new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Oct 31

Humanoid Everyday: A Comprehensive Robotic Dataset for Open-World Humanoid Manipulation

From loco-motion to dextrous manipulation, humanoid robots have made remarkable strides in demonstrating complex full-body capabilities. However, the majority of current robot learning datasets and benchmarks mainly focus on stationary robot arms, and the few existing humanoid datasets are either confined to fixed environments or limited in task diversity, often lacking human-humanoid interaction and lower-body locomotion. Moreover, there are a few standardized evaluation platforms for benchmarking learning-based policies on humanoid data. In this work, we present Humanoid Everyday, a large-scale and diverse humanoid manipulation dataset characterized by extensive task variety involving dextrous object manipulation, human-humanoid interaction, locomotion-integrated actions, and more. Leveraging a highly efficient human-supervised teleoperation pipeline, Humanoid Everyday aggregates high-quality multimodal sensory data, including RGB, depth, LiDAR, and tactile inputs, together with natural language annotations, comprising 10.3k trajectories and over 3 million frames of data across 260 tasks across 7 broad categories. In addition, we conduct an analysis of representative policy learning methods on our dataset, providing insights into their strengths and limitations across different task categories. For standardized evaluation, we introduce a cloud-based evaluation platform that allows researchers to seamlessly deploy their policies in our controlled setting and receive performance feedback. By releasing Humanoid Everyday along with our policy learning analysis and a standardized cloud-based evaluation platform, we intend to advance research in general-purpose humanoid manipulation and lay the groundwork for more capable and embodied robotic agents in real-world scenarios. Our dataset, data collection code, and cloud evaluation website are made publicly available on our project website.

  • 10 authors
·
Oct 9

DeepResearcher: Scaling Deep Research via Reinforcement Learning in Real-world Environments

Large Language Models (LLMs) equipped with web search capabilities have demonstrated impressive potential for deep research tasks. However, current approaches predominantly rely on either manually engineered prompts (prompt engineering-based) with brittle performance or reinforcement learning within controlled Retrieval-Augmented Generation (RAG) environments (RAG-based) that fail to capture the complexities of real-world interaction. In this paper, we introduce DeepResearcher, the first comprehensive framework for end-to-end training of LLM-based deep research agents through scaling reinforcement learning (RL) in real-world environments with authentic web search interactions. Unlike RAG-based approaches that assume all necessary information exists within a fixed corpus, our method trains agents to navigate the noisy, unstructured, and dynamic nature of the open web. We implement a specialized multi-agent architecture where browsing agents extract relevant information from various webpage structures and overcoming significant technical challenges. Extensive experiments on open-domain research tasks demonstrate that DeepResearcher achieves substantial improvements of up to 28.9 points over prompt engineering-based baselines and up to 7.2 points over RAG-based RL agents. Our qualitative analysis reveals emergent cognitive behaviors from end-to-end RL training, including the ability to formulate plans, cross-validate information from multiple sources, engage in self-reflection to redirect research, and maintain honesty when unable to find definitive answers. Our results highlight that end-to-end training in real-world web environments is not merely an implementation detail but a fundamental requirement for developing robust research capabilities aligned with real-world applications. We release DeepResearcher at https://github.com/GAIR-NLP/DeepResearcher.

Mem4Nav: Boosting Vision-and-Language Navigation in Urban Environments with a Hierarchical Spatial-Cognition Long-Short Memory System

Vision-and-Language Navigation (VLN) in large-scale urban environments requires embodied agents to ground linguistic instructions in complex scenes and recall relevant experiences over extended time horizons. Prior modular pipelines offer interpretability but lack unified memory, while end-to-end (M)LLM agents excel at fusing vision and language yet remain constrained by fixed context windows and implicit spatial reasoning. We introduce Mem4Nav, a hierarchical spatial-cognition long-short memory system that can augment any VLN backbone. Mem4Nav fuses a sparse octree for fine-grained voxel indexing with a semantic topology graph for high-level landmark connectivity, storing both in trainable memory tokens embedded via a reversible Transformer. Long-term memory (LTM) compresses and retains historical observations at both octree and graph nodes, while short-term memory (STM) caches recent multimodal entries in relative coordinates for real-time obstacle avoidance and local planning. At each step, STM retrieval sharply prunes dynamic context, and, when deeper history is needed, LTM tokens are decoded losslessly to reconstruct past embeddings. Evaluated on Touchdown and Map2Seq across three backbones (modular, state-of-the-art VLN with prompt-based LLM, and state-of-the-art VLN with strided-attention MLLM), Mem4Nav yields 7-13 pp gains in Task Completion, sufficient SPD reduction, and >10 pp nDTW improvement. Ablations confirm the indispensability of both the hierarchical map and dual memory modules. Our codes are open-sourced via https://github.com/tsinghua-fib-lab/Mem4Nav.

