for advantage estimation. This leads to a rich class of prefix-conditioned reward signals, which we analyze theoretically and empirically. Our initial results indicate that while structured advantage estimation can stabilize updates and better reflect compositional reasoning quality, challenges such as advantage saturation and reward signal collapse remain. We propose heuristic and statistical solutions to mitigate these issues and discuss open challenges for learning under staged or tree-like reward structures.
Sampling with Mirrored Stein Operators
We introduce a new family of particle evolution samplers suitable for constrained domains and non-Euclidean geometries. Stein Variational Mirror Descent and Mirrored Stein Variational Gradient Descent minimize the Kullback-Leibler (KL) divergence to constrained target distributions by evolving particles in a dual space defined by a mirror map. Stein Variational Natural Gradient exploits non-Euclidean geometry to more efficiently minimize the KL divergence to unconstrained targets. We derive these samplers from a new class of mirrored Stein operators and adaptive kernels developed in this work. We demonstrate that these new samplers yield accurate approximations to distributions on the simplex, deliver valid confidence intervals in post-selection inference, and converge more rapidly than prior methods in large-scale unconstrained posterior inference. Finally, we establish the convergence of our new procedures under verifiable conditions on the target distribution.
Generating Adjacency-Constrained Subgoals in Hierarchical Reinforcement Learning
Goal-conditioned hierarchical reinforcement learning (HRL) is a promising approach for scaling up reinforcement learning (RL) techniques. However, it often suffers from training inefficiency as the action space of the high-level, i.e., the goal space, is often large. Searching in a large goal space poses difficulties for both high-level subgoal generation and low-level policy learning. In this paper, we show that this problem can be effectively alleviated by restricting the high-level action space from the whole goal space to a k-step adjacent region of the current state using an adjacency constraint. We theoretically prove that the proposed adjacency constraint preserves the optimal hierarchical policy in deterministic MDPs, and show that this constraint can be practically implemented by training an adjacency network that can discriminate between adjacent and non-adjacent subgoals. Experimental results on discrete and continuous control tasks show that incorporating the adjacency constraint improves the performance of state-of-the-art HRL approaches in both deterministic and stochastic environments.
Online Matching with Stochastic Rewards: Advanced Analyses Using Configuration Linear Programs
Mehta and Panigrahi (2012) proposed Online Matching with Stochastic Rewards, which generalizes the Online Bipartite Matching problem of Karp, Vazirani, and Vazirani (1990) by associating the edges with success probabilities. This new feature captures the pay-per-click model in online advertising. Recently, Huang and Zhang (2020) studied this problem under the online primal dual framework using the Configuration Linear Program (LP), and got the best known competitive ratios of the Stochastic Balance algorithm. Their work suggests that the more expressive Configuration LP is more suitable for this problem than the Matching LP. This paper advances the theory of Configuration LP in two directions. Our technical contribution includes a characterization of the joint matching outcome of an offline vertex and all its neighbors. This characterization may be of independent interest, and is aligned with the spirit of Configuration LP. By contrast, previous analyses of Ranking generally focus on only one neighbor. Second, we designed a Stochastic Configuration LP that captures a stochastic benchmark proposed by Goyal and Udwani (2020), who used a Path-based LP. The Stochastic Configuration LP is smaller and simpler than the Path-based LP. Moreover, using the new LP we improved the competitive ratio of Stochastic Balance from 0.596 to 0.611 when the success probabilities are infinitesimal, and to 0.613 when the success probabilities are further equal.
Transport meets Variational Inference: Controlled Monte Carlo Diffusions
Connecting optimal transport and variational inference, we present a principled and systematic framework for sampling and generative modelling centred around divergences on path space. Our work culminates in the development of the Controlled Monte Carlo Diffusion sampler (CMCD) for Bayesian computation, a score-based annealing technique that crucially adapts both forward and backward dynamics in a diffusion model. On the way, we clarify the relationship between the EM-algorithm and iterative proportional fitting (IPF) for Schr{\"o}dinger bridges, deriving as well a regularised objective that bypasses the iterative bottleneck of standard IPF-updates. Finally, we show that CMCD has a strong foundation in the Jarzinsky and Crooks identities from statistical physics, and that it convincingly outperforms competing approaches across a wide array of experiments.
A Machine Learning Approach That Beats Large Rubik's Cubes
The paper proposes a novel machine learning-based approach to the pathfinding problem on extremely large graphs. This method leverages diffusion distance estimation via a neural network and uses beam search for pathfinding. We demonstrate its efficiency by finding solutions for 4x4x4 and 5x5x5 Rubik's cubes with unprecedentedly short solution lengths, outperforming all available solvers and introducing the first machine learning solver beyond the 3x3x3 case. In particular, it surpasses every single case of the combined best results in the Kaggle Santa 2023 challenge, which involved over 1,000 teams. For the 3x3x3 Rubik's cube, our approach achieves an optimality rate exceeding 98%, matching the performance of task-specific solvers and significantly outperforming prior solutions such as DeepCubeA (60.3%) and EfficientCube (69.6%). Additionally, our solution is more than 26 times faster in solving 3x3x3 Rubik's cubes while requiring up to 18.5 times less model training time than the most efficient state-of-the-art competitor.
Rethinking the "Heatmap + Monte Carlo Tree Search" Paradigm for Solving Large Scale TSP
The Travelling Salesman Problem (TSP) remains a fundamental challenge in combinatorial optimization, inspiring diverse algorithmic strategies. This paper revisits the "heatmap + Monte Carlo Tree Search (MCTS)" paradigm that has recently gained traction for learning-based TSP solutions. Within this framework, heatmaps encode the likelihood of edges forming part of the optimal tour, and MCTS refines this probabilistic guidance to discover optimal solutions. Contemporary approaches have predominantly emphasized the refinement of heatmap generation through sophisticated learning models, inadvertently sidelining the critical role of MCTS. Our extensive empirical analysis reveals two pivotal insights: 1) The configuration of MCTS strategies profoundly influences the solution quality, demanding meticulous tuning to leverage their full potential; 2) Our findings demonstrate that a rudimentary and parameter-free heatmap, derived from the intrinsic k-nearest nature of TSP, can rival or even surpass the performance of complicated heatmaps, with strong generalizability across various scales. Empirical evaluations across various TSP scales underscore the efficacy of our approach, achieving competitive results. These observations challenge the prevailing focus on heatmap sophistication, advocating a reevaluation of the paradigm to harness both components synergistically. Our code is available at: https://github.com/LOGO-CUHKSZ/rethink_mcts_tsp.
