Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeParameter Prediction for Unseen Deep Architectures
Deep learning has been successful in automating the design of features in machine learning pipelines. However, the algorithms optimizing neural network parameters remain largely hand-designed and computationally inefficient. We study if we can use deep learning to directly predict these parameters by exploiting the past knowledge of training other networks. We introduce a large-scale dataset of diverse computational graphs of neural architectures - DeepNets-1M - and use it to explore parameter prediction on CIFAR-10 and ImageNet. By leveraging advances in graph neural networks, we propose a hypernetwork that can predict performant parameters in a single forward pass taking a fraction of a second, even on a CPU. The proposed model achieves surprisingly good performance on unseen and diverse networks. For example, it is able to predict all 24 million parameters of a ResNet-50 achieving a 60% accuracy on CIFAR-10. On ImageNet, top-5 accuracy of some of our networks approaches 50%. Our task along with the model and results can potentially lead to a new, more computationally efficient paradigm of training networks. Our model also learns a strong representation of neural architectures enabling their analysis.
Understanding Deep Architectures by Visual Summaries
In deep learning, visualization techniques extract the salient patterns exploited by deep networks for image classification, focusing on single images; no effort has been spent in investigating whether these patterns are systematically related to precise semantic entities over multiple images belonging to a same class, thus failing to capture the very understanding of the image class the network has realized. This paper goes in this direction, presenting a visualization framework which produces a group of clusters or summaries, each one formed by crisp salient image regions focusing on a particular part that the network has exploited with high regularity to decide for a given class. The approach is based on a sparse optimization step providing sharp image saliency masks that are clustered together by means of a semantic flow similarity measure. The summaries communicate clearly what a network has exploited of a particular image class, and this is proved through automatic image tagging and with a user study. Beyond the deep network understanding, summaries are also useful for many quantitative reasons: their number is correlated with ability of a network to classify (more summaries, better performances), and they can be used to improve the classification accuracy of a network through summary-driven specializations.
DeepArchitect: Automatically Designing and Training Deep Architectures
In deep learning, performance is strongly affected by the choice of architecture and hyperparameters. While there has been extensive work on automatic hyperparameter optimization for simple spaces, complex spaces such as the space of deep architectures remain largely unexplored. As a result, the choice of architecture is done manually by the human expert through a slow trial and error process guided mainly by intuition. In this paper we describe a framework for automatically designing and training deep models. We propose an extensible and modular language that allows the human expert to compactly represent complex search spaces over architectures and their hyperparameters. The resulting search spaces are tree-structured and therefore easy to traverse. Models can be automatically compiled to computational graphs once values for all hyperparameters have been chosen. We can leverage the structure of the search space to introduce different model search algorithms, such as random search, Monte Carlo tree search (MCTS), and sequential model-based optimization (SMBO). We present experiments comparing the different algorithms on CIFAR-10 and show that MCTS and SMBO outperform random search. In addition, these experiments show that our framework can be used effectively for model discovery, as it is possible to describe expressive search spaces and discover competitive models without much effort from the human expert. Code for our framework and experiments has been made publicly available.
Learning to rumble: Automated elephant call classification, detection and endpointing using deep architectures
We consider the problem of detecting, isolating and classifying elephant calls in continuously recorded audio. Such automatic call characterisation can assist conservation efforts and inform environmental management strategies. In contrast to previous work in which call detection was performed at a segment level, we perform call detection at a frame level which implicitly also allows call endpointing, the isolation of a call in a longer recording. For experimentation, we employ two annotated datasets, one containing Asian and the other African elephant vocalisations. We evaluate several shallow and deep classifier models, and show that the current best performance can be improved by using an audio spectrogram transformer (AST), a neural architecture which has not been used for this purpose before, and which we have configured in a novel sequence-to-sequence manner. We also show that using transfer learning by pre-training leads to further improvements both in terms of computational complexity and performance. Finally, we consider sub-call classification using an accepted taxonomy of call types, a task which has not previously been considered. We show that also in this case the transformer architectures provide the best performance. Our best classifiers achieve an average precision (AP) of 0.962 for framewise binary call classification, and an area under the receiver operating characteristic (AUC) of 0.957 and 0.979 for call classification with 5 classes and sub-call classification with 7 classes respectively. All of these represent either new benchmarks (sub-call classifications) or improvements on previously best systems. We conclude that a fully-automated elephant call detection and subcall classification system is within reach. Such a system would provide valuable information on the behaviour and state of elephant herds for the purposes of conservation and management.
Identity Mappings in Deep Residual Networks
Deep residual networks have emerged as a family of extremely deep architectures showing compelling accuracy and nice convergence behaviors. In this paper, we analyze the propagation formulations behind the residual building blocks, which suggest that the forward and backward signals can be directly propagated from one block to any other block, when using identity mappings as the skip connections and after-addition activation. A series of ablation experiments support the importance of these identity mappings. This motivates us to propose a new residual unit, which makes training easier and improves generalization. We report improved results using a 1001-layer ResNet on CIFAR-10 (4.62% error) and CIFAR-100, and a 200-layer ResNet on ImageNet. Code is available at: https://github.com/KaimingHe/resnet-1k-layers
Sample-level Deep Convolutional Neural Networks for Music Auto-tagging Using Raw Waveforms
Recently, the end-to-end approach that learns hierarchical representations from raw data using deep convolutional neural networks has been successfully explored in the image, text and speech domains. This approach was applied to musical signals as well but has been not fully explored yet. To this end, we propose sample-level deep convolutional neural networks which learn representations from very small grains of waveforms (e.g. 2 or 3 samples) beyond typical frame-level input representations. Our experiments show how deep architectures with sample-level filters improve the accuracy in music auto-tagging and they provide results comparable to previous state-of-the-art performances for the Magnatagatune dataset and Million Song Dataset. In addition, we visualize filters learned in a sample-level DCNN in each layer to identify hierarchically learned features and show that they are sensitive to log-scaled frequency along layer, such as mel-frequency spectrogram that is widely used in music classification systems.
Deep Reinforcement Learning: An Overview
In recent years, a specific machine learning method called deep learning has gained huge attraction, as it has obtained astonishing results in broad applications such as pattern recognition, speech recognition, computer vision, and natural language processing. Recent research has also been shown that deep learning techniques can be combined with reinforcement learning methods to learn useful representations for the problems with high dimensional raw data input. This chapter reviews the recent advances in deep reinforcement learning with a focus on the most used deep architectures such as autoencoders, convolutional neural networks and recurrent neural networks which have successfully been come together with the reinforcement learning framework.
Revisiting Deep Learning Models for Tabular Data
The existing literature on deep learning for tabular data proposes a wide range of novel architectures and reports competitive results on various datasets. However, the proposed models are usually not properly compared to each other and existing works often use different benchmarks and experiment protocols. As a result, it is unclear for both researchers and practitioners what models perform best. Additionally, the field still lacks effective baselines, that is, the easy-to-use models that provide competitive performance across different problems. In this work, we perform an overview of the main families of DL architectures for tabular data and raise the bar of baselines in tabular DL by identifying two simple and powerful deep architectures. The first one is a ResNet-like architecture which turns out to be a strong baseline that is often missing in prior works. The second model is our simple adaptation of the Transformer architecture for tabular data, which outperforms other solutions on most tasks. Both models are compared to many existing architectures on a diverse set of tasks under the same training and tuning protocols. We also compare the best DL models with Gradient Boosted Decision Trees and conclude that there is still no universally superior solution.
Leveraging Recent Advances in Deep Learning for Audio-Visual Emotion Recognition
Emotional expressions are the behaviors that communicate our emotional state or attitude to others. They are expressed through verbal and non-verbal communication. Complex human behavior can be understood by studying physical features from multiple modalities; mainly facial, vocal and physical gestures. Recently, spontaneous multi-modal emotion recognition has been extensively studied for human behavior analysis. In this paper, we propose a new deep learning-based approach for audio-visual emotion recognition. Our approach leverages recent advances in deep learning like knowledge distillation and high-performing deep architectures. The deep feature representations of the audio and visual modalities are fused based on a model-level fusion strategy. A recurrent neural network is then used to capture the temporal dynamics. Our proposed approach substantially outperforms state-of-the-art approaches in predicting valence on the RECOLA dataset. Moreover, our proposed visual facial expression feature extraction network outperforms state-of-the-art results on the AffectNet and Google Facial Expression Comparison datasets.
RPCANet++: Deep Interpretable Robust PCA for Sparse Object Segmentation
Robust principal component analysis (RPCA) decomposes an observation matrix into low-rank background and sparse object components. This capability has enabled its application in tasks ranging from image restoration to segmentation. However, traditional RPCA models suffer from computational burdens caused by matrix operations, reliance on finely tuned hyperparameters, and rigid priors that limit adaptability in dynamic scenarios. To solve these limitations, we propose RPCANet++, a sparse object segmentation framework that fuses the interpretability of RPCA with efficient deep architectures. Our approach unfolds a relaxed RPCA model into a structured network comprising a Background Approximation Module (BAM), an Object Extraction Module (OEM), and an Image Restoration Module (IRM). To mitigate inter-stage transmission loss in the BAM, we introduce a Memory-Augmented Module (MAM) to enhance background feature preservation, while a Deep Contrast Prior Module (DCPM) leverages saliency cues to expedite object extraction. Extensive experiments on diverse datasets demonstrate that RPCANet++ achieves state-of-the-art performance under various imaging scenarios. We further improve interpretability via visual and numerical low-rankness and sparsity measurements. By combining the theoretical strengths of RPCA with the efficiency of deep networks, our approach sets a new baseline for reliable and interpretable sparse object segmentation. Codes are available at our Project Webpage https://fengyiwu98.github.io/rpcanetx.
Object Detectors Emerge in Deep Scene CNNs
With the success of new computational architectures for visual processing, such as convolutional neural networks (CNN) and access to image databases with millions of labeled examples (e.g., ImageNet, Places), the state of the art in computer vision is advancing rapidly. One important factor for continued progress is to understand the representations that are learned by the inner layers of these deep architectures. Here we show that object detectors emerge from training CNNs to perform scene classification. As scenes are composed of objects, the CNN for scene classification automatically discovers meaningful objects detectors, representative of the learned scene categories. With object detectors emerging as a result of learning to recognize scenes, our work demonstrates that the same network can perform both scene recognition and object localization in a single forward-pass, without ever having been explicitly taught the notion of objects.
The Unreasonable Effectiveness of Deep Features as a Perceptual Metric
While it is nearly effortless for humans to quickly assess the perceptual similarity between two images, the underlying processes are thought to be quite complex. Despite this, the most widely used perceptual metrics today, such as PSNR and SSIM, are simple, shallow functions, and fail to account for many nuances of human perception. Recently, the deep learning community has found that features of the VGG network trained on ImageNet classification has been remarkably useful as a training loss for image synthesis. But how perceptual are these so-called "perceptual losses"? What elements are critical for their success? To answer these questions, we introduce a new dataset of human perceptual similarity judgments. We systematically evaluate deep features across different architectures and tasks and compare them with classic metrics. We find that deep features outperform all previous metrics by large margins on our dataset. More surprisingly, this result is not restricted to ImageNet-trained VGG features, but holds across different deep architectures and levels of supervision (supervised, self-supervised, or even unsupervised). Our results suggest that perceptual similarity is an emergent property shared across deep visual representations.
Querying Easily Flip-flopped Samples for Deep Active Learning
Active learning is a machine learning paradigm that aims to improve the performance of a model by strategically selecting and querying unlabeled data. One effective selection strategy is to base it on the model's predictive uncertainty, which can be interpreted as a measure of how informative a sample is. The sample's distance to the decision boundary is a natural measure of predictive uncertainty, but it is often intractable to compute, especially for complex decision boundaries formed in multiclass classification tasks. To address this issue, this paper proposes the {\it least disagree metric} (LDM), defined as the smallest probability of disagreement of the predicted label, and an estimator for LDM proven to be asymptotically consistent under mild assumptions. The estimator is computationally efficient and can be easily implemented for deep learning models using parameter perturbation. The LDM-based active learning is performed by querying unlabeled data with the smallest LDM. Experimental results show that our LDM-based active learning algorithm obtains state-of-the-art overall performance on all considered datasets and deep architectures.
CosmoBench: A Multiscale, Multiview, Multitask Cosmology Benchmark for Geometric Deep Learning
Cosmological simulations provide a wealth of data in the form of point clouds and directed trees. A crucial goal is to extract insights from this data that shed light on the nature and composition of the Universe. In this paper we introduce CosmoBench, a benchmark dataset curated from state-of-the-art cosmological simulations whose runs required more than 41 million core-hours and generated over two petabytes of data. CosmoBench is the largest dataset of its kind: it contains 34 thousand point clouds from simulations of dark matter halos and galaxies at three different length scales, as well as 25 thousand directed trees that record the formation history of halos on two different time scales. The data in CosmoBench can be used for multiple tasks -- to predict cosmological parameters from point clouds and merger trees, to predict the velocities of individual halos and galaxies from their collective positions, and to reconstruct merger trees on finer time scales from those on coarser time scales. We provide several baselines on these tasks, some based on established approaches from cosmological modeling and others rooted in machine learning. For the latter, we study different approaches -- from simple linear models that are minimally constrained by symmetries to much larger and more computationally-demanding models in deep learning, such as graph neural networks. We find that least-squares fits with a handful of invariant features sometimes outperform deep architectures with many more parameters and far longer training times. Still there remains tremendous potential to improve these baselines by combining machine learning and cosmology to fully exploit the data. CosmoBench sets the stage for bridging cosmology and geometric deep learning at scale. We invite the community to push the frontier of scientific discovery by engaging with this dataset, available at https://cosmobench.streamlit.app
Revisiting Nearest Neighbor for Tabular Data: A Deep Tabular Baseline Two Decades Later
The widespread enthusiasm for deep learning has recently expanded into the domain of tabular data. Recognizing that the advancement in deep tabular methods is often inspired by classical methods, e.g., integration of nearest neighbors into neural networks, we investigate whether these classical methods can be revitalized with modern techniques. We revisit a differentiable version of K-nearest neighbors (KNN) -- Neighbourhood Components Analysis (NCA) -- originally designed to learn a linear projection to capture semantic similarities between instances, and seek to gradually add modern deep learning techniques on top. Surprisingly, our implementation of NCA using SGD and without dimensionality reduction already achieves decent performance on tabular data, in contrast to the results of using existing toolboxes like scikit-learn. Further equipping NCA with deep representations and additional training stochasticity significantly enhances its capability, being on par with the leading tree-based method CatBoost and outperforming existing deep tabular models in both classification and regression tasks on 300 datasets. We conclude our paper by analyzing the factors behind these improvements, including loss functions, prediction strategies, and deep architectures. The code is available at https://github.com/qile2000/LAMDA-TALENT.
Adding Gradient Noise Improves Learning for Very Deep Networks
Deep feedforward and recurrent networks have achieved impressive results in many perception and language processing applications. This success is partially attributed to architectural innovations such as convolutional and long short-term memory networks. The main motivation for these architectural innovations is that they capture better domain knowledge, and importantly are easier to optimize than more basic architectures. Recently, more complex architectures such as Neural Turing Machines and Memory Networks have been proposed for tasks including question answering and general computation, creating a new set of optimization challenges. In this paper, we discuss a low-overhead and easy-to-implement technique of adding gradient noise which we find to be surprisingly effective when training these very deep architectures. The technique not only helps to avoid overfitting, but also can result in lower training loss. This method alone allows a fully-connected 20-layer deep network to be trained with standard gradient descent, even starting from a poor initialization. We see consistent improvements for many complex models, including a 72% relative reduction in error rate over a carefully-tuned baseline on a challenging question-answering task, and a doubling of the number of accurate binary multiplication models learned across 7,000 random restarts. We encourage further application of this technique to additional complex modern architectures.
Decoupling Magnitude and Phase Estimation with Deep ResUNet for Music Source Separation
Deep neural network based methods have been successfully applied to music source separation. They typically learn a mapping from a mixture spectrogram to a set of source spectrograms, all with magnitudes only. This approach has several limitations: 1) its incorrect phase reconstruction degrades the performance, 2) it limits the magnitude of masks between 0 and 1 while we observe that 22% of time-frequency bins have ideal ratio mask values of over~1 in a popular dataset, MUSDB18, 3) its potential on very deep architectures is under-explored. Our proposed system is designed to overcome these. First, we propose to estimate phases by estimating complex ideal ratio masks (cIRMs) where we decouple the estimation of cIRMs into magnitude and phase estimations. Second, we extend the separation method to effectively allow the magnitude of the mask to be larger than 1. Finally, we propose a residual UNet architecture with up to 143 layers. Our proposed system achieves a state-of-the-art MSS result on the MUSDB18 dataset, especially, a SDR of 8.98~dB on vocals, outperforming the previous best performance of 7.24~dB. The source code is available at: https://github.com/bytedance/music_source_separation
Super-Linear: A Lightweight Pretrained Mixture of Linear Experts for Time Series Forecasting
Time series forecasting (TSF) is critical in domains like energy, finance, healthcare, and logistics, requiring models that generalize across diverse datasets. Large pre-trained models such as Chronos and Time-MoE show strong zero-shot (ZS) performance but suffer from high computational costs. In this work, We introduce Super-Linear, a lightweight and scalable mixture-of-experts (MoE) model for general forecasting. It replaces deep architectures with simple frequency-specialized linear experts, trained on resampled data across multiple frequency regimes. A lightweight spectral gating mechanism dynamically selects relevant experts, enabling efficient, accurate forecasting. Despite its simplicity, Super-Linear matches state-of-the-art performance while offering superior efficiency, robustness to various sampling rates, and enhanced interpretability. The implementation of Super-Linear is available at https://github.com/azencot-group/SuperLinear{https://github.com/azencot-group/SuperLinear}
Unsupervised Domain Adaptation by Backpropagation
Top-performing deep architectures are trained on massive amounts of labeled data. In the absence of labeled data for a certain task, domain adaptation often provides an attractive option given that labeled data of similar nature but from a different domain (e.g. synthetic images) are available. Here, we propose a new approach to domain adaptation in deep architectures that can be trained on large amount of labeled data from the source domain and large amount of unlabeled data from the target domain (no labeled target-domain data is necessary). As the training progresses, the approach promotes the emergence of "deep" features that are (i) discriminative for the main learning task on the source domain and (ii) invariant with respect to the shift between the domains. We show that this adaptation behaviour can be achieved in almost any feed-forward model by augmenting it with few standard layers and a simple new gradient reversal layer. The resulting augmented architecture can be trained using standard backpropagation. Overall, the approach can be implemented with little effort using any of the deep-learning packages. The method performs very well in a series of image classification experiments, achieving adaptation effect in the presence of big domain shifts and outperforming previous state-of-the-art on Office datasets.
Generating Long Sequences with Sparse Transformers
Transformers are powerful sequence models, but require time and memory that grows quadratically with the sequence length. In this paper we introduce sparse factorizations of the attention matrix which reduce this to O(n n). We also introduce a) a variation on architecture and initialization to train deeper networks, b) the recomputation of attention matrices to save memory, and c) fast attention kernels for training. We call networks with these changes Sparse Transformers, and show they can model sequences tens of thousands of timesteps long using hundreds of layers. We use the same architecture to model images, audio, and text from raw bytes, setting a new state of the art for density modeling of Enwik8, CIFAR-10, and ImageNet-64. We generate unconditional samples that demonstrate global coherence and great diversity, and show it is possible in principle to use self-attention to model sequences of length one million or more.
Regularizing Neural Networks via Adversarial Model Perturbation
Effective regularization techniques are highly desired in deep learning for alleviating overfitting and improving generalization. This work proposes a new regularization scheme, based on the understanding that the flat local minima of the empirical risk cause the model to generalize better. This scheme is referred to as adversarial model perturbation (AMP), where instead of directly minimizing the empirical risk, an alternative "AMP loss" is minimized via SGD. Specifically, the AMP loss is obtained from the empirical risk by applying the "worst" norm-bounded perturbation on each point in the parameter space. Comparing with most existing regularization schemes, AMP has strong theoretical justifications, in that minimizing the AMP loss can be shown theoretically to favour flat local minima of the empirical risk. Extensive experiments on various modern deep architectures establish AMP as a new state of the art among regularization schemes. Our code is available at https://github.com/hiyouga/AMP-Regularizer.
Auto-GNN: Neural Architecture Search of Graph Neural Networks
Graph neural networks (GNN) has been successfully applied to operate on the graph-structured data. Given a specific scenario, rich human expertise and tremendous laborious trials are usually required to identify a suitable GNN architecture. It is because the performance of a GNN architecture is significantly affected by the choice of graph convolution components, such as aggregate function and hidden dimension. Neural architecture search (NAS) has shown its potential in discovering effective deep architectures for learning tasks in image and language modeling. However, existing NAS algorithms cannot be directly applied to the GNN search problem. First, the search space of GNN is different from the ones in existing NAS work. Second, the representation learning capacity of GNN architecture changes obviously with slight architecture modifications. It affects the search efficiency of traditional search methods. Third, widely used techniques in NAS such as parameter sharing might become unstable in GNN. To bridge the gap, we propose the automated graph neural networks (AGNN) framework, which aims to find an optimal GNN architecture within a predefined search space. A reinforcement learning based controller is designed to greedily validate architectures via small steps. AGNN has a novel parameter sharing strategy that enables homogeneous architectures to share parameters, based on a carefully-designed homogeneity definition. Experiments on real-world benchmark datasets demonstrate that the GNN architecture identified by AGNN achieves the best performance, comparing with existing handcrafted models and tradistional search methods.
KDEformer: Accelerating Transformers via Kernel Density Estimation
Dot-product attention mechanism plays a crucial role in modern deep architectures (e.g., Transformer) for sequence modeling, however, na\"ive exact computation of this model incurs quadratic time and memory complexities in sequence length, hindering the training of long-sequence models. Critical bottlenecks are due to the computation of partition functions in the denominator of softmax function as well as the multiplication of the softmax matrix with the matrix of values. Our key observation is that the former can be reduced to a variant of the kernel density estimation (KDE) problem, and an efficient KDE solver can be further utilized to accelerate the latter via subsampling-based fast matrix products. Our proposed KDEformer can approximate the attention in sub-quadratic time with provable spectral norm bounds, while all prior results merely provide entry-wise error bounds. Empirically, we verify that KDEformer outperforms other attention approximations in terms of accuracy, memory, and runtime on various pre-trained models. On BigGAN image generation, we achieve better generative scores than the exact computation with over 4times speedup. For ImageNet classification with T2T-ViT, KDEformer shows over 18times speedup while the accuracy drop is less than 0.5%.
Towards Reasonably-Sized Character-Level Transformer NMT by Finetuning Subword Systems
Applying the Transformer architecture on the character level usually requires very deep architectures that are difficult and slow to train. These problems can be partially overcome by incorporating a segmentation into tokens in the model. We show that by initially training a subword model and then finetuning it on characters, we can obtain a neural machine translation model that works at the character level without requiring token segmentation. We use only the vanilla 6-layer Transformer Base architecture. Our character-level models better capture morphological phenomena and show more robustness to noise at the expense of somewhat worse overall translation quality. Our study is a significant step towards high-performance and easy to train character-based models that are not extremely large.
Two at Once: Enhancing Learning and Generalization Capacities via IBN-Net
Convolutional neural networks (CNNs) have achieved great successes in many computer vision problems. Unlike existing works that designed CNN architectures to improve performance on a single task of a single domain and not generalizable, we present IBN-Net, a novel convolutional architecture, which remarkably enhances a CNN's modeling ability on one domain (e.g. Cityscapes) as well as its generalization capacity on another domain (e.g. GTA5) without finetuning. IBN-Net carefully integrates Instance Normalization (IN) and Batch Normalization (BN) as building blocks, and can be wrapped into many advanced deep networks to improve their performances. This work has three key contributions. (1) By delving into IN and BN, we disclose that IN learns features that are invariant to appearance changes, such as colors, styles, and virtuality/reality, while BN is essential for preserving content related information. (2) IBN-Net can be applied to many advanced deep architectures, such as DenseNet, ResNet, ResNeXt, and SENet, and consistently improve their performance without increasing computational cost. (3) When applying the trained networks to new domains, e.g. from GTA5 to Cityscapes, IBN-Net achieves comparable improvements as domain adaptation methods, even without using data from the target domain. With IBN-Net, we won the 1st place on the WAD 2018 Challenge Drivable Area track, with an mIoU of 86.18%.
Densely Connected Bidirectional LSTM with Applications to Sentence Classification
Deep neural networks have recently been shown to achieve highly competitive performance in many computer vision tasks due to their abilities of exploring in a much larger hypothesis space. However, since most deep architectures like stacked RNNs tend to suffer from the vanishing-gradient and overfitting problems, their effects are still understudied in many NLP tasks. Inspired by this, we propose a novel multi-layer RNN model called densely connected bidirectional long short-term memory (DC-Bi-LSTM) in this paper, which essentially represents each layer by the concatenation of its hidden state and all preceding layers' hidden states, followed by recursively passing each layer's representation to all subsequent layers. We evaluate our proposed model on five benchmark datasets of sentence classification. DC-Bi-LSTM with depth up to 20 can be successfully trained and obtain significant improvements over the traditional Bi-LSTM with the same or even less parameters. Moreover, our model has promising performance compared with the state-of-the-art approaches.
End-to-end learning for music audio tagging at scale
The lack of data tends to limit the outcomes of deep learning research, particularly when dealing with end-to-end learning stacks processing raw data such as waveforms. In this study, 1.2M tracks annotated with musical labels are available to train our end-to-end models. This large amount of data allows us to unrestrictedly explore two different design paradigms for music auto-tagging: assumption-free models - using waveforms as input with very small convolutional filters; and models that rely on domain knowledge - log-mel spectrograms with a convolutional neural network designed to learn timbral and temporal features. Our work focuses on studying how these two types of deep architectures perform when datasets of variable size are available for training: the MagnaTagATune (25k songs), the Million Song Dataset (240k songs), and a private dataset of 1.2M songs. Our experiments suggest that music domain assumptions are relevant when not enough training data are available, thus showing how waveform-based models outperform spectrogram-based ones in large-scale data scenarios.
Self-supervised learning of visual features through embedding images into text topic spaces
End-to-end training from scratch of current deep architectures for new computer vision problems would require Imagenet-scale datasets, and this is not always possible. In this paper we present a method that is able to take advantage of freely available multi-modal content to train computer vision algorithms without human supervision. We put forward the idea of performing self-supervised learning of visual features by mining a large scale corpus of multi-modal (text and image) documents. We show that discriminative visual features can be learnt efficiently by training a CNN to predict the semantic context in which a particular image is more probable to appear as an illustration. For this we leverage the hidden semantic structures discovered in the text corpus with a well-known topic modeling technique. Our experiments demonstrate state of the art performance in image classification, object detection, and multi-modal retrieval compared to recent self-supervised or natural-supervised approaches.
Fast & Slow Learning: Incorporating Synthetic Gradients in Neural Memory Controllers
Neural Memory Networks (NMNs) have received increased attention in recent years compared to deep architectures that use a constrained memory. Despite their new appeal, the success of NMNs hinges on the ability of the gradient-based optimiser to perform incremental training of the NMN controllers, determining how to leverage their high capacity for knowledge retrieval. This means that while excellent performance can be achieved when the training data is consistent and well distributed, rare data samples are hard to learn from as the controllers fail to incorporate them effectively during model training. Drawing inspiration from the human cognition process, in particular the utilisation of neuromodulators in the human brain, we propose to decouple the learning process of the NMN controllers to allow them to achieve flexible, rapid adaptation in the presence of new information. This trait is highly beneficial for meta-learning tasks where the memory controllers must quickly grasp abstract concepts in the target domain, and adapt stored knowledge. This allows the NMN controllers to quickly determine which memories are to be retained and which are to be erased, and swiftly adapt their strategy to the new task at hand. Through both quantitative and qualitative evaluations on multiple public benchmarks, including classification and regression tasks, we demonstrate the utility of the proposed approach. Our evaluations not only highlight the ability of the proposed NMN architecture to outperform the current state-of-the-art methods, but also provide insights on how the proposed augmentations help achieve such superior results. In addition, we demonstrate the practical implications of the proposed learning strategy, where the feedback path can be shared among multiple neural memory networks as a mechanism for knowledge sharing.
AutoOD: Automated Outlier Detection via Curiosity-guided Search and Self-imitation Learning
Outlier detection is an important data mining task with numerous practical applications such as intrusion detection, credit card fraud detection, and video surveillance. However, given a specific complicated task with big data, the process of building a powerful deep learning based system for outlier detection still highly relies on human expertise and laboring trials. Although Neural Architecture Search (NAS) has shown its promise in discovering effective deep architectures in various domains, such as image classification, object detection, and semantic segmentation, contemporary NAS methods are not suitable for outlier detection due to the lack of intrinsic search space, unstable search process, and low sample efficiency. To bridge the gap, in this paper, we propose AutoOD, an automated outlier detection framework, which aims to search for an optimal neural network model within a predefined search space. Specifically, we firstly design a curiosity-guided search strategy to overcome the curse of local optimality. A controller, which acts as a search agent, is encouraged to take actions to maximize the information gain about the controller's internal belief. We further introduce an experience replay mechanism based on self-imitation learning to improve the sample efficiency. Experimental results on various real-world benchmark datasets demonstrate that the deep model identified by AutoOD achieves the best performance, comparing with existing handcrafted models and traditional search methods.
Densely Residual Laplacian Super-Resolution
Super-Resolution convolutional neural networks have recently demonstrated high-quality restoration for single images. However, existing algorithms often require very deep architectures and long training times. Furthermore, current convolutional neural networks for super-resolution are unable to exploit features at multiple scales and weigh them equally, limiting their learning capability. In this exposition, we present a compact and accurate super-resolution algorithm namely, Densely Residual Laplacian Network (DRLN). The proposed network employs cascading residual on the residual structure to allow the flow of low-frequency information to focus on learning high and mid-level features. In addition, deep supervision is achieved via the densely concatenated residual blocks settings, which also helps in learning from high-level complex features. Moreover, we propose Laplacian attention to model the crucial features to learn the inter and intra-level dependencies between the feature maps. Furthermore, comprehensive quantitative and qualitative evaluations on low-resolution, noisy low-resolution, and real historical image benchmark datasets illustrate that our DRLN algorithm performs favorably against the state-of-the-art methods visually and accurately.
Neural Machine Translation for Query Construction and Composition
Research on question answering with knowledge base has recently seen an increasing use of deep architectures. In this extended abstract, we study the application of the neural machine translation paradigm for question parsing. We employ a sequence-to-sequence model to learn graph patterns in the SPARQL graph query language and their compositions. Instead of inducing the programs through question-answer pairs, we expect a semi-supervised approach, where alignments between questions and queries are built through templates. We argue that the coverage of language utterances can be expanded using late notable works in natural language generation.
Sparsely Aggregated Convolutional Networks
We explore a key architectural aspect of deep convolutional neural networks: the pattern of internal skip connections used to aggregate outputs of earlier layers for consumption by deeper layers. Such aggregation is critical to facilitate training of very deep networks in an end-to-end manner. This is a primary reason for the widespread adoption of residual networks, which aggregate outputs via cumulative summation. While subsequent works investigate alternative aggregation operations (e.g. concatenation), we focus on an orthogonal question: which outputs to aggregate at a particular point in the network. We propose a new internal connection structure which aggregates only a sparse set of previous outputs at any given depth. Our experiments demonstrate this simple design change offers superior performance with fewer parameters and lower computational requirements. Moreover, we show that sparse aggregation allows networks to scale more robustly to 1000+ layers, thereby opening future avenues for training long-running visual processes.
Augmented Shortcuts for Vision Transformers
Transformer models have achieved great progress on computer vision tasks recently. The rapid development of vision transformers is mainly contributed by their high representation ability for extracting informative features from input images. However, the mainstream transformer models are designed with deep architectures, and the feature diversity will be continuously reduced as the depth increases, i.e., feature collapse. In this paper, we theoretically analyze the feature collapse phenomenon and study the relationship between shortcuts and feature diversity in these transformer models. Then, we present an augmented shortcut scheme, which inserts additional paths with learnable parameters in parallel on the original shortcuts. To save the computational costs, we further explore an efficient approach that uses the block-circulant projection to implement augmented shortcuts. Extensive experiments conducted on benchmark datasets demonstrate the effectiveness of the proposed method, which brings about 1% accuracy increase of the state-of-the-art visual transformers without obviously increasing their parameters and FLOPs.
Drama: Mamba-Enabled Model-Based Reinforcement Learning Is Sample and Parameter Efficient
Model-based reinforcement learning (RL) offers a solution to the data inefficiency that plagues most model-free RL algorithms. However, learning a robust world model often requires complex and deep architectures, which are computationally expensive and challenging to train. Within the world model, sequence models play a critical role in accurate predictions, and various architectures have been explored, each with its own challenges. Currently, recurrent neural network (RNN)-based world models struggle with vanishing gradients and capturing long-term dependencies. Transformers, on the other hand, suffer from the quadratic memory and computational complexity of self-attention mechanisms, scaling as O(n^2), where n is the sequence length. To address these challenges, we propose a state space model (SSM)-based world model, Drama, specifically leveraging Mamba, that achieves O(n) memory and computational complexity while effectively capturing long-term dependencies and enabling efficient training with longer sequences. We also introduce a novel sampling method to mitigate the suboptimality caused by an incorrect world model in the early training stages. Combining these techniques, Drama achieves a normalised score on the Atari100k benchmark that is competitive with other state-of-the-art (SOTA) model-based RL algorithms, using only a 7 million-parameter world model. Drama is accessible and trainable on off-the-shelf hardware, such as a standard laptop. Our code is available at https://github.com/realwenlongwang/Drama.git.
SPARQL as a Foreign Language
In the last years, the Linked Data Cloud has achieved a size of more than 100 billion facts pertaining to a multitude of domains. However, accessing this information has been significantly challenging for lay users. Approaches to problems such as Question Answering on Linked Data and Link Discovery have notably played a role in increasing information access. These approaches are often based on handcrafted and/or statistical models derived from data observation. Recently, Deep Learning architectures based on Neural Networks called seq2seq have shown to achieve state-of-the-art results at translating sequences into sequences. In this direction, we propose Neural SPARQL Machines, end-to-end deep architectures to translate any natural language expression into sentences encoding SPARQL queries. Our preliminary results, restricted on selected DBpedia classes, show that Neural SPARQL Machines are a promising approach for Question Answering on Linked Data, as they can deal with known problems such as vocabulary mismatch and perform graph pattern composition.
RC-DARTS: Resource Constrained Differentiable Architecture Search
Recent advances show that Neural Architectural Search (NAS) method is able to find state-of-the-art image classification deep architectures. In this paper, we consider the one-shot NAS problem for resource constrained applications. This problem is of great interest because it is critical to choose different architectures according to task complexity when the resource is constrained. Previous techniques are either too slow for one-shot learning or does not take the resource constraint into consideration. In this paper, we propose the resource constrained differentiable architecture search (RC-DARTS) method to learn architectures that are significantly smaller and faster while achieving comparable accuracy. Specifically, we propose to formulate the RC-DARTS task as a constrained optimization problem by adding the resource constraint. An iterative projection method is proposed to solve the given constrained optimization problem. We also propose a multi-level search strategy to enable layers at different depths to adaptively learn different types of neural architectures. Through extensive experiments on the Cifar10 and ImageNet datasets, we show that the RC-DARTS method learns lightweight neural architectures which have smaller model size and lower computational complexity while achieving comparable or better performances than the state-of-the-art methods.
Stable ResNet
Deep ResNet architectures have achieved state of the art performance on many tasks. While they solve the problem of gradient vanishing, they might suffer from gradient exploding as the depth becomes large (Yang et al. 2017). Moreover, recent results have shown that ResNet might lose expressivity as the depth goes to infinity (Yang et al. 2017, Hayou et al. 2019). To resolve these issues, we introduce a new class of ResNet architectures, called Stable ResNet, that have the property of stabilizing the gradient while ensuring expressivity in the infinite depth limit.
RNA Secondary Structure Prediction By Learning Unrolled Algorithms
In this paper, we propose an end-to-end deep learning model, called E2Efold, for RNA secondary structure prediction which can effectively take into account the inherent constraints in the problem. The key idea of E2Efold is to directly predict the RNA base-pairing matrix, and use an unrolled algorithm for constrained programming as the template for deep architectures to enforce constraints. With comprehensive experiments on benchmark datasets, we demonstrate the superior performance of E2Efold: it predicts significantly better structures compared to previous SOTA (especially for pseudoknotted structures), while being as efficient as the fastest algorithms in terms of inference time.
RETURNN as a Generic Flexible Neural Toolkit with Application to Translation and Speech Recognition
We compare the fast training and decoding speed of RETURNN of attention models for translation, due to fast CUDA LSTM kernels, and a fast pure TensorFlow beam search decoder. We show that a layer-wise pretraining scheme for recurrent attention models gives over 1% BLEU improvement absolute and it allows to train deeper recurrent encoder networks. Promising preliminary results on max. expected BLEU training are presented. We are able to train state-of-the-art models for translation and end-to-end models for speech recognition and show results on WMT 2017 and Switchboard. The flexibility of RETURNN allows a fast research feedback loop to experiment with alternative architectures, and its generality allows to use it on a wide range of applications.
Information Shapes Koopman Representation
The Koopman operator provides a powerful framework for modeling dynamical systems and has attracted growing interest from the machine learning community. However, its infinite-dimensional nature makes identifying suitable finite-dimensional subspaces challenging, especially for deep architectures. We argue that these difficulties come from suboptimal representation learning, where latent variables fail to balance expressivity and simplicity. This tension is closely related to the information bottleneck (IB) dilemma: constructing compressed representations that are both compact and predictive. Rethinking Koopman learning through this lens, we demonstrate that latent mutual information promotes simplicity, yet an overemphasis on simplicity may cause latent space to collapse onto a few dominant modes. In contrast, expressiveness is sustained by the von Neumann entropy, which prevents such collapse and encourages mode diversity. This insight leads us to propose an information-theoretic Lagrangian formulation that explicitly balances this tradeoff. Furthermore, we propose a new algorithm based on the Lagrangian formulation that encourages both simplicity and expressiveness, leading to a stable and interpretable Koopman representation. Beyond quantitative evaluations, we further visualize the learned manifolds under our representations, observing empirical results consistent with our theoretical predictions. Finally, we validate our approach across a diverse range of dynamical systems, demonstrating improved performance over existing Koopman learning methods. The implementation is publicly available at https://github.com/Wenxuan52/InformationKoopman.
Tapping into the Black Box: Uncovering Aligned Representations in Pretrained Neural Networks
In this paper we argue that ReLU networks learn an implicit linear model we can actually tap into. We describe that alleged model formally and show that we can approximately pull its decision boundary back to the input space with certain simple modification to the backward pass. The resulting gradients (called excitation pullbacks) reveal high-resolution input- and target-specific features of remarkable perceptual alignment on a number of popular ImageNet-pretrained deep architectures. This strongly suggests that neural networks do, in fact, rely on learned interpretable patterns that can be recovered after training. Thus, our findings may have profound implications for knowledge discovery and the development of dependable artificial systems.
Graph-based Multi-ODE Neural Networks for Spatio-Temporal Traffic Forecasting
There is a recent surge in the development of spatio-temporal forecasting models in the transportation domain. Long-range traffic forecasting, however, remains a challenging task due to the intricate and extensive spatio-temporal correlations observed in traffic networks. Current works primarily rely on road networks with graph structures and learn representations using graph neural networks (GNNs), but this approach suffers from over-smoothing problem in deep architectures. To tackle this problem, recent methods introduced the combination of GNNs with residual connections or neural ordinary differential equations (ODE). However, current graph ODE models face two key limitations in feature extraction: (1) they lean towards global temporal patterns, overlooking local patterns that are important for unexpected events; and (2) they lack dynamic semantic edges in their architectural design. In this paper, we propose a novel architecture called Graph-based Multi-ODE Neural Networks (GRAM-ODE) which is designed with multiple connective ODE-GNN modules to learn better representations by capturing different views of complex local and global dynamic spatio-temporal dependencies. We also add some techniques like shared weights and divergence constraints into the intermediate layers of distinct ODE-GNN modules to further improve their communication towards the forecasting task. Our extensive set of experiments conducted on six real-world datasets demonstrate the superior performance of GRAM-ODE compared with state-of-the-art baselines as well as the contribution of different components to the overall performance. The code is available at https://github.com/zbliu98/GRAM-ODE
Stabilizing Transformer Training by Preventing Attention Entropy Collapse
Training stability is of great importance to Transformers. In this work, we investigate the training dynamics of Transformers by examining the evolution of the attention layers. In particular, we track the attention entropy for each attention head during the course of training, which is a proxy for model sharpness. We identify a common pattern across different architectures and tasks, where low attention entropy is accompanied by high training instability, which can take the form of oscillating loss or divergence. We denote the pathologically low attention entropy, corresponding to highly concentrated attention scores, as entropy collapse. As a remedy, we propose sigmaReparam, a simple and efficient solution where we reparametrize all linear layers with spectral normalization and an additional learned scalar. We demonstrate that the proposed reparameterization successfully prevents entropy collapse in the attention layers, promoting more stable training. Additionally, we prove a tight lower bound of the attention entropy, which decreases exponentially fast with the spectral norm of the attention logits, providing additional motivation for our approach. We conduct experiments with sigmaReparam on image classification, image self-supervised learning, machine translation, automatic speech recognition, and language modeling tasks, across Transformer architectures. We show that sigmaReparam provides stability and robustness with respect to the choice of hyperparameters, going so far as enabling training (a) a Vision Transformer to competitive performance without warmup, weight decay, layer normalization or adaptive optimizers; (b) deep architectures in machine translation and (c) speech recognition to competitive performance without warmup and adaptive optimizers.
Just How Flexible are Neural Networks in Practice?
It is widely believed that a neural network can fit a training set containing at least as many samples as it has parameters, underpinning notions of overparameterized and underparameterized models. In practice, however, we only find solutions accessible via our training procedure, including the optimizer and regularizers, limiting flexibility. Moreover, the exact parameterization of the function class, built into an architecture, shapes its loss surface and impacts the minima we find. In this work, we examine the ability of neural networks to fit data in practice. Our findings indicate that: (1) standard optimizers find minima where the model can only fit training sets with significantly fewer samples than it has parameters; (2) convolutional networks are more parameter-efficient than MLPs and ViTs, even on randomly labeled data; (3) while stochastic training is thought to have a regularizing effect, SGD actually finds minima that fit more training data than full-batch gradient descent; (4) the difference in capacity to fit correctly labeled and incorrectly labeled samples can be predictive of generalization; (5) ReLU activation functions result in finding minima that fit more data despite being designed to avoid vanishing and exploding gradients in deep architectures.
Deep Learning architectures for generalized immunofluorescence based nuclear image segmentation
Separating and labeling each instance of a nucleus (instance-aware segmentation) is the key challenge in segmenting single cell nuclei on fluorescence microscopy images. Deep Neural Networks can learn the implicit transformation of a nuclear image into a probability map indicating the class membership of each pixel (nucleus or background), but the use of post-processing steps to turn the probability map into a labeled object mask is error-prone. This especially accounts for nuclear images of tissue sections and nuclear images across varying tissue preparations. In this work, we aim to evaluate the performance of state-of-the-art deep learning architectures to segment nuclei in fluorescence images of various tissue origins and sample preparation types without post-processing. We compare architectures that operate on pixel to pixel translation and an architecture that operates on object detection and subsequent locally applied segmentation. In addition, we propose a novel strategy to create artificial images to extend the training set. We evaluate the influence of ground truth annotation quality, image scale and segmentation complexity on segmentation performance. Results show that three out of four deep learning architectures (U-Net, U-Net with ResNet34 backbone, Mask R-CNN) can segment fluorescent nuclear images on most of the sample preparation types and tissue origins with satisfactory segmentation performance. Mask R-CNN, an architecture designed to address instance aware segmentation tasks, outperforms other architectures. Equal nuclear mean size, consistent nuclear annotations and the use of artificially generated images result in overall acceptable precision and recall across different tissues and sample preparation types.
