- Byte-Level Grammatical Error Correction Using Synthetic and Curated Corpora Grammatical error correction (GEC) is the task of correcting typos, spelling, punctuation and grammatical issues in text. Approaching the problem as a sequence-to-sequence task, we compare the use of a common subword unit vocabulary and byte-level encoding. Initial synthetic training data is created using an error-generating pipeline, and used for finetuning two subword-level models and one byte-level model. Models are then finetuned further on hand-corrected error corpora, including texts written by children, university students, dyslexic and second-language writers, and evaluated over different error types and origins. We show that a byte-level model enables higher correction quality than a subword approach, not only for simple spelling errors, but also for more complex semantic, stylistic and grammatical issues. In particular, initial training on synthetic corpora followed by finetuning on a relatively small parallel corpus of real-world errors helps the byte-level model correct a wide range of commonly occurring errors. Our experiments are run for the Icelandic language but should hold for other similar languages, particularly morphologically rich ones. 6 authors · May 29, 2023
2 Zero-shot Cross-Lingual Transfer for Synthetic Data Generation in Grammatical Error Detection Grammatical Error Detection (GED) methods rely heavily on human annotated error corpora. However, these annotations are unavailable in many low-resource languages. In this paper, we investigate GED in this context. Leveraging the zero-shot cross-lingual transfer capabilities of multilingual pre-trained language models, we train a model using data from a diverse set of languages to generate synthetic errors in other languages. These synthetic error corpora are then used to train a GED model. Specifically we propose a two-stage fine-tuning pipeline where the GED model is first fine-tuned on multilingual synthetic data from target languages followed by fine-tuning on human-annotated GED corpora from source languages. This approach outperforms current state-of-the-art annotation-free GED methods. We also analyse the errors produced by our method and other strong baselines, finding that our approach produces errors that are more diverse and more similar to human errors. 3 authors · Jul 16, 2024 4
- JFLEG: A Fluency Corpus and Benchmark for Grammatical Error Correction We present a new parallel corpus, JHU FLuency-Extended GUG corpus (JFLEG) for developing and evaluating grammatical error correction (GEC). Unlike other corpora, it represents a broad range of language proficiency levels and uses holistic fluency edits to not only correct grammatical errors but also make the original text more native sounding. We describe the types of corrections made and benchmark four leading GEC systems on this corpus, identifying specific areas in which they do well and how they can improve. JFLEG fulfills the need for a new gold standard to properly assess the current state of GEC. 3 authors · Feb 13, 2017
4 Data Generation for Post-OCR correction of Cyrillic handwriting This paper introduces a novel approach to post-Optical Character Recognition Correction (POC) for handwritten Cyrillic text, addressing a significant gap in current research methodologies. This gap is due to the lack of large text corporas that provide OCR errors for further training of language-based POC models, which are demanding in terms of corpora size. Our study primarily focuses on the development and application of a synthetic handwriting generation engine based on B\'ezier curves. Such an engine generates highly realistic handwritten text in any amounts, which we utilize to create a substantial dataset by transforming Russian text corpora sourced from the internet. We apply a Handwritten Text Recognition (HTR) model to this dataset to identify OCR errors, forming the basis for our POC model training. The correction model is trained on a 90-symbol input context, utilizing a pre-trained T5 architecture with a seq2seq correction task. We evaluate our approach on HWR200 and School_notebooks_RU datasets as they provide significant challenges in the HTR domain. Furthermore, POC can be used to highlight errors for teachers, evaluating student performance. This can be done simply by comparing sentences before and after correction, displaying differences in text. Our primary contribution lies in the innovative use of B\'ezier curves for Cyrillic text generation and subsequent error correction using a specialized POC model. We validate our approach by presenting Word Accuracy Rate (WAR) and Character Accuracy Rate (CAR) results, both with and without post-OCR correction, using real open corporas of handwritten Cyrillic text. These results, coupled with our methodology, are designed to be reproducible, paving the way for further advancements in the field of OCR and handwritten text analysis. Paper contributions can be found in https://github.com/dbrainio/CyrillicHandwritingPOC 5 authors · Nov 27, 2023
- Historical Ink: 19th Century Latin American Spanish Newspaper Corpus with LLM OCR Correction This paper presents two significant contributions: first, a novel dataset of 19th-century Latin American press texts, which addresses the lack of specialized corpora for historical and linguistic analysis in this region. Second, it introduces a framework for OCR error correction and linguistic surface form detection in digitized corpora, utilizing a Large Language Model. This framework is adaptable to various contexts and, in this paper, is specifically applied to the newly created dataset. 3 authors · Jul 3, 2024