Diff-Transfer: Model-based Robotic Manipulation Skill Transfer via Differentiable Physics Simulation
The capability to transfer mastered skills to accomplish a range of similar yet novel tasks is crucial for intelligent robots. In this work, we introduce Diff-Transfer, a novel framework leveraging differentiable physics simulation to efficiently transfer robotic skills. Specifically, Diff-Transfer discovers a feasible path within the task space that brings the source task to the target task. At each pair of adjacent points along this task path, which is two sub-tasks, Diff-Transfer adapts known actions from one sub-task to tackle the other sub-task successfully. The adaptation is guided by the gradient information from differentiable physics simulations. We propose a novel path-planning method to generate sub-tasks, leveraging Q-learning with a task-level state and reward. We implement our framework in simulation experiments and execute four challenging transfer tasks on robotic manipulation, demonstrating the efficacy of Diff-Transfer through comprehensive experiments. Supplementary and Videos are on the website https://sites.google.com/view/difftransfer
Self-Replication, Spontaneous Mutations, and Exponential Genetic Drift in Neural Cellular Automata
This paper reports on patterns exhibiting self-replication with spontaneous, inheritable mutations and exponential genetic drift in Neural Cellular Automata. Despite the models not being explicitly trained for mutation or inheritability, the descendant patterns exponentially drift away from ancestral patterns, even when the automaton is deterministic. While this is far from being the first instance of evolutionary dynamics in a cellular automaton, it is the first to do so by exploiting the power and convenience of Neural Cellular Automata, arguably increasing the space of variations and the opportunity for Open Ended Evolution.
Monte Carlo Tree Search for Comprehensive Exploration in LLM-Based Automatic Heuristic Design
Handcrafting heuristics for solving complex planning tasks (e.g., NP-hard combinatorial optimization (CO) problems) is a common practice but requires extensive domain knowledge. Recently, Large Language Model (LLM)-based automatic heuristics design (AHD) methods have shown promise in generating high-quality heuristics without manual intervention. Existing LLM-based AHD methods employ a population to maintain a fixed number of top-performing LLM-generated heuristics and introduce evolutionary computation (EC) to enhance the population iteratively. However, the population-based procedure brings greedy properties, often resulting in convergence to local optima. Instead, to more comprehensively explore the space of heuristics, we propose using Monte Carlo Tree Search (MCTS) for LLM-based heuristic evolution while preserving all LLM-generated heuristics in a tree structure. With a novel thought-alignment process and an exploration-decay technique, the proposed MCTS-AHD method delivers significantly higher-quality heuristics on various complex tasks. Our code is available at https://github.com/zz1358m/MCTS-AHD-master.
Tackling Prevalent Conditions in Unsupervised Combinatorial Optimization: Cardinality, Minimum, Covering, and More
Combinatorial optimization (CO) is naturally discrete, making machine learning based on differentiable optimization inapplicable. Karalias & Loukas (2020) adapted the probabilistic method to incorporate CO into differentiable optimization. Their work ignited the research on unsupervised learning for CO, composed of two main components: probabilistic objectives and derandomization. However, each component confronts unique challenges. First, deriving objectives under various conditions (e.g., cardinality constraints and minimum) is nontrivial. Second, the derandomization process is underexplored, and the existing derandomization methods are either random sampling or naive rounding. In this work, we aim to tackle prevalent (i.e., commonly involved) conditions in unsupervised CO. First, we concretize the targets for objective construction and derandomization with theoretical justification. Then, for various conditions commonly involved in different CO problems, we derive nontrivial objectives and derandomization to meet the targets. Finally, we apply the derivations to various CO problems. Via extensive experiments on synthetic and real-world graphs, we validate the correctness of our derivations and show our empirical superiority w.r.t. both optimization quality and speed.
Proximal Policy Gradient Arborescence for Quality Diversity Reinforcement Learning
Training generally capable agents that thoroughly explore their environment and learn new and diverse skills is a long-term goal of robot learning. Quality Diversity Reinforcement Learning (QD-RL) is an emerging research area that blends the best aspects of both fields -- Quality Diversity (QD) provides a principled form of exploration and produces collections of behaviorally diverse agents, while Reinforcement Learning (RL) provides a powerful performance improvement operator enabling generalization across tasks and dynamic environments. Existing QD-RL approaches have been constrained to sample efficient, deterministic off-policy RL algorithms and/or evolution strategies, and struggle with highly stochastic environments. In this work, we, for the first time, adapt on-policy RL, specifically Proximal Policy Optimization (PPO), to the Differentiable Quality Diversity (DQD) framework and propose additional improvements over prior work that enable efficient optimization and discovery of novel skills on challenging locomotion tasks. Our new algorithm, Proximal Policy Gradient Arborescence (PPGA), achieves state-of-the-art results, including a 4x improvement in best reward over baselines on the challenging humanoid domain.
Towards Constituting Mathematical Structures for Learning to Optimize
Learning to Optimize (L2O), a technique that utilizes machine learning to learn an optimization algorithm automatically from data, has gained arising attention in recent years. A generic L2O approach parameterizes the iterative update rule and learns the update direction as a black-box network. While the generic approach is widely applicable, the learned model can overfit and may not generalize well to out-of-distribution test sets. In this paper, we derive the basic mathematical conditions that successful update rules commonly satisfy. Consequently, we propose a novel L2O model with a mathematics-inspired structure that is broadly applicable and generalized well to out-of-distribution problems. Numerical simulations validate our theoretical findings and demonstrate the superior empirical performance of the proposed L2O model.