Enhancing Skin Disease Classification Leveraging Transformer-based Deep Learning Architectures and Explainable AI
Skin diseases affect over a third of the global population, yet their impact is often underestimated. Automating skin disease classification to assist doctors with their prognosis might be difficult. Nevertheless, due to efficient feature extraction pipelines, deep learning techniques have shown much promise for various tasks, including dermatological disease identification. This study uses a skin disease dataset with 31 classes and compares it with all versions of Vision Transformers, Swin Transformers and DivoV2. The analysis is also extended to compare with benchmark convolution-based architecture presented in the literature. Transfer learning with ImageNet1k weights on the skin disease dataset contributes to a high test accuracy of 96.48\% and an F1-Score of 0.9727 using DinoV2, which is almost a 10\% improvement over this data's current benchmark results. The performance of DinoV2 was also compared for the HAM10000 and Dermnet datasets to test the model's robustness, and the trained model overcomes the benchmark results by a slight margin in test accuracy and in F1-Score on the 23 and 7 class datasets. The results are substantiated using explainable AI frameworks like GradCAM and SHAP, which provide precise image locations to map the disease, assisting dermatologists in early detection, prompt prognosis, and treatment.
Regularization-based Pruning of Irrelevant Weights in Deep Neural Architectures
Deep neural networks exploiting millions of parameters are nowadays the norm in deep learning applications. This is a potential issue because of the great amount of computational resources needed for training, and of the possible loss of generalization performance of overparametrized networks. We propose in this paper a method for learning sparse neural topologies via a regularization technique which identifies non relevant weights and selectively shrinks their norm, while performing a classic update for relevant ones. This technique, which is an improvement of classical weight decay, is based on the definition of a regularization term which can be added to any loss functional regardless of its form, resulting in a unified general framework exploitable in many different contexts. The actual elimination of parameters identified as irrelevant is handled by an iterative pruning algorithm. We tested the proposed technique on different image classification and Natural language generation tasks, obtaining results on par or better then competitors in terms of sparsity and metrics, while achieving strong models compression.
Position: Categorical Deep Learning is an Algebraic Theory of All Architectures
We present our position on the elusive quest for a general-purpose framework for specifying and studying deep learning architectures. Our opinion is that the key attempts made so far lack a coherent bridge between specifying constraints which models must satisfy and specifying their implementations. Focusing on building a such a bridge, we propose to apply category theory -- precisely, the universal algebra of monads valued in a 2-category of parametric maps -- as a single theory elegantly subsuming both of these flavours of neural network design. To defend our position, we show how this theory recovers constraints induced by geometric deep learning, as well as implementations of many architectures drawn from the diverse landscape of neural networks, such as RNNs. We also illustrate how the theory naturally encodes many standard constructs in computer science and automata theory.
Breast Cancer Detection and Diagnosis: A comparative study of state-of-the-arts deep learning architectures
Breast cancer is a prevalent form of cancer among women, with over 1.5 million women being diagnosed each year. Unfortunately, the survival rates for breast cancer patients in certain third-world countries, like South Africa, are alarmingly low, with only 40% of diagnosed patients surviving beyond five years. The inadequate availability of resources, including qualified pathologists, delayed diagnoses, and ineffective therapy planning, contribute to this low survival rate. To address this pressing issue, medical specialists and researchers have turned to domain-specific AI approaches, specifically deep learning models, to develop end-to-end solutions that can be integrated into computer-aided diagnosis (CAD) systems. By improving the workflow of pathologists, these AI models have the potential to enhance the detection and diagnosis of breast cancer. This research focuses on evaluating the performance of various cutting-edge convolutional neural network (CNN) architectures in comparison to a relatively new model called the Vision Trans-former (ViT). The objective is to determine the superiority of these models in terms of their accuracy and effectiveness. The experimental results reveal that the ViT models outperform the other selected state-of-the-art CNN architectures, achieving an impressive accuracy rate of 95.15%. This study signifies a significant advancement in the field, as it explores the utilization of data augmentation and other relevant preprocessing techniques in conjunction with deep learning models for the detection and diagnosis of breast cancer using datasets of Breast Cancer Histopathological Image Classification.
Direct Feedback Alignment Scales to Modern Deep Learning Tasks and Architectures
Despite being the workhorse of deep learning, the backpropagation algorithm is no panacea. It enforces sequential layer updates, thus preventing efficient parallelization of the training process. Furthermore, its biological plausibility is being challenged. Alternative schemes have been devised; yet, under the constraint of synaptic asymmetry, none have scaled to modern deep learning tasks and architectures. Here, we challenge this perspective, and study the applicability of Direct Feedback Alignment to neural view synthesis, recommender systems, geometric learning, and natural language processing. In contrast with previous studies limited to computer vision tasks, our findings show that it successfully trains a large range of state-of-the-art deep learning architectures, with performance close to fine-tuned backpropagation. At variance with common beliefs, our work supports that challenging tasks can be tackled in the absence of weight transport.
Neural Circuit Diagrams: Robust Diagrams for the Communication, Implementation, and Analysis of Deep Learning Architectures
Diagrams matter. Unfortunately, the deep learning community has no standard method for diagramming architectures. The current combination of linear algebra notation and ad-hoc diagrams fails to offer the necessary precision to understand architectures in all their detail. However, this detail is critical for faithful implementation, mathematical analysis, further innovation, and ethical assurances. I present neural circuit diagrams, a graphical language tailored to the needs of communicating deep learning architectures. Neural circuit diagrams naturally keep track of the changing arrangement of data, precisely show how operations are broadcast over axes, and display the critical parallel behavior of linear operations. A lingering issue with existing diagramming methods is the inability to simultaneously express the detail of axes and the free arrangement of data, which neural circuit diagrams solve. Their compositional structure is analogous to code, creating a close correspondence between diagrams and implementation. In this work, I introduce neural circuit diagrams for an audience of machine learning researchers. After introducing neural circuit diagrams, I cover a host of architectures to show their utility and breed familiarity. This includes the transformer architecture, convolution (and its difficult-to-explain extensions), residual networks, the U-Net, and the vision transformer. I include a Jupyter notebook that provides evidence for the close correspondence between diagrams and code. Finally, I examine backpropagation using neural circuit diagrams. I show their utility in providing mathematical insight and analyzing algorithms' time and space complexities.
Efficient Feature Extraction Using Light-Weight CNN Attention-Based Deep Learning Architectures for Ultrasound Fetal Plane Classification
Ultrasound fetal imaging is beneficial to support prenatal development because it is affordable and non-intrusive. Nevertheless, fetal plane classification (FPC) remains challenging and time-consuming for obstetricians since it depends on nuanced clinical aspects, which increases the difficulty in identifying relevant features of the fetal anatomy. Thus, to assist with its accurate feature extraction, a lightweight artificial intelligence architecture leveraging convolutional neural networks and attention mechanisms is proposed to classify the largest benchmark ultrasound dataset. The approach fine-tunes from lightweight EfficientNet feature extraction backbones pre-trained on the ImageNet1k. to classify key fetal planes such as the brain, femur, thorax, cervix, and abdomen. Our methodology incorporates the attention mechanism to refine features and 3-layer perceptrons for classification, achieving superior performance with the highest Top-1 accuracy of 96.25%, Top-2 accuracy of 99.80% and F1-Score of 0.9576. Importantly, the model has 40x fewer trainable parameters than existing benchmark ensemble or transformer pipelines, facilitating easy deployment on edge devices to help clinical practitioners with real-time FPC. The findings are also interpreted using GradCAM to carry out clinical correlation to aid doctors with diagnostics and improve treatment plans for expectant mothers.
Torch.manual_seed(3407) is all you need: On the influence of random seeds in deep learning architectures for computer vision
In this paper I investigate the effect of random seed selection on the accuracy when using popular deep learning architectures for computer vision. I scan a large amount of seeds (up to 10^4) on CIFAR 10 and I also scan fewer seeds on Imagenet using pre-trained models to investigate large scale datasets. The conclusions are that even if the variance is not very large, it is surprisingly easy to find an outlier that performs much better or much worse than the average.
TabM: Advancing Tabular Deep Learning with Parameter-Efficient Ensembling
Deep learning architectures for supervised learning on tabular data range from simple multilayer perceptrons (MLP) to sophisticated Transformers and retrieval-augmented methods. This study highlights a major, yet so far overlooked opportunity for designing substantially better MLP-based tabular architectures. Namely, our new model TabM relies on efficient ensembling, where one TabM efficiently imitates an ensemble of MLPs and produces multiple predictions per object. Compared to a traditional deep ensemble, in TabM, the underlying implicit MLPs are trained simultaneously, and (by default) share most of their parameters, which results in significantly better performance and efficiency. Using TabM as a new baseline, we perform a large-scale evaluation of tabular DL architectures on public benchmarks in terms of both task performance and efficiency, which renders the landscape of tabular DL in a new light. Generally, we show that MLPs, including TabM, form a line of stronger and more practical models compared to attention- and retrieval-based architectures. In particular, we find that TabM demonstrates the best performance among tabular DL models. Then, we conduct an empirical analysis on the ensemble-like nature of TabM. We observe that the multiple predictions of TabM are weak individually, but powerful collectively. Overall, our work brings an impactful technique to tabular DL and advances the performance-efficiency trade-off with TabM -- a simple and powerful baseline for researchers and practitioners.
Deep Learning solutions to singular ordinary differential equations: from special functions to spherical accretion
Singular regular points often arise in differential equations describing physical phenomena such as fluid dynamics, electromagnetism, and gravitation. Traditional numerical techniques often fail or become unstable near these points, requiring the use of semi-analytical tools, such as series expansions and perturbative methods, in combination with numerical algorithms; or to invoke more sophisticated methods. In this work, we take an alternative route and leverage the power of machine learning to exploit Physics Informed Neural Networks (PINNs) as a modern approach to solving ordinary differential equations with singular points. PINNs utilize deep learning architectures to approximate solutions by embedding the differential equations into the loss function of the neural network. We discuss the advantages of PINNs in handling singularities, particularly their ability to bypass traditional grid-based methods and provide smooth approximations across irregular regions. Techniques for enhancing the accuracy of PINNs near singular points, such as adaptive loss weighting, are used in order to achieve high efficiency in the training of the network. We exemplify our results by studying four differential equations of interest in mathematics and gravitation -- the Legendre equation, the hypergeometric equation, the solution for black hole space-times in theories of Lorentz violating gravity, and the spherical accretion of a perfect fluid in a Schwarzschild geometry.
Hate speech detection in algerian dialect using deep learning
With the proliferation of hate speech on social networks under different formats, such as abusive language, cyberbullying, and violence, etc., people have experienced a significant increase in violence, putting them in uncomfortable situations and threats. Plenty of efforts have been dedicated in the last few years to overcome this phenomenon to detect hate speech in different structured languages like English, French, Arabic, and others. However, a reduced number of works deal with Arabic dialects like Tunisian, Egyptian, and Gulf, mainly the Algerian ones. To fill in the gap, we propose in this work a complete approach for detecting hate speech on online Algerian messages. Many deep learning architectures have been evaluated on the corpus we created from some Algerian social networks (Facebook, YouTube, and Twitter). This corpus contains more than 13.5K documents in Algerian dialect written in Arabic, labeled as hateful or non-hateful. Promising results are obtained, which show the efficiency of our approach.
The Tiny Time-series Transformer: Low-latency High-throughput Classification of Astronomical Transients using Deep Model Compression
A new golden age in astronomy is upon us, dominated by data. Large astronomical surveys are broadcasting unprecedented rates of information, demanding machine learning as a critical component in modern scientific pipelines to handle the deluge of data. The upcoming Legacy Survey of Space and Time (LSST) of the Vera C. Rubin Observatory will raise the big-data bar for time-domain astronomy, with an expected 10 million alerts per-night, and generating many petabytes of data over the lifetime of the survey. Fast and efficient classification algorithms that can operate in real-time, yet robustly and accurately, are needed for time-critical events where additional resources can be sought for follow-up analyses. In order to handle such data, state-of-the-art deep learning architectures coupled with tools that leverage modern hardware accelerators are essential. We showcase how the use of modern deep compression methods can achieve a 18times reduction in model size, whilst preserving classification performance. We also show that in addition to the deep compression techniques, careful choice of file formats can improve inference latency, and thereby throughput of alerts, on the order of 8times for local processing, and 5times in a live production setting. To test this in a live setting, we deploy this optimised version of the original time-series transformer, t2, into the community alert broking system of FINK on real Zwicky Transient Facility (ZTF) alert data, and compare throughput performance with other science modules that exist in FINK. The results shown herein emphasise the time-series transformer's suitability for real-time classification at LSST scale, and beyond, and introduce deep model compression as a fundamental tool for improving deploy-ability and scalable inference of deep learning models for transient classification.
Deep reproductive feature generation framework for the diagnosis of COVID-19 and viral pneumonia using chest X-ray images
The rapid and accurate detection of COVID-19 cases is critical for timely treatment and preventing the spread of the disease. In this study, a two-stage feature extraction framework using eight state-of-the-art pre-trained deep Convolutional Neural Networks (CNNs) and an autoencoder is proposed to determine the health conditions of patients (COVID-19, Normal, Viral Pneumonia) based on chest X-rays. The X-ray scans are divided into four equally sized sections and analyzed by deep pre-trained CNNs. Subsequently, an autoencoder with three hidden layers is trained to extract reproductive features from the concatenated ouput of CNNs. To evaluate the performance of the proposed framework, three different classifiers, which are single-layer perceptron (SLP), multi-layer perceptron (MLP), and support vector machine (SVM) are used. Furthermore, the deep CNN architectures are used to create benchmark models and trained on the same dataset for comparision. The proposed framework outperforms other frameworks wih pre-trained feature extractors in binary classification and shows competitive results in three-class classification. The proposed methodology is task-independent and suitable for addressing various problems. The results show that the discriminative features are a subset of the reproductive features, suggesting that extracting task-independent features is superior to the extraction only task-based features. The flexibility and task-independence of the reproductive features make the conceptive information approach more favorable. The proposed methodology is novel and shows promising results for analyzing medical image data.
Applications of Deep Neural Networks with Keras
Deep learning is a group of exciting new technologies for neural networks. Through a combination of advanced training techniques and neural network architectural components, it is now possible to create neural networks that can handle tabular data, images, text, and audio as both input and output. Deep learning allows a neural network to learn hierarchies of information in a way that is like the function of the human brain. This course will introduce the student to classic neural network structures, Convolution Neural Networks (CNN), Long Short-Term Memory (LSTM), Gated Recurrent Neural Networks (GRU), General Adversarial Networks (GAN), and reinforcement learning. Application of these architectures to computer vision, time series, security, natural language processing (NLP), and data generation will be covered. High-Performance Computing (HPC) aspects will demonstrate how deep learning can be leveraged both on graphical processing units (GPUs), as well as grids. Focus is primarily upon the application of deep learning to problems, with some introduction to mathematical foundations. Readers will use the Python programming language to implement deep learning using Google TensorFlow and Keras. It is not necessary to know Python prior to this book; however, familiarity with at least one programming language is assumed.
Growing Efficient Deep Networks by Structured Continuous Sparsification
We develop an approach to growing deep network architectures over the course of training, driven by a principled combination of accuracy and sparsity objectives. Unlike existing pruning or architecture search techniques that operate on full-sized models or supernet architectures, our method can start from a small, simple seed architecture and dynamically grow and prune both layers and filters. By combining a continuous relaxation of discrete network structure optimization with a scheme for sampling sparse subnetworks, we produce compact, pruned networks, while also drastically reducing the computational expense of training. For example, we achieve 49.7% inference FLOPs and 47.4% training FLOPs savings compared to a baseline ResNet-50 on ImageNet, while maintaining 75.2% top-1 accuracy -- all without any dedicated fine-tuning stage. Experiments across CIFAR, ImageNet, PASCAL VOC, and Penn Treebank, with convolutional networks for image classification and semantic segmentation, and recurrent networks for language modeling, demonstrate that we both train faster and produce more efficient networks than competing architecture pruning or search methods.
STAR: Synthesis of Tailored Architectures
Iterative improvement of model architectures is fundamental to deep learning: Transformers first enabled scaling, and recent advances in model hybridization have pushed the quality-efficiency frontier. However, optimizing architectures remains challenging and expensive. Current automated or manual approaches fall short, largely due to limited progress in the design of search spaces and due to the simplicity of resulting patterns and heuristics. In this work, we propose a new approach for the synthesis of tailored architectures (STAR). Our approach combines a novel search space based on the theory of linear input-varying systems, supporting a hierarchical numerical encoding into architecture genomes. STAR genomes are automatically refined and recombined with gradient-free, evolutionary algorithms to optimize for multiple model quality and efficiency metrics. Using STAR, we optimize large populations of new architectures, leveraging diverse computational units and interconnection patterns, improving over highly-optimized Transformers and striped hybrid models on the frontier of quality, parameter size, and inference cache for autoregressive language modeling.
HDLTex: Hierarchical Deep Learning for Text Classification
The continually increasing number of documents produced each year necessitates ever improving information processing methods for searching, retrieving, and organizing text. Central to these information processing methods is document classification, which has become an important application for supervised learning. Recently the performance of these traditional classifiers has degraded as the number of documents has increased. This is because along with this growth in the number of documents has come an increase in the number of categories. This paper approaches this problem differently from current document classification methods that view the problem as multi-class classification. Instead we perform hierarchical classification using an approach we call Hierarchical Deep Learning for Text classification (HDLTex). HDLTex employs stacks of deep learning architectures to provide specialized understanding at each level of the document hierarchy.
Transformer and Hybrid Deep Learning Based Models for Machine-Generated Text Detection
This paper describes the approach of the UniBuc - NLP team in tackling the SemEval 2024 Task 8: Multigenerator, Multidomain, and Multilingual Black-Box Machine-Generated Text Detection. We explored transformer-based and hybrid deep learning architectures. For subtask B, our transformer-based model achieved a strong second-place out of 77 teams with an accuracy of 86.95\%, demonstrating the architecture's suitability for this task. However, our models showed overfitting in subtask A which could potentially be fixed with less fine-tunning and increasing maximum sequence length. For subtask C (token-level classification), our hybrid model overfit during training, hindering its ability to detect transitions between human and machine-generated text.
Loss of Plasticity in Deep Continual Learning
Modern deep-learning systems are specialized to problem settings in which training occurs once and then never again, as opposed to continual-learning settings in which training occurs continually. If deep-learning systems are applied in a continual learning setting, then it is well known that they may fail to remember earlier examples. More fundamental, but less well known, is that they may also lose their ability to learn on new examples, a phenomenon called loss of plasticity. We provide direct demonstrations of loss of plasticity using the MNIST and ImageNet datasets repurposed for continual learning as sequences of tasks. In ImageNet, binary classification performance dropped from 89\% accuracy on an early task down to 77\%, about the level of a linear network, on the 2000th task. Loss of plasticity occurred with a wide range of deep network architectures, optimizers, activation functions, batch normalization, dropout, but was substantially eased by L^2-regularization, particularly when combined with weight perturbation. Further, we introduce a new algorithm -- continual backpropagation -- which slightly modifies conventional backpropagation to reinitialize a small fraction of less-used units after each example and appears to maintain plasticity indefinitely.
Hadamard product in deep learning: Introduction, Advances and Challenges
While convolution and self-attention mechanisms have dominated architectural design in deep learning, this survey examines a fundamental yet understudied primitive: the Hadamard product. Despite its widespread implementation across various applications, the Hadamard product has not been systematically analyzed as a core architectural primitive. We present the first comprehensive taxonomy of its applications in deep learning, identifying four principal domains: higher-order correlation, multimodal data fusion, dynamic representation modulation, and efficient pairwise operations. The Hadamard product's ability to model nonlinear interactions with linear computational complexity makes it particularly valuable for resource-constrained deployments and edge computing scenarios. We demonstrate its natural applicability in multimodal fusion tasks, such as visual question answering, and its effectiveness in representation masking for applications including image inpainting and pruning. This systematic review not only consolidates existing knowledge about the Hadamard product's role in deep learning architectures but also establishes a foundation for future architectural innovations. Our analysis reveals the Hadamard product as a versatile primitive that offers compelling trade-offs between computational efficiency and representational power, positioning it as a crucial component in the deep learning toolkit.
Towards Saner Deep Image Registration
With recent advances in computing hardware and surges of deep-learning architectures, learning-based deep image registration methods have surpassed their traditional counterparts, in terms of metric performance and inference time. However, these methods focus on improving performance measurements such as Dice, resulting in less attention given to model behaviors that are equally desirable for registrations, especially for medical imaging. This paper investigates these behaviors for popular learning-based deep registrations under a sanity-checking microscope. We find that most existing registrations suffer from low inverse consistency and nondiscrimination of identical pairs due to overly optimized image similarities. To rectify these behaviors, we propose a novel regularization-based sanity-enforcer method that imposes two sanity checks on the deep model to reduce its inverse consistency errors and increase its discriminative power simultaneously. Moreover, we derive a set of theoretical guarantees for our sanity-checked image registration method, with experimental results supporting our theoretical findings and their effectiveness in increasing the sanity of models without sacrificing any performance. Our code and models are available at https://github.com/tuffr5/Saner-deep-registration.
Similarity of Neural Architectures using Adversarial Attack Transferability
In recent years, many deep neural architectures have been developed for image classification. Whether they are similar or dissimilar and what factors contribute to their (dis)similarities remains curious. To address this question, we aim to design a quantitative and scalable similarity measure between neural architectures. We propose Similarity by Attack Transferability (SAT) from the observation that adversarial attack transferability contains information related to input gradients and decision boundaries widely used to understand model behaviors. We conduct a large-scale analysis on 69 state-of-the-art ImageNet classifiers using our proposed similarity function to answer the question. Moreover, we observe neural architecture-related phenomena using model similarity that model diversity can lead to better performance on model ensembles and knowledge distillation under specific conditions. Our results provide insights into why developing diverse neural architectures with distinct components is necessary.
Gender Detection on Social Networks using Ensemble Deep Learning
Analyzing the ever-increasing volume of posts on social media sites such as Facebook and Twitter requires improved information processing methods for profiling authorship. Document classification is central to this task, but the performance of traditional supervised classifiers has degraded as the volume of social media has increased. This paper addresses this problem in the context of gender detection through ensemble classification that employs multi-model deep learning architectures to generate specialized understanding from different feature spaces.
DeepProtein: Deep Learning Library and Benchmark for Protein Sequence Learning
Deep learning has deeply influenced protein science, enabling breakthroughs in predicting protein properties, higher-order structures, and molecular interactions. This paper introduces DeepProtein, a comprehensive and user-friendly deep learning library tailored for protein-related tasks. It enables researchers to seamlessly address protein data with cutting-edge deep learning models. To assess model performance, we establish a benchmark evaluating different deep learning architectures across multiple protein-related tasks, including protein function prediction, subcellular localization prediction, protein-protein interaction prediction, and protein structure prediction. Furthermore, we introduce DeepProt-T5, a series of fine-tuned Prot-T5-based models that achieve state-of-the-art performance on four benchmark tasks, while demonstrating competitive results on six of others. Comprehensive documentation and tutorials are available which could ensure accessibility and support reproducibility. Built upon the widely used drug discovery library DeepPurpose, DeepProtein is publicly available at https://github.com/jiaqingxie/DeepProtein.
Deep Learning-based Image and Video Inpainting: A Survey
Image and video inpainting is a classic problem in computer vision and computer graphics, aiming to fill in the plausible and realistic content in the missing areas of images and videos. With the advance of deep learning, this problem has achieved significant progress recently. The goal of this paper is to comprehensively review the deep learning-based methods for image and video inpainting. Specifically, we sort existing methods into different categories from the perspective of their high-level inpainting pipeline, present different deep learning architectures, including CNN, VAE, GAN, diffusion models, etc., and summarize techniques for module design. We review the training objectives and the common benchmark datasets. We present evaluation metrics for low-level pixel and high-level perceptional similarity, conduct a performance evaluation, and discuss the strengths and weaknesses of representative inpainting methods. We also discuss related real-world applications. Finally, we discuss open challenges and suggest potential future research directions.
Deep Learning for Genomics: A Concise Overview
Advancements in genomic research such as high-throughput sequencing techniques have driven modern genomic studies into "big data" disciplines. This data explosion is constantly challenging conventional methods used in genomics. In parallel with the urgent demand for robust algorithms, deep learning has succeeded in a variety of fields such as vision, speech, and text processing. Yet genomics entails unique challenges to deep learning since we are expecting from deep learning a superhuman intelligence that explores beyond our knowledge to interpret the genome. A powerful deep learning model should rely on insightful utilization of task-specific knowledge. In this paper, we briefly discuss the strengths of different deep learning models from a genomic perspective so as to fit each particular task with a proper deep architecture, and remark on practical considerations of developing modern deep learning architectures for genomics. We also provide a concise review of deep learning applications in various aspects of genomic research, as well as pointing out potential opportunities and obstacles for future genomics applications.
Deep Tensor Network
In this paper, we delve into the foundational principles of tensor categories, harnessing the universal property of the tensor product to pioneer novel methodologies in deep network architectures. Our primary contribution is the introduction of the Tensor Attention and Tensor Interaction Mechanism, a groundbreaking approach that leverages the tensor category to enhance the computational efficiency and the expressiveness of deep networks, and can even be generalized into the quantum realm.
SynTSBench: Rethinking Temporal Pattern Learning in Deep Learning Models for Time Series
Recent advances in deep learning have driven rapid progress in time series forecasting, yet many state-of-the-art models continue to struggle with robust performance in real-world applications, even when they achieve strong results on standard benchmark datasets. This persistent gap can be attributed to the black-box nature of deep learning architectures and the inherent limitations of current evaluation frameworks, which frequently lack the capacity to provide clear, quantitative insights into the specific strengths and weaknesses of different models, thereby complicating the selection of appropriate models for particular forecasting scenarios. To address these issues, we propose a synthetic data-driven evaluation paradigm, SynTSBench, that systematically assesses fundamental modeling capabilities of time series forecasting models through programmable feature configuration. Our framework isolates confounding factors and establishes an interpretable evaluation system with three core analytical dimensions: (1) temporal feature decomposition and capability mapping, which enables systematic evaluation of model capacities to learn specific pattern types; (2) robustness analysis under data irregularities, which quantifies noise tolerance thresholds and anomaly recovery capabilities; and (3) theoretical optimum benchmarking, which establishes performance boundaries for each pattern type-enabling direct comparison between model predictions and mathematical optima. Our experiments show that current deep learning models do not universally approach optimal baselines across all types of temporal features.The code is available at https://github.com/TanQitai/SynTSBench
A Review of Deep Learning Approaches for Non-Invasive Cognitive Impairment Detection
This review paper explores recent advances in deep learning approaches for non-invasive cognitive impairment detection. We examine various non-invasive indicators of cognitive decline, including speech and language, facial, and motoric mobility. The paper provides an overview of relevant datasets, feature-extracting techniques, and deep-learning architectures applied to this domain. We have analyzed the performance of different methods across modalities and observed that speech and language-based methods generally achieved the highest detection performance. Studies combining acoustic and linguistic features tended to outperform those using a single modality. Facial analysis methods showed promise for visual modalities but were less extensively studied. Most papers focused on binary classification (impaired vs. non-impaired), with fewer addressing multi-class or regression tasks. Transfer learning and pre-trained language models emerged as popular and effective techniques, especially for linguistic analysis. Despite significant progress, several challenges remain, including data standardization and accessibility, model explainability, longitudinal analysis limitations, and clinical adaptation. Lastly, we propose future research directions, such as investigating language-agnostic speech analysis methods, developing multi-modal diagnostic systems, and addressing ethical considerations in AI-assisted healthcare. By synthesizing current trends and identifying key obstacles, this review aims to guide further development of deep learning-based cognitive impairment detection systems to improve early diagnosis and ultimately patient outcomes.
Monotone deep Boltzmann machines
Deep Boltzmann machines (DBMs), one of the first ``deep'' learning methods ever studied, are multi-layered probabilistic models governed by a pairwise energy function that describes the likelihood of all variables/nodes in the network. In practice, DBMs are often constrained, i.e., via the restricted Boltzmann machine (RBM) architecture (which does not permit intra-layer connections), in order to allow for more efficient inference. In this work, we revisit the generic DBM approach, and ask the question: are there other possible restrictions to their design that would enable efficient (approximate) inference? In particular, we develop a new class of restricted model, the monotone DBM, which allows for arbitrary self-connection in each layer, but restricts the weights in a manner that guarantees the existence and global uniqueness of a mean-field fixed point. To do this, we leverage tools from the recently-proposed monotone Deep Equilibrium model and show that a particular choice of activation results in a fixed-point iteration that gives a variational mean-field solution. While this approach is still largely conceptual, it is the first architecture that allows for efficient approximate inference in fully-general weight structures for DBMs. We apply this approach to simple deep convolutional Boltzmann architectures and demonstrate that it allows for tasks such as the joint completion and classification of images, within a single deep probabilistic setting, while avoiding the pitfalls of mean-field inference in traditional RBMs.
Adaptive Ensemble Learning: Boosting Model Performance through Intelligent Feature Fusion in Deep Neural Networks
In this paper, we present an Adaptive Ensemble Learning framework that aims to boost the performance of deep neural networks by intelligently fusing features through ensemble learning techniques. The proposed framework integrates ensemble learning strategies with deep learning architectures to create a more robust and adaptable model capable of handling complex tasks across various domains. By leveraging intelligent feature fusion methods, the Adaptive Ensemble Learning framework generates more discriminative and effective feature representations, leading to improved model performance and generalization capabilities. We conducted extensive experiments and evaluations on several benchmark datasets, including image classification, object detection, natural language processing, and graph-based learning tasks. The results demonstrate that the proposed framework consistently outperforms baseline models and traditional feature fusion techniques, highlighting its effectiveness in enhancing deep learning models' performance. Furthermore, we provide insights into the impact of intelligent feature fusion on model performance and discuss the potential applications of the Adaptive Ensemble Learning framework in real-world scenarios. The paper also explores the design and implementation of adaptive ensemble models, ensemble training strategies, and meta-learning techniques, which contribute to the framework's versatility and adaptability. In conclusion, the Adaptive Ensemble Learning framework represents a significant advancement in the field of feature fusion and ensemble learning for deep neural networks, with the potential to transform a wide range of applications across multiple domains.
Skin disease diagnosis with deep learning: a review
Skin cancer is one of the most threatening diseases worldwide. However, diagnosing skin cancer correctly is challenging. Recently, deep learning algorithms have emerged to achieve excellent performance on various tasks. Particularly, they have been applied to the skin disease diagnosis tasks. In this paper, we present a review on deep learning methods and their applications in skin disease diagnosis. We first present a brief introduction to skin diseases and image acquisition methods in dermatology, and list several publicly available skin datasets for training and testing algorithms. Then, we introduce the conception of deep learning and review popular deep learning architectures. Thereafter, popular deep learning frameworks facilitating the implementation of deep learning algorithms and performance evaluation metrics are presented. As an important part of this article, we then review the literature involving deep learning methods for skin disease diagnosis from several aspects according to the specific tasks. Additionally, we discuss the challenges faced in the area and suggest possible future research directions. The major purpose of this article is to provide a conceptual and systematically review of the recent works on skin disease diagnosis with deep learning. Given the popularity of deep learning, there remains great challenges in the area, as well as opportunities that we can explore in the future.
On the Foundations of Shortcut Learning
Deep-learning models can extract a rich assortment of features from data. Which features a model uses depends not only on predictivity-how reliably a feature indicates train-set labels-but also on availability-how easily the feature can be extracted, or leveraged, from inputs. The literature on shortcut learning has noted examples in which models privilege one feature over another, for example texture over shape and image backgrounds over foreground objects. Here, we test hypotheses about which input properties are more available to a model, and systematically study how predictivity and availability interact to shape models' feature use. We construct a minimal, explicit generative framework for synthesizing classification datasets with two latent features that vary in predictivity and in factors we hypothesize to relate to availability, and quantify a model's shortcut bias-its over-reliance on the shortcut (more available, less predictive) feature at the expense of the core (less available, more predictive) feature. We find that linear models are relatively unbiased, but introducing a single hidden layer with ReLU or Tanh units yields a bias. Our empirical findings are consistent with a theoretical account based on Neural Tangent Kernels. Finally, we study how models used in practice trade off predictivity and availability in naturalistic datasets, discovering availability manipulations which increase models' degree of shortcut bias. Taken together, these findings suggest that the propensity to learn shortcut features is a fundamental characteristic of deep nonlinear architectures warranting systematic study given its role in shaping how models solve tasks.
Continuous Thought Machines
Biological brains demonstrate complex neural activity, where the timing and interplay between neurons is critical to how brains process information. Most deep learning architectures simplify neural activity by abstracting away temporal dynamics. In this paper we challenge that paradigm. By incorporating neuron-level processing and synchronization, we can effectively reintroduce neural timing as a foundational element. We present the Continuous Thought Machine (CTM), a model designed to leverage neural dynamics as its core representation. The CTM has two core innovations: (1) neuron-level temporal processing, where each neuron uses unique weight parameters to process a history of incoming signals; and (2) neural synchronization employed as a latent representation. The CTM aims to strike a balance between oversimplified neuron abstractions that improve computational efficiency, and biological realism. It operates at a level of abstraction that effectively captures essential temporal dynamics while remaining computationally tractable for deep learning. We demonstrate the CTM's strong performance and versatility across a range of challenging tasks, including ImageNet-1K classification, solving 2D mazes, sorting, parity computation, question-answering, and RL tasks. Beyond displaying rich internal representations and offering a natural avenue for interpretation owing to its internal process, the CTM is able to perform tasks that require complex sequential reasoning. The CTM can also leverage adaptive compute, where it can stop earlier for simpler tasks, or keep computing when faced with more challenging instances. The goal of this work is to share the CTM and its associated innovations, rather than pushing for new state-of-the-art results. To that end, we believe the CTM represents a significant step toward developing more biologically plausible and powerful artificial intelligence systems.
Large Language Models Are Not Strong Abstract Reasoners
Large Language Models have shown tremendous performance on a large variety of natural language processing tasks, ranging from text comprehension to common sense reasoning. However, the mechanisms responsible for this success remain opaque, and it is unclear whether LLMs can achieve human-like cognitive capabilities or whether these models are still fundamentally circumscribed. Abstract reasoning is a fundamental task for cognition, consisting of finding and applying a general pattern from few data. Evaluating deep neural architectures on this task could give insight into their potential limitations regarding reasoning and their broad generalisation abilities, yet this is currently an under-explored area. In this paper, we introduce a new benchmark for evaluating language models beyond memorization on abstract reasoning tasks. We perform extensive evaluations of state-of-the-art LLMs, showing that they currently achieve very limited performance in contrast with other natural language tasks, and we examine the reasons for this difference. We apply techniques that have been shown to improve performance on other NLP tasks and show that their impact on abstract reasoning is limited.
Geometric Algebra Attention Networks for Small Point Clouds
Much of the success of deep learning is drawn from building architectures that properly respect underlying symmetry and structure in the data on which they operate - a set of considerations that have been united under the banner of geometric deep learning. Often problems in the physical sciences deal with relatively small sets of points in two- or three-dimensional space wherein translation, rotation, and permutation equivariance are important or even vital for models to be useful in practice. In this work, we present rotation- and permutation-equivariant architectures for deep learning on these small point clouds, composed of a set of products of terms from the geometric algebra and reductions over those products using an attention mechanism. The geometric algebra provides valuable mathematical structure by which to combine vector, scalar, and other types of geometric inputs in a systematic way to account for rotation invariance or covariance, while attention yields a powerful way to impose permutation equivariance. We demonstrate the usefulness of these architectures by training models to solve sample problems relevant to physics, chemistry, and biology.
High-Performance Neural Networks for Visual Object Classification
We present a fast, fully parameterizable GPU implementation of Convolutional Neural Network variants. Our feature extractors are neither carefully designed nor pre-wired, but rather learned in a supervised way. Our deep hierarchical architectures achieve the best published results on benchmarks for object classification (NORB, CIFAR10) and handwritten digit recognition (MNIST), with error rates of 2.53%, 19.51%, 0.35%, respectively. Deep nets trained by simple back-propagation perform better than more shallow ones. Learning is surprisingly rapid. NORB is completely trained within five epochs. Test error rates on MNIST drop to 2.42%, 0.97% and 0.48% after 1, 3 and 17 epochs, respectively.
Learned feature representations are biased by complexity, learning order, position, and more
Representation learning, and interpreting learned representations, are key areas of focus in machine learning and neuroscience. Both fields generally use representations as a means to understand or improve a system's computations. In this work, however, we explore surprising dissociations between representation and computation that may pose challenges for such efforts. We create datasets in which we attempt to match the computational role that different features play, while manipulating other properties of the features or the data. We train various deep learning architectures to compute these multiple abstract features about their inputs. We find that their learned feature representations are systematically biased towards representing some features more strongly than others, depending upon extraneous properties such as feature complexity, the order in which features are learned, and the distribution of features over the inputs. For example, features that are simpler to compute or learned first tend to be represented more strongly and densely than features that are more complex or learned later, even if all features are learned equally well. We also explore how these biases are affected by architectures, optimizers, and training regimes (e.g., in transformers, features decoded earlier in the output sequence also tend to be represented more strongly). Our results help to characterize the inductive biases of gradient-based representation learning. These results also highlight a key challenge for interpretability - or for comparing the representations of models and brains - disentangling extraneous biases from the computationally important aspects of a system's internal representations.
A Joint Model for Definition Extraction with Syntactic Connection and Semantic Consistency
Definition Extraction (DE) is one of the well-known topics in Information Extraction that aims to identify terms and their corresponding definitions in unstructured texts. This task can be formalized either as a sentence classification task (i.e., containing term-definition pairs or not) or a sequential labeling task (i.e., identifying the boundaries of the terms and definitions). The previous works for DE have only focused on one of the two approaches, failing to model the inter-dependencies between the two tasks. In this work, we propose a novel model for DE that simultaneously performs the two tasks in a single framework to benefit from their inter-dependencies. Our model features deep learning architectures to exploit the global structures of the input sentences as well as the semantic consistencies between the terms and the definitions, thereby improving the quality of the representation vectors for DE. Besides the joint inference between sentence classification and sequential labeling, the proposed model is fundamentally different from the prior work for DE in that the prior work has only employed the local structures of the input sentences (i.e., word-to-word relations), and not yet considered the semantic consistencies between terms and definitions. In order to implement these novel ideas, our model presents a multi-task learning framework that employs graph convolutional neural networks and predicts the dependency paths between the terms and the definitions. We also seek to enforce the consistency between the representations of the terms and definitions both globally (i.e., increasing semantic consistency between the representations of the entire sentences and the terms/definitions) and locally (i.e., promoting the similarity between the representations of the terms and the definitions).
MUSTAN: Multi-scale Temporal Context as Attention for Robust Video Foreground Segmentation
Video foreground segmentation (VFS) is an important computer vision task wherein one aims to segment the objects under motion from the background. Most of the current methods are image-based, i.e., rely only on spatial cues while ignoring motion cues. Therefore, they tend to overfit the training data and don't generalize well to out-of-domain (OOD) distribution. To solve the above problem, prior works exploited several cues such as optical flow, background subtraction mask, etc. However, having a video data with annotations like optical flow is a challenging task. In this paper, we utilize the temporal information and the spatial cues from the video data to improve OOD performance. However, the challenge lies in how we model the temporal information given the video data in an interpretable way creates a very noticeable difference. We therefore devise a strategy that integrates the temporal context of the video in the development of VFS. Our approach give rise to deep learning architectures, namely MUSTAN1 and MUSTAN2 and they are based on the idea of multi-scale temporal context as an attention, i.e., aids our models to learn better representations that are beneficial for VFS. Further, we introduce a new video dataset, namely Indoor Surveillance Dataset (ISD) for VFS. It has multiple annotations on a frame level such as foreground binary mask, depth map, and instance semantic annotations. Therefore, ISD can benefit other computer vision tasks. We validate the efficacy of our architectures and compare the performance with baselines. We demonstrate that proposed methods significantly outperform the benchmark methods on OOD. In addition, the performance of MUSTAN2 is significantly improved on certain video categories on OOD data due to ISD.
Hate and Offensive Speech Detection in Hindi and Marathi
Sentiment analysis is the most basic NLP task to determine the polarity of text data. There has been a significant amount of work in the area of multilingual text as well. Still hate and offensive speech detection faces a challenge due to inadequate availability of data, especially for Indian languages like Hindi and Marathi. In this work, we consider hate and offensive speech detection in Hindi and Marathi texts. The problem is formulated as a text classification task using the state of the art deep learning approaches. We explore different deep learning architectures like CNN, LSTM, and variations of BERT like multilingual BERT, IndicBERT, and monolingual RoBERTa. The basic models based on CNN and LSTM are augmented with fast text word embeddings. We use the HASOC 2021 Hindi and Marathi hate speech datasets to compare these algorithms. The Marathi dataset consists of binary labels and the Hindi dataset consists of binary as well as more-fine grained labels. We show that the transformer-based models perform the best and even the basic models along with FastText embeddings give a competitive performance. Moreover, with normal hyper-parameter tuning, the basic models perform better than BERT-based models on the fine-grained Hindi dataset.
Model Rubik's Cube: Twisting Resolution, Depth and Width for TinyNets
To obtain excellent deep neural architectures, a series of techniques are carefully designed in EfficientNets. The giant formula for simultaneously enlarging the resolution, depth and width provides us a Rubik's cube for neural networks. So that we can find networks with high efficiency and excellent performance by twisting the three dimensions. This paper aims to explore the twisting rules for obtaining deep neural networks with minimum model sizes and computational costs. Different from the network enlarging, we observe that resolution and depth are more important than width for tiny networks. Therefore, the original method, i.e., the compound scaling in EfficientNet is no longer suitable. To this end, we summarize a tiny formula for downsizing neural architectures through a series of smaller models derived from the EfficientNet-B0 with the FLOPs constraint. Experimental results on the ImageNet benchmark illustrate that our TinyNet performs much better than the smaller version of EfficientNets using the inversed giant formula. For instance, our TinyNet-E achieves a 59.9% Top-1 accuracy with only 24M FLOPs, which is about 1.9% higher than that of the previous best MobileNetV3 with similar computational cost. Code will be available at https://github.com/huawei-noah/ghostnet/tree/master/tinynet_pytorch, and https://gitee.com/mindspore/mindspore/tree/master/model_zoo/research/cv/tinynet.
Low-rank passthrough neural networks
Various common deep learning architectures, such as LSTMs, GRUs, Resnets and Highway Networks, employ state passthrough connections that support training with high feed-forward depth or recurrence over many time steps. These "Passthrough Networks" architectures also enable the decoupling of the network state size from the number of parameters of the network, a possibility has been studied by Sak2014 with their low-rank parametrization of the LSTM. In this work we extend this line of research, proposing effective, low-rank and low-rank plus diagonal matrix parametrizations for Passthrough Networks which exploit this decoupling property, reducing the data complexity and memory requirements of the network while preserving its memory capacity. This is particularly beneficial in low-resource settings as it supports expressive models with a compact parametrization less susceptible to overfitting. We present competitive experimental results on several tasks, including language modeling and a near state of the art result on sequential randomly-permuted MNIST classification, a hard task on natural data.