1 RoundTripOCR: A Data Generation Technique for Enhancing Post-OCR Error Correction in Low-Resource Devanagari Languages Optical Character Recognition (OCR) technology has revolutionized the digitization of printed text, enabling efficient data extraction and analysis across various domains. Just like Machine Translation systems, OCR systems are prone to errors. In this work, we address the challenge of data generation and post-OCR error correction, specifically for low-resource languages. We propose an approach for synthetic data generation for Devanagari languages, RoundTripOCR, that tackles the scarcity of the post-OCR Error Correction datasets for low-resource languages. We release post-OCR text correction datasets for Hindi, Marathi, Bodo, Nepali, Konkani and Sanskrit. We also present a novel approach for OCR error correction by leveraging techniques from machine translation. Our method involves translating erroneous OCR output into a corrected form by treating the OCR errors as mistranslations in a parallel text corpus, employing pre-trained transformer models to learn the mapping from erroneous to correct text pairs, effectively correcting OCR errors. 2 authors · Dec 14, 2024
- UA-GEC: Grammatical Error Correction and Fluency Corpus for the Ukrainian Language We present a corpus professionally annotated for grammatical error correction (GEC) and fluency edits in the Ukrainian language. To the best of our knowledge, this is the first GEC corpus for the Ukrainian language. We collected texts with errors (20,715 sentences) from a diverse pool of contributors, including both native and non-native speakers. The data cover a wide variety of writing domains, from text chats and essays to formal writing. Professional proofreaders corrected and annotated the corpus for errors relating to fluency, grammar, punctuation, and spelling. This corpus can be used for developing and evaluating GEC systems in Ukrainian. More generally, it can be used for researching multilingual and low-resource NLP, morphologically rich languages, document-level GEC, and fluency correction. The corpus is publicly available at https://github.com/grammarly/ua-gec 2 authors · Mar 31, 2021
3 Quality at a Glance: An Audit of Web-Crawled Multilingual Datasets With the success of large-scale pre-training and multilingual modeling in Natural Language Processing (NLP), recent years have seen a proliferation of large, web-mined text datasets covering hundreds of languages. We manually audit the quality of 205 language-specific corpora released with five major public datasets (CCAligned, ParaCrawl, WikiMatrix, OSCAR, mC4). Lower-resource corpora have systematic issues: At least 15 corpora have no usable text, and a significant fraction contains less than 50% sentences of acceptable quality. In addition, many are mislabeled or use nonstandard/ambiguous language codes. We demonstrate that these issues are easy to detect even for non-proficient speakers, and supplement the human audit with automatic analyses. Finally, we recommend techniques to evaluate and improve multilingual corpora and discuss potential risks that come with low-quality data releases. 52 authors · Mar 22, 2021
- CLSE: Corpus of Linguistically Significant Entities One of the biggest challenges of natural language generation (NLG) is the proper handling of named entities. Named entities are a common source of grammar mistakes such as wrong prepositions, wrong article handling, or incorrect entity inflection. Without factoring linguistic representation, such errors are often underrepresented when evaluating on a small set of arbitrarily picked argument values, or when translating a dataset from a linguistically simpler language, like English, to a linguistically complex language, like Russian. However, for some applications, broadly precise grammatical correctness is critical -- native speakers may find entity-related grammar errors silly, jarring, or even offensive. To enable the creation of more linguistically diverse NLG datasets, we release a Corpus of Linguistically Significant Entities (CLSE) annotated by linguist experts. The corpus includes 34 languages and covers 74 different semantic types to support various applications from airline ticketing to video games. To demonstrate one possible use of CLSE, we produce an augmented version of the Schema-Guided Dialog Dataset, SGD-CLSE. Using the CLSE's entities and a small number of human translations, we create a linguistically representative NLG evaluation benchmark in three languages: French (high-resource), Marathi (low-resource), and Russian (highly inflected language). We establish quality baselines for neural, template-based, and hybrid NLG systems and discuss the strengths and weaknesses of each approach. 3 authors · Nov 4, 2022