Greed is Good: A Unifying Perspective on Guided Generation
Training-free guided generation is a widely used and powerful technique that allows the end user to exert further control over the generative process of flow/diffusion models. Generally speaking, two families of techniques have emerged for solving this problem for gradient-based guidance: namely, posterior guidance (i.e., guidance via projecting the current sample to the target distribution via the target prediction model) and end-to-end guidance (i.e., guidance by performing backpropagation throughout the entire ODE solve). In this work, we show that these two seemingly separate families can actually be unified by looking at posterior guidance as a greedy strategy of end-to-end guidance. We explore the theoretical connections between these two families and provide an in-depth theoretical of these two techniques relative to the continuous ideal gradients. Motivated by this analysis we then show a method for interpolating between these two families enabling a trade-off between compute and accuracy of the guidance gradients. We then validate this work on several inverse image problems and property-guided molecular generation.
Evolution Gym: A Large-Scale Benchmark for Evolving Soft Robots
Both the design and control of a robot play equally important roles in its task performance. However, while optimal control is well studied in the machine learning and robotics community, less attention is placed on finding the optimal robot design. This is mainly because co-optimizing design and control in robotics is characterized as a challenging problem, and more importantly, a comprehensive evaluation benchmark for co-optimization does not exist. In this paper, we propose Evolution Gym, the first large-scale benchmark for co-optimizing the design and control of soft robots. In our benchmark, each robot is composed of different types of voxels (e.g., soft, rigid, actuators), resulting in a modular and expressive robot design space. Our benchmark environments span a wide range of tasks, including locomotion on various types of terrains and manipulation. Furthermore, we develop several robot co-evolution algorithms by combining state-of-the-art design optimization methods and deep reinforcement learning techniques. Evaluating the algorithms on our benchmark platform, we observe robots exhibiting increasingly complex behaviors as evolution progresses, with the best evolved designs solving many of our proposed tasks. Additionally, even though robot designs are evolved autonomously from scratch without prior knowledge, they often grow to resemble existing natural creatures while outperforming hand-designed robots. Nevertheless, all tested algorithms fail to find robots that succeed in our hardest environments. This suggests that more advanced algorithms are required to explore the high-dimensional design space and evolve increasingly intelligent robots -- an area of research in which we hope Evolution Gym will accelerate progress. Our website with code, environments, documentation, and tutorials is available at http://evogym.csail.mit.edu.
RetroBridge: Modeling Retrosynthesis with Markov Bridges
Retrosynthesis planning is a fundamental challenge in chemistry which aims at designing reaction pathways from commercially available starting materials to a target molecule. Each step in multi-step retrosynthesis planning requires accurate prediction of possible precursor molecules given the target molecule and confidence estimates to guide heuristic search algorithms. We model single-step retrosynthesis planning as a distribution learning problem in a discrete state space. First, we introduce the Markov Bridge Model, a generative framework aimed to approximate the dependency between two intractable discrete distributions accessible via a finite sample of coupled data points. Our framework is based on the concept of a Markov bridge, a Markov process pinned at its endpoints. Unlike diffusion-based methods, our Markov Bridge Model does not need a tractable noise distribution as a sampling proxy and directly operates on the input product molecules as samples from the intractable prior distribution. We then address the retrosynthesis planning problem with our novel framework and introduce RetroBridge, a template-free retrosynthesis modeling approach that achieves state-of-the-art results on standard evaluation benchmarks.
Training-Free Constrained Generation With Stable Diffusion Models
Stable diffusion models represent the state-of-the-art in data synthesis across diverse domains and hold transformative potential for applications in science and engineering, e.g., by facilitating the discovery of novel solutions and simulating systems that are computationally intractable to model explicitly. While there is increasing effort to incorporate physics-based constraints into generative models, existing techniques are either limited in their applicability to latent diffusion frameworks or lack the capability to strictly enforce domain-specific constraints. To address this limitation this paper proposes a novel integration of stable diffusion models with constrained optimization frameworks, enabling the generation of outputs satisfying stringent physical and functional requirements. The effectiveness of this approach is demonstrated through material design experiments requiring adherence to precise morphometric properties, challenging inverse design tasks involving the generation of materials inducing specific stress-strain responses, and copyright-constrained content generation tasks. All code has been released at https://github.com/RAISELab-atUVA/Constrained-Stable-Diffusion.
Random Network Distillation Based Deep Reinforcement Learning for AGV Path Planning
With the flourishing development of intelligent warehousing systems, the technology of Automated Guided Vehicle (AGV) has experienced rapid growth. Within intelligent warehousing environments, AGV is required to safely and rapidly plan an optimal path in complex and dynamic environments. Most research has studied deep reinforcement learning to address this challenge. However, in the environments with sparse extrinsic rewards, these algorithms often converge slowly, learn inefficiently or fail to reach the target. Random Network Distillation (RND), as an exploration enhancement, can effectively improve the performance of proximal policy optimization, especially enhancing the additional intrinsic rewards of the AGV agent which is in sparse reward environments. Moreover, most of the current research continues to use 2D grid mazes as experimental environments. These environments have insufficient complexity and limited action sets. To solve this limitation, we present simulation environments of AGV path planning with continuous actions and positions for AGVs, so that it can be close to realistic physical scenarios. Based on our experiments and comprehensive analysis of the proposed method, the results demonstrate that our proposed method enables AGV to more rapidly complete path planning tasks with continuous actions in our environments. A video of part of our experiments can be found at https://youtu.be/lwrY9YesGmw.
Graph-Assisted Stitching for Offline Hierarchical Reinforcement Learning
Existing offline hierarchical reinforcement learning methods rely on high-level policy learning to generate subgoal sequences. However, their efficiency degrades as task horizons increase, and they lack effective strategies for stitching useful state transitions across different trajectories. We propose Graph-Assisted Stitching (GAS), a novel framework that formulates subgoal selection as a graph search problem rather than learning an explicit high-level policy. By embedding states into a Temporal Distance Representation (TDR) space, GAS clusters semantically similar states from different trajectories into unified graph nodes, enabling efficient transition stitching. A shortest-path algorithm is then applied to select subgoal sequences within the graph, while a low-level policy learns to reach the subgoals. To improve graph quality, we introduce the Temporal Efficiency (TE) metric, which filters out noisy or inefficient transition states, significantly enhancing task performance. GAS outperforms prior offline HRL methods across locomotion, navigation, and manipulation tasks. Notably, in the most stitching-critical task, it achieves a score of 88.3, dramatically surpassing the previous state-of-the-art score of 1.0. Our source code is available at: https://github.com/qortmdgh4141/GAS.