Open-Sora: Democratizing Efficient Video Production for All
Vision and language are the two foundational senses for humans, and they build up our cognitive ability and intelligence. While significant breakthroughs have been made in AI language ability, artificial visual intelligence, especially the ability to generate and simulate the world we see, is far lagging behind. To facilitate the development and accessibility of artificial visual intelligence, we created Open-Sora, an open-source video generation model designed to produce high-fidelity video content. Open-Sora supports a wide spectrum of visual generation tasks, including text-to-image generation, text-to-video generation, and image-to-video generation. The model leverages advanced deep learning architectures and training/inference techniques to enable flexible video synthesis, which could generate video content of up to 15 seconds, up to 720p resolution, and arbitrary aspect ratios. Specifically, we introduce Spatial-Temporal Diffusion Transformer (STDiT), an efficient diffusion framework for videos that decouples spatial and temporal attention. We also introduce a highly compressive 3D autoencoder to make representations compact and further accelerate training with an ad hoc training strategy. Through this initiative, we aim to foster innovation, creativity, and inclusivity within the community of AI content creation. By embracing the open-source principle, Open-Sora democratizes full access to all the training/inference/data preparation codes as well as model weights. All resources are publicly available at: https://github.com/hpcaitech/Open-Sora.
Contextual Memory Reweaving in Large Language Models Using Layered Latent State Reconstruction
Memory retention challenges in deep neural architectures have ongoing limitations in the ability to process and recall extended contextual information. Token dependencies degrade as sequence length increases, leading to a decline in coherence and factual consistency across longer outputs. A structured approach is introduced to mitigate this issue through the reweaving of latent states captured at different processing layers, reinforcing token representations over extended sequences. The proposed Contextual Memory Reweaving framework incorporates a Layered Latent State Reconstruction mechanism to systematically integrate past contextual embeddings without introducing external memory modules. Experimental results demonstrate improvements in recall accuracy across a range of sequence lengths, with notable gains in the retention of rarely occurring tokens and numerical reasoning consistency. Further analysis of computational efficiency indicates that the additional processing overhead remains within acceptable thresholds, enabling scalability across different model sizes. Evaluations in long-form text generation and ambiguous query resolution highlight the capacity of memory reweaving to enhance continuity and reduce inconsistencies over extended outputs. Attention weight distributions reveal more structured allocation patterns, suggesting that reweaved latent states contribute to improved contextual awareness. The findings establish a framework for refining memory retention mechanisms in language models, addressing long-standing challenges in handling complex, multi-step reasoning tasks.
MEDIC: A Multi-Task Learning Dataset for Disaster Image Classification
Recent research in disaster informatics demonstrates a practical and important use case of artificial intelligence to save human lives and suffering during natural disasters based on social media contents (text and images). While notable progress has been made using texts, research on exploiting the images remains relatively under-explored. To advance image-based approaches, we propose MEDIC (Available at: https://crisisnlp.qcri.org/medic/index.html), which is the largest social media image classification dataset for humanitarian response consisting of 71,198 images to address four different tasks in a multi-task learning setup. This is the first dataset of its kind: social media images, disaster response, and multi-task learning research. An important property of this dataset is its high potential to facilitate research on multi-task learning, which recently receives much interest from the machine learning community and has shown remarkable results in terms of memory, inference speed, performance, and generalization capability. Therefore, the proposed dataset is an important resource for advancing image-based disaster management and multi-task machine learning research. We experiment with different deep learning architectures and report promising results, which are above the majority baselines for all tasks. Along with the dataset, we also release all relevant scripts (https://github.com/firojalam/medic).
Fast Sparse ConvNets
Historically, the pursuit of efficient inference has been one of the driving forces behind research into new deep learning architectures and building blocks. Some recent examples include: the squeeze-and-excitation module, depthwise separable convolutions in Xception, and the inverted bottleneck in MobileNet v2. Notably, in all of these cases, the resulting building blocks enabled not only higher efficiency, but also higher accuracy, and found wide adoption in the field. In this work, we further expand the arsenal of efficient building blocks for neural network architectures; but instead of combining standard primitives (such as convolution), we advocate for the replacement of these dense primitives with their sparse counterparts. While the idea of using sparsity to decrease the parameter count is not new, the conventional wisdom is that this reduction in theoretical FLOPs does not translate into real-world efficiency gains. We aim to correct this misconception by introducing a family of efficient sparse kernels for ARM and WebAssembly, which we open-source for the benefit of the community as part of the XNNPACK library. Equipped with our efficient implementation of sparse primitives, we show that sparse versions of MobileNet v1, MobileNet v2 and EfficientNet architectures substantially outperform strong dense baselines on the efficiency-accuracy curve. On Snapdragon 835 our sparse networks outperform their dense equivalents by 1.3-2.4times -- equivalent to approximately one entire generation of MobileNet-family improvement. We hope that our findings will facilitate wider adoption of sparsity as a tool for creating efficient and accurate deep learning architectures.
Frac-Connections: Fractional Extension of Hyper-Connections
Residual connections are central to modern deep learning architectures, enabling the training of very deep networks by mitigating gradient vanishing. Hyper-Connections recently generalized residual connections by introducing multiple connection strengths at different depths, thereby addressing the seesaw effect between gradient vanishing and representation collapse. However, Hyper-Connections increase memory access costs by expanding the width of hidden states. In this paper, we propose Frac-Connections, a novel approach that divides hidden states into multiple parts rather than expanding their width. Frac-Connections retain partial benefits of Hyper-Connections while reducing memory consumption. To validate their effectiveness, we conduct large-scale experiments on language tasks, with the largest being a 7B MoE model trained on up to 3T tokens, demonstrating that Frac-Connections significantly outperform residual connections.
Towards Depth Foundation Model: Recent Trends in Vision-Based Depth Estimation
Depth estimation is a fundamental task in 3D computer vision, crucial for applications such as 3D reconstruction, free-viewpoint rendering, robotics, autonomous driving, and AR/VR technologies. Traditional methods relying on hardware sensors like LiDAR are often limited by high costs, low resolution, and environmental sensitivity, limiting their applicability in real-world scenarios. Recent advances in vision-based methods offer a promising alternative, yet they face challenges in generalization and stability due to either the low-capacity model architectures or the reliance on domain-specific and small-scale datasets. The emergence of scaling laws and foundation models in other domains has inspired the development of "depth foundation models": deep neural networks trained on large datasets with strong zero-shot generalization capabilities. This paper surveys the evolution of deep learning architectures and paradigms for depth estimation across the monocular, stereo, multi-view, and monocular video settings. We explore the potential of these models to address existing challenges and provide a comprehensive overview of large-scale datasets that can facilitate their development. By identifying key architectures and training strategies, we aim to highlight the path towards robust depth foundation models, offering insights into their future research and applications.
Tabular Data with Class Imbalance: Predicting Electric Vehicle Crash Severity with Pretrained Transformers (TabPFN) and Mamba-Based Models
This study presents a deep tabular learning framework for predicting crash severity in electric vehicle (EV) collisions using real-world crash data from Texas (2017-2023). After filtering for electric-only vehicles, 23,301 EV-involved crash records were analyzed. Feature importance techniques using XGBoost and Random Forest identified intersection relation, first harmful event, person age, crash speed limit, and day of week as the top predictors, along with advanced safety features like automatic emergency braking. To address class imbalance, Synthetic Minority Over-sampling Technique and Edited Nearest Neighbors (SMOTEENN) resampling was applied. Three state-of-the-art deep tabular models, TabPFN, MambaNet, and MambaAttention, were benchmarked for severity prediction. While TabPFN demonstrated strong generalization, MambaAttention achieved superior performance in classifying severe injury cases due to its attention-based feature reweighting. The findings highlight the potential of deep tabular architectures for improving crash severity prediction and enabling data-driven safety interventions in EV crash contexts.
Gompertz Linear Units: Leveraging Asymmetry for Enhanced Learning Dynamics
Activation functions are fundamental elements of deep learning architectures as they significantly influence training dynamics. ReLU, while widely used, is prone to the dying neuron problem, which has been mitigated by variants such as LeakyReLU, PReLU, and ELU that better handle negative neuron outputs. Recently, self-gated activations like GELU and Swish have emerged as state-of-the-art alternatives, leveraging their smoothness to ensure stable gradient flow and prevent neuron inactivity. In this work, we introduce the Gompertz Linear Unit (GoLU), a novel self-gated activation function defined as GoLU(x) = x , Gompertz(x), where Gompertz(x) = e^{-e^{-x}}. The GoLU activation leverages the asymmetry in the Gompertz function to reduce variance in the latent space more effectively compared to GELU and Swish, while preserving robust gradient flow. Extensive experiments across diverse tasks, including Image Classification, Language Modeling, Semantic Segmentation, Object Detection, Instance Segmentation, and Diffusion, highlight GoLU's superior performance relative to state-of-the-art activation functions, establishing GoLU as a robust alternative to existing activation functions.
AIM 2025 Rip Current Segmentation (RipSeg) Challenge Report
This report presents an overview of the AIM 2025 RipSeg Challenge, a competition designed to advance techniques for automatic rip current segmentation in still images. Rip currents are dangerous, fast-moving flows that pose a major risk to beach safety worldwide, making accurate visual detection an important and underexplored research task. The challenge builds on RipVIS, the largest available rip current dataset, and focuses on single-class instance segmentation, where precise delineation is critical to fully capture the extent of rip currents. The dataset spans diverse locations, rip current types, and camera orientations, providing a realistic and challenging benchmark. In total, 75 participants registered for this first edition, resulting in 5 valid test submissions. Teams were evaluated on a composite score combining F_1, F_2, AP_{50}, and AP_{[50:95]}, ensuring robust and application-relevant rankings. The top-performing methods leveraged deep learning architectures, domain adaptation techniques, pretrained models, and domain generalization strategies to improve performance under diverse conditions. This report outlines the dataset details, competition framework, evaluation metrics, and final results, providing insights into the current state of rip current segmentation. We conclude with a discussion of key challenges, lessons learned from the submissions, and future directions for expanding RipSeg.
IDD-3D: Indian Driving Dataset for 3D Unstructured Road Scenes
Autonomous driving and assistance systems rely on annotated data from traffic and road scenarios to model and learn the various object relations in complex real-world scenarios. Preparation and training of deploy-able deep learning architectures require the models to be suited to different traffic scenarios and adapt to different situations. Currently, existing datasets, while large-scale, lack such diversities and are geographically biased towards mainly developed cities. An unstructured and complex driving layout found in several developing countries such as India poses a challenge to these models due to the sheer degree of variations in the object types, densities, and locations. To facilitate better research toward accommodating such scenarios, we build a new dataset, IDD-3D, which consists of multi-modal data from multiple cameras and LiDAR sensors with 12k annotated driving LiDAR frames across various traffic scenarios. We discuss the need for this dataset through statistical comparisons with existing datasets and highlight benchmarks on standard 3D object detection and tracking tasks in complex layouts. Code and data available at https://github.com/shubham1810/idd3d_kit.git
CanadaFireSat: Toward high-resolution wildfire forecasting with multiple modalities
Canada experienced in 2023 one of the most severe wildfire seasons in recent history, causing damage across ecosystems, destroying communities, and emitting large quantities of CO2. This extreme wildfire season is symptomatic of a climate-change-induced increase in the length and severity of the fire season that affects the boreal ecosystem. Therefore, it is critical to empower wildfire management in boreal communities with better mitigation solutions. Wildfire probability maps represent an important tool for understanding the likelihood of wildfire occurrence and the potential severity of future wildfires. The massive increase in the availability of Earth observation data has enabled the development of deep learning-based wildfire forecasting models, aiming at providing precise wildfire probability maps at different spatial and temporal scales. A main limitation of such methods is their reliance on coarse-resolution environmental drivers and satellite products, leading to wildfire occurrence prediction of reduced resolution, typically around sim 0.1{\deg}. This paper presents a benchmark dataset: CanadaFireSat, and baseline methods for high-resolution: 100 m wildfire forecasting across Canada, leveraging multi-modal data from high-resolution multi-spectral satellite images (Sentinel-2 L1C), mid-resolution satellite products (MODIS), and environmental factors (ERA5 reanalysis data). Our experiments consider two major deep learning architectures. We observe that using multi-modal temporal inputs outperforms single-modal temporal inputs across all metrics, achieving a peak performance of 60.3% in F1 score for the 2023 wildfire season, a season never seen during model training. This demonstrates the potential of multi-modal deep learning models for wildfire forecasting at high-resolution and continental scale.
It's All Connected: A Journey Through Test-Time Memorization, Attentional Bias, Retention, and Online Optimization
Designing efficient and effective architectural backbones has been in the core of research efforts to enhance the capability of foundation models. Inspired by the human cognitive phenomenon of attentional bias-the natural tendency to prioritize certain events or stimuli-we reconceptualize neural architectures, including Transformers, Titans, and modern linear recurrent neural networks as associative memory modules that learn a mapping of keys and values using an internal objective, referred to as attentional bias. Surprisingly, we observed that most existing sequence models leverage either (1) dot-product similarity, or (2) L2 regression objectives as their attentional bias. Going beyond these objectives, we present a set of alternative attentional bias configurations along with their effective approximations to stabilize their training procedure. We then reinterpret forgetting mechanisms in modern deep learning architectures as a form of retention regularization, providing a novel set of forget gates for sequence models. Building upon these insights, we present Miras, a general framework to design deep learning architectures based on four choices of: (i) associative memory architecture, (ii) attentional bias objective, (iii) retention gate, and (iv) memory learning algorithm. We present three novel sequence models-Moneta, Yaad, and Memora-that go beyond the power of existing linear RNNs while maintaining a fast parallelizable training process. Our experiments show different design choices in Miras yield models with varying strengths. For example, certain instances of Miras achieve exceptional performance in special tasks such as language modeling, commonsense reasoning, and recall intensive tasks, even outperforming Transformers and other modern linear recurrent models.
To prune, or not to prune: exploring the efficacy of pruning for model compression
Model pruning seeks to induce sparsity in a deep neural network's various connection matrices, thereby reducing the number of nonzero-valued parameters in the model. Recent reports (Han et al., 2015; Narang et al., 2017) prune deep networks at the cost of only a marginal loss in accuracy and achieve a sizable reduction in model size. This hints at the possibility that the baseline models in these experiments are perhaps severely over-parameterized at the outset and a viable alternative for model compression might be to simply reduce the number of hidden units while maintaining the model's dense connection structure, exposing a similar trade-off in model size and accuracy. We investigate these two distinct paths for model compression within the context of energy-efficient inference in resource-constrained environments and propose a new gradual pruning technique that is simple and straightforward to apply across a variety of models/datasets with minimal tuning and can be seamlessly incorporated within the training process. We compare the accuracy of large, but pruned models (large-sparse) and their smaller, but dense (small-dense) counterparts with identical memory footprint. Across a broad range of neural network architectures (deep CNNs, stacked LSTM, and seq2seq LSTM models), we find large-sparse models to consistently outperform small-dense models and achieve up to 10x reduction in number of non-zero parameters with minimal loss in accuracy.
Expanded Gating Ranges Improve Activation Functions
Activation functions are core components of all deep learning architectures. Currently, the most popular activation functions are smooth ReLU variants like GELU and SiLU. These are self-gated activation functions where the range of the gating function is between zero and one. In this paper, we explore the viability of using arctan as a gating mechanism. A self-gated activation function that uses arctan as its gating function has a monotonically increasing first derivative. To make this activation function competitive, it is necessary to introduce a trainable parameter for every MLP block to expand the range of the gating function beyond zero and one. We find that this technique also improves existing self-gated activation functions. We conduct an empirical evaluation of Expanded ArcTan Linear Unit (xATLU), Expanded GELU (xGELU), and Expanded SiLU (xSiLU) and show that they outperform existing activation functions within a transformer architecture. Additionally, expanded gating ranges show promising results in improving first-order Gated Linear Units (GLU).
Reconstructing 4D Spatial Intelligence: A Survey
Reconstructing 4D spatial intelligence from visual observations has long been a central yet challenging task in computer vision, with broad real-world applications. These range from entertainment domains like movies, where the focus is often on reconstructing fundamental visual elements, to embodied AI, which emphasizes interaction modeling and physical realism. Fueled by rapid advances in 3D representations and deep learning architectures, the field has evolved quickly, outpacing the scope of previous surveys. Additionally, existing surveys rarely offer a comprehensive analysis of the hierarchical structure of 4D scene reconstruction. To address this gap, we present a new perspective that organizes existing methods into five progressive levels of 4D spatial intelligence: (1) Level 1 -- reconstruction of low-level 3D attributes (e.g., depth, pose, and point maps); (2) Level 2 -- reconstruction of 3D scene components (e.g., objects, humans, structures); (3) Level 3 -- reconstruction of 4D dynamic scenes; (4) Level 4 -- modeling of interactions among scene components; and (5) Level 5 -- incorporation of physical laws and constraints. We conclude the survey by discussing the key challenges at each level and highlighting promising directions for advancing toward even richer levels of 4D spatial intelligence. To track ongoing developments, we maintain an up-to-date project page: https://github.com/yukangcao/Awesome-4D-Spatial-Intelligence.
White-Box Transformers via Sparse Rate Reduction: Compression Is All There Is?
In this paper, we contend that a natural objective of representation learning is to compress and transform the distribution of the data, say sets of tokens, towards a low-dimensional Gaussian mixture supported on incoherent subspaces. The goodness of such a representation can be evaluated by a principled measure, called sparse rate reduction, that simultaneously maximizes the intrinsic information gain and extrinsic sparsity of the learned representation. From this perspective, popular deep network architectures, including transformers, can be viewed as realizing iterative schemes to optimize this measure. Particularly, we derive a transformer block from alternating optimization on parts of this objective: the multi-head self-attention operator compresses the representation by implementing an approximate gradient descent step on the coding rate of the features, and the subsequent multi-layer perceptron sparsifies the features. This leads to a family of white-box transformer-like deep network architectures, named CRATE, which are mathematically fully interpretable. We show, by way of a novel connection between denoising and compression, that the inverse to the aforementioned compressive encoding can be realized by the same class of CRATE architectures. Thus, the so-derived white-box architectures are universal to both encoders and decoders. Experiments show that these networks, despite their simplicity, indeed learn to compress and sparsify representations of large-scale real-world image and text datasets, and achieve performance very close to highly engineered transformer-based models: ViT, MAE, DINO, BERT, and GPT2. We believe the proposed computational framework demonstrates great potential in bridging the gap between theory and practice of deep learning, from a unified perspective of data compression. Code is available at: https://ma-lab-berkeley.github.io/CRATE .
The Effects of Image Pre- and Post-Processing, Wavelet Decomposition, and Local Binary Patterns on U-Nets for Skin Lesion Segmentation
Skin cancer is a widespread, global, and potentially deadly disease, which over the last three decades has afflicted more lives in the USA than all other forms of cancer combined. There have been a lot of promising recent works utilizing deep network architectures, such as FCNs, U-Nets, and ResNets, for developing automated skin lesion segmentation. This paper investigates various pre- and post-processing techniques for improving the performance of U-Nets as measured by the Jaccard Index. The dataset provided as part of the "2017 ISBI Challenges on Skin Lesion Analysis Towards Melanoma Detection" was used for this evaluation and the performance of the finalist competitors was the standard for comparison. The pre-processing techniques employed in the proposed system included contrast enhancement, artifact removal, and vignette correction. More advanced image transformations, such as local binary patterns and wavelet decomposition, were also employed to augment the raw grayscale images used as network input features. While the performance of the proposed system fell short of the winners of the challenge, it was determined that using wavelet decomposition as an early transformation step improved the overall performance of the system over pre- and post-processing steps alone.
White-Box Transformers via Sparse Rate Reduction
In this paper, we contend that the objective of representation learning is to compress and transform the distribution of the data, say sets of tokens, towards a mixture of low-dimensional Gaussian distributions supported on incoherent subspaces. The quality of the final representation can be measured by a unified objective function called sparse rate reduction. From this perspective, popular deep networks such as transformers can be naturally viewed as realizing iterative schemes to optimize this objective incrementally. Particularly, we show that the standard transformer block can be derived from alternating optimization on complementary parts of this objective: the multi-head self-attention operator can be viewed as a gradient descent step to compress the token sets by minimizing their lossy coding rate, and the subsequent multi-layer perceptron can be viewed as attempting to sparsify the representation of the tokens. This leads to a family of white-box transformer-like deep network architectures which are mathematically fully interpretable. Despite their simplicity, experiments show that these networks indeed learn to optimize the designed objective: they compress and sparsify representations of large-scale real-world vision datasets such as ImageNet, and achieve performance very close to thoroughly engineered transformers such as ViT. Code is at https://github.com/Ma-Lab-Berkeley/CRATE.
Learnable Fourier Features for Multi-Dimensional Spatial Positional Encoding
Attentional mechanisms are order-invariant. Positional encoding is a crucial component to allow attention-based deep model architectures such as Transformer to address sequences or images where the position of information matters. In this paper, we propose a novel positional encoding method based on learnable Fourier features. Instead of hard-coding each position as a token or a vector, we represent each position, which can be multi-dimensional, as a trainable encoding based on learnable Fourier feature mapping, modulated with a multi-layer perceptron. The representation is particularly advantageous for a spatial multi-dimensional position, e.g., pixel positions on an image, where L_2 distances or more complex positional relationships need to be captured. Our experiments based on several public benchmark tasks show that our learnable Fourier feature representation for multi-dimensional positional encoding outperforms existing methods by both improving the accuracy and allowing faster convergence.
Hybrid Quantum-Classical Model for Image Classification
This study presents a systematic comparison between hybrid quantum-classical neural networks and purely classical models across three benchmark datasets (MNIST, CIFAR100, and STL10) to evaluate their performance, efficiency, and robustness. The hybrid models integrate parameterized quantum circuits with classical deep learning architectures, while the classical counterparts use conventional convolutional neural networks (CNNs). Experiments were conducted over 50 training epochs for each dataset, with evaluations on validation accuracy, test accuracy, training time, computational resource usage, and adversarial robustness (tested with epsilon=0.1 perturbations).Key findings demonstrate that hybrid models consistently outperform classical models in final accuracy, achieving {99.38\% (MNIST), 41.69\% (CIFAR100), and 74.05\% (STL10) validation accuracy, compared to classical benchmarks of 98.21\%, 32.25\%, and 63.76\%, respectively. Notably, the hybrid advantage scales with dataset complexity, showing the most significant gains on CIFAR100 (+9.44\%) and STL10 (+10.29\%). Hybrid models also train 5--12times faster (e.g., 21.23s vs. 108.44s per epoch on MNIST) and use 6--32\% fewer parameters} while maintaining superior generalization to unseen test data.Adversarial robustness tests reveal that hybrid models are significantly more resilient on simpler datasets (e.g., 45.27\% robust accuracy on MNIST vs. 10.80\% for classical) but show comparable fragility on complex datasets like CIFAR100 (sim1\% robustness for both). Resource efficiency analyses indicate that hybrid models consume less memory (4--5GB vs. 5--6GB for classical) and lower CPU utilization (9.5\% vs. 23.2\% on average).These results suggest that hybrid quantum-classical architectures offer compelling advantages in accuracy, training efficiency, and parameter scalability, particularly for complex vision tasks.
Protap: A Benchmark for Protein Modeling on Realistic Downstream Applications
Recently, extensive deep learning architectures and pretraining strategies have been explored to support downstream protein applications. Additionally, domain-specific models incorporating biological knowledge have been developed to enhance performance in specialized tasks. In this work, we introduce Protap, a comprehensive benchmark that systematically compares backbone architectures, pretraining strategies, and domain-specific models across diverse and realistic downstream protein applications. Specifically, Protap covers five applications: three general tasks and two novel specialized tasks, i.e., enzyme-catalyzed protein cleavage site prediction and targeted protein degradation, which are industrially relevant yet missing from existing benchmarks. For each application, Protap compares various domain-specific models and general architectures under multiple pretraining settings. Our empirical studies imply that: (i) Though large-scale pretraining encoders achieve great results, they often underperform supervised encoders trained on small downstream training sets. (ii) Incorporating structural information during downstream fine-tuning can match or even outperform protein language models pretrained on large-scale sequence corpora. (iii) Domain-specific biological priors can enhance performance on specialized downstream tasks. Code and datasets are publicly available at https://github.com/Trust-App-AI-Lab/protap.
T-TAME: Trainable Attention Mechanism for Explaining Convolutional Networks and Vision Transformers
The development and adoption of Vision Transformers and other deep-learning architectures for image classification tasks has been rapid. However, the "black box" nature of neural networks is a barrier to adoption in applications where explainability is essential. While some techniques for generating explanations have been proposed, primarily for Convolutional Neural Networks, adapting such techniques to the new paradigm of Vision Transformers is non-trivial. This paper presents T-TAME, Transformer-compatible Trainable Attention Mechanism for Explanations, a general methodology for explaining deep neural networks used in image classification tasks. The proposed architecture and training technique can be easily applied to any convolutional or Vision Transformer-like neural network, using a streamlined training approach. After training, explanation maps can be computed in a single forward pass; these explanation maps are comparable to or outperform the outputs of computationally expensive perturbation-based explainability techniques, achieving SOTA performance. We apply T-TAME to three popular deep learning classifier architectures, VGG-16, ResNet-50, and ViT-B-16, trained on the ImageNet dataset, and we demonstrate improvements over existing state-of-the-art explainability methods. A detailed analysis of the results and an ablation study provide insights into how the T-TAME design choices affect the quality of the generated explanation maps.
Person Re-Identification without Identification via Event Anonymization
Wide-scale use of visual surveillance in public spaces puts individual privacy at stake while increasing resource consumption (energy, bandwidth, and computation). Neuromorphic vision sensors (event-cameras) have been recently considered a valid solution to the privacy issue because they do not capture detailed RGB visual information of the subjects in the scene. However, recent deep learning architectures have been able to reconstruct images from event cameras with high fidelity, reintroducing a potential threat to privacy for event-based vision applications. In this paper, we aim to anonymize event-streams to protect the identity of human subjects against such image reconstruction attacks. To achieve this, we propose an end-to-end network architecture jointly optimized for the twofold objective of preserving privacy and performing a downstream task such as person ReId. Our network learns to scramble events, enforcing the degradation of images recovered from the privacy attacker. In this work, we also bring to the community the first ever event-based person ReId dataset gathered to evaluate the performance of our approach. We validate our approach with extensive experiments and report results on the synthetic event data simulated from the publicly available SoftBio dataset and our proposed Event-ReId dataset.
Data Representations' Study of Latent Image Manifolds
Deep neural networks have been demonstrated to achieve phenomenal success in many domains, and yet their inner mechanisms are not well understood. In this paper, we investigate the curvature of image manifolds, i.e., the manifold deviation from being flat in its principal directions. We find that state-of-the-art trained convolutional neural networks for image classification have a characteristic curvature profile along layers: an initial steep increase, followed by a long phase of a plateau, and followed by another increase. In contrast, this behavior does not appear in untrained networks in which the curvature flattens. We also show that the curvature gap between the last two layers has a strong correlation with the generalization capability of the network. Moreover, we find that the intrinsic dimension of latent codes is not necessarily indicative of curvature. Finally, we observe that common regularization methods such as mixup yield flatter representations when compared to other methods. Our experiments show consistent results over a variety of deep learning architectures and multiple data sets. Our code is publicly available at https://github.com/azencot-group/CRLM
Dilated Neighborhood Attention Transformer
Transformers are quickly becoming one of the most heavily applied deep learning architectures across modalities, domains, and tasks. In vision, on top of ongoing efforts into plain transformers, hierarchical transformers have also gained significant attention, thanks to their performance and easy integration into existing frameworks. These models typically employ localized attention mechanisms, such as the sliding-window Neighborhood Attention (NA) or Swin Transformer's Shifted Window Self Attention. While effective at reducing self attention's quadratic complexity, local attention weakens two of the most desirable properties of self attention: long range inter-dependency modeling, and global receptive field. In this paper, we introduce Dilated Neighborhood Attention (DiNA), a natural, flexible and efficient extension to NA that can capture more global context and expand receptive fields exponentially at no additional cost. NA's local attention and DiNA's sparse global attention complement each other, and therefore we introduce Dilated Neighborhood Attention Transformer (DiNAT), a new hierarchical vision transformer built upon both. DiNAT variants enjoy significant improvements over strong baselines such as NAT, Swin, and ConvNeXt. Our large model is faster and ahead of its Swin counterpart by 1.6% box AP in COCO object detection, 1.4% mask AP in COCO instance segmentation, and 1.4% mIoU in ADE20K semantic segmentation. Paired with new frameworks, our large variant is the new state of the art panoptic segmentation model on COCO (58.5 PQ) and ADE20K (49.4 PQ), and instance segmentation model on Cityscapes (45.1 AP) and ADE20K (35.4 AP) (no extra data). It also matches the state of the art specialized semantic segmentation models on ADE20K (58.1 mIoU), and ranks second on Cityscapes (84.5 mIoU) (no extra data).
Hopfield Networks is All You Need
We introduce a modern Hopfield network with continuous states and a corresponding update rule. The new Hopfield network can store exponentially (with the dimension of the associative space) many patterns, retrieves the pattern with one update, and has exponentially small retrieval errors. It has three types of energy minima (fixed points of the update): (1) global fixed point averaging over all patterns, (2) metastable states averaging over a subset of patterns, and (3) fixed points which store a single pattern. The new update rule is equivalent to the attention mechanism used in transformers. This equivalence enables a characterization of the heads of transformer models. These heads perform in the first layers preferably global averaging and in higher layers partial averaging via metastable states. The new modern Hopfield network can be integrated into deep learning architectures as layers to allow the storage of and access to raw input data, intermediate results, or learned prototypes. These Hopfield layers enable new ways of deep learning, beyond fully-connected, convolutional, or recurrent networks, and provide pooling, memory, association, and attention mechanisms. We demonstrate the broad applicability of the Hopfield layers across various domains. Hopfield layers improved state-of-the-art on three out of four considered multiple instance learning problems as well as on immune repertoire classification with several hundreds of thousands of instances. On the UCI benchmark collections of small classification tasks, where deep learning methods typically struggle, Hopfield layers yielded a new state-of-the-art when compared to different machine learning methods. Finally, Hopfield layers achieved state-of-the-art on two drug design datasets. The implementation is available at: https://github.com/ml-jku/hopfield-layers
To Trust or Not To Trust Prediction Scores for Membership Inference Attacks
Membership inference attacks (MIAs) aim to determine whether a specific sample was used to train a predictive model. Knowing this may indeed lead to a privacy breach. Most MIAs, however, make use of the model's prediction scores - the probability of each output given some input - following the intuition that the trained model tends to behave differently on its training data. We argue that this is a fallacy for many modern deep network architectures. Consequently, MIAs will miserably fail since overconfidence leads to high false-positive rates not only on known domains but also on out-of-distribution data and implicitly acts as a defense against MIAs. Specifically, using generative adversarial networks, we are able to produce a potentially infinite number of samples falsely classified as part of the training data. In other words, the threat of MIAs is overestimated, and less information is leaked than previously assumed. Moreover, there is actually a trade-off between the overconfidence of models and their susceptibility to MIAs: the more classifiers know when they do not know, making low confidence predictions, the more they reveal the training data.
DAG-aware Transformer for Causal Effect Estimation
Causal inference is a critical task across fields such as healthcare, economics, and the social sciences. While recent advances in machine learning, especially those based on the deep-learning architectures, have shown potential in estimating causal effects, existing approaches often fall short in handling complex causal structures and lack adaptability across various causal scenarios. In this paper, we present a novel transformer-based method for causal inference that overcomes these challenges. The core innovation of our model lies in its integration of causal Directed Acyclic Graphs (DAGs) directly into the attention mechanism, enabling it to accurately model the underlying causal structure. This allows for flexible estimation of both average treatment effects (ATE) and conditional average treatment effects (CATE). Extensive experiments on both synthetic and real-world datasets demonstrate that our approach surpasses existing methods in estimating causal effects across a wide range of scenarios. The flexibility and robustness of our model make it a valuable tool for researchers and practitioners tackling complex causal inference problems.
DermaCon-IN: A Multi-concept Annotated Dermatological Image Dataset of Indian Skin Disorders for Clinical AI Research
Artificial intelligence is poised to augment dermatological care by enabling scalable image-based diagnostics. Yet, the development of robust and equitable models remains hindered by datasets that fail to capture the clinical and demographic complexity of real-world practice. This complexity stems from region-specific disease distributions, wide variation in skin tones, and the underrepresentation of outpatient scenarios from non-Western populations. We introduce DermaCon-IN, a prospectively curated dermatology dataset comprising over 5,450 clinical images from approximately 3,000 patients across outpatient clinics in South India. Each image is annotated by board-certified dermatologists with over 240 distinct diagnoses, structured under a hierarchical, etiology-based taxonomy adapted from Rook's classification. The dataset captures a wide spectrum of dermatologic conditions and tonal variation commonly seen in Indian outpatient care. We benchmark a range of architectures including convolutional models (ResNet, DenseNet, EfficientNet), transformer-based models (ViT, MaxViT, Swin), and Concept Bottleneck Models to establish baseline performance and explore how anatomical and concept-level cues may be integrated. These results are intended to guide future efforts toward interpretable and clinically realistic models. DermaCon-IN provides a scalable and representative foundation for advancing dermatology AI in real-world settings.
NeuralArTS: Structuring Neural Architecture Search with Type Theory
Neural Architecture Search (NAS) algorithms automate the task of finding optimal deep learning architectures given an initial search space of possible operations. Developing these search spaces is usually a manual affair with pre-optimized search spaces being more efficient, rather than searching from scratch. In this paper we present a new framework called Neural Architecture Type System (NeuralArTS) that categorizes the infinite set of network operations in a structured type system. We further demonstrate how NeuralArTS can be applied to convolutional layers and propose several future directions.
Graph-Based Classification of Omnidirectional Images
Omnidirectional cameras are widely used in such areas as robotics and virtual reality as they provide a wide field of view. Their images are often processed with classical methods, which might unfortunately lead to non-optimal solutions as these methods are designed for planar images that have different geometrical properties than omnidirectional ones. In this paper we study image classification task by taking into account the specific geometry of omnidirectional cameras with graph-based representations. In particular, we extend deep learning architectures to data on graphs; we propose a principled way of graph construction such that convolutional filters respond similarly for the same pattern on different positions of the image regardless of lens distortions. Our experiments show that the proposed method outperforms current techniques for the omnidirectional image classification problem.
An Overview of Large Language Models for Statisticians
Large Language Models (LLMs) have emerged as transformative tools in artificial intelligence (AI), exhibiting remarkable capabilities across diverse tasks such as text generation, reasoning, and decision-making. While their success has primarily been driven by advances in computational power and deep learning architectures, emerging problems -- in areas such as uncertainty quantification, decision-making, causal inference, and distribution shift -- require a deeper engagement with the field of statistics. This paper explores potential areas where statisticians can make important contributions to the development of LLMs, particularly those that aim to engender trustworthiness and transparency for human users. Thus, we focus on issues such as uncertainty quantification, interpretability, fairness, privacy, watermarking and model adaptation. We also consider possible roles for LLMs in statistical analysis. By bridging AI and statistics, we aim to foster a deeper collaboration that advances both the theoretical foundations and practical applications of LLMs, ultimately shaping their role in addressing complex societal challenges.
IISE PG&E Energy Analytics Challenge 2025: Hourly-Binned Regression Models Beat Transformers in Load Forecasting
Accurate electricity load forecasting is essential for grid stability, resource optimization, and renewable energy integration. While transformer-based deep learning models like TimeGPT have gained traction in time-series forecasting, their effectiveness in long-term electricity load prediction remains uncertain. This study evaluates forecasting models ranging from classical regression techniques to advanced deep learning architectures using data from the ESD 2025 competition. The dataset includes two years of historical electricity load data, alongside temperature and global horizontal irradiance (GHI) across five sites, with a one-day-ahead forecasting horizon. Since actual test set load values remain undisclosed, leveraging predicted values would accumulate errors, making this a long-term forecasting challenge. We employ (i) Principal Component Analysis (PCA) for dimensionality reduction and (ii) frame the task as a regression problem, using temperature and GHI as covariates to predict load for each hour, (iii) ultimately stacking 24 models to generate yearly forecasts. Our results reveal that deep learning models, including TimeGPT, fail to consistently outperform simpler statistical and machine learning approaches due to the limited availability of training data and exogenous variables. In contrast, XGBoost, with minimal feature engineering, delivers the lowest error rates across all test cases while maintaining computational efficiency. This highlights the limitations of deep learning in long-term electricity forecasting and reinforces the importance of model selection based on dataset characteristics rather than complexity. Our study provides insights into practical forecasting applications and contributes to the ongoing discussion on the trade-offs between traditional and modern forecasting methods.
LiPCoT: Linear Predictive Coding based Tokenizer for Self-supervised Learning of Time Series Data via Language Models
Language models have achieved remarkable success in various natural language processing tasks. However, their application to time series data, a crucial component in many domains, remains limited. This paper proposes LiPCoT (Linear Predictive Coding based Tokenizer for time series), a novel tokenizer that encodes time series data into a sequence of tokens, enabling self-supervised learning of time series using existing Language model architectures such as BERT. Unlike traditional time series tokenizers that rely heavily on CNN encoder for time series feature generation, LiPCoT employs stochastic modeling through linear predictive coding to create a latent space for time series providing a compact yet rich representation of the inherent stochastic nature of the data. Furthermore, LiPCoT is computationally efficient and can effectively handle time series data with varying sampling rates and lengths, overcoming common limitations of existing time series tokenizers. In this proof-of-concept work, we present the effectiveness of LiPCoT in classifying Parkinson's disease (PD) using an EEG dataset from 46 participants. In particular, we utilize LiPCoT to encode EEG data into a small vocabulary of tokens and then use BERT for self-supervised learning and the downstream task of PD classification. We benchmark our approach against several state-of-the-art CNN-based deep learning architectures for PD detection. Our results reveal that BERT models utilizing self-supervised learning outperformed the best-performing existing method by 7.1% in precision, 2.3% in recall, 5.5% in accuracy, 4% in AUC, and 5% in F1-score highlighting the potential for self-supervised learning even on small datasets. Our work will inform future foundational models for time series, particularly for self-supervised learning.
DeeperImpact: Optimizing Sparse Learned Index Structures
A lot of recent work has focused on sparse learned indexes that use deep neural architectures to significantly improve retrieval quality while keeping the efficiency benefits of the inverted index. While such sparse learned structures achieve effectiveness far beyond those of traditional inverted index-based rankers, there is still a gap in effectiveness to the best dense retrievers, or even to sparse methods that leverage more expensive optimizations such as query expansion and query term weighting. We focus on narrowing this gap by revisiting and optimizing DeepImpact, a sparse retrieval approach that uses DocT5Query for document expansion followed by a BERT language model to learn impact scores for document terms. We first reinvestigate the expansion process and find that the recently proposed Doc2Query query filtration does not enhance retrieval quality when used with DeepImpact. Instead, substituting T5 with a fine-tuned Llama 2 model for query prediction results in a considerable improvement. Subsequently, we study training strategies that have proven effective for other models, in particular the use of hard negatives, distillation, and pre-trained CoCondenser model initialization. Our results significantly narrow the effectiveness gap with the most effective versions of SPLADE.
From Generalized Laughter to Personalized Chuckles: Unleashing the Power of Data Fusion in Subjective Humor Detection
The vast area of subjectivity in Natural Language Processing (NLP) poses a challenge to the solutions typically used in generalized tasks. As exploration in the scope of generalized NLP is much more advanced, it implies the tremendous gap that is still to be addressed amongst all feasible tasks where an opinion, taste, or feelings are inherent, thus creating a need for a solution, where a data fusion could take place. We have chosen the task of funniness, as it heavily relies on the sense of humor, which is fundamentally subjective. Our experiments across five personalized and four generalized datasets involving several personalized deep neural architectures have shown that the task of humor detection greatly benefits from the inclusion of personalized data in the training process. We tested five scenarios of training data fusion that focused on either generalized (majority voting) or personalized approaches to humor detection. The best results were obtained for the setup, in which all available personalized datasets were joined to train the personalized reasoning model. It boosted the prediction performance by up to approximately 35% of the macro F1 score. Such a significant gain was observed for all five personalized test sets. At the same time, the impact of the model's architecture was much less than the personalization itself. It seems that concatenating personalized datasets, even with the cost of normalizing the range of annotations across all datasets, if combined with the personalized models, results in an enormous increase in the performance of humor detection.
BaDLAD: A Large Multi-Domain Bengali Document Layout Analysis Dataset
While strides have been made in deep learning based Bengali Optical Character Recognition (OCR) in the past decade, the absence of large Document Layout Analysis (DLA) datasets has hindered the application of OCR in document transcription, e.g., transcribing historical documents and newspapers. Moreover, rule-based DLA systems that are currently being employed in practice are not robust to domain variations and out-of-distribution layouts. To this end, we present the first multidomain large Bengali Document Layout Analysis Dataset: BaDLAD. This dataset contains 33,695 human annotated document samples from six domains - i) books and magazines, ii) public domain govt. documents, iii) liberation war documents, iv) newspapers, v) historical newspapers, and vi) property deeds, with 710K polygon annotations for four unit types: text-box, paragraph, image, and table. Through preliminary experiments benchmarking the performance of existing state-of-the-art deep learning architectures for English DLA, we demonstrate the efficacy of our dataset in training deep learning based Bengali document digitization models.
Vision Transformers and YoloV5 based Driver Drowsiness Detection Framework
Human drivers have distinct driving techniques, knowledge, and sentiments due to unique driving traits. Driver drowsiness has been a serious issue endangering road safety; therefore, it is essential to design an effective drowsiness detection algorithm to bypass road accidents. Miscellaneous research efforts have been approached the problem of detecting anomalous human driver behaviour to examine the frontal face of the driver and automobile dynamics via computer vision techniques. Still, the conventional methods cannot capture complicated driver behaviour features. However, with the origin of deep learning architectures, a substantial amount of research has also been executed to analyze and recognize driver's drowsiness using neural network algorithms. This paper introduces a novel framework based on vision transformers and YoloV5 architectures for driver drowsiness recognition. A custom YoloV5 pre-trained architecture is proposed for face extraction with the aim of extracting Region of Interest (ROI). Owing to the limitations of previous architectures, this paper introduces vision transformers for binary image classification which is trained and validated on a public dataset UTA-RLDD. The model had achieved 96.2\% and 97.4\% as it's training and validation accuracies respectively. For the further evaluation, proposed framework is tested on a custom dataset of 39 participants in various light circumstances and achieved 95.5\% accuracy. The conducted experimentations revealed the significant potential of our framework for practical applications in smart transportation systems.
Towards Robust and Truly Large-Scale Audio-Sheet Music Retrieval
A range of applications of multi-modal music information retrieval is centred around the problem of connecting large collections of sheet music (images) to corresponding audio recordings, that is, identifying pairs of audio and score excerpts that refer to the same musical content. One of the typical and most recent approaches to this task employs cross-modal deep learning architectures to learn joint embedding spaces that link the two distinct modalities - audio and sheet music images. While there has been steady improvement on this front over the past years, a number of open problems still prevent large-scale employment of this methodology. In this article we attempt to provide an insightful examination of the current developments on audio-sheet music retrieval via deep learning methods. We first identify a set of main challenges on the road towards robust and large-scale cross-modal music retrieval in real scenarios. We then highlight the steps we have taken so far to address some of these challenges, documenting step-by-step improvement along several dimensions. We conclude by analysing the remaining challenges and present ideas for solving these, in order to pave the way to a unified and robust methodology for cross-modal music retrieval.
Kolmogorov-Arnold Attention: Is Learnable Attention Better For Vision Transformers?