- MedRECT: A Medical Reasoning Benchmark for Error Correction in Clinical Texts Large language models (LLMs) show increasing promise in medical applications, but their ability to detect and correct errors in clinical texts -- a prerequisite for safe deployment -- remains under-evaluated, particularly beyond English. We introduce MedRECT, a cross-lingual benchmark (Japanese/English) that formulates medical error handling as three subtasks: error detection, error localization (sentence extraction), and error correction. MedRECT is built with a scalable, automated pipeline from the Japanese Medical Licensing Examinations (JMLE) and a curated English counterpart, yielding MedRECT-ja (663 texts) and MedRECT-en (458 texts) with comparable error/no-error balance. We evaluate 9 contemporary LLMs spanning proprietary, open-weight, and reasoning families. Key findings: (i) reasoning models substantially outperform standard architectures, with up to 13.5% relative improvement in error detection and 51.0% in sentence extraction; (ii) cross-lingual evaluation reveals 5-10% performance gaps from English to Japanese, with smaller disparities for reasoning models; (iii) targeted LoRA fine-tuning yields asymmetric improvements in error correction performance (Japanese: +0.078, English: +0.168) while preserving reasoning capabilities; and (iv) our fine-tuned model exceeds human expert performance on structured medical error correction tasks. To our knowledge, MedRECT is the first comprehensive cross-lingual benchmark for medical error correction, providing a reproducible framework and resources for developing safer medical LLMs across languages. 3 authors · Nov 1
- Introducing OmniGEC: A Silver Multilingual Dataset for Grammatical Error Correction In this paper, we introduce OmniGEC, a collection of multilingual silver-standard datasets for the task of Grammatical Error Correction (GEC), covering eleven languages: Czech, English, Estonian, German, Greek, Icelandic, Italian, Latvian, Slovene, Swedish, and Ukrainian. These datasets facilitate the development of multilingual GEC solutions and help bridge the data gap in adapting English GEC solutions to multilingual GEC. The texts in the datasets originate from three sources: Wikipedia edits for the eleven target languages, subreddits from Reddit in the eleven target languages, and the Ukrainian-only UberText 2.0 social media corpus. While Wikipedia edits were derived from human-made corrections, the Reddit and UberText 2.0 data were automatically corrected with the GPT-4o-mini model. The quality of the corrections in the datasets was evaluated both automatically and manually. Finally, we fine-tune two open-source large language models - Aya-Expanse (8B) and Gemma-3 (12B) - on the multilingual OmniGEC corpora and achieve state-of-the-art (SOTA) results for paragraph-level multilingual GEC. The dataset collection and the best-performing models are available on Hugging Face. 3 authors · Sep 17
- FCGEC: Fine-Grained Corpus for Chinese Grammatical Error Correction Grammatical Error Correction (GEC) has been broadly applied in automatic correction and proofreading system recently. However, it is still immature in Chinese GEC due to limited high-quality data from native speakers in terms of category and scale. In this paper, we present FCGEC, a fine-grained corpus to detect, identify and correct the grammatical errors. FCGEC is a human-annotated corpus with multiple references, consisting of 41,340 sentences collected mainly from multi-choice questions in public school Chinese examinations. Furthermore, we propose a Switch-Tagger-Generator (STG) baseline model to correct the grammatical errors in low-resource settings. Compared to other GEC benchmark models, experimental results illustrate that STG outperforms them on our FCGEC. However, there exists a significant gap between benchmark models and humans that encourages future models to bridge it. 5 authors · Oct 22, 2022
- VSEC: Transformer-based Model for Vietnamese Spelling Correction Spelling error correction is one of topics which have a long history in natural language processing. Although previous studies have achieved remarkable results, challenges still exist. In the Vietnamese language, a state-of-the-art method for the task infers a syllable's context from its adjacent syllables. The method's accuracy can be unsatisfactory, however, because the model may lose the context if two (or more) spelling mistakes stand near each other. In this paper, we propose a novel method to correct Vietnamese spelling errors. We tackle the problems of mistyped errors and misspelled errors by using a deep learning model. The embedding layer, in particular, is powered by the byte pair encoding technique. The sequence to sequence model based on the Transformer architecture makes our approach different from the previous works on the same problem. In the experiment, we train the model with a large synthetic dataset, which is randomly introduced spelling errors. We test the performance of the proposed method using a realistic dataset. This dataset contains 11,202 human-made misspellings in 9,341 different Vietnamese sentences. The experimental results show that our method achieves encouraging performance with 86.8% errors detected and 81.5% errors corrected, which improves the state-of-the-art approach 5.6% and 2.2%, respectively. 4 authors · Oct 31, 2021