Biomaker CA: a Biome Maker project using Cellular Automata
We introduce Biomaker CA: a Biome Maker project using Cellular Automata (CA). In Biomaker CA, morphogenesis is a first class citizen and small seeds need to grow into plant-like organisms to survive in a nutrient starved environment and eventually reproduce with variation so that a biome survives for long timelines. We simulate complex biomes by means of CA rules in 2D grids and parallelize all of its computation on GPUs through the Python JAX framework. We show how this project allows for several different kinds of environments and laws of 'physics', alongside different model architectures and mutation strategies. We further analyze some configurations to show how plant agents can grow, survive, reproduce, and evolve, forming stable and unstable biomes. We then demonstrate how one can meta-evolve models to survive in a harsh environment either through end-to-end meta-evolution or by a more surgical and efficient approach, called Petri dish meta-evolution. Finally, we show how to perform interactive evolution, where the user decides how to evolve a plant model interactively and then deploys it in a larger environment. We open source Biomaker CA at: https://tinyurl.com/2x8yu34s .
Subequivariant Graph Reinforcement Learning in 3D Environments
Learning a shared policy that guides the locomotion of different agents is of core interest in Reinforcement Learning (RL), which leads to the study of morphology-agnostic RL. However, existing benchmarks are highly restrictive in the choice of starting point and target point, constraining the movement of the agents within 2D space. In this work, we propose a novel setup for morphology-agnostic RL, dubbed Subequivariant Graph RL in 3D environments (3D-SGRL). Specifically, we first introduce a new set of more practical yet challenging benchmarks in 3D space that allows the agent to have full Degree-of-Freedoms to explore in arbitrary directions starting from arbitrary configurations. Moreover, to optimize the policy over the enlarged state-action space, we propose to inject geometric symmetry, i.e., subequivariance, into the modeling of the policy and Q-function such that the policy can generalize to all directions, improving exploration efficiency. This goal is achieved by a novel SubEquivariant Transformer (SET) that permits expressive message exchange. Finally, we evaluate the proposed method on the proposed benchmarks, where our method consistently and significantly outperforms existing approaches on single-task, multi-task, and zero-shot generalization scenarios. Extensive ablations are also conducted to verify our design. Code and videos are available on our project page: https://alpc91.github.io/SGRL/.
Bourbaki: Self-Generated and Goal-Conditioned MDPs for Theorem Proving
Reasoning remains a challenging task for large language models (LLMs), especially within the logically constrained environment of automated theorem proving (ATP), due to sparse rewards and the vast scale of proofs. These challenges are amplified in benchmarks like PutnamBench, which contains university-level problems requiring complex, multi-step reasoning. To address this, we introduce self-generated goal-conditioned MDPs (sG-MDPs), a new framework in which agents generate and pursue their subgoals based on the evolving proof state. Given this more structured generation of goals, the resulting problem becomes more amenable to search. We then apply Monte Carlo Tree Search (MCTS)-like algorithms to solve the sG-MDP, instantiating our approach in Bourbaki (7B), a modular system that can ensemble multiple 7B LLMs for subgoal generation and tactic synthesis. On PutnamBench, Bourbaki (7B) solves 26 problems, achieving new state-of-the-art results with models at this scale.
Steering Generative Models with Experimental Data for Protein Fitness Optimization
Protein fitness optimization involves finding a protein sequence that maximizes desired quantitative properties in a combinatorially large design space of possible sequences. Recent developments in steering protein generative models (e.g diffusion models, language models) offer a promising approach. However, by and large, past studies have optimized surrogate rewards and/or utilized large amounts of labeled data for steering, making it unclear how well existing methods perform and compare to each other in real-world optimization campaigns where fitness is measured by low-throughput wet-lab assays. In this study, we explore fitness optimization using small amounts (hundreds) of labeled sequence-fitness pairs and comprehensively evaluate strategies such as classifier guidance and posterior sampling for guiding generation from different discrete diffusion models of protein sequences. We also demonstrate how guidance can be integrated into adaptive sequence selection akin to Thompson sampling in Bayesian optimization, showing that plug-and-play guidance strategies offer advantages compared to alternatives such as reinforcement learning with protein language models.
Branched Schrödinger Bridge Matching
Predicting the intermediate trajectories between an initial and target distribution is a central problem in generative modeling. Existing approaches, such as flow matching and Schr\"odinger Bridge Matching, effectively learn mappings between two distributions by modeling a single stochastic path. However, these methods are inherently limited to unimodal transitions and cannot capture branched or divergent evolution from a common origin to multiple distinct outcomes. To address this, we introduce Branched Schr\"odinger Bridge Matching (BranchSBM), a novel framework that learns branched Schr\"odinger bridges. BranchSBM parameterizes multiple time-dependent velocity fields and growth processes, enabling the representation of population-level divergence into multiple terminal distributions. We show that BranchSBM is not only more expressive but also essential for tasks involving multi-path surface navigation, modeling cell fate bifurcations from homogeneous progenitor states, and simulating diverging cellular responses to perturbations.
Computational Life: How Well-formed, Self-replicating Programs Emerge from Simple Interaction
The fields of Origin of Life and Artificial Life both question what life is and how it emerges from a distinct set of "pre-life" dynamics. One common feature of most substrates where life emerges is a marked shift in dynamics when self-replication appears. While there are some hypotheses regarding how self-replicators arose in nature, we know very little about the general dynamics, computational principles, and necessary conditions for self-replicators to emerge. This is especially true on "computational substrates" where interactions involve logical, mathematical, or programming rules. In this paper we take a step towards understanding how self-replicators arise by studying several computational substrates based on various simple programming languages and machine instruction sets. We show that when random, non self-replicating programs are placed in an environment lacking any explicit fitness landscape, self-replicators tend to arise. We demonstrate how this occurs due to random interactions and self-modification, and can happen with and without background random mutations. We also show how increasingly complex dynamics continue to emerge following the rise of self-replicators. Finally, we show a counterexample of a minimalistic programming language where self-replicators are possible, but so far have not been observed to arise.