Kolmogorov-Arnold networks (KANs) are a remarkable innovation consisting of learnable activation functions with the potential to capture more complex relationships from data. Although KANs are useful in finding symbolic representations and continual learning of one-dimensional functions, their effectiveness in diverse machine learning (ML) tasks, such as vision, remains questionable. Presently, KANs are deployed by replacing multilayer perceptrons (MLPs) in deep network architectures, including advanced architectures such as vision Transformers (ViTs). In this paper, we are the first to design a general learnable Kolmogorov-Arnold Attention (KArAt) for vanilla ViTs that can operate on any choice of basis. However, the computing and memory costs of training them motivated us to propose a more modular version, and we designed particular learnable attention, called Fourier-KArAt. Fourier-KArAt and its variants either outperform their ViT counterparts or show comparable performance on CIFAR-10, CIFAR-100, and ImageNet-1K datasets. We dissect these architectures' performance and generalization capacity by analyzing their loss landscapes, weight distributions, optimizer path, attention visualization, and spectral behavior, and contrast them with vanilla ViTs. The goal of this paper is not to produce parameter- and compute-efficient attention, but to encourage the community to explore KANs in conjunction with more advanced architectures that require a careful understanding of learnable activations. Our open-source code and implementation details are available on: https://subhajitmaity.me/KArAt
Categorical semiotics: Foundations for Knowledge Integration
The integration of knowledge extracted from diverse models, whether described by domain experts or generated by machine learning algorithms, has historically been challenged by the absence of a suitable framework for specifying and integrating structures, learning processes, data transformations, and data models or rules. In this work, we extend algebraic specification methods to address these challenges within such a framework. In our work, we tackle the challenging task of developing a comprehensive framework for defining and analyzing deep learning architectures. We believe that previous efforts have fallen short by failing to establish a clear connection between the constraints a model must adhere to and its actual implementation. Our methodology employs graphical structures that resemble Ehresmann's sketches, interpreted within a universe of fuzzy sets. This approach offers a unified theory that elegantly encompasses both deterministic and non-deterministic neural network designs. Furthermore, we highlight how this theory naturally incorporates fundamental concepts from computer science and automata theory. Our extended algebraic specification framework, grounded in graphical structures akin to Ehresmann's sketches, offers a promising solution for integrating knowledge across disparate models and domains. By bridging the gap between domain-specific expertise and machine-generated insights, we pave the way for more comprehensive, collaborative, and effective approaches to knowledge integration and modeling.
IDPL-PFOD2: A New Large-Scale Dataset for Printed Farsi Optical Character Recognition
Optical Character Recognition is a technique that converts document images into searchable and editable text, making it a valuable tool for processing scanned documents. While the Farsi language stands as a prominent and official language in Asia, efforts to develop efficient methods for recognizing Farsi printed text have been relatively limited. This is primarily attributed to the languages distinctive features, such as cursive form, the resemblance between certain alphabet characters, and the presence of numerous diacritics and dot placement. On the other hand, given the substantial training sample requirements of deep-based architectures for effective performance, the development of such datasets holds paramount significance. In light of these concerns, this paper aims to present a novel large-scale dataset, IDPL-PFOD2, tailored for Farsi printed text recognition. The dataset comprises 2003541 images featuring a wide variety of fonts, styles, and sizes. This dataset is an extension of the previously introduced IDPL-PFOD dataset, offering a substantial increase in both volume and diversity. Furthermore, the datasets effectiveness is assessed through the utilization of both CRNN-based and Vision Transformer architectures. The CRNN-based model achieves a baseline accuracy rate of 78.49% and a normalized edit distance of 97.72%, while the Vision Transformer architecture attains an accuracy of 81.32% and a normalized edit distance of 98.74%.
Statistical Perspective of Top-K Sparse Softmax Gating Mixture of Experts
Top-K sparse softmax gating mixture of experts has been widely used for scaling up massive deep-learning architectures without increasing the computational cost. Despite its popularity in real-world applications, the theoretical understanding of that gating function has remained an open problem. The main challenge comes from the structure of the top-K sparse softmax gating function, which partitions the input space into multiple regions with distinct behaviors. By focusing on a Gaussian mixture of experts, we establish theoretical results on the effects of the top-K sparse softmax gating function on both density and parameter estimations. Our results hinge upon defining novel loss functions among parameters to capture different behaviors of the input regions. When the true number of experts k_{ast} is known, we demonstrate that the convergence rates of density and parameter estimations are both parametric on the sample size. However, when k_{ast} becomes unknown and the true model is over-specified by a Gaussian mixture of k experts where k > k_{ast}, our findings suggest that the number of experts selected from the top-K sparse softmax gating function must exceed the total cardinality of a certain number of Voronoi cells associated with the true parameters to guarantee the convergence of the density estimation. Moreover, while the density estimation rate remains parametric under this setting, the parameter estimation rates become substantially slow due to an intrinsic interaction between the softmax gating and expert functions.
Text Detection and Recognition in the Wild: A Review
Detection and recognition of text in natural images are two main problems in the field of computer vision that have a wide variety of applications in analysis of sports videos, autonomous driving, industrial automation, to name a few. They face common challenging problems that are factors in how text is represented and affected by several environmental conditions. The current state-of-the-art scene text detection and/or recognition methods have exploited the witnessed advancement in deep learning architectures and reported a superior accuracy on benchmark datasets when tackling multi-resolution and multi-oriented text. However, there are still several remaining challenges affecting text in the wild images that cause existing methods to underperform due to there models are not able to generalize to unseen data and the insufficient labeled data. Thus, unlike previous surveys in this field, the objectives of this survey are as follows: first, offering the reader not only a review on the recent advancement in scene text detection and recognition, but also presenting the results of conducting extensive experiments using a unified evaluation framework that assesses pre-trained models of the selected methods on challenging cases, and applies the same evaluation criteria on these techniques. Second, identifying several existing challenges for detecting or recognizing text in the wild images, namely, in-plane-rotation, multi-oriented and multi-resolution text, perspective distortion, illumination reflection, partial occlusion, complex fonts, and special characters. Finally, the paper also presents insight into the potential research directions in this field to address some of the mentioned challenges that are still encountering scene text detection and recognition techniques.
EPT Benchmark: Evaluation of Persian Trustworthiness in Large Language Models
Large Language Models (LLMs), trained on extensive datasets using advanced deep learning architectures, have demonstrated remarkable performance across a wide range of language tasks, becoming a cornerstone of modern AI technologies. However, ensuring their trustworthiness remains a critical challenge, as reliability is essential not only for accurate performance but also for upholding ethical, cultural, and social values. Careful alignment of training data and culturally grounded evaluation criteria are vital for developing responsible AI systems. In this study, we introduce the EPT (Evaluation of Persian Trustworthiness) metric, a culturally informed benchmark specifically designed to assess the trustworthiness of LLMs across six key aspects: truthfulness, safety, fairness, robustness, privacy, and ethical alignment. We curated a labeled dataset and evaluated the performance of several leading models - including ChatGPT, Claude, DeepSeek, Gemini, Grok, LLaMA, Mistral, and Qwen - using both automated LLM-based and human assessments. Our results reveal significant deficiencies in the safety dimension, underscoring the urgent need for focused attention on this critical aspect of model behavior. Furthermore, our findings offer valuable insights into the alignment of these models with Persian ethical-cultural values and highlight critical gaps and opportunities for advancing trustworthy and culturally responsible AI. The dataset is publicly available at: https://github.com/Rezamirbagheri110/EPT-Benchmark.
A Change Detection Reality Check
In recent years, there has been an explosion of proposed change detection deep learning architectures in the remote sensing literature. These approaches claim to offer state-of the-art performance on different standard benchmark datasets. However, has the field truly made significant progress? In this paper we perform experiments which conclude a simple U-Net segmentation baseline without training tricks or complicated architectural changes is still a top performer for the task of change detection.
Nash Learning from Human Feedback
Reinforcement learning from human feedback (RLHF) has emerged as the main paradigm for aligning large language models (LLMs) with human preferences. Typically, RLHF involves the initial step of learning a reward model from human feedback, often expressed as preferences between pairs of text generations produced by a pre-trained LLM. Subsequently, the LLM's policy is fine-tuned by optimizing it to maximize the reward model through a reinforcement learning algorithm. However, an inherent limitation of current reward models is their inability to fully represent the richness of human preferences and their dependency on the sampling distribution. In this study, we introduce an alternative pipeline for the fine-tuning of LLMs using pairwise human feedback. Our approach entails the initial learning of a preference model, which is conditioned on two inputs given a prompt, followed by the pursuit of a policy that consistently generates responses preferred over those generated by any competing policy, thus defining the Nash equilibrium of this preference model. We term this approach Nash learning from human feedback (NLHF). In the context of a tabular policy representation, we present a novel algorithmic solution, Nash-MD, founded on the principles of mirror descent. This algorithm produces a sequence of policies, with the last iteration converging to the regularized Nash equilibrium. Additionally, we explore parametric representations of policies and introduce gradient descent algorithms for deep-learning architectures. To demonstrate the effectiveness of our approach, we present experimental results involving the fine-tuning of a LLM for a text summarization task. We believe NLHF offers a compelling avenue for preference learning and policy optimization with the potential of advancing the field of aligning LLMs with human preferences.
Cueless EEG imagined speech for subject identification: dataset and benchmarks
Electroencephalogram (EEG) signals have emerged as a promising modality for biometric identification. While previous studies have explored the use of imagined speech with semantically meaningful words for subject identification, most have relied on additional visual or auditory cues. In this study, we introduce a cueless EEG-based imagined speech paradigm, where subjects imagine the pronunciation of semantically meaningful words without any external cues. This innovative approach addresses the limitations of prior methods by requiring subjects to select and imagine words from a predefined list naturally. The dataset comprises over 4,350 trials from 11 subjects across five sessions. We assess a variety of classification methods, including traditional machine learning techniques such as Support Vector Machines (SVM) and XGBoost, as well as time-series foundation models and deep learning architectures specifically designed for EEG classification, such as EEG Conformer and Shallow ConvNet. A session-based hold-out validation strategy was employed to ensure reliable evaluation and prevent data leakage. Our results demonstrate outstanding classification accuracy, reaching 97.93%. These findings highlight the potential of cueless EEG paradigms for secure and reliable subject identification in real-world applications, such as brain-computer interfaces (BCIs).
Optimal Input Gain: All You Need to Supercharge a Feed-Forward Neural Network
Linear transformation of the inputs alters the training performance of feed-forward networks that are otherwise equivalent. However, most linear transforms are viewed as a pre-processing operation separate from the actual training. Starting from equivalent networks, it is shown that pre-processing inputs using linear transformation are equivalent to multiplying the negative gradient matrix with an autocorrelation matrix per training iteration. Second order method is proposed to find the autocorrelation matrix that maximizes learning in a given iteration. When the autocorrelation matrix is diagonal, the method optimizes input gains. This optimal input gain (OIG) approach is used to improve two first-order two-stage training algorithms, namely back-propagation (BP) and hidden weight optimization (HWO), which alternately update the input weights and solve linear equations for output weights. Results show that the proposed OIG approach greatly enhances the performance of the first-order algorithms, often allowing them to rival the popular Levenberg-Marquardt approach with far less computation. It is shown that HWO is equivalent to BP with Whitening transformation applied to the inputs. HWO effectively combines Whitening transformation with learning. Thus, OIG improved HWO could be a significant building block to more complex deep learning architectures.
Mesh-Informed Neural Operator : A Transformer Generative Approach
Generative models in function spaces, situated at the intersection of generative modeling and operator learning, are attracting increasing attention due to their immense potential in diverse scientific and engineering applications. While functional generative models are theoretically domain- and discretization-agnostic, current implementations heavily rely on the Fourier Neural Operator (FNO), limiting their applicability to regular grids and rectangular domains. To overcome these critical limitations, we introduce the Mesh-Informed Neural Operator (MINO). By leveraging graph neural operators and cross-attention mechanisms, MINO offers a principled, domain- and discretization-agnostic backbone for generative modeling in function spaces. This advancement significantly expands the scope of such models to more diverse applications in generative, inverse, and regression tasks. Furthermore, MINO provides a unified perspective on integrating neural operators with general advanced deep learning architectures. Finally, we introduce a suite of standardized evaluation metrics that enable objective comparison of functional generative models, addressing another critical gap in the field.
iCaRL: Incremental Classifier and Representation Learning
A major open problem on the road to artificial intelligence is the development of incrementally learning systems that learn about more and more concepts over time from a stream of data. In this work, we introduce a new training strategy, iCaRL, that allows learning in such a class-incremental way: only the training data for a small number of classes has to be present at the same time and new classes can be added progressively. iCaRL learns strong classifiers and a data representation simultaneously. This distinguishes it from earlier works that were fundamentally limited to fixed data representations and therefore incompatible with deep learning architectures. We show by experiments on CIFAR-100 and ImageNet ILSVRC 2012 data that iCaRL can learn many classes incrementally over a long period of time where other strategies quickly fail.
All you need is feedback: Communication with block attention feedback codes
Deep learning based channel code designs have recently gained interest as an alternative to conventional coding algorithms, particularly for channels for which existing codes do not provide effective solutions. Communication over a feedback channel is one such problem, for which promising results have recently been obtained by employing various deep learning architectures. In this paper, we introduce a novel learning-aided code design for feedback channels, called generalized block attention feedback (GBAF) codes, which i) employs a modular architecture that can be implemented using different neural network architectures; ii) provides order-of-magnitude improvements in the probability of error compared to existing designs; and iii) can transmit at desired code rates.
TabReD: A Benchmark of Tabular Machine Learning in-the-Wild
Benchmarks that closely reflect downstream application scenarios are essential for the streamlined adoption of new research in tabular machine learning (ML). In this work, we examine existing tabular benchmarks and find two common characteristics of industry-grade tabular data that are underrepresented in the datasets available to the academic community. First, tabular data often changes over time in real-world deployment scenarios. This impacts model performance and requires time-based train and test splits for correct model evaluation. Yet, existing academic tabular datasets often lack timestamp metadata to enable such evaluation. Second, a considerable portion of datasets in production settings stem from extensive data acquisition and feature engineering pipelines. For each specific dataset, this can have a different impact on the absolute and relative number of predictive, uninformative, and correlated features, which in turn can affect model selection. To fill the aforementioned gaps in academic benchmarks, we introduce TabReD -- a collection of eight industry-grade tabular datasets covering a wide range of domains from finance to food delivery services. We assess a large number of tabular ML models in the feature-rich, temporally-evolving data setting facilitated by TabReD. We demonstrate that evaluation on time-based data splits leads to different methods ranking, compared to evaluation on random splits more common in academic benchmarks. Furthermore, on the TabReD datasets, MLP-like architectures and GBDT show the best results, while more sophisticated DL models are yet to prove their effectiveness.
VidLA: Video-Language Alignment at Scale
In this paper, we propose VidLA, an approach for video-language alignment at scale. There are two major limitations of previous video-language alignment approaches. First, they do not capture both short-range and long-range temporal dependencies and typically employ complex hierarchical deep network architectures that are hard to integrate with existing pretrained image-text foundation models. To effectively address this limitation, we instead keep the network architecture simple and use a set of data tokens that operate at different temporal resolutions in a hierarchical manner, accounting for the temporally hierarchical nature of videos. By employing a simple two-tower architecture, we are able to initialize our video-language model with pretrained image-text foundation models, thereby boosting the final performance. Second, existing video-language alignment works struggle due to the lack of semantically aligned large-scale training data. To overcome it, we leverage recent LLMs to curate the largest video-language dataset to date with better visual grounding. Furthermore, unlike existing video-text datasets which only contain short clips, our dataset is enriched with video clips of varying durations to aid our temporally hierarchical data tokens in extracting better representations at varying temporal scales. Overall, empirical results show that our proposed approach surpasses state-of-the-art methods on multiple retrieval benchmarks, especially on longer videos, and performs competitively on classification benchmarks.
FastHMR: Accelerating Human Mesh Recovery via Token and Layer Merging with Diffusion Decoding
Recent transformer-based models for 3D Human Mesh Recovery (HMR) have achieved strong performance but often suffer from high computational cost and complexity due to deep transformer architectures and redundant tokens. In this paper, we introduce two HMR-specific merging strategies: Error-Constrained Layer Merging (ECLM) and Mask-guided Token Merging (Mask-ToMe). ECLM selectively merges transformer layers that have minimal impact on the Mean Per Joint Position Error (MPJPE), while Mask-ToMe focuses on merging background tokens that contribute little to the final prediction. To further address the potential performance drop caused by merging, we propose a diffusion-based decoder that incorporates temporal context and leverages pose priors learned from large-scale motion capture datasets. Experiments across multiple benchmarks demonstrate that our method achieves up to 2.3x speed-up while slightly improving performance over the baseline.
Activator: GLU Activations as The Core Functions of a Vision Transformer
Transformer architecture currently represents the main driver behind many successes in a variety of tasks addressed by deep learning, especially the recent advances in natural language processing (NLP) culminating with large language models (LLM). In addition, transformer architecture has found a wide spread of interest from computer vision (CV) researchers and practitioners, allowing for many advancements in vision-related tasks and opening the door for multi-task and multi-modal deep learning architectures that share the same principle of operation. One drawback to these architectures is their reliance on the scaled dot product attention mechanism with the softmax activation function, which is computationally expensive and requires large compute capabilities both for training and inference. This paper investigates substituting the attention mechanism usually adopted for transformer architecture with an architecture incorporating gated linear unit (GLU) activation within a multi-layer perceptron (MLP) structure in conjunction with the default MLP incorporated in the traditional transformer design. Another step forward taken by this paper is to eliminate the second non-gated MLP to further reduce the computational cost. Experimental assessments conducted by this research show that both proposed modifications and reductions offer competitive performance in relation to baseline architectures, in support of the aims of this work in establishing a more efficient yet capable alternative to the traditional attention mechanism as the core component in designing transformer architectures.
Medical Image Segmentation Using Advanced Unet: VMSE-Unet and VM-Unet CBAM+
In this paper, we present the VMSE U-Net and VM-Unet CBAM+ model, two cutting-edge deep learning architectures designed to enhance medical image segmentation. Our approach integrates Squeeze-and-Excitation (SE) and Convolutional Block Attention Module (CBAM) techniques into the traditional VM U-Net framework, significantly improving segmentation accuracy, feature localization, and computational efficiency. Both models show superior performance compared to the baseline VM-Unet across multiple datasets. Notably, VMSEUnet achieves the highest accuracy, IoU, precision, and recall while maintaining low loss values. It also exhibits exceptional computational efficiency with faster inference times and lower memory usage on both GPU and CPU. Overall, the study suggests that the enhanced architecture VMSE-Unet is a valuable tool for medical image analysis. These findings highlight its potential for real-world clinical applications, emphasizing the importance of further research to optimize accuracy, robustness, and computational efficiency.
Not All Parameters Matter: Masking Diffusion Models for Enhancing Generation Ability
The diffusion models, in early stages focus on constructing basic image structures, while the refined details, including local features and textures, are generated in later stages. Thus the same network layers are forced to learn both structural and textural information simultaneously, significantly differing from the traditional deep learning architectures (e.g., ResNet or GANs) which captures or generates the image semantic information at different layers. This difference inspires us to explore the time-wise diffusion models. We initially investigate the key contributions of the U-Net parameters to the denoising process and identify that properly zeroing out certain parameters (including large parameters) contributes to denoising, substantially improving the generation quality on the fly. Capitalizing on this discovery, we propose a simple yet effective method-termed ``MaskUNet''- that enhances generation quality with negligible parameter numbers. Our method fully leverages timestep- and sample-dependent effective U-Net parameters. To optimize MaskUNet, we offer two fine-tuning strategies: a training-based approach and a training-free approach, including tailored networks and optimization functions. In zero-shot inference on the COCO dataset, MaskUNet achieves the best FID score and further demonstrates its effectiveness in downstream task evaluations. Project page: https://gudaochangsheng.github.io/MaskUnet-Page/
A Comprehensive Guide to Explainable AI: From Classical Models to LLMs
Explainable Artificial Intelligence (XAI) addresses the growing need for transparency and interpretability in AI systems, enabling trust and accountability in decision-making processes. This book offers a comprehensive guide to XAI, bridging foundational concepts with advanced methodologies. It explores interpretability in traditional models such as Decision Trees, Linear Regression, and Support Vector Machines, alongside the challenges of explaining deep learning architectures like CNNs, RNNs, and Large Language Models (LLMs), including BERT, GPT, and T5. The book presents practical techniques such as SHAP, LIME, Grad-CAM, counterfactual explanations, and causal inference, supported by Python code examples for real-world applications. Case studies illustrate XAI's role in healthcare, finance, and policymaking, demonstrating its impact on fairness and decision support. The book also covers evaluation metrics for explanation quality, an overview of cutting-edge XAI tools and frameworks, and emerging research directions, such as interpretability in federated learning and ethical AI considerations. Designed for a broad audience, this resource equips readers with the theoretical insights and practical skills needed to master XAI. Hands-on examples and additional resources are available at the companion GitHub repository: https://github.com/Echoslayer/XAI_From_Classical_Models_to_LLMs.
Text classification dataset and analysis for Uzbek language
Text classification is an important task in Natural Language Processing (NLP), where the goal is to categorize text data into predefined classes. In this study, we analyse the dataset creation steps and evaluation techniques of multi-label news categorisation task as part of text classification. We first present a newly obtained dataset for Uzbek text classification, which was collected from 10 different news and press websites and covers 15 categories of news, press and law texts. We also present a comprehensive evaluation of different models, ranging from traditional bag-of-words models to deep learning architectures, on this newly created dataset. Our experiments show that the Recurrent Neural Network (RNN) and Convolutional Neural Network (CNN) based models outperform the rule-based models. The best performance is achieved by the BERTbek model, which is a transformer-based BERT model trained on the Uzbek corpus. Our findings provide a good baseline for further research in Uzbek text classification.
Cell nuclei classification in histopathological images using hybrid OLConvNet
Computer-aided histopathological image analysis for cancer detection is a major research challenge in the medical domain. Automatic detection and classification of nuclei for cancer diagnosis impose a lot of challenges in developing state of the art algorithms due to the heterogeneity of cell nuclei and data set variability. Recently, a multitude of classification algorithms has used complex deep learning models for their dataset. However, most of these methods are rigid and their architectural arrangement suffers from inflexibility and non-interpretability. In this research article, we have proposed a hybrid and flexible deep learning architecture OLConvNet that integrates the interpretability of traditional object-level features and generalization of deep learning features by using a shallower Convolutional Neural Network (CNN) named as CNN_{3L}. CNN_{3L} reduces the training time by training fewer parameters and hence eliminating space constraints imposed by deeper algorithms. We used F1-score and multiclass Area Under the Curve (AUC) performance parameters to compare the results. To further strengthen the viability of our architectural approach, we tested our proposed methodology with state of the art deep learning architectures AlexNet, VGG16, VGG19, ResNet50, InceptionV3, and DenseNet121 as backbone networks. After a comprehensive analysis of classification results from all four architectures, we observed that our proposed model works well and perform better than contemporary complex algorithms.
Semantic Representation and Inference for NLP
Semantic representation and inference is essential for Natural Language Processing (NLP). The state of the art for semantic representation and inference is deep learning, and particularly Recurrent Neural Networks (RNNs), Convolutional Neural Networks (CNNs), and transformer Self-Attention models. This thesis investigates the use of deep learning for novel semantic representation and inference, and makes contributions in the following three areas: creating training data, improving semantic representations and extending inference learning. In terms of creating training data, we contribute the largest publicly available dataset of real-life factual claims for the purpose of automatic claim verification (MultiFC), and we present a novel inference model composed of multi-scale CNNs with different kernel sizes that learn from external sources to infer fact checking labels. In terms of improving semantic representations, we contribute a novel model that captures non-compositional semantic indicators. By definition, the meaning of a non-compositional phrase cannot be inferred from the individual meanings of its composing words (e.g., hot dog). Motivated by this, we operationalize the compositionality of a phrase contextually by enriching the phrase representation with external word embeddings and knowledge graphs. Finally, in terms of inference learning, we propose a series of novel deep learning architectures that improve inference by using syntactic dependencies, by ensembling role guided attention heads, incorporating gating layers, and concatenating multiple heads in novel and effective ways. This thesis consists of seven publications (five published and two under review).
ResUNet++: An Advanced Architecture for Medical Image Segmentation
Accurate computer-aided polyp detection and segmentation during colonoscopy examinations can help endoscopists resect abnormal tissue and thereby decrease chances of polyps growing into cancer. Towards developing a fully automated model for pixel-wise polyp segmentation, we propose ResUNet++, which is an improved ResUNet architecture for colonoscopic image segmentation. Our experimental evaluations show that the suggested architecture produces good segmentation results on publicly available datasets. Furthermore, ResUNet++ significantly outperforms U-Net and ResUNet, two key state-of-the-art deep learning architectures, by achieving high evaluation scores with a dice coefficient of 81.33%, and a mean Intersection over Union (mIoU) of 79.27% for the Kvasir-SEG dataset and a dice coefficient of 79.55%, and a mIoU of 79.62% with CVC-612 dataset.
Complexity in Complexity: Understanding Visual Complexity Through Structure, Color, and Surprise
Understanding how humans perceive visual complexity is a key area of study in visual cognition. Previous approaches to modeling visual complexity assessments have often resulted in intricate, difficult-to-interpret algorithms that employ numerous features or sophisticated deep learning architectures. While these complex models achieve high performance on specific datasets, they often sacrifice interpretability, making it challenging to understand the factors driving human perception of complexity. Recently (Shen, et al. 2024) proposed an interpretable segmentation-based model that accurately predicted complexity across various datasets, supporting the idea that complexity can be explained simply. In this work, we investigate the failure of their model to capture structural, color and surprisal contributions to complexity. To this end, we propose Multi-Scale Sobel Gradient (MSG) which measures spatial intensity variations, Multi-Scale Unique Color (MUC) which quantifies colorfulness across multiple scales, and surprise scores generated using a Large Language Model. We test our features on existing benchmarks and a novel dataset (Surprising Visual Genome) containing surprising images from Visual Genome. Our experiments demonstrate that modeling complexity accurately is not as simple as previously thought, requiring additional perceptual and semantic factors to address dataset biases. Our model improves predictive performance while maintaining interpretability, offering deeper insights into how visual complexity is perceived and assessed. Our code, analysis and data are available at https://github.com/Complexity-Project/Complexity-in-Complexity.
Enhancing Skin Disease Diagnosis: Interpretable Visual Concept Discovery with SAM
Current AI-assisted skin image diagnosis has achieved dermatologist-level performance in classifying skin cancer, driven by rapid advancements in deep learning architectures. However, unlike traditional vision tasks, skin images in general present unique challenges due to the limited availability of well-annotated datasets, complex variations in conditions, and the necessity for detailed interpretations to ensure patient safety. Previous segmentation methods have sought to reduce image noise and enhance diagnostic performance, but these techniques require fine-grained, pixel-level ground truth masks for training. In contrast, with the rise of foundation models, the Segment Anything Model (SAM) has been introduced to facilitate promptable segmentation, enabling the automation of the segmentation process with simple yet effective prompts. Efforts applying SAM predominantly focus on dermatoscopy images, which present more easily identifiable lesion boundaries than clinical photos taken with smartphones. This limitation constrains the practicality of these approaches to real-world applications. To overcome the challenges posed by noisy clinical photos acquired via non-standardized protocols and to improve diagnostic accessibility, we propose a novel Cross-Attentive Fusion framework for interpretable skin lesion diagnosis. Our method leverages SAM to generate visual concepts for skin diseases using prompts, integrating local visual concepts with global image features to enhance model performance. Extensive evaluation on two skin disease datasets demonstrates our proposed method's effectiveness on lesion diagnosis and interpretability.
EnsLoss: Stochastic Calibrated Loss Ensembles for Preventing Overfitting in Classification
Empirical risk minimization (ERM) with a computationally feasible surrogate loss is a widely accepted approach for classification. Notably, the convexity and calibration (CC) properties of a loss function ensure consistency of ERM in maximizing accuracy, thereby offering a wide range of options for surrogate losses. In this article, we propose a novel ensemble method, namely EnsLoss, which extends the ensemble learning concept to combine loss functions within the ERM framework. A key feature of our method is the consideration on preserving the "legitimacy" of the combined losses, i.e., ensuring the CC properties. Specifically, we first transform the CC conditions of losses into loss-derivatives, thereby bypassing the need for explicit loss functions and directly generating calibrated loss-derivatives. Therefore, inspired by Dropout, EnsLoss enables loss ensembles through one training process with doubly stochastic gradient descent (i.e., random batch samples and random calibrated loss-derivatives). We theoretically establish the statistical consistency of our approach and provide insights into its benefits. The numerical effectiveness of EnsLoss compared to fixed loss methods is demonstrated through experiments on a broad range of 14 OpenML tabular datasets and 46 image datasets with various deep learning architectures. Python repository and source code are available on GitHub at https://github.com/statmlben/ensloss.
Curvature-Informed SGD via General Purpose Lie-Group Preconditioners
We present a novel approach to accelerate stochastic gradient descent (SGD) by utilizing curvature information obtained from Hessian-vector products or finite differences of parameters and gradients, similar to the BFGS algorithm. Our approach involves two preconditioners: a matrix-free preconditioner and a low-rank approximation preconditioner. We update both preconditioners online using a criterion that is robust to stochastic gradient noise and does not require line search or damping. To preserve the corresponding symmetry or invariance, our preconditioners are constrained to certain connected Lie groups. The Lie group's equivariance property simplifies the preconditioner fitting process, while its invariance property eliminates the need for damping, which is commonly required in second-order optimizers. As a result, the learning rate for parameter updating and the step size for preconditioner fitting are naturally normalized, and their default values work well in most scenarios. Our proposed approach offers a promising direction for improving the convergence of SGD with low computational overhead. We demonstrate that Preconditioned SGD (PSGD) outperforms SoTA on Vision, NLP, and RL tasks across multiple modern deep-learning architectures. We have provided code for reproducing toy and large scale experiments in this paper.
End-to-end Differentiable Clustering with Associative Memories
Clustering is a widely used unsupervised learning technique involving an intensive discrete optimization problem. Associative Memory models or AMs are differentiable neural networks defining a recursive dynamical system, which have been integrated with various deep learning architectures. We uncover a novel connection between the AM dynamics and the inherent discrete assignment necessary in clustering to propose a novel unconstrained continuous relaxation of the discrete clustering problem, enabling end-to-end differentiable clustering with AM, dubbed ClAM. Leveraging the pattern completion ability of AMs, we further develop a novel self-supervised clustering loss. Our evaluations on varied datasets demonstrate that ClAM benefits from the self-supervision, and significantly improves upon both the traditional Lloyd's k-means algorithm, and more recent continuous clustering relaxations (by upto 60% in terms of the Silhouette Coefficient).
DeepRobust: A PyTorch Library for Adversarial Attacks and Defenses
DeepRobust is a PyTorch adversarial learning library which aims to build a comprehensive and easy-to-use platform to foster this research field. It currently contains more than 10 attack algorithms and 8 defense algorithms in image domain and 9 attack algorithms and 4 defense algorithms in graph domain, under a variety of deep learning architectures. In this manual, we introduce the main contents of DeepRobust with detailed instructions. The library is kept updated and can be found at https://github.com/DSE-MSU/DeepRobust.
Bias in Multimodal AI: Testbed for Fair Automatic Recruitment
The presence of decision-making algorithms in society is rapidly increasing nowadays, while concerns about their transparency and the possibility of these algorithms becoming new sources of discrimination are arising. In fact, many relevant automated systems have been shown to make decisions based on sensitive information or discriminate certain social groups (e.g. certain biometric systems for person recognition). With the aim of studying how current multimodal algorithms based on heterogeneous sources of information are affected by sensitive elements and inner biases in the data, we propose a fictitious automated recruitment testbed: FairCVtest. We train automatic recruitment algorithms using a set of multimodal synthetic profiles consciously scored with gender and racial biases. FairCVtest shows the capacity of the Artificial Intelligence (AI) behind such recruitment tool to extract sensitive information from unstructured data, and exploit it in combination to data biases in undesirable (unfair) ways. Finally, we present a list of recent works developing techniques capable of removing sensitive information from the decision-making process of deep learning architectures. We have used one of these algorithms (SensitiveNets) to experiment discrimination-aware learning for the elimination of sensitive information in our multimodal AI framework. Our methodology and results show how to generate fairer AI-based tools in general, and in particular fairer automated recruitment systems.
Neural Autoregressive Distribution Estimation
We present Neural Autoregressive Distribution Estimation (NADE) models, which are neural network architectures applied to the problem of unsupervised distribution and density estimation. They leverage the probability product rule and a weight sharing scheme inspired from restricted Boltzmann machines, to yield an estimator that is both tractable and has good generalization performance. We discuss how they achieve competitive performance in modeling both binary and real-valued observations. We also present how deep NADE models can be trained to be agnostic to the ordering of input dimensions used by the autoregressive product rule decomposition. Finally, we also show how to exploit the topological structure of pixels in images using a deep convolutional architecture for NADE.
SMMF: Square-Matricized Momentum Factorization for Memory-Efficient Optimization
We propose SMMF (Square-Matricized Momentum Factorization), a memory-efficient optimizer that reduces the memory requirement of the widely used adaptive learning rate optimizers, such as Adam, by up to 96%. SMMF enables flexible and efficient factorization of an arbitrary rank (shape) of the first and second momentum tensors during optimization, based on the proposed square-matricization and one-time single matrix factorization. From this, it becomes effectively applicable to any rank (shape) of momentum tensors, i.e., bias, matrix, and any rank-d tensors, prevalent in various deep model architectures, such as CNNs (high rank) and Transformers (low rank), in contrast to existing memory-efficient optimizers that applies only to a particular (rank-2) momentum tensor, e.g., linear layers. We conduct a regret bound analysis of SMMF, which shows that it converges similarly to non-memory-efficient adaptive learning rate optimizers, such as AdamNC, providing a theoretical basis for its competitive optimization capability. In our experiment, SMMF takes up to 96% less memory compared to state-of-the-art memory efficient optimizers, e.g., Adafactor, CAME, and SM3, while achieving comparable model performance on various CNN and Transformer tasks.
Dueling Network Architectures for Deep Reinforcement Learning
In recent years there have been many successes of using deep representations in reinforcement learning. Still, many of these applications use conventional architectures, such as convolutional networks, LSTMs, or auto-encoders. In this paper, we present a new neural network architecture for model-free reinforcement learning. Our dueling network represents two separate estimators: one for the state value function and one for the state-dependent action advantage function. The main benefit of this factoring is to generalize learning across actions without imposing any change to the underlying reinforcement learning algorithm. Our results show that this architecture leads to better policy evaluation in the presence of many similar-valued actions. Moreover, the dueling architecture enables our RL agent to outperform the state-of-the-art on the Atari 2600 domain.
Mixtures of Deep Neural Experts for Automated Speech Scoring
The paper copes with the task of automatic assessment of second language proficiency from the language learners' spoken responses to test prompts. The task has significant relevance to the field of computer assisted language learning. The approach presented in the paper relies on two separate modules: (1) an automatic speech recognition system that yields text transcripts of the spoken interactions involved, and (2) a multiple classifier system based on deep learners that ranks the transcripts into proficiency classes. Different deep neural network architectures (both feed-forward and recurrent) are specialized over diverse representations of the texts in terms of: a reference grammar, the outcome of probabilistic language models, several word embeddings, and two bag-of-word models. Combination of the individual classifiers is realized either via a probabilistic pseudo-joint model, or via a neural mixture of experts. Using the data of the third Spoken CALL Shared Task challenge, the highest values to date were obtained in terms of three popular evaluation metrics.
Evaluating Deep Graph Neural Networks
Graph Neural Networks (GNNs) have already been widely applied in various graph mining tasks. However, they suffer from the shallow architecture issue, which is the key impediment that hinders the model performance improvement. Although several relevant approaches have been proposed, none of the existing studies provides an in-depth understanding of the root causes of performance degradation in deep GNNs. In this paper, we conduct the first systematic experimental evaluation to present the fundamental limitations of shallow architectures. Based on the experimental results, we answer the following two essential questions: (1) what actually leads to the compromised performance of deep GNNs; (2) when we need and how to build deep GNNs. The answers to the above questions provide empirical insights and guidelines for researchers to design deep and well-performed GNNs. To show the effectiveness of our proposed guidelines, we present Deep Graph Multi-Layer Perceptron (DGMLP), a powerful approach (a paradigm in its own right) that helps guide deep GNN designs. Experimental results demonstrate three advantages of DGMLP: 1) high accuracy -- it achieves state-of-the-art node classification performance on various datasets; 2) high flexibility -- it can flexibly choose different propagation and transformation depths according to graph size and sparsity; 3) high scalability and efficiency -- it supports fast training on large-scale graphs. Our code is available in https://github.com/zwt233/DGMLP.
Deep Pyramidal Residual Networks
Deep convolutional neural networks (DCNNs) have shown remarkable performance in image classification tasks in recent years. Generally, deep neural network architectures are stacks consisting of a large number of convolutional layers, and they perform downsampling along the spatial dimension via pooling to reduce memory usage. Concurrently, the feature map dimension (i.e., the number of channels) is sharply increased at downsampling locations, which is essential to ensure effective performance because it increases the diversity of high-level attributes. This also applies to residual networks and is very closely related to their performance. In this research, instead of sharply increasing the feature map dimension at units that perform downsampling, we gradually increase the feature map dimension at all units to involve as many locations as possible. This design, which is discussed in depth together with our new insights, has proven to be an effective means of improving generalization ability. Furthermore, we propose a novel residual unit capable of further improving the classification accuracy with our new network architecture. Experiments on benchmark CIFAR-10, CIFAR-100, and ImageNet datasets have shown that our network architecture has superior generalization ability compared to the original residual networks. Code is available at https://github.com/jhkim89/PyramidNet}
Self-supervised Visual Feature Learning with Deep Neural Networks: A Survey
Large-scale labeled data are generally required to train deep neural networks in order to obtain better performance in visual feature learning from images or videos for computer vision applications. To avoid extensive cost of collecting and annotating large-scale datasets, as a subset of unsupervised learning methods, self-supervised learning methods are proposed to learn general image and video features from large-scale unlabeled data without using any human-annotated labels. This paper provides an extensive review of deep learning-based self-supervised general visual feature learning methods from images or videos. First, the motivation, general pipeline, and terminologies of this field are described. Then the common deep neural network architectures that used for self-supervised learning are summarized. Next, the main components and evaluation metrics of self-supervised learning methods are reviewed followed by the commonly used image and video datasets and the existing self-supervised visual feature learning methods. Finally, quantitative performance comparisons of the reviewed methods on benchmark datasets are summarized and discussed for both image and video feature learning. At last, this paper is concluded and lists a set of promising future directions for self-supervised visual feature learning.
PCBDet: An Efficient Deep Neural Network Object Detection Architecture for Automatic PCB Component Detection on the Edge
There can be numerous electronic components on a given PCB, making the task of visual inspection to detect defects very time-consuming and prone to error, especially at scale. There has thus been significant interest in automatic PCB component detection, particularly leveraging deep learning. However, deep neural networks typically require high computational resources, possibly limiting their feasibility in real-world use cases in manufacturing, which often involve high-volume and high-throughput detection with constrained edge computing resource availability. As a result of an exploration of efficient deep neural network architectures for this use case, we introduce PCBDet, an attention condenser network design that provides state-of-the-art inference throughput while achieving superior PCB component detection performance compared to other state-of-the-art efficient architecture designs. Experimental results show that PCBDet can achieve up to 2times inference speed-up on an ARM Cortex A72 processor when compared to an EfficientNet-based design while achieving sim2-4\% higher mAP on the FICS-PCB benchmark dataset.
Deep Learning based Computer Vision Methods for Complex Traffic Environments Perception: A Review
Computer vision applications in intelligent transportation systems (ITS) and autonomous driving (AD) have gravitated towards deep neural network architectures in recent years. While performance seems to be improving on benchmark datasets, many real-world challenges are yet to be adequately considered in research. This paper conducted an extensive literature review on the applications of computer vision in ITS and AD, and discusses challenges related to data, models, and complex urban environments. The data challenges are associated with the collection and labeling of training data and its relevance to real world conditions, bias inherent in datasets, the high volume of data needed to be processed, and privacy concerns. Deep learning (DL) models are commonly too complex for real-time processing on embedded hardware, lack explainability and generalizability, and are hard to test in real-world settings. Complex urban traffic environments have irregular lighting and occlusions, and surveillance cameras can be mounted at a variety of angles, gather dirt, shake in the wind, while the traffic conditions are highly heterogeneous, with violation of rules and complex interactions in crowded scenarios. Some representative applications that suffer from these problems are traffic flow estimation, congestion detection, autonomous driving perception, vehicle interaction, and edge computing for practical deployment. The possible ways of dealing with the challenges are also explored while prioritizing practical deployment.
Scalable Reinforcement-Learning-Based Neural Architecture Search for Cancer Deep Learning Research
Cancer is a complex disease, the understanding and treatment of which are being aided through increases in the volume of collected data and in the scale of deployed computing power. Consequently, there is a growing need for the development of data-driven and, in particular, deep learning methods for various tasks such as cancer diagnosis, detection, prognosis, and prediction. Despite recent successes, however, designing high-performing deep learning models for nonimage and nontext cancer data is a time-consuming, trial-and-error, manual task that requires both cancer domain and deep learning expertise. To that end, we develop a reinforcement-learning-based neural architecture search to automate deep-learning-based predictive model development for a class of representative cancer data. We develop custom building blocks that allow domain experts to incorporate the cancer-data-specific characteristics. We show that our approach discovers deep neural network architectures that have significantly fewer trainable parameters, shorter training time, and accuracy similar to or higher than those of manually designed architectures. We study and demonstrate the scalability of our approach on up to 1,024 Intel Knights Landing nodes of the Theta supercomputer at the Argonne Leadership Computing Facility.
A Deep Reinforcement Learning Framework for Dynamic Portfolio Optimization: Evidence from China's Stock Market
Artificial intelligence is transforming financial investment decision-making frameworks, with deep reinforcement learning demonstrating substantial potential in robo-advisory applications. This paper addresses the limitations of traditional portfolio optimization methods in dynamic asset weight adjustment through the development of a deep reinforcement learning-based dynamic optimization model grounded in practical trading processes. The research advances two key innovations: first, the introduction of a novel Sharpe ratio reward function engineered for Actor-Critic deep reinforcement learning algorithms, which ensures stable convergence during training while consistently achieving positive average Sharpe ratios; second, the development of an innovative comprehensive approach to portfolio optimization utilizing deep reinforcement learning, which significantly enhances model optimization capability through the integration of random sampling strategies during training with image-based deep neural network architectures for multi-dimensional financial time series data processing, average Sharpe ratio reward functions, and deep reinforcement learning algorithms. The empirical analysis validates the model using randomly selected constituent stocks from the CSI 300 Index, benchmarking against established financial econometric optimization models. Backtesting results demonstrate the model's efficacy in optimizing portfolio allocation and mitigating investment risk, yielding superior comprehensive performance metrics.
SMASH: One-Shot Model Architecture Search through HyperNetworks
Designing architectures for deep neural networks requires expert knowledge and substantial computation time. We propose a technique to accelerate architecture selection by learning an auxiliary HyperNet that generates the weights of a main model conditioned on that model's architecture. By comparing the relative validation performance of networks with HyperNet-generated weights, we can effectively search over a wide range of architectures at the cost of a single training run. To facilitate this search, we develop a flexible mechanism based on memory read-writes that allows us to define a wide range of network connectivity patterns, with ResNet, DenseNet, and FractalNet blocks as special cases. We validate our method (SMASH) on CIFAR-10 and CIFAR-100, STL-10, ModelNet10, and Imagenet32x32, achieving competitive performance with similarly-sized hand-designed networks. Our code is available at https://github.com/ajbrock/SMASH
MobileLLM: Optimizing Sub-billion Parameter Language Models for On-Device Use Cases
This paper addresses the growing need for efficient large language models (LLMs) on mobile devices, driven by increasing cloud costs and latency concerns. We focus on designing top-quality LLMs with fewer than a billion parameters, a practical choice for mobile deployment. Contrary to prevailing belief emphasizing the pivotal role of data and parameter quantity in determining model quality, our investigation underscores the significance of model architecture for sub-billion scale LLMs. Leveraging deep and thin architectures, coupled with embedding sharing and grouped-query attention mechanisms, we establish a strong baseline network denoted as MobileLLM, which attains a remarkable 2.7%/4.3% accuracy boost over preceding 125M/350M state-of-the-art models. Additionally, we propose an immediate block-wise weight sharing approach with no increase in model size and only marginal latency overhead. The resultant models, denoted as MobileLLM-LS, demonstrate a further accuracy enhancement of 0.7%/0.8% than MobileLLM 125M/350M. Moreover, MobileLLM model family shows significant improvements compared to previous sub-billion models on chat benchmarks, and demonstrates close correctness to LLaMA-v2 7B in API calling tasks, highlighting the capability of small models for common on-device use cases.