4 NeKo: Toward Post Recognition Generative Correction Large Language Models with Task-Oriented Experts Construction of a general-purpose post-recognition error corrector poses a crucial question: how can we most effectively train a model on a large mixture of domain datasets? The answer would lie in learning dataset-specific features and digesting their knowledge in a single model. Previous methods achieve this by having separate correction language models, resulting in a significant increase in parameters. In this work, we present Mixture-of-Experts as a solution, highlighting that MoEs are much more than a scalability tool. We propose a Multi-Task Correction MoE, where we train the experts to become an ``expert'' of speech-to-text, language-to-text and vision-to-text datasets by learning to route each dataset's tokens to its mapped expert. Experiments on the Open ASR Leaderboard show that we explore a new state-of-the-art performance by achieving an average relative 5.0% WER reduction and substantial improvements in BLEU scores for speech and translation tasks. On zero-shot evaluation, NeKo outperforms GPT-3.5 and Claude-Opus with 15.5% to 27.6% relative WER reduction in the Hyporadise benchmark. NeKo performs competitively on grammar and post-OCR correction as a multi-task model. 13 authors · Nov 8, 2024 2
- SynCED-EnDe 2025: A Synthetic and Curated English - German Dataset for Critical Error Detection in Machine Translation Critical Error Detection (CED) in machine translation aims to determine whether a translation is safe to use or contains unacceptable deviations in meaning. While the WMT21 English-German CED dataset provided the first benchmark, it is limited in scale, label balance, domain coverage, and temporal freshness. We present SynCED-EnDe, a new resource consisting of 1,000 gold-labeled and 8,000 silver-labeled sentence pairs, balanced 50/50 between error and non-error cases. SynCED-EnDe draws from diverse 2024-2025 sources (StackExchange, GOV.UK) and introduces explicit error subclasses, structured trigger flags, and fine-grained auxiliary judgments (obviousness, severity, localization complexity, contextual dependency, adequacy deviation). These enrichments enable systematic analyses of error risk and intricacy beyond binary detection. The dataset is permanently hosted on GitHub and Hugging Face, accompanied by documentation, annotation guidelines, and baseline scripts. Benchmark experiments with XLM-R and related encoders show substantial performance gains over WMT21 due to balanced labels and refined annotations. We envision SynCED-EnDe as a community resource to advance safe deployment of MT in information retrieval and conversational assistants, particularly in emerging contexts such as wearable AI devices. 3 authors · Oct 1
- Full-text Error Correction for Chinese Speech Recognition with Large Language Model Large Language Models (LLMs) have demonstrated substantial potential for error correction in Automatic Speech Recognition (ASR). However, most research focuses on utterances from short-duration speech recordings, which are the predominant form of speech data for supervised ASR training. This paper investigates the effectiveness of LLMs for error correction in full-text generated by ASR systems from longer speech recordings, such as transcripts from podcasts, news broadcasts, and meetings. First, we develop a Chinese dataset for full-text error correction, named ChFT, utilizing a pipeline that involves text-to-speech synthesis, ASR, and error-correction pair extractor. This dataset enables us to correct errors across contexts, including both full-text and segment, and to address a broader range of error types, such as punctuation restoration and inverse text normalization, thus making the correction process comprehensive. Second, we fine-tune a pre-trained LLM on the constructed dataset using a diverse set of prompts and target formats, and evaluate its performance on full-text error correction. Specifically, we design prompts based on full-text and segment, considering various output formats, such as directly corrected text and JSON-based error-correction pairs. Through various test settings, including homogeneous, up-to-date, and hard test sets, we find that the fine-tuned LLMs perform well in the full-text setting with different prompts, each presenting its own strengths and weaknesses. This establishes a promising baseline for further research. The dataset is available on the website. 4 authors · Sep 12, 2024
- ErAConD : Error Annotated Conversational Dialog Dataset for Grammatical Error Correction Currently available grammatical error correction (GEC) datasets are compiled using well-formed written text, limiting the applicability of these datasets to other domains such as informal writing and dialog. In this paper, we present a novel parallel GEC dataset drawn from open-domain chatbot conversations; this dataset is, to our knowledge, the first GEC dataset targeted to a conversational setting. To demonstrate the utility of the dataset, we use our annotated data to fine-tune a state-of-the-art GEC model, resulting in a 16 point increase in model precision. This is of particular importance in a GEC model, as model precision is considered more important than recall in GEC tasks since false positives could lead to serious confusion in language learners. We also present a detailed annotation scheme which ranks errors by perceived impact on comprehensibility, making our dataset both reproducible and extensible. Experimental results show the effectiveness of our data in improving GEC model performance in conversational scenario. 4 authors · Dec 15, 2021