Stein Variational Goal Generation for adaptive Exploration in Multi-Goal Reinforcement Learning
In multi-goal Reinforcement Learning, an agent can share experience between related training tasks, resulting in better generalization for new tasks at test time. However, when the goal space has discontinuities and the reward is sparse, a majority of goals are difficult to reach. In this context, a curriculum over goals helps agents learn by adapting training tasks to their current capabilities. In this work we propose Stein Variational Goal Generation (SVGG), which samples goals of intermediate difficulty for the agent, by leveraging a learned predictive model of its goal reaching capabilities. The distribution of goals is modeled with particles that are attracted in areas of appropriate difficulty using Stein Variational Gradient Descent. We show that SVGG outperforms state-of-the-art multi-goal Reinforcement Learning methods in terms of success coverage in hard exploration problems, and demonstrate that it is endowed with a useful recovery property when the environment changes.
Topology-Aware Latent Diffusion for 3D Shape Generation
We introduce a new generative model that combines latent diffusion with persistent homology to create 3D shapes with high diversity, with a special emphasis on their topological characteristics. Our method involves representing 3D shapes as implicit fields, then employing persistent homology to extract topological features, including Betti numbers and persistence diagrams. The shape generation process consists of two steps. Initially, we employ a transformer-based autoencoding module to embed the implicit representation of each 3D shape into a set of latent vectors. Subsequently, we navigate through the learned latent space via a diffusion model. By strategically incorporating topological features into the diffusion process, our generative module is able to produce a richer variety of 3D shapes with different topological structures. Furthermore, our framework is flexible, supporting generation tasks constrained by a variety of inputs, including sparse and partial point clouds, as well as sketches. By modifying the persistence diagrams, we can alter the topology of the shapes generated from these input modalities.
Variational Flow Matching for Graph Generation
We present a formulation of flow matching as variational inference, which we refer to as variational flow matching (VFM). Based on this formulation we develop CatFlow, a flow matching method for categorical data. CatFlow is easy to implement, computationally efficient, and achieves strong results on graph generation tasks. In VFM, the objective is to approximate the posterior probability path, which is a distribution over possible end points of a trajectory. We show that VFM admits both the CatFlow objective and the original flow matching objective as special cases. We also relate VFM to score-based models, in which the dynamics are stochastic rather than deterministic, and derive a bound on the model likelihood based on a reweighted VFM objective. We evaluate CatFlow on one abstract graph generation task and two molecular generation tasks. In all cases, CatFlow exceeds or matches performance of the current state-of-the-art models.
Graphically Structured Diffusion Models
We introduce a framework for automatically defining and learning deep generative models with problem-specific structure. We tackle problem domains that are more traditionally solved by algorithms such as sorting, constraint satisfaction for Sudoku, and matrix factorization. Concretely, we train diffusion models with an architecture tailored to the problem specification. This problem specification should contain a graphical model describing relationships between variables, and often benefits from explicit representation of subcomputations. Permutation invariances can also be exploited. Across a diverse set of experiments we improve the scaling relationship between problem dimension and our model's performance, in terms of both training time and final accuracy. Our code can be found at https://github.com/plai-group/gsdm.
Goal-Conditioned Predictive Coding as an Implicit Planner for Offline Reinforcement Learning
Recent work has demonstrated the effectiveness of formulating decision making as a supervised learning problem on offline-collected trajectories. However, the benefits of performing sequence modeling on trajectory data is not yet clear. In this work we investigate if sequence modeling has the capability to condense trajectories into useful representations that can contribute to policy learning. To achieve this, we adopt a two-stage framework that first summarizes trajectories with sequence modeling techniques, and then employs these representations to learn a policy along with a desired goal. This design allows many existing supervised offline RL methods to be considered as specific instances of our framework. Within this framework, we introduce Goal-Conditioned Predicitve Coding (GCPC), an approach that brings powerful trajectory representations and leads to performant policies. We conduct extensive empirical evaluations on AntMaze, FrankaKitchen and Locomotion environments, and observe that sequence modeling has a significant impact on some decision making tasks. In addition, we demonstrate that GCPC learns a goal-conditioned latent representation about the future, which serves as an "implicit planner", and enables competitive performance on all three benchmarks.
Improving Convergence and Generalization Using Parameter Symmetries
In many neural networks, different values of the parameters may result in the same loss value. Parameter space symmetries are loss-invariant transformations that change the model parameters. Teleportation applies such transformations to accelerate optimization. However, the exact mechanism behind this algorithm's success is not well understood. In this paper, we show that teleportation not only speeds up optimization in the short-term, but gives overall faster time to convergence. Additionally, teleporting to minima with different curvatures improves generalization, which suggests a connection between the curvature of the minimum and generalization ability. Finally, we show that integrating teleportation into a wide range of optimization algorithms and optimization-based meta-learning improves convergence. Our results showcase the versatility of teleportation and demonstrate the potential of incorporating symmetry in optimization.
Offline Reinforcement Learning with Closed-Form Policy Improvement Operators
Behavior constrained policy optimization has been demonstrated to be a successful paradigm for tackling Offline Reinforcement Learning. By exploiting historical transitions, a policy is trained to maximize a learned value function while constrained by the behavior policy to avoid a significant distributional shift. In this paper, we propose our closed-form policy improvement operators. We make a novel observation that the behavior constraint naturally motivates the use of first-order Taylor approximation, leading to a linear approximation of the policy objective. Additionally, as practical datasets are usually collected by heterogeneous policies, we model the behavior policies as a Gaussian Mixture and overcome the induced optimization difficulties by leveraging the LogSumExp's lower bound and Jensen's Inequality, giving rise to a closed-form policy improvement operator. We instantiate offline RL algorithms with our novel policy improvement operators and empirically demonstrate their effectiveness over state-of-the-art algorithms on the standard D4RL benchmark. Our code is available at https://cfpi-icml23.github.io/.