  • 6 authors
·
Jun 24 1

Adaptive Precision Training (AdaPT): A dynamic fixed point quantized training approach for DNNs

Quantization is a technique for reducing deep neural networks (DNNs) training and inference times, which is crucial for training in resource constrained environments or applications where inference is time critical. State-of-the-art (SOTA) quantization approaches focus on post-training quantization, i.e., quantization of pre-trained DNNs for speeding up inference. While work on quantized training exists, most approaches require refinement in full precision (usually single precision) in the final training phase or enforce a global word length across the entire DNN. This leads to suboptimal assignments of bit-widths to layers and, consequently, suboptimal resource usage. In an attempt to overcome such limitations, we introduce AdaPT, a new fixed-point quantized sparsifying training strategy. AdaPT decides about precision switches between training epochs based on information theoretic conditions. The goal is to determine on a per-layer basis the lowest precision that causes no quantization-induced information loss while keeping the precision high enough such that future learning steps do not suffer from vanishing gradients. The benefits of the resulting fully quantized DNN are evaluated based on an analytical performance model which we develop. We illustrate that an average speedup of 1.27 compared to standard training in float32 with an average accuracy increase of 0.98% can be achieved for AlexNet/ResNet on CIFAR10/100 and we further demonstrate these AdaPT trained models achieve an average inference speedup of 2.33 with a model size reduction of 0.52.

  • 4 authors
·
Jul 28, 2021

HiRED: Attention-Guided Token Dropping for Efficient Inference of High-Resolution Vision-Language Models in Resource-Constrained Environments

High-resolution Vision-Language Models (VLMs) have been widely used in multimodal tasks to enhance accuracy by preserving detailed image information. However, these models often generate excessive visual tokens due to encoding multiple partitions of the input image. Processing these excessive visual tokens is computationally challenging, especially in resource-constrained environments with commodity GPUs. To support high-resolution images while meeting resource constraints, we propose High-Resolution Early Dropping (HiRED), a token-dropping scheme that operates within a fixed token budget before the Large Language Model (LLM) stage. HiRED can be integrated with existing high-resolution VLMs in a plug-and-play manner, as it requires no additional training while still maintaining superior accuracy. We strategically use the vision encoder's attention in the initial layers to assess the visual content of each image partition and allocate the token budget accordingly. Then, using the attention in the final layer, we select the most important visual tokens from each partition within the allocated budget, dropping the rest. Empirically, when applied to LLaVA-Next-7B on NVIDIA TESLA P40 GPU, HiRED with a 20% token budget increases token generation throughput by 4.7, reduces first-token generation latency by 15 seconds, and saves 2.3 GB of GPU memory for a single inference.

  • 6 authors
·
Aug 20, 2024 2

RoboArena: Distributed Real-World Evaluation of Generalist Robot Policies

Comprehensive, unbiased, and comparable evaluation of modern generalist policies is uniquely challenging: existing approaches for robot benchmarking typically rely on heavy standardization, either by specifying fixed evaluation tasks and environments, or by hosting centralized ''robot challenges'', and do not readily scale to evaluating generalist policies across a broad range of tasks and environments. In this work, we propose RoboArena, a new approach for scalable evaluation of generalist robot policies in the real world. Instead of standardizing evaluations around fixed tasks, environments, or locations, we propose to crowd-source evaluations across a distributed network of evaluators. Importantly, evaluators can freely choose the tasks and environments they evaluate on, enabling easy scaling of diversity, but they are required to perform double-blind evaluations over pairs of policies. Then, by aggregating preference feedback from pairwise comparisons across diverse tasks and environments, we can derive a ranking of policies. We instantiate our approach across a network of evaluators at seven academic institutions using the DROID robot platform. Through more than 600 pairwise real-robot evaluation episodes across seven generalist policies, we demonstrate that our crowd-sourced approach can more accurately rank the performance of existing generalist policies than conventional, centralized evaluation approaches, while being more scalable, resilient, and trustworthy. We open our evaluation network to the community and hope that it can enable more accessible comparisons of generalist robot policies.