Too Few Bug Reports? Exploring Data Augmentation for Improved Changeset-based Bug Localization
Modern Deep Learning (DL) architectures based on transformers (e.g., BERT, RoBERTa) are exhibiting performance improvements across a number of natural language tasks. While such DL models have shown tremendous potential for use in software engineering applications, they are often hampered by insufficient training data. Particularly constrained are applications that require project-specific data, such as bug localization, which aims at recommending code to fix a newly submitted bug report. Deep learning models for bug localization require a substantial training set of fixed bug reports, which are at a limited quantity even in popular and actively developed software projects. In this paper, we examine the effect of using synthetic training data on transformer-based DL models that perform a more complex variant of bug localization, which has the goal of retrieving bug-inducing changesets for each bug report. To generate high-quality synthetic data, we propose novel data augmentation operators that act on different constituent components of bug reports. We also describe a data balancing strategy that aims to create a corpus of augmented bug reports that better reflects the entire source code base, because existing bug reports used as training data usually reference a small part of the code base.
PLANesT-3D: A new annotated dataset for segmentation of 3D plant point clouds
Creation of new annotated public datasets is crucial in helping advances in 3D computer vision and machine learning meet their full potential for automatic interpretation of 3D plant models. In this paper, we introduce PLANesT-3D; a new annotated dataset of 3D color point clouds of plants. PLANesT-3D is composed of 34 point cloud models representing 34 real plants from three different plant species: Capsicum annuum, Rosa kordana, and Ribes rubrum. Both semantic labels in terms of "leaf" and "stem", and organ instance labels were manually annotated for the full point clouds. As an additional contribution, SP-LSCnet, a novel semantic segmentation method that is a combination of unsupervised superpoint extraction and a 3D point-based deep learning approach is introduced and evaluated on the new dataset. Two existing deep neural network architectures, PointNet++ and RoseSegNet were also tested on the point clouds of PLANesT-3D for semantic segmentation.
Efficient Architecture Search by Network Transformation
Techniques for automatically designing deep neural network architectures such as reinforcement learning based approaches have recently shown promising results. However, their success is based on vast computational resources (e.g. hundreds of GPUs), making them difficult to be widely used. A noticeable limitation is that they still design and train each network from scratch during the exploration of the architecture space, which is highly inefficient. In this paper, we propose a new framework toward efficient architecture search by exploring the architecture space based on the current network and reusing its weights. We employ a reinforcement learning agent as the meta-controller, whose action is to grow the network depth or layer width with function-preserving transformations. As such, the previously validated networks can be reused for further exploration, thus saves a large amount of computational cost. We apply our method to explore the architecture space of the plain convolutional neural networks (no skip-connections, branching etc.) on image benchmark datasets (CIFAR-10, SVHN) with restricted computational resources (5 GPUs). Our method can design highly competitive networks that outperform existing networks using the same design scheme. On CIFAR-10, our model without skip-connections achieves 4.23\% test error rate, exceeding a vast majority of modern architectures and approaching DenseNet. Furthermore, by applying our method to explore the DenseNet architecture space, we are able to achieve more accurate networks with fewer parameters.
Less is More: Pay Less Attention in Vision Transformers
Transformers have become one of the dominant architectures in deep learning, particularly as a powerful alternative to convolutional neural networks (CNNs) in computer vision. However, Transformer training and inference in previous works can be prohibitively expensive due to the quadratic complexity of self-attention over a long sequence of representations, especially for high-resolution dense prediction tasks. To this end, we present a novel Less attention vIsion Transformer (LIT), building upon the fact that the early self-attention layers in Transformers still focus on local patterns and bring minor benefits in recent hierarchical vision Transformers. Specifically, we propose a hierarchical Transformer where we use pure multi-layer perceptrons (MLPs) to encode rich local patterns in the early stages while applying self-attention modules to capture longer dependencies in deeper layers. Moreover, we further propose a learned deformable token merging module to adaptively fuse informative patches in a non-uniform manner. The proposed LIT achieves promising performance on image recognition tasks, including image classification, object detection and instance segmentation, serving as a strong backbone for many vision tasks. Code is available at: https://github.com/zhuang-group/LIT
Inference Optimization of Foundation Models on AI Accelerators
Powerful foundation models, including large language models (LLMs), with Transformer architectures have ushered in a new era of Generative AI across various industries. Industry and research community have witnessed a large number of new applications, based on those foundation models. Such applications include question and answer, customer services, image and video generation, and code completions, among others. However, as the number of model parameters reaches to hundreds of billions, their deployment incurs prohibitive inference costs and high latency in real-world scenarios. As a result, the demand for cost-effective and fast inference using AI accelerators is ever more higher. To this end, our tutorial offers a comprehensive discussion on complementary inference optimization techniques using AI accelerators. Beginning with an overview of basic Transformer architectures and deep learning system frameworks, we deep dive into system optimization techniques for fast and memory-efficient attention computations and discuss how they can be implemented efficiently on AI accelerators. Next, we describe architectural elements that are key for fast transformer inference. Finally, we examine various model compression and fast decoding strategies in the same context.
WavSpA: Wavelet Space Attention for Boosting Transformers' Long Sequence Learning Ability
Transformer and its variants are fundamental neural architectures in deep learning. Recent works show that learning attention in the Fourier space can improve the long sequence learning capability of Transformers. We argue that wavelet transform shall be a better choice because it captures both position and frequency information with linear time complexity. Therefore, in this paper, we systematically study the synergy between wavelet transform and Transformers. We propose Wavelet Space Attention (WavSpA) that facilitates attention learning in a learnable wavelet coefficient space which replaces the attention in Transformers by (1) applying forward wavelet transform to project the input sequences to multi-resolution bases, (2) conducting attention learning in the wavelet coefficient space, and (3) reconstructing the representation in input space via backward wavelet transform. Extensive experiments on the Long Range Arena demonstrate that learning attention in the wavelet space using either fixed or adaptive wavelets can consistently improve Transformer's performance and also significantly outperform learning in Fourier space. We further show our method can enhance Transformer's reasoning extrapolation capability over distance on the LEGO chain-of-reasoning task.
Partial Order Pruning: for Best Speed/Accuracy Trade-off in Neural Architecture Search
Achieving good speed and accuracy trade-off on a target platform is very important in deploying deep neural networks in real world scenarios. However, most existing automatic architecture search approaches only concentrate on high performance. In this work, we propose an algorithm that can offer better speed/accuracy trade-off of searched networks, which is termed "Partial Order Pruning". It prunes the architecture search space with a partial order assumption to automatically search for the architectures with the best speed and accuracy trade-off. Our algorithm explicitly takes profile information about the inference speed on the target platform into consideration. With the proposed algorithm, we present several Dongfeng (DF) networks that provide high accuracy and fast inference speed on various application GPU platforms. By further searching decoder architectures, our DF-Seg real-time segmentation networks yield state-of-the-art speed/accuracy trade-off on both the target embedded device and the high-end GPU.
DRED: Zero-Shot Transfer in Reinforcement Learning via Data-Regularised Environment Design
Autonomous agents trained using deep reinforcement learning (RL) often lack the ability to successfully generalise to new environments, even when these environments share characteristics with the ones they have encountered during training. In this work, we investigate how the sampling of individual environment instances, or levels, affects the zero-shot generalisation (ZSG) ability of RL agents. We discover that, for deep actor-critic architectures sharing their base layers, prioritising levels according to their value loss minimises the mutual information between the agent's internal representation and the set of training levels in the generated training data. This provides a novel theoretical justification for the regularisation achieved by certain adaptive sampling strategies. We then turn our attention to unsupervised environment design (UED) methods, which assume control over level generation. We find that existing UED methods can significantly shift the training distribution, which translates to low ZSG performance. To prevent both overfitting and distributional shift, we introduce data-regularised environment design (DRED). DRED generates levels using a generative model trained to approximate the ground truth distribution of an initial set of level parameters. Through its grounding, DRED achieves significant improvements in ZSG over adaptive level sampling strategies and UED methods. Our code and experimental data are available at https://github.com/uoe-agents/dred.
Fixup Initialization: Residual Learning Without Normalization
Normalization layers are a staple in state-of-the-art deep neural network architectures. They are widely believed to stabilize training, enable higher learning rate, accelerate convergence and improve generalization, though the reason for their effectiveness is still an active research topic. In this work, we challenge the commonly-held beliefs by showing that none of the perceived benefits is unique to normalization. Specifically, we propose fixed-update initialization (Fixup), an initialization motivated by solving the exploding and vanishing gradient problem at the beginning of training via properly rescaling a standard initialization. We find training residual networks with Fixup to be as stable as training with normalization -- even for networks with 10,000 layers. Furthermore, with proper regularization, Fixup enables residual networks without normalization to achieve state-of-the-art performance in image classification and machine translation.
Declarative Experimentation in Information Retrieval using PyTerrier
The advent of deep machine learning platforms such as Tensorflow and Pytorch, developed in expressive high-level languages such as Python, have allowed more expressive representations of deep neural network architectures. We argue that such a powerful formalism is missing in information retrieval (IR), and propose a framework called PyTerrier that allows advanced retrieval pipelines to be expressed, and evaluated, in a declarative manner close to their conceptual design. Like the aforementioned frameworks that compile deep learning experiments into primitive GPU operations, our framework targets IR platforms as backends in order to execute and evaluate retrieval pipelines. Further, we can automatically optimise the retrieval pipelines to increase their efficiency to suite a particular IR platform backend. Our experiments, conducted on TREC Robust and ClueWeb09 test collections, demonstrate the efficiency benefits of these optimisations for retrieval pipelines involving both the Anserini and Terrier IR platforms.
OSSA: Unsupervised One-Shot Style Adaptation
Despite their success in various vision tasks, deep neural network architectures often underperform in out-of-distribution scenarios due to the difference between training and target domain style. To address this limitation, we introduce One-Shot Style Adaptation (OSSA), a novel unsupervised domain adaptation method for object detection that utilizes a single, unlabeled target image to approximate the target domain style. Specifically, OSSA generates diverse target styles by perturbing the style statistics derived from a single target image and then applies these styles to a labeled source dataset at the feature level using Adaptive Instance Normalization (AdaIN). Extensive experiments show that OSSA establishes a new state-of-the-art among one-shot domain adaptation methods by a significant margin, and in some cases, even outperforms strong baselines that use thousands of unlabeled target images. By applying OSSA in various scenarios, including weather, simulated-to-real (sim2real), and visual-to-thermal adaptations, our study explores the overarching significance of the style gap in these contexts. OSSA's simplicity and efficiency allow easy integration into existing frameworks, providing a potentially viable solution for practical applications with limited data availability. Code is available at https://github.com/RobinGerster7/OSSA
Scalable Neural Network Kernels
We introduce the concept of scalable neural network kernels (SNNKs), the replacements of regular feedforward layers (FFLs), capable of approximating the latter, but with favorable computational properties. SNNKs effectively disentangle the inputs from the parameters of the neural network in the FFL, only to connect them in the final computation via the dot-product kernel. They are also strictly more expressive, as allowing to model complicated relationships beyond the functions of the dot-products of parameter-input vectors. We also introduce the neural network bundling process that applies SNNKs to compactify deep neural network architectures, resulting in additional compression gains. In its extreme version, it leads to the fully bundled network whose optimal parameters can be expressed via explicit formulae for several loss functions (e.g. mean squared error), opening a possibility to bypass backpropagation. As a by-product of our analysis, we introduce the mechanism of the universal random features (or URFs), applied to instantiate several SNNK variants, and interesting on its own in the context of scalable kernel methods. We provide rigorous theoretical analysis of all these concepts as well as an extensive empirical evaluation, ranging from point-wise kernel estimation to Transformers' fine-tuning with novel adapter layers inspired by SNNKs. Our mechanism provides up to 5x reduction in the number of trainable parameters, while maintaining competitive accuracy.
Equivariant Adaptation of Large Pretrained Models
Equivariant networks are specifically designed to ensure consistent behavior with respect to a set of input transformations, leading to higher sample efficiency and more accurate and robust predictions. However, redesigning each component of prevalent deep neural network architectures to achieve chosen equivariance is a difficult problem and can result in a computationally expensive network during both training and inference. A recently proposed alternative towards equivariance that removes the architectural constraints is to use a simple canonicalization network that transforms the input to a canonical form before feeding it to an unconstrained prediction network. We show here that this approach can effectively be used to make a large pretrained network equivariant. However, we observe that the produced canonical orientations can be misaligned with those of the training distribution, hindering performance. Using dataset-dependent priors to inform the canonicalization function, we are able to make large pretrained models equivariant while maintaining their performance. This significantly improves the robustness of these models to deterministic transformations of the data, such as rotations. We believe this equivariant adaptation of large pretrained models can help their domain-specific applications with known symmetry priors.
Lossless Compression with Probabilistic Circuits
Despite extensive progress on image generation, common deep generative model architectures are not easily applied to lossless compression. For example, VAEs suffer from a compression cost overhead due to their latent variables. This overhead can only be partially eliminated with elaborate schemes such as bits-back coding, often resulting in poor single-sample compression rates. To overcome such problems, we establish a new class of tractable lossless compression models that permit efficient encoding and decoding: Probabilistic Circuits (PCs). These are a class of neural networks involving |p| computational units that support efficient marginalization over arbitrary subsets of the D feature dimensions, enabling efficient arithmetic coding. We derive efficient encoding and decoding schemes that both have time complexity O (log(D) cdot |p|), where a naive scheme would have linear costs in D and |p|, making the approach highly scalable. Empirically, our PC-based (de)compression algorithm runs 5-40 times faster than neural compression algorithms that achieve similar bitrates. By scaling up the traditional PC structure learning pipeline, we achieve state-of-the-art results on image datasets such as MNIST. Furthermore, PCs can be naturally integrated with existing neural compression algorithms to improve the performance of these base models on natural image datasets. Our results highlight the potential impact that non-standard learning architectures may have on neural data compression.
LiteASR: Efficient Automatic Speech Recognition with Low-Rank Approximation
Modern automatic speech recognition (ASR) models, such as OpenAI's Whisper, rely on deep encoder-decoder architectures, and their encoders are a critical bottleneck for efficient deployment due to high computational intensity. We introduce LiteASR, a low-rank compression scheme for ASR encoders that significantly reduces inference costs while maintaining transcription accuracy. Our approach leverages the strong low-rank properties observed in intermediate activations: by applying principal component analysis (PCA) with a small calibration dataset, we approximate linear transformations with a chain of low-rank matrix multiplications, and further optimize self-attention to work in the reduced dimension. Evaluation results show that our method can compress Whisper large-v3's encoder size by over 50%, matching Whisper medium's size with better transcription accuracy, thereby establishing a new Pareto-optimal frontier of efficiency and performance. The code of LiteASR is available at https://github.com/efeslab/LiteASR.
Accelerating Neural Architecture Exploration Across Modalities Using Genetic Algorithms
Neural architecture search (NAS), the study of automating the discovery of optimal deep neural network architectures for tasks in domains such as computer vision and natural language processing, has seen rapid growth in the machine learning research community. While there have been many recent advancements in NAS, there is still a significant focus on reducing the computational cost incurred when validating discovered architectures by making search more efficient. Evolutionary algorithms, specifically genetic algorithms, have a history of usage in NAS and continue to gain popularity versus other optimization approaches as a highly efficient way to explore the architecture objective space. Most NAS research efforts have centered around computer vision tasks and only recently have other modalities, such as the rapidly growing field of natural language processing, been investigated in depth. In this work, we show how genetic algorithms can be paired with lightly trained objective predictors in an iterative cycle to accelerate multi-objective architectural exploration in a way that works in the modalities of both machine translation and image classification.
A Comprehensive Survey on Hardware-Aware Neural Architecture Search
Neural Architecture Search (NAS) methods have been growing in popularity. These techniques have been fundamental to automate and speed up the time consuming and error-prone process of synthesizing novel Deep Learning (DL) architectures. NAS has been extensively studied in the past few years. Arguably their most significant impact has been in image classification and object detection tasks where the state of the art results have been obtained. Despite the significant success achieved to date, applying NAS to real-world problems still poses significant challenges and is not widely practical. In general, the synthesized Convolution Neural Network (CNN) architectures are too complex to be deployed in resource-limited platforms, such as IoT, mobile, and embedded systems. One solution growing in popularity is to use multi-objective optimization algorithms in the NAS search strategy by taking into account execution latency, energy consumption, memory footprint, etc. This kind of NAS, called hardware-aware NAS (HW-NAS), makes searching the most efficient architecture more complicated and opens several questions. In this survey, we provide a detailed review of existing HW-NAS research and categorize them according to four key dimensions: the search space, the search strategy, the acceleration technique, and the hardware cost estimation strategies. We further discuss the challenges and limitations of existing approaches and potential future directions. This is the first survey paper focusing on hardware-aware NAS. We hope it serves as a valuable reference for the various techniques and algorithms discussed and paves the road for future research towards hardware-aware NAS.
A Survey on Pretrained Language Models for Neural Code Intelligence
As the complexity of modern software continues to escalate, software engineering has become an increasingly daunting and error-prone endeavor. In recent years, the field of Neural Code Intelligence (NCI) has emerged as a promising solution, leveraging the power of deep learning techniques to tackle analytical tasks on source code with the goal of improving programming efficiency and minimizing human errors within the software industry. Pretrained language models have become a dominant force in NCI research, consistently delivering state-of-the-art results across a wide range of tasks, including code summarization, generation, and translation. In this paper, we present a comprehensive survey of the NCI domain, including a thorough review of pretraining techniques, tasks, datasets, and model architectures. We hope this paper will serve as a bridge between the natural language and programming language communities, offering insights for future research in this rapidly evolving field.
Efficient Automation of Neural Network Design: A Survey on Differentiable Neural Architecture Search
In the past few years, Differentiable Neural Architecture Search (DNAS) rapidly imposed itself as the trending approach to automate the discovery of deep neural network architectures. This rise is mainly due to the popularity of DARTS, one of the first major DNAS methods. In contrast with previous works based on Reinforcement Learning or Evolutionary Algorithms, DNAS is faster by several orders of magnitude and uses fewer computational resources. In this comprehensive survey, we focus specifically on DNAS and review recent approaches in this field. Furthermore, we propose a novel challenge-based taxonomy to classify DNAS methods. We also discuss the contributions brought to DNAS in the past few years and its impact on the global NAS field. Finally, we conclude by giving some insights into future research directions for the DNAS field.
Generalizing Pooling Functions in Convolutional Neural Networks: Mixed, Gated, and Tree
We seek to improve deep neural networks by generalizing the pooling operations that play a central role in current architectures. We pursue a careful exploration of approaches to allow pooling to learn and to adapt to complex and variable patterns. The two primary directions lie in (1) learning a pooling function via (two strategies of) combining of max and average pooling, and (2) learning a pooling function in the form of a tree-structured fusion of pooling filters that are themselves learned. In our experiments every generalized pooling operation we explore improves performance when used in place of average or max pooling. We experimentally demonstrate that the proposed pooling operations provide a boost in invariance properties relative to conventional pooling and set the state of the art on several widely adopted benchmark datasets; they are also easy to implement, and can be applied within various deep neural network architectures. These benefits come with only a light increase in computational overhead during training and a very modest increase in the number of model parameters.
Architectures of Topological Deep Learning: A Survey on Topological Neural Networks
The natural world is full of complex systems characterized by intricate relations between their components: from social interactions between individuals in a social network to electrostatic interactions between atoms in a protein. Topological Deep Learning (TDL) provides a comprehensive framework to process and extract knowledge from data associated with these systems, such as predicting the social community to which an individual belongs or predicting whether a protein can be a reasonable target for drug development. TDL has demonstrated theoretical and practical advantages that hold the promise of breaking ground in the applied sciences and beyond. However, the rapid growth of the TDL literature has also led to a lack of unification in notation and language across Topological Neural Network (TNN) architectures. This presents a real obstacle for building upon existing works and for deploying TNNs to new real-world problems. To address this issue, we provide an accessible introduction to TDL, and compare the recently published TNNs using a unified mathematical and graphical notation. Through an intuitive and critical review of the emerging field of TDL, we extract valuable insights into current challenges and exciting opportunities for future development.
Equivariant Architectures for Learning in Deep Weight Spaces
Designing machine learning architectures for processing neural networks in their raw weight matrix form is a newly introduced research direction. Unfortunately, the unique symmetry structure of deep weight spaces makes this design very challenging. If successful, such architectures would be capable of performing a wide range of intriguing tasks, from adapting a pre-trained network to a new domain to editing objects represented as functions (INRs or NeRFs). As a first step towards this goal, we present here a novel network architecture for learning in deep weight spaces. It takes as input a concatenation of weights and biases of a pre-trained MLP and processes it using a composition of layers that are equivariant to the natural permutation symmetry of the MLP's weights: Changing the order of neurons in intermediate layers of the MLP does not affect the function it represents. We provide a full characterization of all affine equivariant and invariant layers for these symmetries and show how these layers can be implemented using three basic operations: pooling, broadcasting, and fully connected layers applied to the input in an appropriate manner. We demonstrate the effectiveness of our architecture and its advantages over natural baselines in a variety of learning tasks.
A Review of Deep Learning with Special Emphasis on Architectures, Applications and Recent Trends
Deep learning has solved a problem that as little as five years ago was thought by many to be intractable - the automatic recognition of patterns in data; and it can do so with accuracy that often surpasses human beings. It has solved problems beyond the realm of traditional, hand-crafted machine learning algorithms and captured the imagination of practitioners trying to make sense out of the flood of data that now inundates our society. As public awareness of the efficacy of DL increases so does the desire to make use of it. But even for highly trained professionals it can be daunting to approach the rapidly increasing body of knowledge produced by experts in the field. Where does one start? How does one determine if a particular model is applicable to their problem? How does one train and deploy such a network? A primer on the subject can be a good place to start. With that in mind, we present an overview of some of the key multilayer ANNs that comprise DL. We also discuss some new automatic architecture optimization protocols that use multi-agent approaches. Further, since guaranteeing system uptime is becoming critical to many computer applications, we include a section on using neural networks for fault detection and subsequent mitigation. This is followed by an exploratory survey of several application areas where DL has emerged as a game-changing technology: anomalous behavior detection in financial applications or in financial time-series forecasting, predictive and prescriptive analytics, medical image processing and analysis and power systems research. The thrust of this review is to outline emerging areas of application-oriented research within the DL community as well as to provide a reference to researchers seeking to use it in their work for what it does best: statistical pattern recognition with unparalleled learning capacity with the ability to scale with information.
Evaluating Transfer Learning in Deep Learning Models for Classification on a Custom Wildlife Dataset: Can YOLOv8 Surpass Other Architectures?
Biodiversity plays a crucial role in maintaining the balance of the ecosystem. However, poaching and unintentional human activities contribute to the decline in the population of many species. Hence, active monitoring is required to preserve these endangered species. Current human-led monitoring techniques are prone to errors and are labor-intensive. Therefore, we study the application of deep learning methods like Convolutional Neural Networks (CNNs) and transfer learning, which can aid in automating the process of monitoring endangered species. For this, we create our custom dataset utilizing trustworthy online databases like iNaturalist and ZooChat. To choose the best model for our use case, we compare the performance of different architectures like DenseNet, ResNet, VGGNet, and YOLOv8 on the custom wildlife dataset. Transfer learning reduces training time by freezing the pre-trained weights and replacing only the output layer with custom, fully connected layers designed for our dataset. Our results indicate that YOLOv8 performs better, achieving a training accuracy of 97.39 % and an F1 score of 96.50 %, surpassing other models. Our findings suggest that integrating YOLOv8 into conservation efforts could revolutionize wildlife monitoring with its high accuracy and efficiency, potentially transforming how endangered species are monitored and protected worldwide.
IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures
In this work we aim to solve a large collection of tasks using a single reinforcement learning agent with a single set of parameters. A key challenge is to handle the increased amount of data and extended training time. We have developed a new distributed agent IMPALA (Importance Weighted Actor-Learner Architecture) that not only uses resources more efficiently in single-machine training but also scales to thousands of machines without sacrificing data efficiency or resource utilisation. We achieve stable learning at high throughput by combining decoupled acting and learning with a novel off-policy correction method called V-trace. We demonstrate the effectiveness of IMPALA for multi-task reinforcement learning on DMLab-30 (a set of 30 tasks from the DeepMind Lab environment (Beattie et al., 2016)) and Atari-57 (all available Atari games in Arcade Learning Environment (Bellemare et al., 2013a)). Our results show that IMPALA is able to achieve better performance than previous agents with less data, and crucially exhibits positive transfer between tasks as a result of its multi-task approach.
Demystifying deep search: a holistic evaluation with hint-free multi-hop questions and factorised metrics
RAG (Retrieval-Augmented Generation) systems and web agents are increasingly evaluated on multi-hop deep search tasks, yet current practice suffers from two major limitations. First, most benchmarks leak the reasoning path in the question text, allowing models to follow surface cues rather than discover reasoning chains autonomously. Second, evaluation is typically reduced to a single pass rate, which collapses diverse behaviours into one score and obscures whether failures stem from inadequate search, poor knowledge use, or inappropriate refusal. To address these issues, we present WebDetective, a benchmark of hint-free multi-hop questions paired with a controlled Wikipedia sandbox that ensures full traceability of model actions, and a holistic evaluation framework that separates search sufficiency, knowledge utilisation, and refusal behaviour. Our evaluation of 25 state-of-the-art models reveals systematic weaknesses across all architectures: models struggle with knowledge utilisation despite having sufficient evidence and demonstrate near-absent appropriate refusal when evidence is lacking. These patterns expose a fundamental gap: today's systems excel at executing given reasoning paths but fail when required to discover them. We develop an agentic workflow, EvidenceLoop, that explicitly targets the challenges our benchmark identifies, incorporating verification loops and systematic evidence tracking that improve both search and synthesis capabilities. This baseline demonstrates that WebDetective's diagnostic framework can guide concrete architectural improvements, establishing our benchmark as a critical tool for developing genuinely autonomous reasoning systems rather than pattern-following agents.
Deep Layer Aggregation
Visual recognition requires rich representations that span levels from low to high, scales from small to large, and resolutions from fine to coarse. Even with the depth of features in a convolutional network, a layer in isolation is not enough: compounding and aggregating these representations improves inference of what and where. Architectural efforts are exploring many dimensions for network backbones, designing deeper or wider architectures, but how to best aggregate layers and blocks across a network deserves further attention. Although skip connections have been incorporated to combine layers, these connections have been "shallow" themselves, and only fuse by simple, one-step operations. We augment standard architectures with deeper aggregation to better fuse information across layers. Our deep layer aggregation structures iteratively and hierarchically merge the feature hierarchy to make networks with better accuracy and fewer parameters. Experiments across architectures and tasks show that deep layer aggregation improves recognition and resolution compared to existing branching and merging schemes. The code is at https://github.com/ucbdrive/dla.
Deep Dual-resolution Networks for Real-time and Accurate Semantic Segmentation of Road Scenes
Semantic segmentation is a key technology for autonomous vehicles to understand the surrounding scenes. The appealing performances of contemporary models usually come at the expense of heavy computations and lengthy inference time, which is intolerable for self-driving. Using light-weight architectures (encoder-decoder or two-pathway) or reasoning on low-resolution images, recent methods realize very fast scene parsing, even running at more than 100 FPS on a single 1080Ti GPU. However, there is still a significant gap in performance between these real-time methods and the models based on dilation backbones. To tackle this problem, we proposed a family of efficient backbones specially designed for real-time semantic segmentation. The proposed deep dual-resolution networks (DDRNets) are composed of two deep branches between which multiple bilateral fusions are performed. Additionally, we design a new contextual information extractor named Deep Aggregation Pyramid Pooling Module (DAPPM) to enlarge effective receptive fields and fuse multi-scale context based on low-resolution feature maps. Our method achieves a new state-of-the-art trade-off between accuracy and speed on both Cityscapes and CamVid dataset. In particular, on a single 2080Ti GPU, DDRNet-23-slim yields 77.4% mIoU at 102 FPS on Cityscapes test set and 74.7% mIoU at 230 FPS on CamVid test set. With widely used test augmentation, our method is superior to most state-of-the-art models and requires much less computation. Codes and trained models are available online.
Deep Policy Networks for NPC Behaviors that Adapt to Changing Design Parameters in Roguelike Games
Recent advances in Deep Reinforcement Learning (DRL) have largely focused on improving the performance of agents with the aim of replacing humans in known and well-defined environments. The use of these techniques as a game design tool for video game production, where the aim is instead to create Non-Player Character (NPC) behaviors, has received relatively little attention until recently. Turn-based strategy games like Roguelikes, for example, present unique challenges to DRL. In particular, the categorical nature of their complex game state, composed of many entities with different attributes, requires agents able to learn how to compare and prioritize these entities. Moreover, this complexity often leads to agents that overfit to states seen during training and that are unable to generalize in the face of design changes made during development. In this paper we propose two network architectures which, when combined with a procedural loot generation system, are able to better handle complex categorical state spaces and to mitigate the need for retraining forced by design decisions. The first is based on a dense embedding of the categorical input space that abstracts the discrete observation model and renders trained agents more able to generalize. The second proposed architecture is more general and is based on a Transformer network able to reason relationally about input and input attributes. Our experimental evaluation demonstrates that new agents have better adaptation capacity with respect to a baseline architecture, making this framework more robust to dynamic gameplay changes during development. Based on the results shown in this paper, we believe that these solutions represent a step forward towards making DRL more accessible to the gaming industry.
Deep Object-Centric Policies for Autonomous Driving
While learning visuomotor skills in an end-to-end manner is appealing, deep neural networks are often uninterpretable and fail in surprising ways. For robotics tasks, such as autonomous driving, models that explicitly represent objects may be more robust to new scenes and provide intuitive visualizations. We describe a taxonomy of "object-centric" models which leverage both object instances and end-to-end learning. In the Grand Theft Auto V simulator, we show that object-centric models outperform object-agnostic methods in scenes with other vehicles and pedestrians, even with an imperfect detector. We also demonstrate that our architectures perform well on real-world environments by evaluating on the Berkeley DeepDrive Video dataset, where an object-centric model outperforms object-agnostic models in the low-data regimes.
Comprehensive Benchmarking of YOLOv11 Architectures for Scalable and Granular Peripheral Blood Cell Detection
Manual peripheral blood smear (PBS) analysis is labor intensive and subjective. While deep learning offers a promising alternative, a systematic evaluation of state of the art models such as YOLOv11 for fine grained PBS detection is still lacking. In this work, we make two key contributions. First, we curate a large scale annotated dataset for blood cell detection and classification, comprising 16,891 images across 12 peripheral blood cell (PBC) classes, along with the red blood cell class, all carefully re annotated for object detection tasks. In total, the dataset contains 298,850 annotated cells. Second, we leverage this dataset to conduct a comprehensive evaluation of five YOLOv11 variants (ranging from Nano to XLarge). These models are rigorously benchmarked under two data splitting strategies (70:20:10 and 80:10:10) and systematically assessed using multiple performance criteria, including mean Average Precision (mAP), precision, recall, F1 score, and computational efficiency. Our experiments show that the YOLOv11 Medium variant achieves the best trade off, reaching a mAP@0.5 of 0.934 under the 8:1:1 split. Larger models (Large and XLarge) provide only marginal accuracy gains at substantially higher computational cost. Moreover, the 8:1:1 split consistently outperforms the 7:2:1 split across all models. These findings highlight YOLOv11, particularly the Medium variant, as a highly effective framework for automated, fine grained PBS detection. Beyond benchmarking, our publicly released dataset (github.com/Mohamad-AbouAli/OI-PBC-Dataset) offers a valuable resource to advance research on blood cell detection and classification in hematology.
Deep Learning and Data Augmentation for Detecting Self-Admitted Technical Debt
Self-Admitted Technical Debt (SATD) refers to circumstances where developers use textual artifacts to explain why the existing implementation is not optimal. Past research in detecting SATD has focused on either identifying SATD (classifying SATD items as SATD or not) or categorizing SATD (labeling instances as SATD that pertain to requirement, design, code, test debt, etc.). However, the performance of these approaches remains suboptimal, particularly for specific types of SATD, such as test and requirement debt, primarily due to extremely imbalanced datasets. To address these challenges, we build on earlier research by utilizing BiLSTM architecture for the binary identification of SATD and BERT architecture for categorizing different types of SATD. Despite their effectiveness, both architectures struggle with imbalanced data. Therefore, we employ a large language model data augmentation strategy to mitigate this issue. Furthermore, we introduce a two-step approach to identify and categorize SATD across various datasets derived from different artifacts. Our contributions include providing a balanced dataset for future SATD researchers and demonstrating that our approach significantly improves SATD identification and categorization performance compared to baseline methods.
DLSIA: Deep Learning for Scientific Image Analysis
We introduce DLSIA (Deep Learning for Scientific Image Analysis), a Python-based machine learning library that empowers scientists and researchers across diverse scientific domains with a range of customizable convolutional neural network (CNN) architectures for a wide variety of tasks in image analysis to be used in downstream data processing, or for experiment-in-the-loop computing scenarios. DLSIA features easy-to-use architectures such as autoencoders, tunable U-Nets, and parameter-lean mixed-scale dense networks (MSDNets). Additionally, we introduce sparse mixed-scale networks (SMSNets), generated using random graphs and sparse connections. As experimental data continues to grow in scale and complexity, DLSIA provides accessible CNN construction and abstracts CNN complexities, allowing scientists to tailor their machine learning approaches, accelerate discoveries, foster interdisciplinary collaboration, and advance research in scientific image analysis.
The Devil is in the Upsampling: Architectural Decisions Made Simpler for Denoising with Deep Image Prior
Deep Image Prior (DIP) shows that some network architectures naturally bias towards smooth images and resist noises, a phenomenon known as spectral bias. Image denoising is an immediate application of this property. Although DIP has removed the requirement of large training sets, it still presents two practical challenges for denoising: architectural design and noise-fitting, which are often intertwined. Existing methods mostly handcraft or search for the architecture from a large design space, due to the lack of understanding on how the architectural choice corresponds to the image. In this study, we analyze from a frequency perspective to demonstrate that the unlearnt upsampling is the main driving force behind the denoising phenomenon in DIP. This finding then leads to strategies for estimating a suitable architecture for every image without a laborious search. Extensive experiments show that the estimated architectures denoise and preserve the textural details better than current methods with up to 95% fewer parameters. The under-parameterized nature also makes them especially robust to a higher level of noise.
Deep Industrial Image Anomaly Detection: A Survey
The recent rapid development of deep learning has laid a milestone in industrial Image Anomaly Detection (IAD). In this paper, we provide a comprehensive review of deep learning-based image anomaly detection techniques, from the perspectives of neural network architectures, levels of supervision, loss functions, metrics and datasets. In addition, we extract the new setting from industrial manufacturing and review the current IAD approaches under our proposed our new setting. Moreover, we highlight several opening challenges for image anomaly detection. The merits and downsides of representative network architectures under varying supervision are discussed. Finally, we summarize the research findings and point out future research directions. More resources are available at https://github.com/M-3LAB/awesome-industrial-anomaly-detection.
Multimodal Deep Learning
This book is the result of a seminar in which we reviewed multimodal approaches and attempted to create a solid overview of the field, starting with the current state-of-the-art approaches in the two subfields of Deep Learning individually. Further, modeling frameworks are discussed where one modality is transformed into the other, as well as models in which one modality is utilized to enhance representation learning for the other. To conclude the second part, architectures with a focus on handling both modalities simultaneously are introduced. Finally, we also cover other modalities as well as general-purpose multi-modal models, which are able to handle different tasks on different modalities within one unified architecture. One interesting application (Generative Art) eventually caps off this booklet.
Compositional Deep Learning
Neural networks have become an increasingly popular tool for solving many real-world problems. They are a general framework for differentiable optimization which includes many other machine learning approaches as special cases. In this thesis we build a category-theoretic formalism around a class of neural networks exemplified by CycleGAN. CycleGAN is a collection of neural networks, closed under composition, whose inductive bias is increased by enforcing composition invariants, i.e. cycle-consistencies. Inspired by Functorial Data Migration, we specify the interconnection of these networks using a categorical schema, and network instances as set-valued functors on this schema. We also frame neural network architectures, datasets, models, and a number of other concepts in a categorical setting and thus show a special class of functors, rather than functions, can be learned using gradient descent. We use the category-theoretic framework to conceive a novel neural network architecture whose goal is to learn the task of object insertion and object deletion in images with unpaired data. We test the architecture on three different datasets and obtain promising results.
Deep Learning with Coherent Nanophotonic Circuits
Artificial Neural Networks are computational network models inspired by signal processing in the brain. These models have dramatically improved the performance of many learning tasks, including speech and object recognition. However, today's computing hardware is inefficient at implementing neural networks, in large part because much of it was designed for von Neumann computing schemes. Significant effort has been made to develop electronic architectures tuned to implement artificial neural networks that improve upon both computational speed and energy efficiency. Here, we propose a new architecture for a fully-optical neural network that, using unique advantages of optics, promises a computational speed enhancement of at least two orders of magnitude over the state-of-the-art and three orders of magnitude in power efficiency for conventional learning tasks. We experimentally demonstrate essential parts of our architecture using a programmable nanophotonic processor.
GenTron: Delving Deep into Diffusion Transformers for Image and Video Generation
In this study, we explore Transformer-based diffusion models for image and video generation. Despite the dominance of Transformer architectures in various fields due to their flexibility and scalability, the visual generative domain primarily utilizes CNN-based U-Net architectures, particularly in diffusion-based models. We introduce GenTron, a family of Generative models employing Transformer-based diffusion, to address this gap. Our initial step was to adapt Diffusion Transformers (DiTs) from class to text conditioning, a process involving thorough empirical exploration of the conditioning mechanism. We then scale GenTron from approximately 900M to over 3B parameters, observing significant improvements in visual quality. Furthermore, we extend GenTron to text-to-video generation, incorporating novel motion-free guidance to enhance video quality. In human evaluations against SDXL, GenTron achieves a 51.1% win rate in visual quality (with a 19.8% draw rate), and a 42.3% win rate in text alignment (with a 42.9% draw rate). GenTron also excels in the T2I-CompBench, underscoring its strengths in compositional generation. We believe this work will provide meaningful insights and serve as a valuable reference for future research.
Deep Speech 2: End-to-End Speech Recognition in English and Mandarin
We show that an end-to-end deep learning approach can be used to recognize either English or Mandarin Chinese speech--two vastly different languages. Because it replaces entire pipelines of hand-engineered components with neural networks, end-to-end learning allows us to handle a diverse variety of speech including noisy environments, accents and different languages. Key to our approach is our application of HPC techniques, resulting in a 7x speedup over our previous system. Because of this efficiency, experiments that previously took weeks now run in days. This enables us to iterate more quickly to identify superior architectures and algorithms. As a result, in several cases, our system is competitive with the transcription of human workers when benchmarked on standard datasets. Finally, using a technique called Batch Dispatch with GPUs in the data center, we show that our system can be inexpensively deployed in an online setting, delivering low latency when serving users at scale.
Principled Approaches for Extending Neural Architectures to Function Spaces for Operator Learning
A wide range of scientific problems, such as those described by continuous-time dynamical systems and partial differential equations (PDEs), are naturally formulated on function spaces. While function spaces are typically infinite-dimensional, deep learning has predominantly advanced through applications in computer vision and natural language processing that focus on mappings between finite-dimensional spaces. Such fundamental disparities in the nature of the data have limited neural networks from achieving a comparable level of success in scientific applications as seen in other fields. Neural operators are a principled way to generalize neural networks to mappings between function spaces, offering a pathway to replicate deep learning's transformative impact on scientific problems. For instance, neural operators can learn solution operators for entire classes of PDEs, e.g., physical systems with different boundary conditions, coefficient functions, and geometries. A key factor in deep learning's success has been the careful engineering of neural architectures through extensive empirical testing. Translating these neural architectures into neural operators allows operator learning to enjoy these same empirical optimizations. However, prior neural operator architectures have often been introduced as standalone models, not directly derived as extensions of existing neural network architectures. In this paper, we identify and distill the key principles for constructing practical implementations of mappings between infinite-dimensional function spaces. Using these principles, we propose a recipe for converting several popular neural architectures into neural operators with minimal modifications. This paper aims to guide practitioners through this process and details the steps to make neural operators work in practice. Our code can be found at https://github.com/neuraloperator/NNs-to-NOs
An inclusive review on deep learning techniques and their scope in handwriting recognition
Deep learning expresses a category of machine learning algorithms that have the capability to combine raw inputs into intermediate features layers. These deep learning algorithms have demonstrated great results in different fields. Deep learning has particularly witnessed for a great achievement of human level performance across a number of domains in computer vision and pattern recognition. For the achievement of state-of-the-art performances in diverse domains, the deep learning used different architectures and these architectures used activation functions to perform various computations between hidden and output layers of any architecture. This paper presents a survey on the existing studies of deep learning in handwriting recognition field. Even though the recent progress indicates that the deep learning methods has provided valuable means for speeding up or proving accurate results in handwriting recognition, but following from the extensive literature survey, the present study finds that the deep learning has yet to revolutionize more and has to resolve many of the most pressing challenges in this field, but promising advances have been made on the prior state of the art. Additionally, an inadequate availability of labelled data to train presents problems in this domain. Nevertheless, the present handwriting recognition survey foresees deep learning enabling changes at both bench and bedside with the potential to transform several domains as image processing, speech recognition, computer vision, machine translation, robotics and control, medical imaging, medical information processing, bio-informatics, natural language processing, cyber security, and many others.
Pathologies of Predictive Diversity in Deep Ensembles
Classic results establish that encouraging predictive diversity improves performance in ensembles of low-capacity models, e.g. through bagging or boosting. Here we demonstrate that these intuitions do not apply to high-capacity neural network ensembles (deep ensembles), and in fact the opposite is often true. In a large scale study of nearly 600 neural network classification ensembles, we examine a variety of interventions that trade off component model performance for predictive diversity. While such interventions can improve the performance of small neural network ensembles (in line with standard intuitions), they harm the performance of the large neural network ensembles most often used in practice. Surprisingly, we also find that discouraging predictive diversity is often benign in large-network ensembles, fully inverting standard intuitions. Even when diversity-promoting interventions do not sacrifice component model performance (e.g. using heterogeneous architectures and training paradigms), we observe an opportunity cost associated with pursuing increased predictive diversity. Examining over 1000 ensembles, we observe that the performance benefits of diverse architectures/training procedures are easily dwarfed by the benefits of simply using higher-capacity models, despite the fact that such higher capacity models often yield significantly less predictive diversity. Overall, our findings demonstrate that standard intuitions around predictive diversity, originally developed for low-capacity ensembles, do not directly apply to modern high-capacity deep ensembles. This work clarifies fundamental challenges to the goal of improving deep ensembles by making them more diverse, while suggesting an alternative path: simply forming ensembles from ever more powerful (and less diverse) component models.