How quantum and evolutionary algorithms can help each other: two examples
We investigate the potential of bio-inspired evolutionary algorithms for designing quantum circuits with specific goals, focusing on two particular tasks. The first one is motivated by the ideas of Artificial Life that are used to reproduce stochastic cellular automata with given rules. We test the robustness of quantum implementations of the cellular automata for different numbers of quantum gates The second task deals with the sampling of quantum circuits that generate highly entangled quantum states, which constitute an important resource for quantum computing. In particular, an evolutionary algorithm is employed to optimize circuits with respect to a fitness function defined with the Mayer-Wallach entanglement measure. We demonstrate that, by balancing the mutation rate between exploration and exploitation, we can find entangling quantum circuits for up to five qubits. We also discuss the trade-off between the number of gates in quantum circuits and the computational costs of finding the gate arrangements leading to a strongly entangled state. Our findings provide additional insight into the trade-off between the complexity of a circuit and its performance, which is an important factor in the design of quantum circuits.
Online Search Cost Estimation for SAT Solvers
We present two different methods for estimating the cost of solving SAT problems. The methods focus on the online behaviour of the backtracking solver, as well as the structure of the problem. Modern SAT solvers present several challenges to estimate search cost including coping with nonchronological backtracking, learning and restarts. Our first method adapt an existing algorithm for estimating the size of a search tree to deal with these challenges. We then suggest a second method that uses a linear model trained on data gathered online at the start of search. We compare the effectiveness of these two methods using random and structured problems. We also demonstrate that predictions made in early restarts can be used to improve later predictions. We conclude by showing that the cost of solving a set of problems can be reduced by selecting a solver from a portfolio based on such cost estimations.
Neur2RO: Neural Two-Stage Robust Optimization
Robust optimization provides a mathematical framework for modeling and solving decision-making problems under worst-case uncertainty. This work addresses two-stage robust optimization (2RO) problems (also called adjustable robust optimization), wherein first-stage and second-stage decisions are made before and after uncertainty is realized, respectively. This results in a nested min-max-min optimization problem which is extremely challenging computationally, especially when the decisions are discrete. We propose Neur2RO, an efficient machine learning-driven instantiation of column-and-constraint generation (CCG), a classical iterative algorithm for 2RO. Specifically, we learn to estimate the value function of the second-stage problem via a novel neural network architecture that is easy to optimize over by design. Embedding our neural network into CCG yields high-quality solutions quickly as evidenced by experiments on two 2RO benchmarks, knapsack and capital budgeting. For knapsack, Neur2RO finds solutions that are within roughly 2% of the best-known values in a few seconds compared to the three hours of the state-of-the-art exact branch-and-price algorithm; for larger and more complex instances, Neur2RO finds even better solutions. For capital budgeting, Neur2RO outperforms three variants of the k-adaptability algorithm, particularly on the largest instances, with a 10 to 100-fold reduction in solution time. Our code and data are available at https://github.com/khalil-research/Neur2RO.
Dueling RL: Reinforcement Learning with Trajectory Preferences
We consider the problem of preference based reinforcement learning (PbRL), where, unlike traditional reinforcement learning, an agent receives feedback only in terms of a 1 bit (0/1) preference over a trajectory pair instead of absolute rewards for them. The success of the traditional RL framework crucially relies on the underlying agent-reward model, which, however, depends on how accurately a system designer can express an appropriate reward function and often a non-trivial task. The main novelty of our framework is the ability to learn from preference-based trajectory feedback that eliminates the need to hand-craft numeric reward models. This paper sets up a formal framework for the PbRL problem with non-markovian rewards, where the trajectory preferences are encoded by a generalized linear model of dimension d. Assuming the transition model is known, we then propose an algorithm with almost optimal regret guarantee of mathcal{O}left( SH d log (T / delta) T right). We further, extend the above algorithm to the case of unknown transition dynamics, and provide an algorithm with near optimal regret guarantee mathcal{O}((d + H^2 + |S|)dT +|mathcal{S||A|TH} ). To the best of our knowledge, our work is one of the first to give tight regret guarantees for preference based RL problems with trajectory preferences.
Causal Discovery from Heterogeneous/Nonstationary Data with Independent Changes
It is commonplace to encounter heterogeneous or nonstationary data, of which the underlying generating process changes across domains or over time. Such a distribution shift feature presents both challenges and opportunities for causal discovery. In this paper, we develop a framework for causal discovery from such data, called Constraint-based causal Discovery from heterogeneous/NOnstationary Data (CD-NOD), to find causal skeleton and directions and estimate the properties of mechanism changes. First, we propose an enhanced constraint-based procedure to detect variables whose local mechanisms change and recover the skeleton of the causal structure over observed variables. Second, we present a method to determine causal orientations by making use of independent changes in the data distribution implied by the underlying causal model, benefiting from information carried by changing distributions. After learning the causal structure, next, we investigate how to efficiently estimate the "driving force" of the nonstationarity of a causal mechanism. That is, we aim to extract from data a low-dimensional representation of changes. The proposed methods are nonparametric, with no hard restrictions on data distributions and causal mechanisms, and do not rely on window segmentation. Furthermore, we find that data heterogeneity benefits causal structure identification even with particular types of confounders. Finally, we show the connection between heterogeneity/nonstationarity and soft intervention in causal discovery. Experimental results on various synthetic and real-world data sets (task-fMRI and stock market data) are presented to demonstrate the efficacy of the proposed methods.
PARL: A Unified Framework for Policy Alignment in Reinforcement Learning
We present a novel unified bilevel optimization-based framework, PARL, formulated to address the recently highlighted critical issue of policy alignment in reinforcement learning using utility or preference-based feedback. We identify a major gap within current algorithmic designs for solving policy alignment due to a lack of precise characterization of the dependence of the alignment objective on the data generated by policy trajectories. This shortfall contributes to the sub-optimal performance observed in contemporary algorithms. Our framework addressed these concerns by explicitly parameterizing the distribution of the upper alignment objective (reward design) by the lower optimal variable (optimal policy for the designed reward). Interestingly, from an optimization perspective, our formulation leads to a new class of stochastic bilevel problems where the stochasticity at the upper objective depends upon the lower-level variable. To demonstrate the efficacy of our formulation in resolving alignment issues in RL, we devised an algorithm named A-PARL to solve PARL problem, establishing sample complexity bounds of order O(1/T). Our empirical results substantiate that the proposed PARL can address the alignment concerns in RL by showing significant improvements (up to 63\% in terms of required samples) for policy alignment in large-scale environments of the Deepmind control suite and Meta world tasks.