  • 30 authors
·
Jun 22

LLM-Powered Decentralized Generative Agents with Adaptive Hierarchical Knowledge Graph for Cooperative Planning

Developing intelligent agents for long-term cooperation in dynamic open-world scenarios is a major challenge in multi-agent systems. Traditional Multi-agent Reinforcement Learning (MARL) frameworks like centralized training decentralized execution (CTDE) struggle with scalability and flexibility. They require centralized long-term planning, which is difficult without custom reward functions, and face challenges in processing multi-modal data. CTDE approaches also assume fixed cooperation strategies, making them impractical in dynamic environments where agents need to adapt and plan independently. To address decentralized multi-agent cooperation, we propose Decentralized Adaptive Knowledge Graph Memory and Structured Communication System (DAMCS) in a novel Multi-agent Crafter environment. Our generative agents, powered by Large Language Models (LLMs), are more scalable than traditional MARL agents by leveraging external knowledge and language for long-term planning and reasoning. Instead of fully sharing information from all past experiences, DAMCS introduces a multi-modal memory system organized as a hierarchical knowledge graph and a structured communication protocol to optimize agent cooperation. This allows agents to reason from past interactions and share relevant information efficiently. Experiments on novel multi-agent open-world tasks show that DAMCS outperforms both MARL and LLM baselines in task efficiency and collaboration. Compared to single-agent scenarios, the two-agent scenario achieves the same goal with 63% fewer steps, and the six-agent scenario with 74% fewer steps, highlighting the importance of adaptive memory and structured communication in achieving long-term goals. We publicly release our project at: https://happyeureka.github.io/damcs.

  • 5 authors
·
Feb 8

SHARP: Sparsity and Hidden Activation RePlay for Neuro-Inspired Continual Learning

Deep neural networks (DNNs) struggle to learn in dynamic environments since they rely on fixed datasets or stationary environments. Continual learning (CL) aims to address this limitation and enable DNNs to accumulate knowledge incrementally, similar to human learning. Inspired by how our brain consolidates memories, a powerful strategy in CL is replay, which involves training the DNN on a mixture of new and all seen classes. However, existing replay methods overlook two crucial aspects of biological replay: 1) the brain replays processed neural patterns instead of raw input, and 2) it prioritizes the replay of recently learned information rather than revisiting all past experiences. To address these differences, we propose SHARP, an efficient neuro-inspired CL method that leverages sparse dynamic connectivity and activation replay. Unlike other activation replay methods, which assume layers not subjected to replay have been pretrained and fixed, SHARP can continually update all layers. Also, SHARP is unique in that it only needs to replay few recently seen classes instead of all past classes. Our experiments on five datasets demonstrate that SHARP outperforms state-of-the-art replay methods in class incremental learning. Furthermore, we showcase SHARP's flexibility in a novel CL scenario where the boundaries between learning episodes are blurry. The SHARP code is available at https://github.com/BurakGurbuz97/SHARP-Continual-Learning.

  • 3 authors
·
May 29, 2023

Online Control Barrier Functions for Decentralized Multi-Agent Navigation

Control barrier functions (CBFs) enable guaranteed safe multi-agent navigation in the continuous domain. The resulting navigation performance, however, is highly sensitive to the underlying hyperparameters. Traditional approaches consider fixed CBFs (where parameters are tuned apriori), and hence, typically do not perform well in cluttered and highly dynamic environments: conservative parameter values can lead to inefficient agent trajectories, or even failure to reach goal positions, whereas aggressive parameter values can lead to infeasible controls. To overcome these issues, in this paper, we propose online CBFs, whereby hyperparameters are tuned in real-time, as a function of what agents perceive in their immediate neighborhood. Since the explicit relationship between CBFs and navigation performance is hard to model, we leverage reinforcement learning to learn CBF-tuning policies in a model-free manner. Because we parameterize the policies with graph neural networks (GNNs), we are able to synthesize decentralized agent controllers that adjust parameter values locally, varying the degree of conservative and aggressive behaviors across agents. Simulations as well as real-world experiments show that (i) online CBFs are capable of solving navigation scenarios that are infeasible for fixed CBFs, and (ii), that they improve navigation performance by adapting to other agents and changes in the environment.