Taming Landau level mixing in fractional quantum Hall states with deep learning
Strong correlation brings a rich array of emergent phenomena, as well as a daunting challenge to theoretical physics study. In condensed matter physics, the fractional quantum Hall effect is a prominent example of strong correlation, with Landau level mixing being one of the most challenging aspects to address using traditional computational methods. Deep learning real-space neural network wavefunction methods have emerged as promising architectures to describe electron correlations in molecules and materials, but their power has not been fully tested for exotic quantum states. In this work, we employ real-space neural network wavefunction techniques to investigate fractional quantum Hall systems. On both 1/3 and 2/5 filling systems, we achieve energies consistently lower than exact diagonalization results which only consider the lowest Landau level. We also demonstrate that the real-space neural network wavefunction can naturally capture the extent of Landau level mixing up to a very high level, overcoming the limitations of traditional methods. Our work underscores the potential of neural networks for future studies of strongly correlated systems and opens new avenues for exploring the rich physics of the fractional quantum Hall effect.
Data Augmentations in Deep Weight Spaces
Learning in weight spaces, where neural networks process the weights of other deep neural networks, has emerged as a promising research direction with applications in various fields, from analyzing and editing neural fields and implicit neural representations, to network pruning and quantization. Recent works designed architectures for effective learning in that space, which takes into account its unique, permutation-equivariant, structure. Unfortunately, so far these architectures suffer from severe overfitting and were shown to benefit from large datasets. This poses a significant challenge because generating data for this learning setup is laborious and time-consuming since each data sample is a full set of network weights that has to be trained. In this paper, we address this difficulty by investigating data augmentations for weight spaces, a set of techniques that enable generating new data examples on the fly without having to train additional input weight space elements. We first review several recently proposed data augmentation schemes %that were proposed recently and divide them into categories. We then introduce a novel augmentation scheme based on the Mixup method. We evaluate the performance of these techniques on existing benchmarks as well as new benchmarks we generate, which can be valuable for future studies.
Make Deep Networks Shallow Again
Deep neural networks have a good success record and are thus viewed as the best architecture choice for complex applications. Their main shortcoming has been, for a long time, the vanishing gradient which prevented the numerical optimization algorithms from acceptable convergence. A breakthrough has been achieved by the concept of residual connections -- an identity mapping parallel to a conventional layer. This concept is applicable to stacks of layers of the same dimension and substantially alleviates the vanishing gradient problem. A stack of residual connection layers can be expressed as an expansion of terms similar to the Taylor expansion. This expansion suggests the possibility of truncating the higher-order terms and receiving an architecture consisting of a single broad layer composed of all initially stacked layers in parallel. In other words, a sequential deep architecture is substituted by a parallel shallow one. Prompted by this theory, we investigated the performance capabilities of the parallel architecture in comparison to the sequential one. The computer vision datasets MNIST and CIFAR10 were used to train both architectures for a total of 6912 combinations of varying numbers of convolutional layers, numbers of filters, kernel sizes, and other meta parameters. Our findings demonstrate a surprising equivalence between the deep (sequential) and shallow (parallel) architectures. Both layouts produced similar results in terms of training and validation set loss. This discovery implies that a wide, shallow architecture can potentially replace a deep network without sacrificing performance. Such substitution has the potential to simplify network architectures, improve optimization efficiency, and accelerate the training process.
Modular Deep Learning
Transfer learning has recently become the dominant paradigm of machine learning. Pre-trained models fine-tuned for downstream tasks achieve better performance with fewer labelled examples. Nonetheless, it remains unclear how to develop models that specialise towards multiple tasks without incurring negative interference and that generalise systematically to non-identically distributed tasks. Modular deep learning has emerged as a promising solution to these challenges. In this framework, units of computation are often implemented as autonomous parameter-efficient modules. Information is conditionally routed to a subset of modules and subsequently aggregated. These properties enable positive transfer and systematic generalisation by separating computation from routing and updating modules locally. We offer a survey of modular architectures, providing a unified view over several threads of research that evolved independently in the scientific literature. Moreover, we explore various additional purposes of modularity, including scaling language models, causal inference, programme induction, and planning in reinforcement learning. Finally, we report various concrete applications where modularity has been successfully deployed such as cross-lingual and cross-modal knowledge transfer. Related talks and projects to this survey, are available at https://www.modulardeeplearning.com/.
Deep Learning-based galaxy image deconvolution
With the onset of large-scale astronomical surveys capturing millions of images, there is an increasing need to develop fast and accurate deconvolution algorithms that generalize well to different images. A powerful and accessible deconvolution method would allow for the reconstruction of a cleaner estimation of the sky. The deconvolved images would be helpful to perform photometric measurements to help make progress in the fields of galaxy formation and evolution. We propose a new deconvolution method based on the Learnlet transform. Eventually, we investigate and compare the performance of different Unet architectures and Learnlet for image deconvolution in the astrophysical domain by following a two-step approach: a Tikhonov deconvolution with a closed-form solution, followed by post-processing with a neural network. To generate our training dataset, we extract HST cutouts from the CANDELS survey in the F606W filter (V-band) and corrupt these images to simulate their blurred-noisy versions. Our numerical results based on these simulations show a detailed comparison between the considered methods for different noise levels.
Simple and Efficient Architectures for Semantic Segmentation
Though the state-of-the architectures for semantic segmentation, such as HRNet, demonstrate impressive accuracy, the complexity arising from their salient design choices hinders a range of model acceleration tools, and further they make use of operations that are inefficient on current hardware. This paper demonstrates that a simple encoder-decoder architecture with a ResNet-like backbone and a small multi-scale head, performs on-par or better than complex semantic segmentation architectures such as HRNet, FANet and DDRNets. Naively applying deep backbones designed for Image Classification to the task of Semantic Segmentation leads to sub-par results, owing to a much smaller effective receptive field of these backbones. Implicit among the various design choices put forth in works like HRNet, DDRNet, and FANet are networks with a large effective receptive field. It is natural to ask if a simple encoder-decoder architecture would compare favorably if comprised of backbones that have a larger effective receptive field, though without the use of inefficient operations like dilated convolutions. We show that with minor and inexpensive modifications to ResNets, enlarging the receptive field, very simple and competitive baselines can be created for Semantic Segmentation. We present a family of such simple architectures for desktop as well as mobile targets, which match or exceed the performance of complex models on the Cityscapes dataset. We hope that our work provides simple yet effective baselines for practitioners to develop efficient semantic segmentation models.
Watch your Up-Convolution: CNN Based Generative Deep Neural Networks are Failing to Reproduce Spectral Distributions
Generative convolutional deep neural networks, e.g. popular GAN architectures, are relying on convolution based up-sampling methods to produce non-scalar outputs like images or video sequences. In this paper, we show that common up-sampling methods, i.e. known as up-convolution or transposed convolution, are causing the inability of such models to reproduce spectral distributions of natural training data correctly. This effect is independent of the underlying architecture and we show that it can be used to easily detect generated data like deepfakes with up to 100% accuracy on public benchmarks. To overcome this drawback of current generative models, we propose to add a novel spectral regularization term to the training optimization objective. We show that this approach not only allows to train spectral consistent GANs that are avoiding high frequency errors. Also, we show that a correct approximation of the frequency spectrum has positive effects on the training stability and output quality of generative networks.
MEMO: A Deep Network for Flexible Combination of Episodic Memories
Recent research developing neural network architectures with external memory have often used the benchmark bAbI question and answering dataset which provides a challenging number of tasks requiring reasoning. Here we employed a classic associative inference task from the memory-based reasoning neuroscience literature in order to more carefully probe the reasoning capacity of existing memory-augmented architectures. This task is thought to capture the essence of reasoning -- the appreciation of distant relationships among elements distributed across multiple facts or memories. Surprisingly, we found that current architectures struggle to reason over long distance associations. Similar results were obtained on a more complex task involving finding the shortest path between nodes in a path. We therefore developed MEMO, an architecture endowed with the capacity to reason over longer distances. This was accomplished with the addition of two novel components. First, it introduces a separation between memories (facts) stored in external memory and the items that comprise these facts in external memory. Second, it makes use of an adaptive retrieval mechanism, allowing a variable number of "memory hops" before the answer is produced. MEMO is capable of solving our novel reasoning tasks, as well as match state of the art results in bAbI.
Neural data-to-text generation: A comparison between pipeline and end-to-end architectures
Traditionally, most data-to-text applications have been designed using a modular pipeline architecture, in which non-linguistic input data is converted into natural language through several intermediate transformations. In contrast, recent neural models for data-to-text generation have been proposed as end-to-end approaches, where the non-linguistic input is rendered in natural language with much less explicit intermediate representations in-between. This study introduces a systematic comparison between neural pipeline and end-to-end data-to-text approaches for the generation of text from RDF triples. Both architectures were implemented making use of state-of-the art deep learning methods as the encoder-decoder Gated-Recurrent Units (GRU) and Transformer. Automatic and human evaluations together with a qualitative analysis suggest that having explicit intermediate steps in the generation process results in better texts than the ones generated by end-to-end approaches. Moreover, the pipeline models generalize better to unseen inputs. Data and code are publicly available.
Poly-encoders: Transformer Architectures and Pre-training Strategies for Fast and Accurate Multi-sentence Scoring
The use of deep pre-trained bidirectional transformers has led to remarkable progress in a number of applications (Devlin et al., 2018). For tasks that make pairwise comparisons between sequences, matching a given input with a corresponding label, two approaches are common: Cross-encoders performing full self-attention over the pair and Bi-encoders encoding the pair separately. The former often performs better, but is too slow for practical use. In this work, we develop a new transformer architecture, the Poly-encoder, that learns global rather than token level self-attention features. We perform a detailed comparison of all three approaches, including what pre-training and fine-tuning strategies work best. We show our models achieve state-of-the-art results on three existing tasks; that Poly-encoders are faster than Cross-encoders and more accurate than Bi-encoders; and that the best results are obtained by pre-training on large datasets similar to the downstream tasks.
Deep Representation Learning for Clustering of Health Tweets
Twitter has been a prominent social media platform for mining population-level health data and accurate clustering of health-related tweets into topics is important for extracting relevant health insights. In this work, we propose deep convolutional autoencoders for learning compact representations of health-related tweets, further to be employed in clustering. We compare our method to several conventional tweet representation methods including bag-of-words, term frequency-inverse document frequency, Latent Dirichlet Allocation and Non-negative Matrix Factorization with 3 different clustering algorithms. Our results show that the clustering performance using proposed representation learning scheme significantly outperforms that of conventional methods for all experiments of different number of clusters. In addition, we propose a constraint on the learned representations during the neural network training in order to further enhance the clustering performance. All in all, this study introduces utilization of deep neural network-based architectures, i.e., deep convolutional autoencoders, for learning informative representations of health-related tweets.
Towards Deep Conversational Recommendations
There has been growing interest in using neural networks and deep learning techniques to create dialogue systems. Conversational recommendation is an interesting setting for the scientific exploration of dialogue with natural language as the associated discourse involves goal-driven dialogue that often transforms naturally into more free-form chat. This paper provides two contributions. First, until now there has been no publicly available large-scale dataset consisting of real-world dialogues centered around recommendations. To address this issue and to facilitate our exploration here, we have collected ReDial, a dataset consisting of over 10,000 conversations centered around the theme of providing movie recommendations. We make this data available to the community for further research. Second, we use this dataset to explore multiple facets of conversational recommendations. In particular we explore new neural architectures, mechanisms, and methods suitable for composing conversational recommendation systems. Our dataset allows us to systematically probe model sub-components addressing different parts of the overall problem domain ranging from: sentiment analysis and cold-start recommendation generation to detailed aspects of how natural language is used in this setting in the real world. We combine such sub-components into a full-blown dialogue system and examine its behavior.
Automatic tagging using deep convolutional neural networks
We present a content-based automatic music tagging algorithm using fully convolutional neural networks (FCNs). We evaluate different architectures consisting of 2D convolutional layers and subsampling layers only. In the experiments, we measure the AUC-ROC scores of the architectures with different complexities and input types using the MagnaTagATune dataset, where a 4-layer architecture shows state-of-the-art performance with mel-spectrogram input. Furthermore, we evaluated the performances of the architectures with varying the number of layers on a larger dataset (Million Song Dataset), and found that deeper models outperformed the 4-layer architecture. The experiments show that mel-spectrogram is an effective time-frequency representation for automatic tagging and that more complex models benefit from more training data.
Deep Learning-Based Age Estimation and Gender Deep Learning-Based Age Estimation and Gender Classification for Targeted Advertisement
This paper presents a novel deep learning-based approach for simultaneous age and gender classification from facial images, designed to enhance the effectiveness of targeted advertising campaigns. We propose a custom Convolutional Neural Network (CNN) architecture, optimized for both tasks, which leverages the inherent correlation between age and gender information present in facial features. Unlike existing methods that often treat these tasks independently, our model learns shared representations, leading to improved performance. The network is trained on a large, diverse dataset of facial images, carefully pre-processed to ensure robustness against variations in lighting, pose, and image quality. Our experimental results demonstrate a significant improvement in gender classification accuracy, achieving 95%, and a competitive mean absolute error of 5.77 years for age estimation. Critically, we analyze the performance across different age groups, identifying specific challenges in accurately estimating the age of younger individuals. This analysis reveals the need for targeted data augmentation and model refinement to address these biases. Furthermore, we explore the impact of different CNN architectures and hyperparameter settings on the overall performance, providing valuable insights for future research.
A Deep Learning Model for Coronary Artery Segmentation and Quantitative Stenosis Detection in Angiographic Images
Coronary artery disease (CAD) is a leading cause of cardiovascular-related mortality, and accurate stenosis detection is crucial for effective clinical decision-making. Coronary angiography remains the gold standard for diagnosing CAD, but manual analysis of angiograms is prone to errors and subjectivity. This study aims to develop a deep learning-based approach for the automatic segmentation of coronary arteries from angiographic images and the quantitative detection of stenosis, thereby improving the accuracy and efficiency of CAD diagnosis. We propose a novel deep learning-based method for the automatic segmentation of coronary arteries in angiographic images, coupled with a dynamic cohort method for stenosis detection. The segmentation model combines the MedSAM and VM-UNet architectures to achieve high-performance results. After segmentation, the vascular centerline is extracted, vessel diameter is computed, and the degree of stenosis is measured with high precision, enabling accurate identification of arterial stenosis. On the mixed dataset (including the ARCADE, DCA1, and GH datasets), the model achieved an average IoU of 0.6308, with sensitivity and specificity of 0.9772 and 0.9903, respectively. On the ARCADE dataset, the average IoU was 0.6303, with sensitivity of 0.9832 and specificity of 0.9933. Additionally, the stenosis detection algorithm achieved a true positive rate (TPR) of 0.5867 and a positive predictive value (PPV) of 0.5911, demonstrating the effectiveness of our model in analyzing coronary angiography images. SAM-VMNet offers a promising tool for the automated segmentation and detection of coronary artery stenosis. The model's high accuracy and robustness provide significant clinical value for the early diagnosis and treatment planning of CAD. The code and examples are available at https://github.com/qimingfan10/SAM-VMNet.
Stabilizing Deep Q-Learning with ConvNets and Vision Transformers under Data Augmentation
While agents trained by Reinforcement Learning (RL) can solve increasingly challenging tasks directly from visual observations, generalizing learned skills to novel environments remains very challenging. Extensive use of data augmentation is a promising technique for improving generalization in RL, but it is often found to decrease sample efficiency and can even lead to divergence. In this paper, we investigate causes of instability when using data augmentation in common off-policy RL algorithms. We identify two problems, both rooted in high-variance Q-targets. Based on our findings, we propose a simple yet effective technique for stabilizing this class of algorithms under augmentation. We perform extensive empirical evaluation of image-based RL using both ConvNets and Vision Transformers (ViT) on a family of benchmarks based on DeepMind Control Suite, as well as in robotic manipulation tasks. Our method greatly improves stability and sample efficiency of ConvNets under augmentation, and achieves generalization results competitive with state-of-the-art methods for image-based RL in environments with unseen visuals. We further show that our method scales to RL with ViT-based architectures, and that data augmentation may be especially important in this setting.
LOss-Based SensiTivity rEgulaRization: towards deep sparse neural networks
LOBSTER (LOss-Based SensiTivity rEgulaRization) is a method for training neural networks having a sparse topology. Let the sensitivity of a network parameter be the variation of the loss function with respect to the variation of the parameter. Parameters with low sensitivity, i.e. having little impact on the loss when perturbed, are shrunk and then pruned to sparsify the network. Our method allows to train a network from scratch, i.e. without preliminary learning or rewinding. Experiments on multiple architectures and datasets show competitive compression ratios with minimal computational overhead.
Multi-column Deep Neural Networks for Image Classification
Traditional methods of computer vision and machine learning cannot match human performance on tasks such as the recognition of handwritten digits or traffic signs. Our biologically plausible deep artificial neural network architectures can. Small (often minimal) receptive fields of convolutional winner-take-all neurons yield large network depth, resulting in roughly as many sparsely connected neural layers as found in mammals between retina and visual cortex. Only winner neurons are trained. Several deep neural columns become experts on inputs preprocessed in different ways; their predictions are averaged. Graphics cards allow for fast training. On the very competitive MNIST handwriting benchmark, our method is the first to achieve near-human performance. On a traffic sign recognition benchmark it outperforms humans by a factor of two. We also improve the state-of-the-art on a plethora of common image classification benchmarks.
Recurrent Deep Differentiable Logic Gate Networks
While differentiable logic gates have shown promise in feedforward networks, their application to sequential modeling remains unexplored. This paper presents the first implementation of Recurrent Deep Differentiable Logic Gate Networks (RDDLGN), combining Boolean operations with recurrent architectures for sequence-to-sequence learning. Evaluated on WMT'14 English-German translation, RDDLGN achieves 5.00 BLEU and 30.9\% accuracy during training, approaching GRU performance (5.41 BLEU) and graceful degradation (4.39 BLEU) during inference. This work establishes recurrent logic-based neural computation as viable, opening research directions for FPGA acceleration in sequential modeling and other recursive network architectures.
DiCoDe: Diffusion-Compressed Deep Tokens for Autoregressive Video Generation with Language Models
Videos are inherently temporal sequences by their very nature. In this work, we explore the potential of modeling videos in a chronological and scalable manner with autoregressive (AR) language models, inspired by their success in natural language processing. We introduce DiCoDe, a novel approach that leverages Diffusion-Compressed Deep Tokens to generate videos with a language model in an autoregressive manner. Unlike existing methods that employ low-level representations with limited compression rates, DiCoDe utilizes deep tokens with a considerable compression rate (a 1000x reduction in token count). This significant compression is made possible by a tokenizer trained through leveraging the prior knowledge of video diffusion models. Deep tokens enable DiCoDe to employ vanilla AR language models for video generation, akin to translating one visual "language" into another. By treating videos as temporal sequences, DiCoDe fully harnesses the capabilities of language models for autoregressive generation. DiCoDe is scalable using readily available AR architectures, and is capable of generating videos ranging from a few seconds to one minute using only 4 A100 GPUs for training. We evaluate DiCoDe both quantitatively and qualitatively, demonstrating that it performs comparably to existing methods in terms of quality while ensuring efficient training. To showcase its scalability, we release a series of DiCoDe configurations with varying parameter sizes and observe a consistent improvement in performance as the model size increases from 100M to 3B. We believe that DiCoDe's exploration in academia represents a promising initial step toward scalable video modeling with AR language models, paving the way for the development of larger and more powerful video generation models.
Deep Learning for Speaker Identification: Architectural Insights from AB-1 Corpus Analysis and Performance Evaluation
In the fields of security systems, forensic investigations, and personalized services, the importance of speech as a fundamental human input outweighs text-based interactions. This research delves deeply into the complex field of Speaker Identification (SID), examining its essential components and emphasising Mel Spectrogram and Mel Frequency Cepstral Coefficients (MFCC) for feature extraction. Moreover, this study evaluates six slightly distinct model architectures using extensive analysis to evaluate their performance, with hyperparameter tuning applied to the best-performing model. This work performs a linguistic analysis to verify accent and gender accuracy, in addition to bias evaluation within the AB-1 Corpus dataset.
Deep Learning and genetic algorithms for cosmological Bayesian inference speed-up
In this paper, we present a novel approach to accelerate the Bayesian inference process, focusing specifically on the nested sampling algorithms. Bayesian inference plays a crucial role in cosmological parameter estimation, providing a robust framework for extracting theoretical insights from observational data. However, its computational demands can be substantial, primarily due to the need for numerous likelihood function evaluations. Our proposed method utilizes the power of deep learning, employing feedforward neural networks to approximate the likelihood function dynamically during the Bayesian inference process. Unlike traditional approaches, our method trains neural networks on-the-fly using the current set of live points as training data, without the need for pre-training. This flexibility enables adaptation to various theoretical models and datasets. We perform simple hyperparameter optimization using genetic algorithms to suggest initial neural network architectures for learning each likelihood function. Once sufficient accuracy is achieved, the neural network replaces the original likelihood function. The implementation integrates with nested sampling algorithms and has been thoroughly evaluated using both simple cosmological dark energy models and diverse observational datasets. Additionally, we explore the potential of genetic algorithms for generating initial live points within nested sampling inference, opening up new avenues for enhancing the efficiency and effectiveness of Bayesian inference methods.
Securing Social Spaces: Harnessing Deep Learning to Eradicate Cyberbullying
In today's digital world, cyberbullying is a serious problem that can harm the mental and physical health of people who use social media. This paper explains just how serious cyberbullying is and how it really affects indi-viduals exposed to it. It also stresses how important it is to find better ways to detect cyberbullying so that online spaces can be safer. Plus, it talks about how making more accurate tools to spot cyberbullying will be really helpful in the future. Our paper introduces a deep learning-based ap-proach, primarily employing BERT and BiLSTM architectures, to effective-ly address cyberbullying. This approach is designed to analyse large vol-umes of posts and predict potential instances of cyberbullying in online spaces. Our results demonstrate the superiority of the hateBERT model, an extension of BERT focused on hate speech detection, among the five mod-els, achieving an accuracy rate of 89.16%. This research is a significant con-tribution to "Computational Intelligence for Social Transformation," prom-ising a safer and more inclusive digital landscape.
MWaste: A Deep Learning Approach to Manage Household Waste
Computer vision methods have shown to be effective in classifying garbage into recycling categories for waste processing, existing methods are costly, imprecise, and unclear. To tackle this issue, we introduce MWaste, a mobile application that uses computer vision and deep learning techniques to classify waste materials as trash, plastic, paper, metal, glass or cardboard. Its effectiveness was tested on various neural network architectures and real-world images, achieving an average precision of 92\% on the test set. This app can help combat climate change by enabling efficient waste processing and reducing the generation of greenhouse gases caused by incorrect waste disposal.
Equivariant Differentially Private Deep Learning: Why DP-SGD Needs Sparser Models
Differentially Private Stochastic Gradient Descent (DP-SGD) limits the amount of private information deep learning models can memorize during training. This is achieved by clipping and adding noise to the model's gradients, and thus networks with more parameters require proportionally stronger perturbation. As a result, large models have difficulties learning useful information, rendering training with DP-SGD exceedingly difficult on more challenging training tasks. Recent research has focused on combating this challenge through training adaptations such as heavy data augmentation and large batch sizes. However, these techniques further increase the computational overhead of DP-SGD and reduce its practical applicability. In this work, we propose using the principle of sparse model design to solve precisely such complex tasks with fewer parameters, higher accuracy, and in less time, thus serving as a promising direction for DP-SGD. We achieve such sparsity by design by introducing equivariant convolutional networks for model training with Differential Privacy. Using equivariant networks, we show that small and efficient architecture design can outperform current state-of-the-art models with substantially lower computational requirements. On CIFAR-10, we achieve an increase of up to 9% in accuracy while reducing the computation time by more than 85%. Our results are a step towards efficient model architectures that make optimal use of their parameters and bridge the privacy-utility gap between private and non-private deep learning for computer vision.
FP8 Formats for Deep Learning
FP8 is a natural progression for accelerating deep learning training inference beyond the 16-bit formats common in modern processors. In this paper we propose an 8-bit floating point (FP8) binary interchange format consisting of two encodings - E4M3 (4-bit exponent and 3-bit mantissa) and E5M2 (5-bit exponent and 2-bit mantissa). While E5M2 follows IEEE 754 conventions for representatio of special values, E4M3's dynamic range is extended by not representing infinities and having only one mantissa bit-pattern for NaNs. We demonstrate the efficacy of the FP8 format on a variety of image and language tasks, effectively matching the result quality achieved by 16-bit training sessions. Our study covers the main modern neural network architectures - CNNs, RNNs, and Transformer-based models, leaving all the hyperparameters unchanged from the 16-bit baseline training sessions. Our training experiments include large, up to 175B parameter, language models. We also examine FP8 post-training-quantization of language models trained using 16-bit formats that resisted fixed point int8 quantization.
Accelerating Deep Learning Model Inference on Arm CPUs with Ultra-Low Bit Quantization and Runtime
Deep Learning has been one of the most disruptive technological advancements in recent times. The high performance of deep learning models comes at the expense of high computational, storage and power requirements. Sensing the immediate need for accelerating and compressing these models to improve on-device performance, we introduce Deeplite Neutrino for production-ready optimization of the models and Deeplite Runtime for deployment of ultra-low bit quantized models on Arm-based platforms. We implement low-level quantization kernels for Armv7 and Armv8 architectures enabling deployment on the vast array of 32-bit and 64-bit Arm-based devices. With efficient implementations using vectorization, parallelization, and tiling, we realize speedups of up to 2x and 2.2x compared to TensorFlow Lite with XNNPACK backend on classification and detection models, respectively. We also achieve significant speedups of up to 5x and 3.2x compared to ONNX Runtime for classification and detection models, respectively.
MEDUSA: Multi-scale Encoder-Decoder Self-Attention Deep Neural Network Architecture for Medical Image Analysis
Medical image analysis continues to hold interesting challenges given the subtle characteristics of certain diseases and the significant overlap in appearance between diseases. In this work, we explore the concept of self-attention for tackling such subtleties in and between diseases. To this end, we introduce MEDUSA, a multi-scale encoder-decoder self-attention mechanism tailored for medical image analysis. While self-attention deep convolutional neural network architectures in existing literature center around the notion of multiple isolated lightweight attention mechanisms with limited individual capacities being incorporated at different points in the network architecture, MEDUSA takes a significant departure from this notion by possessing a single, unified self-attention mechanism with significantly higher capacity with multiple attention heads feeding into different scales in the network architecture. To the best of the authors' knowledge, this is the first "single body, multi-scale heads" realization of self-attention and enables explicit global context amongst selective attention at different levels of representational abstractions while still enabling differing local attention context at individual levels of abstractions. With MEDUSA, we obtain state-of-the-art performance on multiple challenging medical image analysis benchmarks including COVIDx, RSNA RICORD, and RSNA Pneumonia Challenge when compared to previous work. Our MEDUSA model is publicly available.
Multimodal Breast Lesion Classification Using Cross-Attention Deep Networks
Accurate breast lesion risk estimation can significantly reduce unnecessary biopsies and help doctors decide optimal treatment plans. Most existing computer-aided systems rely solely on mammogram features to classify breast lesions. While this approach is convenient, it does not fully exploit useful information in clinical reports to achieve the optimal performance. Would clinical features significantly improve breast lesion classification compared to using mammograms alone? How to handle missing clinical information caused by variation in medical practice? What is the best way to combine mammograms and clinical features? There is a compelling need for a systematic study to address these fundamental questions. This paper investigates several multimodal deep networks based on feature concatenation, cross-attention, and co-attention to combine mammograms and categorical clinical variables. We show that the proposed architectures significantly increase the lesion classification performance (average area under ROC curves from 0.89 to 0.94). We also evaluate the model when clinical variables are missing.
DeepWaste: Applying Deep Learning to Waste Classification for a Sustainable Planet
Accurate waste disposal, at the point of disposal, is crucial to fighting climate change. When materials that could be recycled or composted get diverted into landfills, they cause the emission of potent greenhouse gases such as methane. Current attempts to reduce erroneous waste disposal are expensive, inaccurate, and confusing. In this work, we propose DeepWaste, an easy-to-use mobile app, that utilizes highly optimized deep learning techniques to provide users instantaneous waste classification into trash, recycling, and compost. We experiment with several convolution neural network architectures to detect and classify waste items. Our best model, a deep learning residual neural network with 50 layers, achieves an average precision of 0.881 on the test set. We demonstrate the performance and efficiency of our app on a set of real-world images.
Local Scale Equivariance with Latent Deep Equilibrium Canonicalizer
Scale variation is a fundamental challenge in computer vision. Objects of the same class can have different sizes, and their perceived size is further affected by the distance from the camera. These variations are local to the objects, i.e., different object sizes may change differently within the same image. To effectively handle scale variations, we present a deep equilibrium canonicalizer (DEC) to improve the local scale equivariance of a model. DEC can be easily incorporated into existing network architectures and can be adapted to a pre-trained model. Notably, we show that on the competitive ImageNet benchmark, DEC improves both model performance and local scale consistency across four popular pre-trained deep-nets, e.g., ViT, DeiT, Swin, and BEiT. Our code is available at https://github.com/ashiq24/local-scale-equivariance.
A Comprehensive Survey of Deep Research: Systems, Methodologies, and Applications
This survey examines the rapidly evolving field of Deep Research systems -- AI-powered applications that automate complex research workflows through the integration of large language models, advanced information retrieval, and autonomous reasoning capabilities. We analyze more than 80 commercial and non-commercial implementations that have emerged since 2023, including OpenAI/Deep Research, Gemini/Deep Research, Perplexity/Deep Research, and numerous open-source alternatives. Through comprehensive examination, we propose a novel hierarchical taxonomy that categorizes systems according to four fundamental technical dimensions: foundation models and reasoning engines, tool utilization and environmental interaction, task planning and execution control, and knowledge synthesis and output generation. We explore the architectural patterns, implementation approaches, and domain-specific adaptations that characterize these systems across academic, scientific, business, and educational applications. Our analysis reveals both the significant capabilities of current implementations and the technical and ethical challenges they present regarding information accuracy, privacy, intellectual property, and accessibility. The survey concludes by identifying promising research directions in advanced reasoning architectures, multimodal integration, domain specialization, human-AI collaboration, and ecosystem standardization that will likely shape the future evolution of this transformative technology. By providing a comprehensive framework for understanding Deep Research systems, this survey contributes to both the theoretical understanding of AI-augmented knowledge work and the practical development of more capable, responsible, and accessible research technologies. The paper resources can be viewed at https://github.com/scienceaix/deepresearch.
Blockwise Parallel Decoding for Deep Autoregressive Models
Deep autoregressive sequence-to-sequence models have demonstrated impressive performance across a wide variety of tasks in recent years. While common architecture classes such as recurrent, convolutional, and self-attention networks make different trade-offs between the amount of computation needed per layer and the length of the critical path at training time, generation still remains an inherently sequential process. To overcome this limitation, we propose a novel blockwise parallel decoding scheme in which we make predictions for multiple time steps in parallel then back off to the longest prefix validated by a scoring model. This allows for substantial theoretical improvements in generation speed when applied to architectures that can process output sequences in parallel. We verify our approach empirically through a series of experiments using state-of-the-art self-attention models for machine translation and image super-resolution, achieving iteration reductions of up to 2x over a baseline greedy decoder with no loss in quality, or up to 7x in exchange for a slight decrease in performance. In terms of wall-clock time, our fastest models exhibit real-time speedups of up to 4x over standard greedy decoding.
Deep Learning Model Security: Threats and Defenses
Deep learning has transformed AI applications but faces critical security challenges, including adversarial attacks, data poisoning, model theft, and privacy leakage. This survey examines these vulnerabilities, detailing their mechanisms and impact on model integrity and confidentiality. Practical implementations, including adversarial examples, label flipping, and backdoor attacks, are explored alongside defenses such as adversarial training, differential privacy, and federated learning, highlighting their strengths and limitations. Advanced methods like contrastive and self-supervised learning are presented for enhancing robustness. The survey concludes with future directions, emphasizing automated defenses, zero-trust architectures, and the security challenges of large AI models. A balanced approach to performance and security is essential for developing reliable deep learning systems.
Arabic Handwritten Text for Person Biometric Identification: A Deep Learning Approach
This study thoroughly investigates how well deep learning models can recognize Arabic handwritten text for person biometric identification. It compares three advanced architectures -- ResNet50, MobileNetV2, and EfficientNetB7 -- using three widely recognized datasets: AHAWP, Khatt, and LAMIS-MSHD. Results show that EfficientNetB7 outperforms the others, achieving test accuracies of 98.57\%, 99.15\%, and 99.79\% on AHAWP, Khatt, and LAMIS-MSHD datasets, respectively. EfficientNetB7's exceptional performance is credited to its innovative techniques, including compound scaling, depth-wise separable convolutions, and squeeze-and-excitation blocks. These features allow the model to extract more abstract and distinctive features from handwritten text images. The study's findings hold significant implications for enhancing identity verification and authentication systems, highlighting the potential of deep learning in Arabic handwritten text recognition for person biometric identification.
Generative Discovery of Novel Chemical Designs using Diffusion Modeling and Transformer Deep Neural Networks with Application to Deep Eutectic Solvents
We report a series of deep learning models to solve complex forward and inverse design problems in molecular modeling and design. Using both diffusion models inspired by nonequilibrium thermodynamics and attention-based transformer architectures, we demonstrate a flexible framework to capture complex chemical structures. First trained on the QM9 dataset and a series of quantum mechanical properties (e.g. homo, lumo, free energy, heat capacity, etc.), we then generalize the model to study and design key properties of deep eutectic solvents. In addition to separate forward and inverse models, we also report an integrated fully prompt-based multi-task generative pretrained transformer model that solves multiple forward, inverse design, and prediction tasks, flexibly and within one model. We show that the multi-task generative model has the overall best performance and allows for flexible integration of multiple objectives, within one model, and for distinct chemistries, suggesting that synergies emerge during training of this large language model. Trained jointly in tasks related to the QM9 dataset and deep eutectic solvents (DESs), the model can predict various quantum mechanical properties and critical properties to achieve deep eutectic solvent behavior. Several novel combinations of DESs are proposed based on this framework.
Modeling and design of heterogeneous hierarchical bioinspired spider web structures using generative deep learning and additive manufacturing
Spider webs are incredible biological structures, comprising thin but strong silk filament and arranged into complex hierarchical architectures with striking mechanical properties (e.g., lightweight but high strength, achieving diverse mechanical responses). While simple 2D orb webs can easily be mimicked, the modeling and synthesis of 3D-based web structures remain challenging, partly due to the rich set of design features. Here we provide a detailed analysis of the heterogenous graph structures of spider webs, and use deep learning as a way to model and then synthesize artificial, bio-inspired 3D web structures. The generative AI models are conditioned based on key geometric parameters (including average edge length, number of nodes, average node degree, and others). To identify graph construction principles, we use inductive representation sampling of large experimentally determined spider web graphs, to yield a dataset that is used to train three conditional generative models: 1) An analog diffusion model inspired by nonequilibrium thermodynamics, with sparse neighbor representation, 2) a discrete diffusion model with full neighbor representation, and 3) an autoregressive transformer architecture with full neighbor representation. All three models are scalable, produce complex, de novo bio-inspired spider web mimics, and successfully construct graphs that meet the design objectives. We further propose algorithm that assembles web samples produced by the generative models into larger-scale structures based on a series of geometric design targets, including helical and parametric shapes, mimicking, and extending natural design principles towards integration with diverging engineering objectives. Several webs are manufactured using 3D printing and tested to assess mechanical properties.
DiverseVul: A New Vulnerable Source Code Dataset for Deep Learning Based Vulnerability Detection
We propose and release a new vulnerable source code dataset. We curate the dataset by crawling security issue websites, extracting vulnerability-fixing commits and source codes from the corresponding projects. Our new dataset contains 18,945 vulnerable functions spanning 150 CWEs and 330,492 non-vulnerable functions extracted from 7,514 commits. Our dataset covers 295 more projects than all previous datasets combined. Combining our new dataset with previous datasets, we present an analysis of the challenges and promising research directions of using deep learning for detecting software vulnerabilities. We study 11 model architectures belonging to 4 families. Our results show that deep learning is still not ready for vulnerability detection, due to high false positive rate, low F1 score, and difficulty of detecting hard CWEs. In particular, we demonstrate an important generalization challenge for the deployment of deep learning-based models. We show that increasing the volume of training data may not further improve the performance of deep learning models for vulnerability detection, but might be useful to improve the generalization ability to unseen projects. We also identify hopeful future research directions. We demonstrate that large language models (LLMs) are a promising research direction for ML-based vulnerability detection, outperforming Graph Neural Networks (GNNs) with code-structure features in our experiments. Moreover, developing source code specific pre-training objectives is a promising research direction to improve the vulnerability detection performance.
Methods for Pruning Deep Neural Networks
This paper presents a survey of methods for pruning deep neural networks. It begins by categorising over 150 studies based on the underlying approach used and then focuses on three categories: methods that use magnitude based pruning, methods that utilise clustering to identify redundancy, and methods that use sensitivity analysis to assess the effect of pruning. Some of the key influencing studies within these categories are presented to highlight the underlying approaches and results achieved. Most studies present results which are distributed in the literature as new architectures, algorithms and data sets have developed with time, making comparison across different studied difficult. The paper therefore provides a resource for the community that can be used to quickly compare the results from many different methods on a variety of data sets, and a range of architectures, including AlexNet, ResNet, DenseNet and VGG. The resource is illustrated by comparing the results published for pruning AlexNet and ResNet50 on ImageNet and ResNet56 and VGG16 on the CIFAR10 data to reveal which pruning methods work well in terms of retaining accuracy whilst achieving good compression rates. The paper concludes by identifying some promising directions for future research.
Deep Learning and Foundation Models for Weather Prediction: A Survey
Physics-based numerical models have been the bedrock of atmospheric sciences for decades, offering robust solutions but often at the cost of significant computational resources. Deep learning (DL) models have emerged as powerful tools in meteorology, capable of analyzing complex weather and climate data by learning intricate dependencies and providing rapid predictions once trained. While these models demonstrate promising performance in weather prediction, often surpassing traditional physics-based methods, they still face critical challenges. This paper presents a comprehensive survey of recent deep learning and foundation models for weather prediction. We propose a taxonomy to classify existing models based on their training paradigms: deterministic predictive learning, probabilistic generative learning, and pre-training and fine-tuning. For each paradigm, we delve into the underlying model architectures, address major challenges, offer key insights, and propose targeted directions for future research. Furthermore, we explore real-world applications of these methods and provide a curated summary of open-source code repositories and widely used datasets, aiming to bridge research advancements with practical implementations while fostering open and trustworthy scientific practices in adopting cutting-edge artificial intelligence for weather prediction. The related sources are available at https://github.com/JimengShi/ DL-Foundation-Models-Weather.
Deep Neural Networks via Complex Network Theory: a Perspective
Deep Neural Networks (DNNs) can be represented as graphs whose links and vertices iteratively process data and solve tasks sub-optimally. Complex Network Theory (CNT), merging statistical physics with graph theory, provides a method for interpreting neural networks by analysing their weights and neuron structures. However, classic works adapt CNT metrics that only permit a topological analysis as they do not account for the effect of the input data. In addition, CNT metrics have been applied to a limited range of architectures, mainly including Fully Connected neural networks. In this work, we extend the existing CNT metrics with measures that sample from the DNNs' training distribution, shifting from a purely topological analysis to one that connects with the interpretability of deep learning. For the novel metrics, in addition to the existing ones, we provide a mathematical formalisation for Fully Connected, AutoEncoder, Convolutional and Recurrent neural networks, of which we vary the activation functions and the number of hidden layers. We show that these metrics differentiate DNNs based on the architecture, the number of hidden layers, and the activation function. Our contribution provides a method rooted in physics for interpreting DNNs that offers insights beyond the traditional input-output relationship and the CNT topological analysis.
JPEG Information Regularized Deep Image Prior for Denoising
Image denoising is a representative image restoration task in computer vision. Recent progress of image denoising from only noisy images has attracted much attention. Deep image prior (DIP) demonstrated successful image denoising from only a noisy image by inductive bias of convolutional neural network architectures without any pre-training. The major challenge of DIP based image denoising is that DIP would completely recover the original noisy image unless applying early stopping. For early stopping without a ground-truth clean image, we propose to monitor JPEG file size of the recovered image during optimization as a proxy metric of noise levels in the recovered image. Our experiments show that the compressed image file size works as an effective metric for early stopping.
Understanding Deep Gradient Leakage via Inversion Influence Functions
Deep Gradient Leakage (DGL) is a highly effective attack that recovers private training images from gradient vectors. This attack casts significant privacy challenges on distributed learning from clients with sensitive data, where clients are required to share gradients. Defending against such attacks requires but lacks an understanding of when and how privacy leakage happens, mostly because of the black-box nature of deep networks. In this paper, we propose a novel Inversion Influence Function (I^2F) that establishes a closed-form connection between the recovered images and the private gradients by implicitly solving the DGL problem. Compared to directly solving DGL, I^2F is scalable for analyzing deep networks, requiring only oracle access to gradients and Jacobian-vector products. We empirically demonstrate that I^2F effectively approximated the DGL generally on different model architectures, datasets, attack implementations, and noise-based defenses. With this novel tool, we provide insights into effective gradient perturbation directions, the unfairness of privacy protection, and privacy-preferred model initialization. Our codes are provided in https://github.com/illidanlab/inversion-influence-function.
Attentive Deep Neural Networks for Legal Document Retrieval
Legal text retrieval serves as a key component in a wide range of legal text processing tasks such as legal question answering, legal case entailment, and statute law retrieval. The performance of legal text retrieval depends, to a large extent, on the representation of text, both query and legal documents. Based on good representations, a legal text retrieval model can effectively match the query to its relevant documents. Because legal documents often contain long articles and only some parts are relevant to queries, it is quite a challenge for existing models to represent such documents. In this paper, we study the use of attentive neural network-based text representation for statute law document retrieval. We propose a general approach using deep neural networks with attention mechanisms. Based on it, we develop two hierarchical architectures with sparse attention to represent long sentences and articles, and we name them Attentive CNN and Paraformer. The methods are evaluated on datasets of different sizes and characteristics in English, Japanese, and Vietnamese. Experimental results show that: i) Attentive neural methods substantially outperform non-neural methods in terms of retrieval performance across datasets and languages; ii) Pretrained transformer-based models achieve better accuracy on small datasets at the cost of high computational complexity while lighter weight Attentive CNN achieves better accuracy on large datasets; and iii) Our proposed Paraformer outperforms state-of-the-art methods on COLIEE dataset, achieving the highest recall and F2 scores in the top-N retrieval task.
Deep Learning Driven Natural Languages Text to SQL Query Conversion: A Survey
With the future striving toward data-centric decision-making, seamless access to databases is of utmost importance. There is extensive research on creating an efficient text-to-sql (TEXT2SQL) model to access data from the database. Using a Natural language is one of the best interfaces that can bridge the gap between the data and results by accessing the database efficiently, especially for non-technical users. It will open the doors and create tremendous interest among users who are well versed in technical skills or not very skilled in query languages. Even if numerous deep learning-based algorithms are proposed or studied, there still is very challenging to have a generic model to solve the data query issues using natural language in a real-work scenario. The reason is the use of different datasets in different studies, which comes with its limitations and assumptions. At the same time, we do lack a thorough understanding of these proposed models and their limitations with the specific dataset it is trained on. In this paper, we try to present a holistic overview of 24 recent neural network models studied in the last couple of years, including their architectures involving convolutional neural networks, recurrent neural networks, pointer networks, reinforcement learning, generative models, etc. We also give an overview of the 11 datasets that are widely used to train the models for TEXT2SQL technologies. We also discuss the future application possibilities of TEXT2SQL technologies for seamless data queries.