Efficient Evolutionary Search Over Chemical Space with Large Language Models
Molecular discovery, when formulated as an optimization problem, presents significant computational challenges because optimization objectives can be non-differentiable. Evolutionary Algorithms (EAs), often used to optimize black-box objectives in molecular discovery, traverse chemical space by performing random mutations and crossovers, leading to a large number of expensive objective evaluations. In this work, we ameliorate this shortcoming by incorporating chemistry-aware Large Language Models (LLMs) into EAs. Namely, we redesign crossover and mutation operations in EAs using LLMs trained on large corpora of chemical information. We perform extensive empirical studies on both commercial and open-source models on multiple tasks involving property optimization, molecular rediscovery, and structure-based drug design, demonstrating that the joint usage of LLMs with EAs yields superior performance over all baseline models across single- and multi-objective settings. We demonstrate that our algorithm improves both the quality of the final solution and convergence speed, thereby reducing the number of required objective evaluations. Our code is available at http://github.com/zoom-wang112358/MOLLEO
Planning with Diffusion for Flexible Behavior Synthesis
Model-based reinforcement learning methods often use learning only for the purpose of estimating an approximate dynamics model, offloading the rest of the decision-making work to classical trajectory optimizers. While conceptually simple, this combination has a number of empirical shortcomings, suggesting that learned models may not be well-suited to standard trajectory optimization. In this paper, we consider what it would look like to fold as much of the trajectory optimization pipeline as possible into the modeling problem, such that sampling from the model and planning with it become nearly identical. The core of our technical approach lies in a diffusion probabilistic model that plans by iteratively denoising trajectories. We show how classifier-guided sampling and image inpainting can be reinterpreted as coherent planning strategies, explore the unusual and useful properties of diffusion-based planning methods, and demonstrate the effectiveness of our framework in control settings that emphasize long-horizon decision-making and test-time flexibility.
pyhgf: A neural network library for predictive coding
Bayesian models of cognition have gained considerable traction in computational neuroscience and psychiatry. Their scopes are now expected to expand rapidly to artificial intelligence, providing general inference frameworks to support embodied, adaptable, and energy-efficient autonomous agents. A central theory in this domain is predictive coding, which posits that learning and behaviour are driven by hierarchical probabilistic inferences about the causes of sensory inputs. Biological realism constrains these networks to rely on simple local computations in the form of precision-weighted predictions and prediction errors. This can make this framework highly efficient, but its implementation comes with unique challenges on the software development side. Embedding such models in standard neural network libraries often becomes limiting, as these libraries' compilation and differentiation backends can force a conceptual separation between optimization algorithms and the systems being optimized. This critically departs from other biological principles such as self-monitoring, self-organisation, cellular growth and functional plasticity. In this paper, we introduce pyhgf: a Python package backed by JAX and Rust for creating, manipulating and sampling dynamic networks for predictive coding. We improve over other frameworks by enclosing the network components as transparent, modular and malleable variables in the message-passing steps. The resulting graphs can implement arbitrary computational complexities as beliefs propagation. But the transparency of core variables can also translate into inference processes that leverage self-organisation principles, and express structure learning, meta-learning or causal discovery as the consequence of network structural adaptation to surprising inputs. The code, tutorials and documentation are hosted at: https://github.com/ilabcode/pyhgf.
Re-basin via implicit Sinkhorn differentiation
The recent emergence of new algorithms for permuting models into functionally equivalent regions of the solution space has shed some light on the complexity of error surfaces, and some promising properties like mode connectivity. However, finding the right permutation is challenging, and current optimization techniques are not differentiable, which makes it difficult to integrate into a gradient-based optimization, and often leads to sub-optimal solutions. In this paper, we propose a Sinkhorn re-basin network with the ability to obtain the transportation plan that better suits a given objective. Unlike the current state-of-art, our method is differentiable and, therefore, easy to adapt to any task within the deep learning domain. Furthermore, we show the advantage of our re-basin method by proposing a new cost function that allows performing incremental learning by exploiting the linear mode connectivity property. The benefit of our method is compared against similar approaches from the literature, under several conditions for both optimal transport finding and linear mode connectivity. The effectiveness of our continual learning method based on re-basin is also shown for several common benchmark datasets, providing experimental results that are competitive with state-of-art results from the literature.
Towards Omni-generalizable Neural Methods for Vehicle Routing Problems
Learning heuristics for vehicle routing problems (VRPs) has gained much attention due to the less reliance on hand-crafted rules. However, existing methods are typically trained and tested on the same task with a fixed size and distribution (of nodes), and hence suffer from limited generalization performance. This paper studies a challenging yet realistic setting, which considers generalization across both size and distribution in VRPs. We propose a generic meta-learning framework, which enables effective training of an initialized model with the capability of fast adaptation to new tasks during inference. We further develop a simple yet efficient approximation method to reduce the training overhead. Extensive experiments on both synthetic and benchmark instances of the traveling salesman problem (TSP) and capacitated vehicle routing problem (CVRP) demonstrate the effectiveness of our method. The code is available at: https://github.com/RoyalSkye/Omni-VRP.
Dynamic Search for Inference-Time Alignment in Diffusion Models
Diffusion models have shown promising generative capabilities across diverse domains, yet aligning their outputs with desired reward functions remains a challenge, particularly in cases where reward functions are non-differentiable. Some gradient-free guidance methods have been developed, but they often struggle to achieve optimal inference-time alignment. In this work, we newly frame inference-time alignment in diffusion as a search problem and propose Dynamic Search for Diffusion (DSearch), which subsamples from denoising processes and approximates intermediate node rewards. It also dynamically adjusts beam width and tree expansion to efficiently explore high-reward generations. To refine intermediate decisions, DSearch incorporates adaptive scheduling based on noise levels and a lookahead heuristic function. We validate DSearch across multiple domains, including biological sequence design, molecular optimization, and image generation, demonstrating superior reward optimization compared to existing approaches.