  • 3 authors
·
Mar 7, 2023

DynaSaur: Large Language Agents Beyond Predefined Actions

Existing LLM agent systems typically select actions from a fixed and predefined set at every step. While this approach is effective in closed, narrowly-scoped environments, we argue that it presents two major challenges when deploying LLM agents in real-world scenarios: (1) selecting from a fixed set of actions significantly restricts the planning and acting capabilities of LLM agents, and (2) this approach requires substantial human effort to enumerate and implement all possible actions, which becomes impractical in complex environments with a vast number of potential actions. In this work, we propose an LLM agent framework that enables the dynamic creation and composition of actions in an online manner. In this framework, the agent interacts with the environment by generating and executing programs written in a general-purpose programming language at each step. Furthermore, generated actions are accumulated over time for future reuse. Our extensive experiments on the GAIA benchmark demonstrate that this framework offers significantly greater flexibility and outperforms previous methods. Notably, it allows an LLM agent to recover in scenarios where no relevant action exists in the predefined set or when existing actions fail due to unforeseen edge cases. At the time of writing, we hold the top position on the GAIA public leaderboard. Our code can be found in https://github.com/adobe-research/dynasaur{https://github.com/adobe-research/dynasaur}.

  • 12 authors
·
Nov 3, 2024 3

A Homogeneous Graph Neural Network for Precoding and Power Allocation in Scalable Wireless Networks

Deep learning is widely used in wireless communications but struggles with fixed neural network sizes, which limit their adaptability in environments where the number of users and antennas varies. To overcome this, this paper introduced a generalization strategy for precoding and power allocation in scalable wireless networks. Initially, we employ an innovative approach to abstract the wireless network into a homogeneous graph. This primarily focuses on bypassing the heterogeneous features between transmitter (TX) and user entities to construct a virtual homogeneous graph serving optimization objectives, thereby enabling all nodes in the virtual graph to share the same neural network. This "TX entity" is known as a base station (BS) in cellular networks and an access point (AP) in cell-free networks. Subsequently, we design a universal graph neural network, termed the information carrying graph neural network (ICGNN), to capture and integrate information from this graph, maintaining permutation invariance. Lastly, using ICGNN as the core algorithm, we tailor the neural network's input and output for specific problem requirements and validate its performance in two scenarios: 1) in cellular networks, we develop a matrix-inverse-free multi-user multi-input multi-output (MU-MIMO) precoding scheme using the conjugate gradient (CG) method, adaptable to varying user and antenna numbers; 2) in a cell-free network, facing dynamic variations in the number of users served by APs, the number of APs serving each user, and the number of antennas per AP, we propose a universal power allocation scheme. Simulations demonstrate that the proposed approach not only significantly reduces computational complexity but also achieves, and potentially exceeds, the spectral efficiency (SE) of conventional algorithms.

  • 6 authors
·
Aug 30, 2024

AnimeGamer: Infinite Anime Life Simulation with Next Game State Prediction

Recent advancements in image and video synthesis have opened up new promise in generative games. One particularly intriguing application is transforming characters from anime films into interactive, playable entities. This allows players to immerse themselves in the dynamic anime world as their favorite characters for life simulation through language instructions. Such games are defined as infinite game since they eliminate predetermined boundaries and fixed gameplay rules, where players can interact with the game world through open-ended language and experience ever-evolving storylines and environments. Recently, a pioneering approach for infinite anime life simulation employs large language models (LLMs) to translate multi-turn text dialogues into language instructions for image generation. However, it neglects historical visual context, leading to inconsistent gameplay. Furthermore, it only generates static images, failing to incorporate the dynamics necessary for an engaging gaming experience. In this work, we propose AnimeGamer, which is built upon Multimodal Large Language Models (MLLMs) to generate each game state, including dynamic animation shots that depict character movements and updates to character states, as illustrated in Figure 1. We introduce novel action-aware multimodal representations to represent animation shots, which can be decoded into high-quality video clips using a video diffusion model. By taking historical animation shot representations as context and predicting subsequent representations, AnimeGamer can generate games with contextual consistency and satisfactory dynamics. Extensive evaluations using both automated metrics and human evaluations demonstrate that AnimeGamer outperforms existing methods in various aspects of the gaming experience. Codes and checkpoints are available at https://github.com/TencentARC/AnimeGamer.