Hard-Constrained Deep Learning for Climate Downscaling
The availability of reliable, high-resolution climate and weather data is important to inform long-term decisions on climate adaptation and mitigation and to guide rapid responses to extreme events. Forecasting models are limited by computational costs and, therefore, often generate coarse-resolution predictions. Statistical downscaling, including super-resolution methods from deep learning, can provide an efficient method of upsampling low-resolution data. However, despite achieving visually compelling results in some cases, such models frequently violate conservation laws when predicting physical variables. In order to conserve physical quantities, here we introduce methods that guarantee statistical constraints are satisfied by a deep learning downscaling model, while also improving their performance according to traditional metrics. We compare different constraining approaches and demonstrate their applicability across different neural architectures as well as a variety of climate and weather data sets. Besides enabling faster and more accurate climate predictions through downscaling, we also show that our novel methodologies can improve super-resolution for satellite data and natural images data sets.
A Modern Perspective on Query Likelihood with Deep Generative Retrieval Models
Existing neural ranking models follow the text matching paradigm, where document-to-query relevance is estimated through predicting the matching score. Drawing from the rich literature of classical generative retrieval models, we introduce and formalize the paradigm of deep generative retrieval models defined via the cumulative probabilities of generating query terms. This paradigm offers a grounded probabilistic view on relevance estimation while still enabling the use of modern neural architectures. In contrast to the matching paradigm, the probabilistic nature of generative rankers readily offers a fine-grained measure of uncertainty. We adopt several current neural generative models in our framework and introduce a novel generative ranker (T-PGN), which combines the encoding capacity of Transformers with the Pointer Generator Network model. We conduct an extensive set of evaluation experiments on passage retrieval, leveraging the MS MARCO Passage Re-ranking and TREC Deep Learning 2019 Passage Re-ranking collections. Our results show the significantly higher performance of the T-PGN model when compared with other generative models. Lastly, we demonstrate that exploiting the uncertainty information of deep generative rankers opens new perspectives to query/collection understanding, and significantly improves the cut-off prediction task.
Fast meningioma segmentation in T1-weighted MRI volumes using a lightweight 3D deep learning architecture
Automatic and consistent meningioma segmentation in T1-weighted MRI volumes and corresponding volumetric assessment is of use for diagnosis, treatment planning, and tumor growth evaluation. In this paper, we optimized the segmentation and processing speed performances using a large number of both surgically treated meningiomas and untreated meningiomas followed at the outpatient clinic. We studied two different 3D neural network architectures: (i) a simple encoder-decoder similar to a 3D U-Net, and (ii) a lightweight multi-scale architecture (PLS-Net). In addition, we studied the impact of different training schemes. For the validation studies, we used 698 T1-weighted MR volumes from St. Olav University Hospital, Trondheim, Norway. The models were evaluated in terms of detection accuracy, segmentation accuracy and training/inference speed. While both architectures reached a similar Dice score of 70% on average, the PLS-Net was more accurate with an F1-score of up to 88%. The highest accuracy was achieved for the largest meningiomas. Speed-wise, the PLS-Net architecture tended to converge in about 50 hours while 130 hours were necessary for U-Net. Inference with PLS-Net takes less than a second on GPU and about 15 seconds on CPU. Overall, with the use of mixed precision training, it was possible to train competitive segmentation models in a relatively short amount of time using the lightweight PLS-Net architecture. In the future, the focus should be brought toward the segmentation of small meningiomas (less than 2ml) to improve clinical relevance for automatic and early diagnosis as well as speed of growth estimates.
An Empirical Study on Detecting COVID-19 in Chest X-ray Images Using Deep Learning Based Methods
Spreading of COVID-19 virus has increased the efforts to provide testing kits. Not only the preparation of these kits had been hard, rare, and expensive but also using them is another issue. Results have shown that these kits take some crucial time to recognize the virus, in addition to the fact that they encounter with 30% loss. In this paper, we have studied the usage of x-ray pictures which are ubiquitous, for the classification of COVID-19 chest Xray images, by the existing convolutional neural networks (CNNs). We intend to train chest x-rays of infected and not infected ones with different CNNs architectures including VGG19, Densnet-121, and Xception. Training these architectures resulted in different accuracies which were much faster and more precise than usual ways of testing.
Tempered Sigmoid Activations for Deep Learning with Differential Privacy
Because learning sometimes involves sensitive data, machine learning algorithms have been extended to offer privacy for training data. In practice, this has been mostly an afterthought, with privacy-preserving models obtained by re-running training with a different optimizer, but using the model architectures that already performed well in a non-privacy-preserving setting. This approach leads to less than ideal privacy/utility tradeoffs, as we show here. Instead, we propose that model architectures are chosen ab initio explicitly for privacy-preserving training. To provide guarantees under the gold standard of differential privacy, one must bound as strictly as possible how individual training points can possibly affect model updates. In this paper, we are the first to observe that the choice of activation function is central to bounding the sensitivity of privacy-preserving deep learning. We demonstrate analytically and experimentally how a general family of bounded activation functions, the tempered sigmoids, consistently outperform unbounded activation functions like ReLU. Using this paradigm, we achieve new state-of-the-art accuracy on MNIST, FashionMNIST, and CIFAR10 without any modification of the learning procedure fundamentals or differential privacy analysis.
Interpreting and Explaining Deep Neural Networks for Classification of Audio Signals
Interpretability of deep neural networks is a recently emerging area of machine learning research targeting a better understanding of how models perform feature selection and derive their classification decisions. This paper explores the interpretability of neural networks in the audio domain by using the previously proposed technique of layer-wise relevance propagation (LRP). We present a novel audio dataset of English spoken digits which we use for classification tasks on spoken digits and speaker's gender. We use LRP to identify relevant features for two neural network architectures that process either waveform or spectrogram representations of the data. Based on the relevance scores obtained from LRP, hypotheses about the neural networks' feature selection are derived and subsequently tested through systematic manipulations of the input data. The results confirm that the networks are highly reliant on features marked as relevant by LRP.
Pruning Very Deep Neural Network Channels for Efficient Inference
In this paper, we introduce a new channel pruning method to accelerate very deep convolutional neural networks. Given a trained CNN model, we propose an iterative two-step algorithm to effectively prune each layer, by a LASSO regression based channel selection and least square reconstruction. We further generalize this algorithm to multi-layer and multi-branch cases. Our method reduces the accumulated error and enhances the compatibility with various architectures. Our pruned VGG-16 achieves the state-of-the-art results by 5x speed-up along with only 0.3% increase of error. More importantly, our method is able to accelerate modern networks like ResNet, Xception and suffers only 1.4%, 1.0% accuracy loss under 2x speed-up respectively, which is significant. Our code has been made publicly available.
Deep Image Prior
Deep convolutional networks have become a popular tool for image generation and restoration. Generally, their excellent performance is imputed to their ability to learn realistic image priors from a large number of example images. In this paper, we show that, on the contrary, the structure of a generator network is sufficient to capture a great deal of low-level image statistics prior to any learning. In order to do so, we show that a randomly-initialized neural network can be used as a handcrafted prior with excellent results in standard inverse problems such as denoising, super-resolution, and inpainting. Furthermore, the same prior can be used to invert deep neural representations to diagnose them, and to restore images based on flash-no flash input pairs. Apart from its diverse applications, our approach highlights the inductive bias captured by standard generator network architectures. It also bridges the gap between two very popular families of image restoration methods: learning-based methods using deep convolutional networks and learning-free methods based on handcrafted image priors such as self-similarity. Code and supplementary material are available at https://dmitryulyanov.github.io/deep_image_prior .
Deep Research Agents: A Systematic Examination And Roadmap
The rapid progress of Large Language Models (LLMs) has given rise to a new category of autonomous AI systems, referred to as Deep Research (DR) agents. These agents are designed to tackle complex, multi-turn informational research tasks by leveraging a combination of dynamic reasoning, adaptive long-horizon planning, multi-hop information retrieval, iterative tool use, and the generation of structured analytical reports. In this paper, we conduct a detailed analysis of the foundational technologies and architectural components that constitute Deep Research agents. We begin by reviewing information acquisition strategies, contrasting API-based retrieval methods with browser-based exploration. We then examine modular tool-use frameworks, including code execution, multimodal input processing, and the integration of Model Context Protocols (MCPs) to support extensibility and ecosystem development. To systematize existing approaches, we propose a taxonomy that differentiates between static and dynamic workflows, and we classify agent architectures based on planning strategies and agent composition, including single-agent and multi-agent configurations. We also provide a critical evaluation of current benchmarks, highlighting key limitations such as restricted access to external knowledge, sequential execution inefficiencies, and misalignment between evaluation metrics and the practical objectives of DR agents. Finally, we outline open challenges and promising directions for future research. A curated and continuously updated repository of DR agent research is available at: {https://github.com/ai-agents-2030/awesome-deep-research-agent}.
TopoBenchmarkX: A Framework for Benchmarking Topological Deep Learning
This work introduces TopoBenchmarkX, a modular open-source library designed to standardize benchmarking and accelerate research in Topological Deep Learning (TDL). TopoBenchmarkX maps the TDL pipeline into a sequence of independent and modular components for data loading and processing, as well as model training, optimization, and evaluation. This modular organization provides flexibility for modifications and facilitates the adaptation and optimization of various TDL pipelines. A key feature of TopoBenchmarkX is that it allows for the transformation and lifting between topological domains. This enables, for example, to obtain richer data representations and more fine-grained analyses by mapping the topology and features of a graph to higher-order topological domains such as simplicial and cell complexes. The range of applicability of TopoBenchmarkX is demonstrated by benchmarking several TDL architectures for various tasks and datasets.
The Evolution of Multimodal Model Architectures
This work uniquely identifies and characterizes four prevalent multimodal model architectural patterns in the contemporary multimodal landscape. Systematically categorizing models by architecture type facilitates monitoring of developments in the multimodal domain. Distinct from recent survey papers that present general information on multimodal architectures, this research conducts a comprehensive exploration of architectural details and identifies four specific architectural types. The types are distinguished by their respective methodologies for integrating multimodal inputs into the deep neural network model. The first two types (Type A and B) deeply fuses multimodal inputs within the internal layers of the model, whereas the following two types (Type C and D) facilitate early fusion at the input stage. Type-A employs standard cross-attention, whereas Type-B utilizes custom-designed layers for modality fusion within the internal layers. On the other hand, Type-C utilizes modality-specific encoders, while Type-D leverages tokenizers to process the modalities at the model's input stage. The identified architecture types aid the monitoring of any-to-any multimodal model development. Notably, Type-C and Type-D are currently favored in the construction of any-to-any multimodal models. Type-C, distinguished by its non-tokenizing multimodal model architecture, is emerging as a viable alternative to Type-D, which utilizes input-tokenizing techniques. To assist in model selection, this work highlights the advantages and disadvantages of each architecture type based on data and compute requirements, architecture complexity, scalability, simplification of adding modalities, training objectives, and any-to-any multimodal generation capability.
Beyond the Black Box: Do More Complex Deep Learning Models Provide Superior XAI Explanations?
The increasing complexity of Artificial Intelligence models poses challenges to interpretability, particularly in the healthcare sector. This study investigates the impact of deep learning model complexity and Explainable AI (XAI) efficacy, utilizing four ResNet architectures (ResNet-18, 34, 50, 101). Through methodical experimentation on 4,369 lung X-ray images of COVID-19-infected and healthy patients, the research evaluates models' classification performance and the relevance of corresponding XAI explanations with respect to the ground-truth disease masks. Results indicate that the increase in model complexity is associated with a decrease in classification accuracy and AUC-ROC scores (ResNet-18: 98.4%, 0.997; ResNet-101: 95.9%, 0.988). Notably, in eleven out of twelve statistical tests performed, no statistically significant differences occurred between XAI quantitative metrics - Relevance Rank Accuracy and the proposed Positive Attribution Ratio - across trained models. These results suggest that increased model complexity does not consistently lead to higher performance or relevance of explanations for models' decision-making processes.
Graph Deep Learning for Time Series Forecasting
Graph-based deep learning methods have become popular tools to process collections of correlated time series. Differently from traditional multivariate forecasting methods, neural graph-based predictors take advantage of pairwise relationships by conditioning forecasts on a (possibly dynamic) graph spanning the time series collection. The conditioning can take the form of an architectural inductive bias on the neural forecasting architecture, resulting in a family of deep learning models called spatiotemporal graph neural networks. Such relational inductive biases enable the training of global forecasting models on large time-series collections, while at the same time localizing predictions w.r.t. each element in the set (i.e., graph nodes) by accounting for local correlations among them (i.e., graph edges). Indeed, recent theoretical and practical advances in graph neural networks and deep learning for time series forecasting make the adoption of such processing frameworks appealing and timely. However, most of the studies in the literature focus on proposing variations of existing neural architectures by taking advantage of modern deep learning practices, while foundational and methodological aspects have not been subject to systematic investigation. To fill the gap, this paper aims to introduce a comprehensive methodological framework that formalizes the forecasting problem and provides design principles for graph-based predictive models and methods to assess their performance. At the same time, together with an overview of the field, we provide design guidelines, recommendations, and best practices, as well as an in-depth discussion of open challenges and future research directions.
Deep Learning Meets Sparse Regularization: A Signal Processing Perspective
Deep learning has been wildly successful in practice and most state-of-the-art machine learning methods are based on neural networks. Lacking, however, is a rigorous mathematical theory that adequately explains the amazing performance of deep neural networks. In this article, we present a relatively new mathematical framework that provides the beginning of a deeper understanding of deep learning. This framework precisely characterizes the functional properties of neural networks that are trained to fit to data. The key mathematical tools which support this framework include transform-domain sparse regularization, the Radon transform of computed tomography, and approximation theory, which are all techniques deeply rooted in signal processing. This framework explains the effect of weight decay regularization in neural network training, the use of skip connections and low-rank weight matrices in network architectures, the role of sparsity in neural networks, and explains why neural networks can perform well in high-dimensional problems.
RobArch: Designing Robust Architectures against Adversarial Attacks
Adversarial Training is the most effective approach for improving the robustness of Deep Neural Networks (DNNs). However, compared to the large body of research in optimizing the adversarial training process, there are few investigations into how architecture components affect robustness, and they rarely constrain model capacity. Thus, it is unclear where robustness precisely comes from. In this work, we present the first large-scale systematic study on the robustness of DNN architecture components under fixed parameter budgets. Through our investigation, we distill 18 actionable robust network design guidelines that empower model developers to gain deep insights. We demonstrate these guidelines' effectiveness by introducing the novel Robust Architecture (RobArch) model that instantiates the guidelines to build a family of top-performing models across parameter capacities against strong adversarial attacks. RobArch achieves the new state-of-the-art AutoAttack accuracy on the RobustBench ImageNet leaderboard. The code is available at https://github.com/ShengYun-Peng/RobArch{this url}.
Learning to Prune Deep Neural Networks via Reinforcement Learning
This paper proposes PuRL - a deep reinforcement learning (RL) based algorithm for pruning neural networks. Unlike current RL based model compression approaches where feedback is given only at the end of each episode to the agent, PuRL provides rewards at every pruning step. This enables PuRL to achieve sparsity and accuracy comparable to current state-of-the-art methods, while having a much shorter training cycle. PuRL achieves more than 80% sparsity on the ResNet-50 model while retaining a Top-1 accuracy of 75.37% on the ImageNet dataset. Through our experiments we show that PuRL is also able to sparsify already efficient architectures like MobileNet-V2. In addition to performance characterisation experiments, we also provide a discussion and analysis of the various RL design choices that went into the tuning of the Markov Decision Process underlying PuRL. Lastly, we point out that PuRL is simple to use and can be easily adapted for various architectures.
Forecasting Probability Distributions of Financial Returns with Deep Neural Networks
This study evaluates deep neural networks for forecasting probability distributions of financial returns. 1D convolutional neural networks (CNN) and Long Short-Term Memory (LSTM) architectures are used to forecast parameters of three probability distributions: Normal, Student's t, and skewed Student's t. Using custom negative log-likelihood loss functions, distribution parameters are optimized directly. The models are tested on six major equity indices (S\&P 500, BOVESPA, DAX, WIG, Nikkei 225, and KOSPI) using probabilistic evaluation metrics including Log Predictive Score (LPS), Continuous Ranked Probability Score (CRPS), and Probability Integral Transform (PIT). Results show that deep learning models provide accurate distributional forecasts and perform competitively with classical GARCH models for Value-at-Risk estimation. The LSTM with skewed Student's t distribution performs best across multiple evaluation criteria, capturing both heavy tails and asymmetry in financial returns. This work shows that deep neural networks are viable alternatives to traditional econometric models for financial risk assessment and portfolio management.
Deep Stochastic Kinematic Models for Probabilistic Motion Forecasting in Traffic
In trajectory forecasting tasks for traffic, future output trajectories can be computed by advancing the ego vehicle's state with predicted actions according to a kinematics model. By unrolling predicted trajectories via time integration and models of kinematic dynamics, predicted trajectories should not only be kinematically feasible but also relate uncertainty from one timestep to the next. While current works in probabilistic prediction do incorporate kinematic priors for mean trajectory prediction, variance is often left as a learnable parameter, despite uncertainty in one time step being inextricably tied to uncertainty in the previous time step. In this paper, we show simple and differentiable analytical approximations describing the relationship between variance at one timestep and that at the next with the kinematic bicycle model. These approximations can be easily incorporated with negligible additional overhead into any existing trajectory forecasting framework utilizing probabilistic predictions, whether it is autoregressive or one-shot prediction. In our results, we find that encoding the relationship between variance across timesteps works especially well in unoptimal settings, such as with small or noisy datasets. We observe up to a 50% performance boost in partial dataset settings and up to an 8% performance boost in large-scale learning compared to previous kinematic prediction methods on SOTA trajectory forecasting architectures out-of-the-box, with no fine-tuning. In this paper, we show four analytical formulations of probabilistic kinematic priors which can be used for any Gaussian Mixture Model (GMM)-based deep learning models, quantify the error bound on linear approximations applied during trajectory unrolling, and show results to evaluate each formulation in trajectory forecasting.
Trapped in texture bias? A large scale comparison of deep instance segmentation
Do deep learning models for instance segmentation generalize to novel objects in a systematic way? For classification, such behavior has been questioned. In this study, we aim to understand if certain design decisions such as framework, architecture or pre-training contribute to the semantic understanding of instance segmentation. To answer this question, we consider a special case of robustness and compare pre-trained models on a challenging benchmark for object-centric, out-of-distribution texture. We do not introduce another method in this work. Instead, we take a step back and evaluate a broad range of existing literature. This includes Cascade and Mask R-CNN, Swin Transformer, BMask, YOLACT(++), DETR, BCNet, SOTR and SOLOv2. We find that YOLACT++, SOTR and SOLOv2 are significantly more robust to out-of-distribution texture than other frameworks. In addition, we show that deeper and dynamic architectures improve robustness whereas training schedules, data augmentation and pre-training have only a minor impact. In summary we evaluate 68 models on 61 versions of MS COCO for a total of 4148 evaluations.
Predictive auxiliary objectives in deep RL mimic learning in the brain
The ability to predict upcoming events has been hypothesized to comprise a key aspect of natural and machine cognition. This is supported by trends in deep reinforcement learning (RL), where self-supervised auxiliary objectives such as prediction are widely used to support representation learning and improve task performance. Here, we study the effects predictive auxiliary objectives have on representation learning across different modules of an RL system and how these mimic representational changes observed in the brain. We find that predictive objectives improve and stabilize learning particularly in resource-limited architectures, and we identify settings where longer predictive horizons better support representational transfer. Furthermore, we find that representational changes in this RL system bear a striking resemblance to changes in neural activity observed in the brain across various experiments. Specifically, we draw a connection between the auxiliary predictive model of the RL system and hippocampus, an area thought to learn a predictive model to support memory-guided behavior. We also connect the encoder network and the value learning network of the RL system to visual cortex and striatum in the brain, respectively. This work demonstrates how representation learning in deep RL systems can provide an interpretable framework for modeling multi-region interactions in the brain. The deep RL perspective taken here also suggests an additional role of the hippocampus in the brain -- that of an auxiliary learning system that benefits representation learning in other regions.
Deep Neural Networks Tend To Extrapolate Predictably
Conventional wisdom suggests that neural network predictions tend to be unpredictable and overconfident when faced with out-of-distribution (OOD) inputs. Our work reassesses this assumption for neural networks with high-dimensional inputs. Rather than extrapolating in arbitrary ways, we observe that neural network predictions often tend towards a constant value as input data becomes increasingly OOD. Moreover, we find that this value often closely approximates the optimal constant solution (OCS), i.e., the prediction that minimizes the average loss over the training data without observing the input. We present results showing this phenomenon across 8 datasets with different distributional shifts (including CIFAR10-C and ImageNet-R, S), different loss functions (cross entropy, MSE, and Gaussian NLL), and different architectures (CNNs and transformers). Furthermore, we present an explanation for this behavior, which we first validate empirically and then study theoretically in a simplified setting involving deep homogeneous networks with ReLU activations. Finally, we show how one can leverage our insights in practice to enable risk-sensitive decision-making in the presence of OOD inputs.
Efficient Online Processing with Deep Neural Networks
The capabilities and adoption of deep neural networks (DNNs) grow at an exhilarating pace: Vision models accurately classify human actions in videos and identify cancerous tissue in medical scans as precisely than human experts; large language models answer wide-ranging questions, generate code, and write prose, becoming the topic of everyday dinner-table conversations. Even though their uses are exhilarating, the continually increasing model sizes and computational complexities have a dark side. The economic cost and negative environmental externalities of training and serving models is in evident disharmony with financial viability and climate action goals. Instead of pursuing yet another increase in predictive performance, this dissertation is dedicated to the improvement of neural network efficiency. Specifically, a core contribution addresses the efficiency aspects during online inference. Here, the concept of Continual Inference Networks (CINs) is proposed and explored across four publications. CINs extend prior state-of-the-art methods developed for offline processing of spatio-temporal data and reuse their pre-trained weights, improving their online processing efficiency by an order of magnitude. These advances are attained through a bottom-up computational reorganization and judicious architectural modifications. The benefit to online inference is demonstrated by reformulating several widely used network architectures into CINs, including 3D CNNs, ST-GCNs, and Transformer Encoders. An orthogonal contribution tackles the concurrent adaptation and computational acceleration of a large source model into multiple lightweight derived models. Drawing on fusible adapter networks and structured pruning, Structured Pruning Adapters achieve superior predictive accuracy under aggressive pruning using significantly fewer learned weights compared to fine-tuning with pruning.
Segmentation of glioblastomas in early post-operative multi-modal MRI with deep neural networks
Extent of resection after surgery is one of the main prognostic factors for patients diagnosed with glioblastoma. To achieve this, accurate segmentation and classification of residual tumor from post-operative MR images is essential. The current standard method for estimating it is subject to high inter- and intra-rater variability, and an automated method for segmentation of residual tumor in early post-operative MRI could lead to a more accurate estimation of extent of resection. In this study, two state-of-the-art neural network architectures for pre-operative segmentation were trained for the task. The models were extensively validated on a multicenter dataset with nearly 1000 patients, from 12 hospitals in Europe and the United States. The best performance achieved was a 61\% Dice score, and the best classification performance was about 80\% balanced accuracy, with a demonstrated ability to generalize across hospitals. In addition, the segmentation performance of the best models was on par with human expert raters. The predicted segmentations can be used to accurately classify the patients into those with residual tumor, and those with gross total resection.
SAILOR: Perceptual Anchoring For Robotic Cognitive Architectures
Symbolic anchoring is a crucial problem in the field of robotics, as it enables robots to obtain symbolic knowledge from the perceptual information acquired through their sensors. In cognitive-based robots, this process of processing sub-symbolic data from real-world sensors to obtain symbolic knowledge is still an open problem. To address this issue, this paper presents SAILOR, a framework for providing symbolic anchoring in the ROS 2 ecosystem. SAILOR aims to maintain the link between symbolic data and perceptual data in real robots over time, increasing the intelligent behavior of robots. It provides a semantic world modeling approach using two deep learning-based sub-symbolic robotic skills: object recognition and matching function. The object recognition skill allows the robot to recognize and identify objects in its environment, while the matching function enables the robot to decide if new perceptual data corresponds to existing symbolic data. This paper provides a description of the proposed method and the development of the framework, as well as its integration in MERLIN2 (a hybrid cognitive architecture fully functional in robots running ROS 2).
SplineCam: Exact Visualization and Characterization of Deep Network Geometry and Decision Boundaries
Current Deep Network (DN) visualization and interpretability methods rely heavily on data space visualizations such as scoring which dimensions of the data are responsible for their associated prediction or generating new data features or samples that best match a given DN unit or representation. In this paper, we go one step further by developing the first provably exact method for computing the geometry of a DN's mapping - including its decision boundary - over a specified region of the data space. By leveraging the theory of Continuous Piece-Wise Linear (CPWL) spline DNs, SplineCam exactly computes a DNs geometry without resorting to approximations such as sampling or architecture simplification. SplineCam applies to any DN architecture based on CPWL nonlinearities, including (leaky-)ReLU, absolute value, maxout, and max-pooling and can also be applied to regression DNs such as implicit neural representations. Beyond decision boundary visualization and characterization, SplineCam enables one to compare architectures, measure generalizability and sample from the decision boundary on or off the manifold. Project Website: bit.ly/splinecam.
A Gradient Boosting Approach for Training Convolutional and Deep Neural Networks
Deep learning has revolutionized the computer vision and image classification domains. In this context Convolutional Neural Networks (CNNs) based architectures are the most widely applied models. In this article, we introduced two procedures for training Convolutional Neural Networks (CNNs) and Deep Neural Network based on Gradient Boosting (GB), namely GB-CNN and GB-DNN. These models are trained to fit the gradient of the loss function or pseudo-residuals of previous models. At each iteration, the proposed method adds one dense layer to an exact copy of the previous deep NN model. The weights of the dense layers trained on previous iterations are frozen to prevent over-fitting, permitting the model to fit the new dense as well as to fine-tune the convolutional layers (for GB-CNN) while still utilizing the information already learned. Through extensive experimentation on different 2D-image classification and tabular datasets, the presented models show superior performance in terms of classification accuracy with respect to standard CNN and Deep-NN with the same architectures.
Segmentation in large-scale cellular electron microscopy with deep learning: A literature survey
Automated and semi-automated techniques in biomedical electron microscopy (EM) enable the acquisition of large datasets at a high rate. Segmentation methods are therefore essential to analyze and interpret these large volumes of data, which can no longer completely be labeled manually. In recent years, deep learning algorithms achieved impressive results in both pixel-level labeling (semantic segmentation) and the labeling of separate instances of the same class (instance segmentation). In this review, we examine how these algorithms were adapted to the task of segmenting cellular and sub-cellular structures in EM images. The special challenges posed by such images and the network architectures that overcame some of them are described. Moreover, a thorough overview is also provided on the notable datasets that contributed to the proliferation of deep learning in EM. Finally, an outlook of current trends and future prospects of EM segmentation is given, especially in the area of label-free learning.
UnrealNAS: Can We Search Neural Architectures with Unreal Data?
Neural architecture search (NAS) has shown great success in the automatic design of deep neural networks (DNNs). However, the best way to use data to search network architectures is still unclear and under exploration. Previous work has analyzed the necessity of having ground-truth labels in NAS and inspired broad interest. In this work, we take a further step to question whether real data is necessary for NAS to be effective. The answer to this question is important for applications with limited amount of accessible data, and can help people improve NAS by leveraging the extra flexibility of data generation. To explore if NAS needs real data, we construct three types of unreal datasets using: 1) randomly labeled real images; 2) generated images and labels; and 3) generated Gaussian noise with random labels. These datasets facilitate to analyze the generalization and expressivity of the searched architectures. We study the performance of architectures searched on these constructed datasets using popular differentiable NAS methods. Extensive experiments on CIFAR, ImageNet and CheXpert show that the searched architectures can achieve promising results compared with those derived from the conventional NAS pipeline with real labeled data, suggesting the feasibility of performing NAS with unreal data.
Towards deep learning-powered IVF: A large public benchmark for morphokinetic parameter prediction
An important limitation to the development of Artificial Intelligence (AI)-based solutions for In Vitro Fertilization (IVF) is the absence of a public reference benchmark to train and evaluate deep learning (DL) models. In this work, we describe a fully annotated dataset of 704 videos of developing embryos, for a total of 337k images. We applied ResNet, LSTM, and ResNet-3D architectures to our dataset and demonstrate that they overperform algorithmic approaches to automatically annotate stage development phases. Altogether, we propose the first public benchmark that will allow the community to evaluate morphokinetic models. This is the first step towards deep learning-powered IVF. Of note, we propose highly detailed annotations with 16 different development phases, including early cell division phases, but also late cell divisions, phases after morulation, and very early phases, which have never been used before. We postulate that this original approach will help improve the overall performance of deep learning approaches on time-lapse videos of embryo development, ultimately benefiting infertile patients with improved clinical success rates (Code and data are available at https://gitlab.univ-nantes.fr/E144069X/bench_mk_pred.git).
As if by magic: self-supervised training of deep despeckling networks with MERLIN
Speckle fluctuations seriously limit the interpretability of synthetic aperture radar (SAR) images. Speckle reduction has thus been the subject of numerous works spanning at least four decades. Techniques based on deep neural networks have recently achieved a new level of performance in terms of SAR image restoration quality. Beyond the design of suitable network architectures or the selection of adequate loss functions, the construction of training sets is of uttermost importance. So far, most approaches have considered a supervised training strategy: the networks are trained to produce outputs as close as possible to speckle-free reference images. Speckle-free images are generally not available, which requires resorting to natural or optical images or the selection of stable areas in long time series to circumvent the lack of ground truth. Self-supervision, on the other hand, avoids the use of speckle-free images. We introduce a self-supervised strategy based on the separation of the real and imaginary parts of single-look complex SAR images, called MERLIN (coMplex sElf-supeRvised despeckLINg), and show that it offers a straightforward way to train all kinds of deep despeckling networks. Networks trained with MERLIN take into account the spatial correlations due to the SAR transfer function specific to a given sensor and imaging mode. By requiring only a single image, and possibly exploiting large archives, MERLIN opens the door to hassle-free as well as large-scale training of despeckling networks. The code of the trained models is made freely available at https://gitlab.telecom-paris.fr/RING/MERLIN.
L$^{2}$NAS: Learning to Optimize Neural Architectures via Continuous-Action Reinforcement Learning
Neural architecture search (NAS) has achieved remarkable results in deep neural network design. Differentiable architecture search converts the search over discrete architectures into a hyperparameter optimization problem which can be solved by gradient descent. However, questions have been raised regarding the effectiveness and generalizability of gradient methods for solving non-convex architecture hyperparameter optimization problems. In this paper, we propose L^{2}NAS, which learns to intelligently optimize and update architecture hyperparameters via an actor neural network based on the distribution of high-performing architectures in the search history. We introduce a quantile-driven training procedure which efficiently trains L^{2}NAS in an actor-critic framework via continuous-action reinforcement learning. Experiments show that L^{2}NAS achieves state-of-the-art results on NAS-Bench-201 benchmark as well as DARTS search space and Once-for-All MobileNetV3 search space. We also show that search policies generated by L^{2}NAS are generalizable and transferable across different training datasets with minimal fine-tuning.
Deep Learning on a Data Diet: Finding Important Examples Early in Training
Recent success in deep learning has partially been driven by training increasingly overparametrized networks on ever larger datasets. It is therefore natural to ask: how much of the data is superfluous, which examples are important for generalization, and how do we find them? In this work, we make the striking observation that, in standard vision datasets, simple scores averaged over several weight initializations can be used to identify important examples very early in training. We propose two such scores -- the Gradient Normed (GraNd) and the Error L2-Norm (EL2N) scores -- and demonstrate their efficacy on a range of architectures and datasets by pruning significant fractions of training data without sacrificing test accuracy. In fact, using EL2N scores calculated a few epochs into training, we can prune half of the CIFAR10 training set while slightly improving test accuracy. Furthermore, for a given dataset, EL2N scores from one architecture or hyperparameter configuration generalize to other configurations. Compared to recent work that prunes data by discarding examples that are rarely forgotten over the course of training, our scores use only local information early in training. We also use our scores to detect noisy examples and study training dynamics through the lens of important examples -- we investigate how the data distribution shapes the loss surface and identify subspaces of the model's data representation that are relatively stable over training.
Classification of Brain Tumours in MR Images using Deep Spatiospatial Models
A brain tumour is a mass or cluster of abnormal cells in the brain, which has the possibility of becoming life-threatening because of its ability to invade neighbouring tissues and also form metastases. An accurate diagnosis is essential for successful treatment planning and magnetic resonance imaging is the principal imaging modality for diagnostic of brain tumours and their extent. Deep Learning methods in computer vision applications have shown significant improvement in recent years, most of which can be credited to the fact that a sizeable amount of data is available to train models on, and the improvements in the model architectures yielding better approximations in a supervised setting. Classifying tumours using such deep learning methods has made significant progress with the availability of open datasets with reliable annotations. Typically those methods are either 3D models, which use 3D volumetric MRIs or even 2D models considering each slice separately. However, by treating the slice spatial dimension separately, spatiotemporal models can be employed as spatiospatial models for this task. These models have the capabilities of learning specific spatial and temporal relationship, while reducing computational costs. This paper uses two spatiotemporal models, ResNet (2+1)D and ResNet Mixed Convolution, to classify different types of brain tumours. It was observed that both these models performed superior to the pure 3D convolutional model, ResNet18. Furthermore, it was also observed that pre-training the models on a different, even unrelated dataset before training them for the task of tumour classification improves the performance. Finally, Pre-trained ResNet Mixed Convolution was observed to be the best model in these experiments, achieving a macro F1-score of 0.93 and a test accuracy of 96.98\%, while at the same time being the model with the least computational cost.
GradNorm: Gradient Normalization for Adaptive Loss Balancing in Deep Multitask Networks
Deep multitask networks, in which one neural network produces multiple predictive outputs, can offer better speed and performance than their single-task counterparts but are challenging to train properly. We present a gradient normalization (GradNorm) algorithm that automatically balances training in deep multitask models by dynamically tuning gradient magnitudes. We show that for various network architectures, for both regression and classification tasks, and on both synthetic and real datasets, GradNorm improves accuracy and reduces overfitting across multiple tasks when compared to single-task networks, static baselines, and other adaptive multitask loss balancing techniques. GradNorm also matches or surpasses the performance of exhaustive grid search methods, despite only involving a single asymmetry hyperparameter alpha. Thus, what was once a tedious search process that incurred exponentially more compute for each task added can now be accomplished within a few training runs, irrespective of the number of tasks. Ultimately, we will demonstrate that gradient manipulation affords us great control over the training dynamics of multitask networks and may be one of the keys to unlocking the potential of multitask learning.
A guide to convolution arithmetic for deep learning
We introduce a guide to help deep learning practitioners understand and manipulate convolutional neural network architectures. The guide clarifies the relationship between various properties (input shape, kernel shape, zero padding, strides and output shape) of convolutional, pooling and transposed convolutional layers, as well as the relationship between convolutional and transposed convolutional layers. Relationships are derived for various cases, and are illustrated in order to make them intuitive.
Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification
Rectified activation units (rectifiers) are essential for state-of-the-art neural networks. In this work, we study rectifier neural networks for image classification from two aspects. First, we propose a Parametric Rectified Linear Unit (PReLU) that generalizes the traditional rectified unit. PReLU improves model fitting with nearly zero extra computational cost and little overfitting risk. Second, we derive a robust initialization method that particularly considers the rectifier nonlinearities. This method enables us to train extremely deep rectified models directly from scratch and to investigate deeper or wider network architectures. Based on our PReLU networks (PReLU-nets), we achieve 4.94% top-5 test error on the ImageNet 2012 classification dataset. This is a 26% relative improvement over the ILSVRC 2014 winner (GoogLeNet, 6.66%). To our knowledge, our result is the first to surpass human-level performance (5.1%, Russakovsky et al.) on this visual recognition challenge.
Deep Time Series Models: A Comprehensive Survey and Benchmark
Time series, characterized by a sequence of data points organized in a discrete-time order, are ubiquitous in real-world scenarios. Unlike other data modalities, time series present unique challenges due to their intricate and dynamic nature, including the entanglement of nonlinear patterns and time-variant trends. Analyzing such data is of great significance in practical applications and has been extensively studied for centuries. Recent years have witnessed remarkable breakthroughs in the time series community, with techniques shifting from traditional statistical methods to contemporary deep learning models. In this paper, we delve into the design of deep time series models across various analysis tasks and review the existing literature from two perspectives: basic modules and model architectures. Further, we develop and release Time Series Library (TSLib) as a fair benchmark of deep time series models for diverse analysis tasks. TSLib implements 30 prominent models, covers 30 datasets from different domains, and supports five prevalent analysis tasks. Based on TSLib, we thoroughly evaluate 13 advanced deep time series models across diverse tasks. Empirical results indicate that models with specific structures are well-suited for distinct analytical tasks, providing insights for research and adoption of deep time series models. Code and datasets are available at https://github.com/thuml/Time-Series-Library.
Training Deep Surrogate Models with Large Scale Online Learning
The spatiotemporal resolution of Partial Differential Equations (PDEs) plays important roles in the mathematical description of the world's physical phenomena. In general, scientists and engineers solve PDEs numerically by the use of computationally demanding solvers. Recently, deep learning algorithms have emerged as a viable alternative for obtaining fast solutions for PDEs. Models are usually trained on synthetic data generated by solvers, stored on disk and read back for training. This paper advocates that relying on a traditional static dataset to train these models does not allow the full benefit of the solver to be used as a data generator. It proposes an open source online training framework for deep surrogate models. The framework implements several levels of parallelism focused on simultaneously generating numerical simulations and training deep neural networks. This approach suppresses the I/O and storage bottleneck associated with disk-loaded datasets, and opens the way to training on significantly larger datasets. Experiments compare the offline and online training of four surrogate models, including state-of-the-art architectures. Results indicate that exposing deep surrogate models to more dataset diversity, up to hundreds of GB, can increase model generalization capabilities. Fully connected neural networks, Fourier Neural Operator (FNO), and Message Passing PDE Solver prediction accuracy is improved by 68%, 16% and 7%, respectively.
Channel Pruning for Accelerating Very Deep Neural Networks
In this paper, we introduce a new channel pruning method to accelerate very deep convolutional neural networks.Given a trained CNN model, we propose an iterative two-step algorithm to effectively prune each layer, by a LASSO regression based channel selection and least square reconstruction. We further generalize this algorithm to multi-layer and multi-branch cases. Our method reduces the accumulated error and enhance the compatibility with various architectures. Our pruned VGG-16 achieves the state-of-the-art results by 5x speed-up along with only 0.3% increase of error. More importantly, our method is able to accelerate modern networks like ResNet, Xception and suffers only 1.4%, 1.0% accuracy loss under 2x speed-up respectively, which is significant. Code has been made publicly available.
The Case for Co-Designing Model Architectures with Hardware
While GPUs are responsible for training the vast majority of state-of-the-art deep learning models, the implications of their architecture are often overlooked when designing new deep learning (DL) models. As a consequence, modifying a DL model to be more amenable to the target hardware can significantly improve the runtime performance of DL training and inference. In this paper, we provide a set of guidelines for users to maximize the runtime performance of their transformer models. These guidelines have been created by carefully considering the impact of various model hyperparameters controlling model shape on the efficiency of the underlying computation kernels executed on the GPU. We find the throughput of models with efficient model shapes is up to 39\% higher while preserving accuracy compared to models with a similar number of parameters but with unoptimized shapes.
I3D: Transformer architectures with input-dependent dynamic depth for speech recognition
Transformer-based end-to-end speech recognition has achieved great success. However, the large footprint and computational overhead make it difficult to deploy these models in some real-world applications. Model compression techniques can reduce the model size and speed up inference, but the compressed model has a fixed architecture which might be suboptimal. We propose a novel Transformer encoder with Input-Dependent Dynamic Depth (I3D) to achieve strong performance-efficiency trade-offs. With a similar number of layers at inference time, I3D-based models outperform the vanilla Transformer and the static pruned model via iterative layer pruning. We also present interesting analysis on the gate probabilities and the input-dependency, which helps us better understand deep encoders.
SymFace: Additional Facial Symmetry Loss for Deep Face Recognition
Over the past decade, there has been a steady advancement in enhancing face recognition algorithms leveraging advanced machine learning methods. The role of the loss function is pivotal in addressing face verification problems and playing a game-changing role. These loss functions have mainly explored variations among intra-class or inter-class separation. This research examines the natural phenomenon of facial symmetry in the face verification problem. The symmetry between the left and right hemi faces has been widely used in many research areas in recent decades. This paper adopts this simple approach judiciously by splitting the face image vertically into two halves. With the assumption that the natural phenomena of facial symmetry can enhance face verification methodology, we hypothesize that the two output embedding vectors of split faces must project close to each other in the output embedding space. Inspired by this concept, we penalize the network based on the disparity of embedding of the symmetrical pair of split faces. Symmetrical loss has the potential to minimize minor asymmetric features due to facial expression and lightning conditions, hence significantly increasing the inter-class variance among the classes and leading to more reliable face embedding. This loss function propels any network to outperform its baseline performance across all existing network architectures and configurations, enabling us to achieve SoTA results.
How JEPA Avoids Noisy Features: The Implicit Bias of Deep Linear Self Distillation Networks
Two competing paradigms exist for self-supervised learning of data representations. Joint Embedding Predictive Architecture (JEPA) is a class of architectures in which semantically similar inputs are encoded into representations that are predictive of each other. A recent successful approach that falls under the JEPA framework is self-distillation, where an online encoder is trained to predict the output of the target encoder, sometimes using a lightweight predictor network. This is contrasted with the Masked AutoEncoder (MAE) paradigm, where an encoder and decoder are trained to reconstruct missing parts of the input in the data space rather, than its latent representation. A common motivation for using the JEPA approach over MAE is that the JEPA objective prioritizes abstract features over fine-grained pixel information (which can be unpredictable and uninformative). In this work, we seek to understand the mechanism behind this empirical observation by analyzing the training dynamics of deep linear models. We uncover a surprising mechanism: in a simplified linear setting where both approaches learn similar representations, JEPAs are biased to learn high-influence features, i.e., features characterized by having high regression coefficients. Our results point to a distinct implicit bias of predicting in latent space that may shed light on its success in practice.
A Review of Hybrid and Ensemble in Deep Learning for Natural Language Processing
This review presents a comprehensive exploration of hybrid and ensemble deep learning models within Natural Language Processing (NLP), shedding light on their transformative potential across diverse tasks such as Sentiment Analysis, Named Entity Recognition, Machine Translation, Question Answering, Text Classification, Generation, Speech Recognition, Summarization, and Language Modeling. The paper systematically introduces each task, delineates key architectures from Recurrent Neural Networks (RNNs) to Transformer-based models like BERT, and evaluates their performance, challenges, and computational demands. The adaptability of ensemble techniques is emphasized, highlighting their capacity to enhance various NLP applications. Challenges in implementation, including computational overhead, overfitting, and model interpretation complexities, are addressed alongside the trade-off between interpretability and performance. Serving as a concise yet invaluable guide, this review synthesizes insights into tasks, architectures, and challenges, offering a holistic perspective for researchers and practitioners aiming to advance language-driven applications through ensemble deep learning in NLP.
SigFormer: Signature Transformers for Deep Hedging
Deep hedging is a promising direction in quantitative finance, incorporating models and techniques from deep learning research. While giving excellent hedging strategies, models inherently requires careful treatment in designing architectures for neural networks. To mitigate such difficulties, we introduce SigFormer, a novel deep learning model that combines the power of path signatures and transformers to handle sequential data, particularly in cases with irregularities. Path signatures effectively capture complex data patterns, while transformers provide superior sequential attention. Our proposed model is empirically compared to existing methods on synthetic data, showcasing faster learning and enhanced robustness, especially in the presence of irregular underlying price data. Additionally, we validate our model performance through a real-world backtest on hedging the SP 500 index, demonstrating positive outcomes.