Flow Straight and Fast: Learning to Generate and Transfer Data with Rectified Flow
We present rectified flow, a surprisingly simple approach to learning (neural) ordinary differential equation (ODE) models to transport between two empirically observed distributions \pi_0 and \pi_1, hence providing a unified solution to generative modeling and domain transfer, among various other tasks involving distribution transport. The idea of rectified flow is to learn the ODE to follow the straight paths connecting the points drawn from \pi_0 and \pi_1 as much as possible. This is achieved by solving a straightforward nonlinear least squares optimization problem, which can be easily scaled to large models without introducing extra parameters beyond standard supervised learning. The straight paths are special and preferred because they are the shortest paths between two points, and can be simulated exactly without time discretization and hence yield computationally efficient models. We show that the procedure of learning a rectified flow from data, called rectification, turns an arbitrary coupling of \pi_0 and \pi_1 to a new deterministic coupling with provably non-increasing convex transport costs. In addition, recursively applying rectification allows us to obtain a sequence of flows with increasingly straight paths, which can be simulated accurately with coarse time discretization in the inference phase. In empirical studies, we show that rectified flow performs superbly on image generation, image-to-image translation, and domain adaptation. In particular, on image generation and translation, our method yields nearly straight flows that give high quality results even with a single Euler discretization step.
Lagrangian PINNs: A causality-conforming solution to failure modes of physics-informed neural networks
Physics-informed neural networks (PINNs) leverage neural-networks to find the solutions of partial differential equation (PDE)-constrained optimization problems with initial conditions and boundary conditions as soft constraints. These soft constraints are often considered to be the sources of the complexity in the training phase of PINNs. Here, we demonstrate that the challenge of training (i) persists even when the boundary conditions are strictly enforced, and (ii) is closely related to the Kolmogorov n-width associated with problems demonstrating transport, convection, traveling waves, or moving fronts. Given this realization, we describe the mechanism underlying the training schemes such as those used in eXtended PINNs (XPINN), curriculum regularization, and sequence-to-sequence learning. For an important category of PDEs, i.e., governed by non-linear convection-diffusion equation, we propose reformulating PINNs on a Lagrangian frame of reference, i.e., LPINNs, as a PDE-informed solution. A parallel architecture with two branches is proposed. One branch solves for the state variables on the characteristics, and the second branch solves for the low-dimensional characteristics curves. The proposed architecture conforms to the causality innate to the convection, and leverages the direction of travel of the information in the domain. Finally, we demonstrate that the loss landscapes of LPINNs are less sensitive to the so-called "complexity" of the problems, compared to those in the traditional PINNs in the Eulerian framework.
GATE: Graph-based Adaptive Tool Evolution Across Diverse Tasks
Large Language Models (LLMs) have shown great promise in tool-making, yet existing frameworks often struggle to efficiently construct reliable toolsets and are limited to single-task settings. To address these challenges, we propose GATE (Graph-based Adaptive Tool Evolution), an adaptive framework that dynamically constructs and evolves a hierarchical graph of reusable tools across multiple scenarios. We evaluate GATE on open-ended tasks (Minecraft), agent-based tasks (TextCraft, DABench), and code generation tasks (MATH, Date, TabMWP). Our results show that GATE achieves up to 4.3x faster milestone completion in Minecraft compared to the previous SOTA, and provides an average improvement of 9.23% over existing tool-making methods in code generation tasks and 10.03% in agent tasks. GATE demonstrates the power of adaptive evolution, balancing tool quantity, complexity, and functionality while maintaining high efficiency. Code and data are available at https://github.com/ayanami2003/GATE.
Combinatorial Optimization with Policy Adaptation using Latent Space Search
Combinatorial Optimization underpins many real-world applications and yet, designing performant algorithms to solve these complex, typically NP-hard, problems remains a significant research challenge. Reinforcement Learning (RL) provides a versatile framework for designing heuristics across a broad spectrum of problem domains. However, despite notable progress, RL has not yet supplanted industrial solvers as the go-to solution. Current approaches emphasize pre-training heuristics that construct solutions but often rely on search procedures with limited variance, such as stochastically sampling numerous solutions from a single policy or employing computationally expensive fine-tuning of the policy on individual problem instances. Building on the intuition that performant search at inference time should be anticipated during pre-training, we propose COMPASS, a novel RL approach that parameterizes a distribution of diverse and specialized policies conditioned on a continuous latent space. We evaluate COMPASS across three canonical problems - Travelling Salesman, Capacitated Vehicle Routing, and Job-Shop Scheduling - and demonstrate that our search strategy (i) outperforms state-of-the-art approaches on 11 standard benchmarking tasks and (ii) generalizes better, surpassing all other approaches on a set of 18 procedurally transformed instance distributions.
SEGNO: Generalizing Equivariant Graph Neural Networks with Physical Inductive Biases
Graph Neural Networks (GNNs) with equivariant properties have emerged as powerful tools for modeling complex dynamics of multi-object physical systems. However, their generalization ability is limited by the inadequate consideration of physical inductive biases: (1) Existing studies overlook the continuity of transitions among system states, opting to employ several discrete transformation layers to learn the direct mapping between two adjacent states; (2) Most models only account for first-order velocity information, despite the fact that many physical systems are governed by second-order motion laws. To incorporate these inductive biases, we propose the Second-order Equivariant Graph Neural Ordinary Differential Equation (SEGNO). Specifically, we show how the second-order continuity can be incorporated into GNNs while maintaining the equivariant property. Furthermore, we offer theoretical insights into SEGNO, highlighting that it can learn a unique trajectory between adjacent states, which is crucial for model generalization. Additionally, we prove that the discrepancy between this learned trajectory of SEGNO and the true trajectory is bounded. Extensive experiments on complex dynamical systems including molecular dynamics and motion capture demonstrate that our model yields a significant improvement over the state-of-the-art baselines.