  • 5 authors
·
Apr 1 2

PS-GS: Gaussian Splatting for Multi-View Photometric Stereo

Integrating inverse rendering with multi-view photometric stereo (MVPS) yields more accurate 3D reconstructions than the inverse rendering approaches that rely on fixed environment illumination. However, efficient inverse rendering with MVPS remains challenging. To fill this gap, we introduce the Gaussian Splatting for Multi-view Photometric Stereo (PS-GS), which efficiently and jointly estimates the geometry, materials, and lighting of the object that is illuminated by diverse directional lights (multi-light). Our method first reconstructs a standard 2D Gaussian splatting model as the initial geometry. Based on the initialization model, it then proceeds with the deferred inverse rendering by the full rendering equation containing a lighting-computing multi-layer perceptron. During the whole optimization, we regularize the rendered normal maps by the uncalibrated photometric stereo estimated normals. We also propose the 2D Gaussian ray-tracing for single directional light to refine the incident lighting. The regularizations and the use of multi-view and multi-light images mitigate the ill-posed problem of inverse rendering. After optimization, the reconstructed object can be used for novel-view synthesis, relighting, and material and shape editing. Experiments on both synthetic and real datasets demonstrate that our method outperforms prior works in terms of reconstruction accuracy and computational efficiency.

  • 6 authors
·
Jul 24

EnvBench: A Benchmark for Automated Environment Setup

Recent advances in Large Language Models (LLMs) have enabled researchers to focus on practical repository-level tasks in software engineering domain. In this work, we consider a cornerstone task for automating work with software repositories-environment setup, i.e., a task of configuring a repository-specific development environment on a system. Existing studies on environment setup introduce innovative agentic strategies, but their evaluation is often based on small datasets that may not capture the full range of configuration challenges encountered in practice. To address this gap, we introduce a comprehensive environment setup benchmark EnvBench. It encompasses 329 Python and 665 JVM-based (Java, Kotlin) repositories, with a focus on repositories that present genuine configuration challenges, excluding projects that can be fully configured by simple deterministic scripts. To enable further benchmark extension and usage for model tuning, we implement two automatic metrics: a static analysis check for missing imports in Python and a compilation check for JVM languages. We demonstrate the applicability of our benchmark by evaluating three environment setup approaches, including a simple zero-shot baseline and two agentic workflows, that we test with two powerful LLM backbones, GPT-4o and GPT-4o-mini. The best approach manages to successfully configure 6.69% repositories for Python and 29.47% repositories for JVM, suggesting that EnvBench remains challenging for current approaches. Our benchmark suite is publicly available at https://github.com/JetBrains-Research/EnvBench. The dataset and experiment trajectories are available at https://jb.gg/envbench.

  • 5 authors
·
Mar 18

The Impact of Environment Configurations on the Stability of AI-Enabled Systems

Nowadays, software systems tend to include Artificial Intelligence (AI) components. Changes in the operational environment have been known to negatively impact the stability of AI-enabled software systems by causing unintended changes in behavior. However, how an environment configuration impacts the behavior of such systems has yet to be explored. Understanding and quantifying the degree of instability caused by different environment settings can help practitioners decide the best environment configuration for the most stable AI systems. To achieve this goal, we performed experiments with eight different combinations of three key environment variables (operating system, Python version, and CPU architecture) on 30 open-source AI-enabled systems using the Travis CI platform. We determine the existence and the degree of instability introduced by each configuration using three metrics: the output of an AI component of the system (model performance), the time required to build and run the system (processing time), and the cost associated with building and running the system (expense). Our results indicate that changes in environment configurations lead to instability across all three metrics; however, it is observed more frequently with respect to processing time and expense rather than model performance. For example, between Linux and MacOS, instability is observed in 23\%, 96.67\%, and 100\% of the studied projects in model performance, processing time, and expense, respectively. Our findings underscore the importance of identifying the optimal combination of configuration settings to mitigate drops in model performance and reduce the processing time and expense before deploying an AI-enabled system.

  • 5 authors
·
Aug 5, 2024