A Hybrid Deep Learning-based Approach for Optimal Genotype by Environment Selection
Precise crop yield prediction is essential for improving agricultural practices and ensuring crop resilience in varying climates. Integrating weather data across the growing season, especially for different crop varieties, is crucial for understanding their adaptability in the face of climate change. In the MLCAS2021 Crop Yield Prediction Challenge, we utilized a dataset comprising 93,028 training records to forecast yields for 10,337 test records, covering 159 locations across 28 U.S. states and Canadian provinces over 13 years (2003-2015). This dataset included details on 5,838 distinct genotypes and daily weather data for a 214-day growing season, enabling comprehensive analysis. As one of the winning teams, we developed two novel convolutional neural network (CNN) architectures: the CNN-DNN model, combining CNN and fully-connected networks, and the CNN-LSTM-DNN model, with an added LSTM layer for weather variables. Leveraging the Generalized Ensemble Method (GEM), we determined optimal model weights, resulting in superior performance compared to baseline models. The GEM model achieved lower RMSE (5.55% to 39.88%), reduced MAE (5.34% to 43.76%), and higher correlation coefficients (1.1% to 10.79%) when evaluated on test data. We applied the CNN-DNN model to identify top-performing genotypes for various locations and weather conditions, aiding genotype selection based on weather variables. Our data-driven approach is valuable for scenarios with limited testing years. Additionally, a feature importance analysis using RMSE change highlighted the significance of location, MG, year, and genotype, along with the importance of weather variables MDNI and AP.
Understanding Patterns of Deep Learning ModelEvolution in Network Architecture Search
Network Architecture Search and specifically Regularized Evolution is a common way to refine the structure of a deep learning model.However, little is known about how models empirically evolve over time which has design implications for designing caching policies, refining the search algorithm for particular applications, and other important use cases.In this work, we algorithmically analyze and quantitatively characterize the patterns of model evolution for a set of models from the Candle project and the Nasbench-201 search space.We show how the evolution of the model structure is influenced by the regularized evolution algorithm. We describe how evolutionary patterns appear in distributed settings and opportunities for caching and improved scheduling. Lastly, we describe the conditions that affect when particular model architectures rise and fall in popularity based on their frequency of acting as a donor in a sliding window.
How Does Information Bottleneck Help Deep Learning?
Numerous deep learning algorithms have been inspired by and understood via the notion of information bottleneck, where unnecessary information is (often implicitly) minimized while task-relevant information is maximized. However, a rigorous argument for justifying why it is desirable to control information bottlenecks has been elusive. In this paper, we provide the first rigorous learning theory for justifying the benefit of information bottleneck in deep learning by mathematically relating information bottleneck to generalization errors. Our theory proves that controlling information bottleneck is one way to control generalization errors in deep learning, although it is not the only or necessary way. We investigate the merit of our new mathematical findings with experiments across a range of architectures and learning settings. In many cases, generalization errors are shown to correlate with the degree of information bottleneck: i.e., the amount of the unnecessary information at hidden layers. This paper provides a theoretical foundation for current and future methods through the lens of information bottleneck. Our new generalization bounds scale with the degree of information bottleneck, unlike the previous bounds that scale with the number of parameters, VC dimension, Rademacher complexity, stability or robustness. Our code is publicly available at: https://github.com/xu-ji/information-bottleneck
RLOR: A Flexible Framework of Deep Reinforcement Learning for Operation Research
Reinforcement learning has been applied in operation research and has shown promise in solving large combinatorial optimization problems. However, existing works focus on developing neural network architectures for certain problems. These works lack the flexibility to incorporate recent advances in reinforcement learning, as well as the flexibility of customizing model architectures for operation research problems. In this work, we analyze the end-to-end autoregressive models for vehicle routing problems and show that these models can benefit from the recent advances in reinforcement learning with a careful re-implementation of the model architecture. In particular, we re-implemented the Attention Model and trained it with Proximal Policy Optimization (PPO) in CleanRL, showing at least 8 times speed up in training time. We hereby introduce RLOR, a flexible framework for Deep Reinforcement Learning for Operation Research. We believe that a flexible framework is key to developing deep reinforcement learning models for operation research problems. The code of our work is publicly available at https://github.com/cpwan/RLOR.
Window-Based Early-Exit Cascades for Uncertainty Estimation: When Deep Ensembles are More Efficient than Single Models
Deep Ensembles are a simple, reliable, and effective method of improving both the predictive performance and uncertainty estimates of deep learning approaches. However, they are widely criticised as being computationally expensive, due to the need to deploy multiple independent models. Recent work has challenged this view, showing that for predictive accuracy, ensembles can be more computationally efficient (at inference) than scaling single models within an architecture family. This is achieved by cascading ensemble members via an early-exit approach. In this work, we investigate extending these efficiency gains to tasks related to uncertainty estimation. As many such tasks, e.g. selective classification, are binary classification, our key novel insight is to only pass samples within a window close to the binary decision boundary to later cascade stages. Experiments on ImageNet-scale data across a number of network architectures and uncertainty tasks show that the proposed window-based early-exit approach is able to achieve a superior uncertainty-computation trade-off compared to scaling single models. For example, a cascaded EfficientNet-B2 ensemble is able to achieve similar coverage at 5% risk as a single EfficientNet-B4 with <30% the number of MACs. We also find that cascades/ensembles give more reliable improvements on OOD data vs scaling models up. Code for this work is available at: https://github.com/Guoxoug/window-early-exit.
Structured Pruning for Deep Convolutional Neural Networks: A survey
The remarkable performance of deep Convolutional neural networks (CNNs) is generally attributed to their deeper and wider architectures, which can come with significant computational costs. Pruning neural networks has thus gained interest since it effectively lowers storage and computational costs. In contrast to weight pruning, which results in unstructured models, structured pruning provides the benefit of realistic acceleration by producing models that are friendly to hardware implementation. The special requirements of structured pruning have led to the discovery of numerous new challenges and the development of innovative solutions. This article surveys the recent progress towards structured pruning of deep CNNs. We summarize and compare the state-of-the-art structured pruning techniques with respect to filter ranking methods, regularization methods, dynamic execution, neural architecture search, the lottery ticket hypothesis, and the applications of pruning. While discussing structured pruning algorithms, we briefly introduce the unstructured pruning counterpart to emphasize their differences. Furthermore, we provide insights into potential research opportunities in the field of structured pruning. A curated list of neural network pruning papers can be found at https://github.com/he-y/Awesome-Pruning
Neural Collapse in Deep Linear Networks: From Balanced to Imbalanced Data
Modern deep neural networks have achieved impressive performance on tasks from image classification to natural language processing. Surprisingly, these complex systems with massive amounts of parameters exhibit the same structural properties in their last-layer features and classifiers across canonical datasets when training until convergence. In particular, it has been observed that the last-layer features collapse to their class-means, and those class-means are the vertices of a simplex Equiangular Tight Frame (ETF). This phenomenon is known as Neural Collapse (NC). Recent papers have theoretically shown that NC emerges in the global minimizers of training problems with the simplified "unconstrained feature model". In this context, we take a step further and prove the NC occurrences in deep linear networks for the popular mean squared error (MSE) and cross entropy (CE) losses, showing that global solutions exhibit NC properties across the linear layers. Furthermore, we extend our study to imbalanced data for MSE loss and present the first geometric analysis of NC under bias-free setting. Our results demonstrate the convergence of the last-layer features and classifiers to a geometry consisting of orthogonal vectors, whose lengths depend on the amount of data in their corresponding classes. Finally, we empirically validate our theoretical analyses on synthetic and practical network architectures with both balanced and imbalanced scenarios.
A Stronger Baseline For Automatic Pfirrmann Grading Of Lumbar Spine MRI Using Deep Learning
This paper addresses the challenge of grading visual features in lumbar spine MRI using Deep Learning. Such a method is essential for the automatic quantification of structural changes in the spine, which is valuable for understanding low back pain. Multiple recent studies investigated different architecture designs, and the most recent success has been attributed to the use of transformer architectures. In this work, we argue that with a well-tuned three-stage pipeline comprising semantic segmentation, localization, and classification, convolutional networks outperform the state-of-the-art approaches. We conducted an ablation study of the existing methods in a population cohort, and report performance generalization across various subgroups. Our code is publicly available to advance research on disc degeneration and low back pain.
Natural Language Descriptions of Deep Visual Features
Some neurons in deep networks specialize in recognizing highly specific perceptual, structural, or semantic features of inputs. In computer vision, techniques exist for identifying neurons that respond to individual concept categories like colors, textures, and object classes. But these techniques are limited in scope, labeling only a small subset of neurons and behaviors in any network. Is a richer characterization of neuron-level computation possible? We introduce a procedure (called MILAN, for mutual-information-guided linguistic annotation of neurons) that automatically labels neurons with open-ended, compositional, natural language descriptions. Given a neuron, MILAN generates a description by searching for a natural language string that maximizes pointwise mutual information with the image regions in which the neuron is active. MILAN produces fine-grained descriptions that capture categorical, relational, and logical structure in learned features. These descriptions obtain high agreement with human-generated feature descriptions across a diverse set of model architectures and tasks, and can aid in understanding and controlling learned models. We highlight three applications of natural language neuron descriptions. First, we use MILAN for analysis, characterizing the distribution and importance of neurons selective for attribute, category, and relational information in vision models. Second, we use MILAN for auditing, surfacing neurons sensitive to human faces in datasets designed to obscure them. Finally, we use MILAN for editing, improving robustness in an image classifier by deleting neurons sensitive to text features spuriously correlated with class labels.
Finding the Task-Optimal Low-Bit Sub-Distribution in Deep Neural Networks
Quantized neural networks typically require smaller memory footprints and lower computation complexity, which is crucial for efficient deployment. However, quantization inevitably leads to a distribution divergence from the original network, which generally degrades the performance. To tackle this issue, massive efforts have been made, but most existing approaches lack statistical considerations and depend on several manual configurations. In this paper, we present an adaptive-mapping quantization method to learn an optimal latent sub-distribution that is inherent within models and smoothly approximated with a concrete Gaussian Mixture (GM). In particular, the network weights are projected in compliance with the GM-approximated sub-distribution. This sub-distribution evolves along with the weight update in a co-tuning schema guided by the direct task-objective optimization. Sufficient experiments on image classification and object detection over various modern architectures demonstrate the effectiveness, generalization property, and transferability of the proposed method. Besides, an efficient deployment flow for the mobile CPU is developed, achieving up to 7.46times inference acceleration on an octa-core ARM CPU. Our codes have been publicly released at https://github.com/RunpeiDong/DGMS.
The Principles of Deep Learning Theory
This book develops an effective theory approach to understanding deep neural networks of practical relevance. Beginning from a first-principles component-level picture of networks, we explain how to determine an accurate description of the output of trained networks by solving layer-to-layer iteration equations and nonlinear learning dynamics. A main result is that the predictions of networks are described by nearly-Gaussian distributions, with the depth-to-width aspect ratio of the network controlling the deviations from the infinite-width Gaussian description. We explain how these effectively-deep networks learn nontrivial representations from training and more broadly analyze the mechanism of representation learning for nonlinear models. From a nearly-kernel-methods perspective, we find that the dependence of such models' predictions on the underlying learning algorithm can be expressed in a simple and universal way. To obtain these results, we develop the notion of representation group flow (RG flow) to characterize the propagation of signals through the network. By tuning networks to criticality, we give a practical solution to the exploding and vanishing gradient problem. We further explain how RG flow leads to near-universal behavior and lets us categorize networks built from different activation functions into universality classes. Altogether, we show that the depth-to-width ratio governs the effective model complexity of the ensemble of trained networks. By using information-theoretic techniques, we estimate the optimal aspect ratio at which we expect the network to be practically most useful and show how residual connections can be used to push this scale to arbitrary depths. With these tools, we can learn in detail about the inductive bias of architectures, hyperparameters, and optimizers.
TransNet V2: An effective deep network architecture for fast shot transition detection
Although automatic shot transition detection approaches are already investigated for more than two decades, an effective universal human-level model was not proposed yet. Even for common shot transitions like hard cuts or simple gradual changes, the potential diversity of analyzed video contents may still lead to both false hits and false dismissals. Recently, deep learning-based approaches significantly improved the accuracy of shot transition detection using 3D convolutional architectures and artificially created training data. Nevertheless, one hundred percent accuracy is still an unreachable ideal. In this paper, we share the current version of our deep network TransNet V2 that reaches state-of-the-art performance on respected benchmarks. A trained instance of the model is provided so it can be instantly utilized by the community for a highly efficient analysis of large video archives. Furthermore, the network architecture, as well as our experience with the training process, are detailed, including simple code snippets for convenient usage of the proposed model and visualization of results.
An Evaluation of DNN Architectures for Page Segmentation of Historical Newspapers
One important and particularly challenging step in the optical character recognition (OCR) of historical documents with complex layouts, such as newspapers, is the separation of text from non-text content (e.g. page borders or illustrations). This step is commonly referred to as page segmentation. While various rule-based algorithms have been proposed, the applicability of Deep Neural Networks (DNNs) for this task recently has gained a lot of attention. In this paper, we perform a systematic evaluation of 11 different published DNN backbone architectures and 9 different tiling and scaling configurations for separating text, tables or table column lines. We also show the influence of the number of labels and the number of training pages on the segmentation quality, which we measure using the Matthews Correlation Coefficient. Our results show that (depending on the task) Inception-ResNet-v2 and EfficientNet backbones work best, vertical tiling is generally preferable to other tiling approaches, and training data that comprises 30 to 40 pages will be sufficient most of the time.
DeepFool: a simple and accurate method to fool deep neural networks
State-of-the-art deep neural networks have achieved impressive results on many image classification tasks. However, these same architectures have been shown to be unstable to small, well sought, perturbations of the images. Despite the importance of this phenomenon, no effective methods have been proposed to accurately compute the robustness of state-of-the-art deep classifiers to such perturbations on large-scale datasets. In this paper, we fill this gap and propose the DeepFool algorithm to efficiently compute perturbations that fool deep networks, and thus reliably quantify the robustness of these classifiers. Extensive experimental results show that our approach outperforms recent methods in the task of computing adversarial perturbations and making classifiers more robust.
KonfAI: A Modular and Fully Configurable Framework for Deep Learning in Medical Imaging
KonfAI is a modular, extensible, and fully configurable deep learning framework specifically designed for medical imaging tasks. It enables users to define complete training, inference, and evaluation workflows through structured YAML configuration files, without modifying the underlying code. This declarative approach enhances reproducibility, transparency, and experimental traceability while reducing development time. Beyond the capabilities of standard pipelines, KonfAI provides native abstractions for advanced strategies including patch-based learning, test-time augmentation, model ensembling, and direct access to intermediate feature representations for deep supervision. It also supports complex multi-model training setups such as generative adversarial architectures. Thanks to its modular and extensible architecture, KonfAI can easily accommodate custom models, loss functions, and data processing components. The framework has been successfully applied to segmentation, registration, and image synthesis tasks, and has contributed to top-ranking results in several international medical imaging challenges. KonfAI is open source and available at https://github.com/vboussot/KonfAI{https://github.com/vboussot/KonfAI}.
Personalized Image Generation with Deep Generative Models: A Decade Survey
Recent advancements in generative models have significantly facilitated the development of personalized content creation. Given a small set of images with user-specific concept, personalized image generation allows to create images that incorporate the specified concept and adhere to provided text descriptions. Due to its wide applications in content creation, significant effort has been devoted to this field in recent years. Nonetheless, the technologies used for personalization have evolved alongside the development of generative models, with their distinct and interrelated components. In this survey, we present a comprehensive review of generalized personalized image generation across various generative models, including traditional GANs, contemporary text-to-image diffusion models, and emerging multi-model autoregressive models. We first define a unified framework that standardizes the personalization process across different generative models, encompassing three key components, i.e., inversion spaces, inversion methods, and personalization schemes. This unified framework offers a structured approach to dissecting and comparing personalization techniques across different generative architectures. Building upon this unified framework, we further provide an in-depth analysis of personalization techniques within each generative model, highlighting their unique contributions and innovations. Through comparative analysis, this survey elucidates the current landscape of personalized image generation, identifying commonalities and distinguishing features among existing methods. Finally, we discuss the open challenges in the field and propose potential directions for future research. We keep tracing related works at https://github.com/csyxwei/Awesome-Personalized-Image-Generation.
DCNFIS: Deep Convolutional Neuro-Fuzzy Inference System
A key challenge in eXplainable Artificial Intelligence is the well-known tradeoff between the transparency of an algorithm (i.e., how easily a human can directly understand the algorithm, as opposed to receiving a post-hoc explanation), and its accuracy. We report on the design of a new deep network that achieves improved transparency without sacrificing accuracy. We design a deep convolutional neuro-fuzzy inference system (DCNFIS) by hybridizing fuzzy logic and deep learning models and show that DCNFIS performs as accurately as existing convolutional neural networks on four well-known datasets and 3 famous architectures. Our performance comparison with available fuzzy methods show that DCNFIS is now state-of-the-art fuzzy system and outperforms other shallow and deep fuzzy methods to the best of our knowledge. At the end, we exploit the transparency of fuzzy logic by deriving explanations, in the form of saliency maps, from the fuzzy rules encoded in the network to take benefit of fuzzy logic upon regular deep learning methods. We investigate the properties of these explanations in greater depth using the Fashion-MNIST dataset.
Unsupervised Deep Learning-based Pansharpening with Jointly-Enhanced Spectral and Spatial Fidelity
In latest years, deep learning has gained a leading role in the pansharpening of multiresolution images. Given the lack of ground truth data, most deep learning-based methods carry out supervised training in a reduced-resolution domain. However, models trained on downsized images tend to perform poorly on high-resolution target images. For this reason, several research groups are now turning to unsupervised training in the full-resolution domain, through the definition of appropriate loss functions and training paradigms. In this context, we have recently proposed a full-resolution training framework which can be applied to many existing architectures. Here, we propose a new deep learning-based pansharpening model that fully exploits the potential of this approach and provides cutting-edge performance. Besides architectural improvements with respect to previous work, such as the use of residual attention modules, the proposed model features a novel loss function that jointly promotes the spectral and spatial quality of the pansharpened data. In addition, thanks to a new fine-tuning strategy, it improves inference-time adaptation to target images. Experiments on a large variety of test images, performed in challenging scenarios, demonstrate that the proposed method compares favorably with the state of the art both in terms of numerical results and visual output. Code is available online at https://github.com/matciotola/Lambda-PNN.
Quantizing deep convolutional networks for efficient inference: A whitepaper
We present an overview of techniques for quantizing convolutional neural networks for inference with integer weights and activations. Per-channel quantization of weights and per-layer quantization of activations to 8-bits of precision post-training produces classification accuracies within 2% of floating point networks for a wide variety of CNN architectures. Model sizes can be reduced by a factor of 4 by quantizing weights to 8-bits, even when 8-bit arithmetic is not supported. This can be achieved with simple, post training quantization of weights.We benchmark latencies of quantized networks on CPUs and DSPs and observe a speedup of 2x-3x for quantized implementations compared to floating point on CPUs. Speedups of up to 10x are observed on specialized processors with fixed point SIMD capabilities, like the Qualcomm QDSPs with HVX. Quantization-aware training can provide further improvements, reducing the gap to floating point to 1% at 8-bit precision. Quantization-aware training also allows for reducing the precision of weights to four bits with accuracy losses ranging from 2% to 10%, with higher accuracy drop for smaller networks.We introduce tools in TensorFlow and TensorFlowLite for quantizing convolutional networks and review best practices for quantization-aware training to obtain high accuracy with quantized weights and activations. We recommend that per-channel quantization of weights and per-layer quantization of activations be the preferred quantization scheme for hardware acceleration and kernel optimization. We also propose that future processors and hardware accelerators for optimized inference support precisions of 4, 8 and 16 bits.
Training Deep Nets with Sublinear Memory Cost
We propose a systematic approach to reduce the memory consumption of deep neural network training. Specifically, we design an algorithm that costs O(sqrt(n)) memory to train a n layer network, with only the computational cost of an extra forward pass per mini-batch. As many of the state-of-the-art models hit the upper bound of the GPU memory, our algorithm allows deeper and more complex models to be explored, and helps advance the innovations in deep learning research. We focus on reducing the memory cost to store the intermediate feature maps and gradients during training. Computation graph analysis is used for automatic in-place operation and memory sharing optimizations. We show that it is possible to trade computation for memory - giving a more memory efficient training algorithm with a little extra computation cost. In the extreme case, our analysis also shows that the memory consumption can be reduced to O(log n) with as little as O(n log n) extra cost for forward computation. Our experiments show that we can reduce the memory cost of a 1,000-layer deep residual network from 48G to 7G with only 30 percent additional running time cost on ImageNet problems. Similarly, significant memory cost reduction is observed in training complex recurrent neural networks on very long sequences.
A Comprehensive Survey of Mamba Architectures for Medical Image Analysis: Classification, Segmentation, Restoration and Beyond
Mamba, a special case of the State Space Model, is gaining popularity as an alternative to template-based deep learning approaches in medical image analysis. While transformers are powerful architectures, they have drawbacks, including quadratic computational complexity and an inability to address long-range dependencies efficiently. This limitation affects the analysis of large and complex datasets in medical imaging, where there are many spatial and temporal relationships. In contrast, Mamba offers benefits that make it well-suited for medical image analysis. It has linear time complexity, which is a significant improvement over transformers. Mamba processes longer sequences without attention mechanisms, enabling faster inference and requiring less memory. Mamba also demonstrates strong performance in merging multimodal data, improving diagnosis accuracy and patient outcomes. The organization of this paper allows readers to appreciate the capabilities of Mamba in medical imaging step by step. We begin by defining core concepts of SSMs and models, including S4, S5, and S6, followed by an exploration of Mamba architectures such as pure Mamba, U-Net variants, and hybrid models with convolutional neural networks, transformers, and Graph Neural Networks. We also cover Mamba optimizations, techniques and adaptations, scanning, datasets, applications, experimental results, and conclude with its challenges and future directions in medical imaging. This review aims to demonstrate the transformative potential of Mamba in overcoming existing barriers within medical imaging while paving the way for innovative advancements in the field. A comprehensive list of Mamba architectures applied in the medical field, reviewed in this work, is available at Github.
Revisiting Residual Connections: Orthogonal Updates for Stable and Efficient Deep Networks
Residual connections are pivotal for deep neural networks, enabling greater depth by mitigating vanishing gradients. However, in standard residual updates, the module's output is directly added to the input stream. This can lead to updates that predominantly reinforce or modulate the existing stream direction, potentially underutilizing the module's capacity for learning entirely novel features. In this work, we introduce Orthogonal Residual Update: we decompose the module's output relative to the input stream and add only the component orthogonal to this stream. This design aims to guide modules to contribute primarily new representational directions, fostering richer feature learning while promoting more efficient training. We demonstrate that our orthogonal update strategy improves generalization accuracy and training stability across diverse architectures (ResNetV2, Vision Transformers) and datasets (CIFARs, TinyImageNet, ImageNet-1k), achieving, for instance, a +4.3\%p top-1 accuracy gain for ViT-B on ImageNet-1k.
Why Personalizing Deep Learning-Based Code Completion Tools Matters
Deep learning (DL)-based code completion tools have transformed software development by enabling advanced code generation. These tools leverage models trained on vast amounts of code from numerous repositories, capturing general coding patterns. However, the impact of fine-tuning these models for specific organizations or developers to boost their performance on such subjects remains unexplored. In this work, we fill this gap by presenting solid empirical evidence answering this question. More specifically, we consider 136 developers from two organizations (Apache and Spring), two model architectures (T5 and Code Llama), and three model sizes (60M, 750M, and 7B trainable parameters). T5 models (60M, 750M) were pre-trained and fine-tuned on over 2,000 open-source projects, excluding the subject organizations' data, and compared against versions fine-tuned on organization- and developer-specific datasets. For the Code Llama model (7B), we compared the performance of the already pre-trained model publicly available online with the same model fine-tuned via parameter-efficient fine-tuning on organization- and developer-specific datasets. Our results show that there is a boost in prediction capabilities provided by both an organization-specific and a developer-specific additional fine-tuning, with the former being particularly performant. Such a finding generalizes across (i) the two subject organizations (i.e., Apache and Spring) and (ii) models of completely different magnitude (from 60M to 7B trainable parameters). Finally, we show that DL models fine-tuned on an organization-specific dataset achieve the same completion performance of pre-trained code models used out of the box and being sim10times larger, with consequent savings in terms of deployment and inference cost (e.g., smaller GPUs needed).
Unlocking the Potential of Generative AI through Neuro-Symbolic Architectures: Benefits and Limitations
Neuro-symbolic artificial intelligence (NSAI) represents a transformative approach in artificial intelligence (AI) by combining deep learning's ability to handle large-scale and unstructured data with the structured reasoning of symbolic methods. By leveraging their complementary strengths, NSAI enhances generalization, reasoning, and scalability while addressing key challenges such as transparency and data efficiency. This paper systematically studies diverse NSAI architectures, highlighting their unique approaches to integrating neural and symbolic components. It examines the alignment of contemporary AI techniques such as retrieval-augmented generation, graph neural networks, reinforcement learning, and multi-agent systems with NSAI paradigms. This study then evaluates these architectures against comprehensive set of criteria, including generalization, reasoning capabilities, transferability, and interpretability, therefore providing a comparative analysis of their respective strengths and limitations. Notably, the Neuro > Symbolic < Neuro model consistently outperforms its counterparts across all evaluation metrics. This result aligns with state-of-the-art research that highlight the efficacy of such architectures in harnessing advanced technologies like multi-agent systems.
Leaping Into Memories: Space-Time Deep Feature Synthesis
The success of deep learning models has led to their adaptation and adoption by prominent video understanding methods. The majority of these approaches encode features in a joint space-time modality for which the inner workings and learned representations are difficult to visually interpret. We propose LEArned Preconscious Synthesis (LEAPS), an architecture-independent method for synthesizing videos from the internal spatiotemporal representations of models. Using a stimulus video and a target class, we prime a fixed space-time model and iteratively optimize a video initialized with random noise. Additional regularizers are used to improve the feature diversity of the synthesized videos alongside the cross-frame temporal coherence of motions. We quantitatively and qualitatively evaluate the applicability of LEAPS by inverting a range of spatiotemporal convolutional and attention-based architectures trained on Kinetics-400, which to the best of our knowledge has not been previously accomplished.
Activation Functions in Deep Learning: A Comprehensive Survey and Benchmark
Neural networks have shown tremendous growth in recent years to solve numerous problems. Various types of neural networks have been introduced to deal with different types of problems. However, the main goal of any neural network is to transform the non-linearly separable input data into more linearly separable abstract features using a hierarchy of layers. These layers are combinations of linear and nonlinear functions. The most popular and common non-linearity layers are activation functions (AFs), such as Logistic Sigmoid, Tanh, ReLU, ELU, Swish and Mish. In this paper, a comprehensive overview and survey is presented for AFs in neural networks for deep learning. Different classes of AFs such as Logistic Sigmoid and Tanh based, ReLU based, ELU based, and Learning based are covered. Several characteristics of AFs such as output range, monotonicity, and smoothness are also pointed out. A performance comparison is also performed among 18 state-of-the-art AFs with different networks on different types of data. The insights of AFs are presented to benefit the researchers for doing further research and practitioners to select among different choices. The code used for experimental comparison is released at: https://github.com/shivram1987/ActivationFunctions.
FastPathology: An open-source platform for deep learning-based research and decision support in digital pathology
Deep convolutional neural networks (CNNs) are the current state-of-the-art for digital analysis of histopathological images. The large size of whole-slide microscopy images (WSIs) requires advanced memory handling to read, display and process these images. There are several open-source platforms for working with WSIs, but few support deployment of CNN models. These applications use third-party solutions for inference, making them less user-friendly and unsuitable for high-performance image analysis. To make deployment of CNNs user-friendly and feasible on low-end machines, we have developed a new platform, FastPathology, using the FAST framework and C++. It minimizes memory usage for reading and processing WSIs, deployment of CNN models, and real-time interactive visualization of results. Runtime experiments were conducted on four different use cases, using different architectures, inference engines, hardware configurations and operating systems. Memory usage for reading, visualizing, zooming and panning a WSI were measured, using FastPathology and three existing platforms. FastPathology performed similarly in terms of memory to the other C++ based application, while using considerably less than the two Java-based platforms. The choice of neural network model, inference engine, hardware and processors influenced runtime considerably. Thus, FastPathology includes all steps needed for efficient visualization and processing of WSIs in a single application, including inference of CNNs with real-time display of the results. Source code, binary releases and test data can be found online on GitHub at https://github.com/SINTEFMedtek/FAST-Pathology/.
Towards a deep learning approach for classifying treatment response in glioblastomas
Glioblastomas are the most aggressive type of glioma, having a 5-year survival rate of 6.9%. Treatment typically involves surgery, followed by radiotherapy and chemotherapy, and frequent magnetic resonance imaging (MRI) scans to monitor disease progression. To assess treatment response, radiologists use the Response Assessment in Neuro-Oncology (RANO) criteria to categorize the tumor into one of four labels based on imaging and clinical features: complete response, partial response, stable disease, and progressive disease. This assessment is very complex and time-consuming. Since deep learning (DL) has been widely used to tackle classification problems, this work aimed to implement the first DL pipeline for the classification of RANO criteria based on two consecutive MRI acquisitions. The models were trained and tested on the open dataset LUMIERE. Five approaches were tested: 1) subtraction of input images, 2) different combinations of modalities, 3) different model architectures, 4) different pretraining tasks, and 5) adding clinical data. The pipeline that achieved the best performance used a Densenet264 considering only T1-weighted, T2-weighted, and Fluid Attenuated Inversion Recovery (FLAIR) images as input without any pretraining. A median Balanced Accuracy of 50.96% was achieved. Additionally, explainability methods were applied. Using Saliency Maps, the tumor region was often successfully highlighted. In contrast, Grad-CAM typically failed to highlight the tumor region, with some exceptions observed in the Complete Response and Progressive Disease classes, where it effectively identified the tumor region. These results set a benchmark for future studies on glioblastoma treatment response assessment based on the RANO criteria while emphasizing the heterogeneity of factors that might play a role when assessing the tumor's response to treatment.
DLBacktrace: A Model Agnostic Explainability for any Deep Learning Models
The rapid growth of AI has led to more complex deep learning models, often operating as opaque "black boxes" with limited transparency in their decision-making. This lack of interpretability poses challenges, especially in high-stakes applications where understanding model output is crucial. This work highlights the importance of interpretability in fostering trust, accountability, and responsible deployment. To address these challenges, we introduce DLBacktrace, a novel, model-agnostic technique designed to provide clear insights into deep learning model decisions across a wide range of domains and architectures, including MLPs, CNNs, and Transformer-based LLM models. We present a comprehensive overview of DLBacktrace and benchmark its performance against established interpretability methods such as SHAP, LIME, and GradCAM. Our results demonstrate that DLBacktrace effectively enhances understanding of model behavior across diverse tasks. DLBacktrace is compatible with models developed in both PyTorch and TensorFlow, supporting architectures such as BERT, ResNet, U-Net, and custom DNNs for tabular data. The library is open-sourced and available at https://github.com/AryaXAI/DLBacktrace .
Information-Theoretic Generalization Bounds for Deep Neural Networks
Deep neural networks (DNNs) exhibit an exceptional capacity for generalization in practical applications. This work aims to capture the effect and benefits of depth for supervised learning via information-theoretic generalization bounds. We first derive two hierarchical bounds on the generalization error in terms of the Kullback-Leibler (KL) divergence or the 1-Wasserstein distance between the train and test distributions of the network internal representations. The KL divergence bound shrinks as the layer index increases, while the Wasserstein bound implies the existence of a layer that serves as a generalization funnel, which attains a minimal 1-Wasserstein distance. Analytic expressions for both bounds are derived under the setting of binary Gaussian classification with linear DNNs. To quantify the contraction of the relevant information measures when moving deeper into the network, we analyze the strong data processing inequality (SDPI) coefficient between consecutive layers of three regularized DNN models: Dropout, DropConnect, and Gaussian noise injection. This enables refining our generalization bounds to capture the contraction as a function of the network architecture parameters. Specializing our results to DNNs with a finite parameter space and the Gibbs algorithm reveals that deeper yet narrower network architectures generalize better in those examples, although how broadly this statement applies remains a question.
Benchmark Analysis of Various Pre-trained Deep Learning Models on ASSIRA Cats and Dogs Dataset
As the most basic application and implementation of deep learning, image classification has grown in popularity. Various datasets are provided by renowned data science communities for benchmarking machine learning algorithms and pre-trained models. The ASSIRA Cats & Dogs dataset is one of them and is being used in this research for its overall acceptance and benchmark standards. A comparison of various pre-trained models is demonstrated by using different types of optimizers and loss functions. Hyper-parameters are changed to gain the best result from a model. By applying this approach, we have got higher accuracy without major changes in the training model. To run the experiment, we used three different computer architectures: a laptop equipped with NVIDIA GeForce GTX 1070, a laptop equipped with NVIDIA GeForce RTX 3080Ti, and a desktop equipped with NVIDIA GeForce RTX 3090. The acquired results demonstrate supremacy in terms of accuracy over the previously done experiments on this dataset. From this experiment, the highest accuracy which is 99.65% is gained using the NASNet Large.
Pattern Based Multivariable Regression using Deep Learning (PBMR-DP)
We propose a deep learning methodology for multivariate regression that is based on pattern recognition that triggers fast learning over sensor data. We used a conversion of sensors-to-image which enables us to take advantage of Computer Vision architectures and training processes. In addition to this data preparation methodology, we explore the use of state-of-the-art architectures to generate regression outputs to predict agricultural crop continuous yield information. Finally, we compare with some of the top models reported in MLCAS2021. We found that using a straightforward training process, we were able to accomplish an MAE of 4.394, RMSE of 5.945, and R^2 of 0.861.
Greedy Bayesian Posterior Approximation with Deep Ensembles
Ensembles of independently trained neural networks are a state-of-the-art approach to estimate predictive uncertainty in Deep Learning, and can be interpreted as an approximation of the posterior distribution via a mixture of delta functions. The training of ensembles relies on non-convexity of the loss landscape and random initialization of their individual members, making the resulting posterior approximation uncontrolled. This paper proposes a novel and principled method to tackle this limitation, minimizing an f-divergence between the true posterior and a kernel density estimator (KDE) in a function space. We analyze this objective from a combinatorial point of view, and show that it is submodular with respect to mixture components for any f. Subsequently, we consider the problem of greedy ensemble construction. From the marginal gain on the negative f-divergence, which quantifies an improvement in posterior approximation yielded by adding a new component into the KDE, we derive a novel diversity term for ensemble methods. The performance of our approach is demonstrated on computer vision out-of-distribution detection benchmarks in a range of architectures trained on multiple datasets. The source code of our method is made publicly available at https://github.com/Oulu-IMEDS/greedy_ensembles_training.
Partial Differential Equations is All You Need for Generating Neural Architectures -- A Theory for Physical Artificial Intelligence Systems
In this work, we generalize the reaction-diffusion equation in statistical physics, Schr\"odinger equation in quantum mechanics, Helmholtz equation in paraxial optics into the neural partial differential equations (NPDE), which can be considered as the fundamental equations in the field of artificial intelligence research. We take finite difference method to discretize NPDE for finding numerical solution, and the basic building blocks of deep neural network architecture, including multi-layer perceptron, convolutional neural network and recurrent neural networks, are generated. The learning strategies, such as Adaptive moment estimation, L-BFGS, pseudoinverse learning algorithms and partial differential equation constrained optimization, are also presented. We believe it is of significance that presented clear physical image of interpretable deep neural networks, which makes it be possible for applying to analog computing device design, and pave the road to physical artificial intelligence.
How Good is your Explanation? Algorithmic Stability Measures to Assess the Quality of Explanations for Deep Neural Networks
A plethora of methods have been proposed to explain how deep neural networks reach their decisions but comparatively, little effort has been made to ensure that the explanations produced by these methods are objectively relevant. While several desirable properties for trustworthy explanations have been formulated, objective measures have been harder to derive. Here, we propose two new measures to evaluate explanations borrowed from the field of algorithmic stability: mean generalizability MeGe and relative consistency ReCo. We conduct extensive experiments on different network architectures, common explainability methods, and several image datasets to demonstrate the benefits of the proposed measures.In comparison to ours, popular fidelity measures are not sufficient to guarantee trustworthy explanations.Finally, we found that 1-Lipschitz networks produce explanations with higher MeGe and ReCo than common neural networks while reaching similar accuracy. This suggests that 1-Lipschitz networks are a relevant direction towards predictors that are more explainable and trustworthy.
Modeling Data Reuse in Deep Neural Networks by Taking Data-Types into Cognizance
In recent years, researchers have focused on reducing the model size and number of computations (measured as "multiply-accumulate" or MAC operations) of DNNs. The energy consumption of a DNN depends on both the number of MAC operations and the energy efficiency of each MAC operation. The former can be estimated at design time; however, the latter depends on the intricate data reuse patterns and underlying hardware architecture. Hence, estimating it at design time is challenging. This work shows that the conventional approach to estimate the data reuse, viz. arithmetic intensity, does not always correctly estimate the degree of data reuse in DNNs since it gives equal importance to all the data types. We propose a novel model, termed "data type aware weighted arithmetic intensity" (DI), which accounts for the unequal importance of different data types in DNNs. We evaluate our model on 25 state-of-the-art DNNs on two GPUs. We show that our model accurately models data-reuse for all possible data reuse patterns for different types of convolution and different types of layers. We show that our model is a better indicator of the energy efficiency of DNNs. We also show its generality using the central limit theorem.
DeepCABAC: Context-adaptive binary arithmetic coding for deep neural network compression
We present DeepCABAC, a novel context-adaptive binary arithmetic coder for compressing deep neural networks. It quantizes each weight parameter by minimizing a weighted rate-distortion function, which implicitly takes the impact of quantization on to the accuracy of the network into account. Subsequently, it compresses the quantized values into a bitstream representation with minimal redundancies. We show that DeepCABAC is able to reach very high compression ratios across a wide set of different network architectures and datasets. For instance, we are able to compress by x63.6 the VGG16 ImageNet model with no loss of accuracy, thus being able to represent the entire network with merely 8.7MB.
Communication-Efficient Learning of Deep Networks from Decentralized Data
Modern mobile devices have access to a wealth of data suitable for learning models, which in turn can greatly improve the user experience on the device. For example, language models can improve speech recognition and text entry, and image models can automatically select good photos. However, this rich data is often privacy sensitive, large in quantity, or both, which may preclude logging to the data center and training there using conventional approaches. We advocate an alternative that leaves the training data distributed on the mobile devices, and learns a shared model by aggregating locally-computed updates. We term this decentralized approach Federated Learning. We present a practical method for the federated learning of deep networks based on iterative model averaging, and conduct an extensive empirical evaluation, considering five different model architectures and four datasets. These experiments demonstrate the approach is robust to the unbalanced and non-IID data distributions that are a defining characteristic of this setting. Communication costs are the principal constraint, and we show a reduction in required communication rounds by 10-100x as compared to synchronized stochastic gradient descent.
Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition
Existing deep convolutional neural networks (CNNs) require a fixed-size (e.g., 224x224) input image. This requirement is "artificial" and may reduce the recognition accuracy for the images or sub-images of an arbitrary size/scale. In this work, we equip the networks with another pooling strategy, "spatial pyramid pooling", to eliminate the above requirement. The new network structure, called SPP-net, can generate a fixed-length representation regardless of image size/scale. Pyramid pooling is also robust to object deformations. With these advantages, SPP-net should in general improve all CNN-based image classification methods. On the ImageNet 2012 dataset, we demonstrate that SPP-net boosts the accuracy of a variety of CNN architectures despite their different designs. On the Pascal VOC 2007 and Caltech101 datasets, SPP-net achieves state-of-the-art classification results using a single full-image representation and no fine-tuning. The power of SPP-net is also significant in object detection. Using SPP-net, we compute the feature maps from the entire image only once, and then pool features in arbitrary regions (sub-images) to generate fixed-length representations for training the detectors. This method avoids repeatedly computing the convolutional features. In processing test images, our method is 24-102x faster than the R-CNN method, while achieving better or comparable accuracy on Pascal VOC 2007. In ImageNet Large Scale Visual Recognition Challenge (ILSVRC) 2014, our methods rank #2 in object detection and #3 in image classification among all 38 teams. This manuscript also introduces the improvement made for this competition.
Deterministic equivalent and error universality of deep random features learning
This manuscript considers the problem of learning a random Gaussian network function using a fully connected network with frozen intermediate layers and trainable readout layer. This problem can be seen as a natural generalization of the widely studied random features model to deeper architectures. First, we prove Gaussian universality of the test error in a ridge regression setting where the learner and target networks share the same intermediate layers, and provide a sharp asymptotic formula for it. Establishing this result requires proving a deterministic equivalent for traces of the deep random features sample covariance matrices which can be of independent interest. Second, we conjecture the asymptotic Gaussian universality of the test error in the more general setting of arbitrary convex losses and generic learner/target architectures. We provide extensive numerical evidence for this conjecture, which requires the derivation of closed-form expressions for the layer-wise post-activation population covariances. In light of our results, we investigate the interplay between architecture design and implicit regularization.
Effects of Data Geometry in Early Deep Learning
Deep neural networks can approximate functions on different types of data, from images to graphs, with varied underlying structure. This underlying structure can be viewed as the geometry of the data manifold. By extending recent advances in the theoretical understanding of neural networks, we study how a randomly initialized neural network with piece-wise linear activation splits the data manifold into regions where the neural network behaves as a linear function. We derive bounds on the density of boundary of linear regions and the distance to these boundaries on the data manifold. This leads to insights into the expressivity of randomly initialized deep neural networks on non-Euclidean data sets. We empirically corroborate our theoretical results using a toy supervised learning problem. Our experiments demonstrate that number of linear regions varies across manifolds and the results hold with changing neural network architectures. We further demonstrate how the complexity of linear regions is different on the low dimensional manifold of images as compared to the Euclidean space, using the MetFaces dataset.
Torchreid: A Library for Deep Learning Person Re-Identification in Pytorch
Person re-identification (re-ID), which aims to re-identify people across different camera views, has been significantly advanced by deep learning in recent years, particularly with convolutional neural networks (CNNs). In this paper, we present Torchreid, a software library built on PyTorch that allows fast development and end-to-end training and evaluation of deep re-ID models. As a general-purpose framework for person re-ID research, Torchreid provides (1) unified data loaders that support 15 commonly used re-ID benchmark datasets covering both image and video domains, (2) streamlined pipelines for quick development and benchmarking of deep re-ID models, and (3) implementations of the latest re-ID CNN architectures along with their pre-trained models to facilitate reproducibility as well as future research. With a high-level modularity in its design, Torchreid offers a great flexibility to allow easy extension to new datasets, CNN models and loss functions.
FractalNet: Ultra-Deep Neural Networks without Residuals
We introduce a design strategy for neural network macro-architecture based on self-similarity. Repeated application of a simple expansion rule generates deep networks whose structural layouts are precisely truncated fractals. These networks contain interacting subpaths of different lengths, but do not include any pass-through or residual connections; every internal signal is transformed by a filter and nonlinearity before being seen by subsequent layers. In experiments, fractal networks match the excellent performance of standard residual networks on both CIFAR and ImageNet classification tasks, thereby demonstrating that residual representations may not be fundamental to the success of extremely deep convolutional neural networks. Rather, the key may be the ability to transition, during training, from effectively shallow to deep. We note similarities with student-teacher behavior and develop drop-path, a natural extension of dropout, to regularize co-adaptation of subpaths in fractal architectures. Such regularization allows extraction of high-performance fixed-depth subnetworks. Additionally, fractal networks exhibit an anytime property: shallow subnetworks provide a quick answer, while deeper subnetworks, with higher latency, provide a more accurate answer.