1 MISMATCH: Fine-grained Evaluation of Machine-generated Text with Mismatch Error Types With the growing interest in large language models, the need for evaluating the quality of machine text compared to reference (typically human-generated) text has become focal attention. Most recent works focus either on task-specific evaluation metrics or study the properties of machine-generated text captured by the existing metrics. In this work, we propose a new evaluation scheme to model human judgments in 7 NLP tasks, based on the fine-grained mismatches between a pair of texts. Inspired by the recent efforts in several NLP tasks for fine-grained evaluation, we introduce a set of 13 mismatch error types such as spatial/geographic errors, entity errors, etc, to guide the model for better prediction of human judgments. We propose a neural framework for evaluating machine texts that uses these mismatch error types as auxiliary tasks and re-purposes the existing single-number evaluation metrics as additional scalar features, in addition to textual features extracted from the machine and reference texts. Our experiments reveal key insights about the existing metrics via the mismatch errors. We show that the mismatch errors between the sentence pairs on the held-out datasets from 7 NLP tasks align well with the human evaluation. 12 authors · Jun 17, 2023
- Tibyan Corpus: Balanced and Comprehensive Error Coverage Corpus Using ChatGPT for Arabic Grammatical Error Correction Natural language processing (NLP) utilizes text data augmentation to overcome sample size constraints. Increasing the sample size is a natural and widely used strategy for alleviating these challenges. In this study, we chose Arabic to increase the sample size and correct grammatical errors. Arabic is considered one of the languages with limited resources for grammatical error correction (GEC). Furthermore, QALB-14 and QALB-15 are the only datasets used in most Arabic grammatical error correction research, with approximately 20,500 parallel examples, which is considered low compared with other languages. Therefore, this study aims to develop an Arabic corpus called "Tibyan" for grammatical error correction using ChatGPT. ChatGPT is used as a data augmenter tool based on a pair of Arabic sentences containing grammatical errors matched with a sentence free of errors extracted from Arabic books, called guide sentences. Multiple steps were involved in establishing our corpus, including the collection and pre-processing of a pair of Arabic texts from various sources, such as books and open-access corpora. We then used ChatGPT to generate a parallel corpus based on the text collected previously, as a guide for generating sentences with multiple types of errors. By engaging linguistic experts to review and validate the automatically generated sentences, we ensured that they were correct and error-free. The corpus was validated and refined iteratively based on feedback provided by linguistic experts to improve its accuracy. Finally, we used the Arabic Error Type Annotation tool (ARETA) to analyze the types of errors in the Tibyan corpus. Our corpus contained 49 of errors, including seven types: orthography, morphology, syntax, semantics, punctuation, merge, and split. The Tibyan corpus contains approximately 600 K tokens. 2 authors · Nov 7, 2024
- IryoNLP at MEDIQA-CORR 2024: Tackling the Medical Error Detection & Correction Task On the Shoulders of Medical Agents In natural language processing applied to the clinical domain, utilizing large language models has emerged as a promising avenue for error detection and correction on clinical notes, a knowledge-intensive task for which annotated data is scarce. This paper presents MedReAct'N'MedReFlex, which leverages a suite of four LLM-based medical agents. The MedReAct agent initiates the process by observing, analyzing, and taking action, generating trajectories to guide the search to target a potential error in the clinical notes. Subsequently, the MedEval agent employs five evaluators to assess the targeted error and the proposed correction. In cases where MedReAct's actions prove insufficient, the MedReFlex agent intervenes, engaging in reflective analysis and proposing alternative strategies. Finally, the MedFinalParser agent formats the final output, preserving the original style while ensuring the integrity of the error correction process. One core component of our method is our RAG pipeline based on our ClinicalCorp corpora. Among other well-known sources containing clinical guidelines and information, we preprocess and release the open-source MedWiki dataset for clinical RAG application. Our results demonstrate the central role of our RAG approach with ClinicalCorp leveraged through the MedReAct'N'MedReFlex framework. It achieved the ninth rank on the MEDIQA-CORR 2024 final leaderboard. 1 authors · Apr 23, 2024
1 Language ID in the Wild: Unexpected Challenges on the Path to a Thousand-Language Web Text Corpus Large text corpora are increasingly important for a wide variety of Natural Language Processing (NLP) tasks, and automatic language identification (LangID) is a core technology needed to collect such datasets in a multilingual context. LangID is largely treated as solved in the literature, with models reported that achieve over 90% average F1 on as many as 1,366 languages. We train LangID models on up to 1,629 languages with comparable quality on held-out test sets, but find that human-judged LangID accuracy for web-crawl text corpora created using these models is only around 5% for many lower-resource languages, suggesting a need for more robust evaluation. Further analysis revealed a variety of error modes, arising from domain mismatch, class imbalance, language similarity, and insufficiently expressive models. We propose two classes of techniques to mitigate these errors: wordlist-based tunable-precision filters (for which we release curated lists in about 500 languages) and transformer-based semi-supervised LangID models, which increase median dataset precision from 5.5% to 71.2%. These techniques enable us to create an initial data set covering 100K or more relatively clean sentences in each of 500+ languages, paving the way towards a 1,000-language web text corpus. 4 authors · Oct 27, 2020
- Rethinking Automatic Evaluation in Sentence Simplification Automatic evaluation remains an open research question in Natural Language Generation. In the context of Sentence Simplification, this is particularly challenging: the task requires by nature to replace complex words with simpler ones that shares the same meaning. This limits the effectiveness of n-gram based metrics like BLEU. Going hand in hand with the recent advances in NLG, new metrics have been proposed, such as BERTScore for Machine Translation. In summarization, the QuestEval metric proposes to automatically compare two texts by questioning them. In this paper, we first propose a simple modification of QuestEval allowing it to tackle Sentence Simplification. We then extensively evaluate the correlations w.r.t. human judgement for several metrics including the recent BERTScore and QuestEval, and show that the latter obtain state-of-the-art correlations, outperforming standard metrics like BLEU and SARI. More importantly, we also show that a large part of the correlations are actually spurious for all the metrics. To investigate this phenomenon further, we release a new corpus of evaluated simplifications, this time not generated by systems but instead, written by humans. This allows us to remove the spurious correlations and draw very different conclusions from the original ones, resulting in a better understanding of these metrics. In particular, we raise concerns about very low correlations for most of traditional metrics. Our results show that the only significant measure of the Meaning Preservation is our adaptation of QuestEval. 5 authors · Apr 15, 2021
- Enhancing Text Editing for Grammatical Error Correction: Arabic as a Case Study Text editing frames grammatical error correction (GEC) as a sequence tagging problem, where edit tags are assigned to input tokens, and applying these edits results in the corrected text. This approach has gained attention for its efficiency and interpretability. However, while extensively explored for English, text editing remains largely underexplored for morphologically rich languages like Arabic. In this paper, we introduce a text editing approach that derives edit tags directly from data, eliminating the need for language-specific edits. We demonstrate its effectiveness on Arabic, a diglossic and morphologically rich language, and investigate the impact of different edit representations on model performance. Our approach achieves SOTA results on two Arabic GEC benchmarks and performs on par with SOTA on two others. Additionally, our models are over six times faster than existing Arabic GEC systems, making our approach more practical for real-world applications. Finally, we explore ensemble models, demonstrating how combining different models leads to further performance improvements. We make our code, data, and pretrained models publicly available. 2 authors · Mar 2
1 Factual Error Correction for Abstractive Summaries Using Entity Retrieval Despite the recent advancements in abstractive summarization systems leveraged from large-scale datasets and pre-trained language models, the factual correctness of the summary is still insufficient. One line of trials to mitigate this problem is to include a post-editing process that can detect and correct factual errors in the summary. In building such a post-editing system, it is strongly required that 1) the process has a high success rate and interpretability and 2) has a fast running time. Previous approaches focus on regeneration of the summary using the autoregressive models, which lack interpretability and require high computing resources. In this paper, we propose an efficient factual error correction system RFEC based on entities retrieval post-editing process. RFEC first retrieves the evidence sentences from the original document by comparing the sentences with the target summary. This approach greatly reduces the length of text for a system to analyze. Next, RFEC detects the entity-level errors in the summaries by considering the evidence sentences and substitutes the wrong entities with the accurate entities from the evidence sentences. Experimental results show that our proposed error correction system shows more competitive performance than baseline methods in correcting the factual errors with a much faster speed. 7 authors · Apr 18, 2022
1 Back Transcription as a Method for Evaluating Robustness of Natural Language Understanding Models to Speech Recognition Errors In a spoken dialogue system, an NLU model is preceded by a speech recognition system that can deteriorate the performance of natural language understanding. This paper proposes a method for investigating the impact of speech recognition errors on the performance of natural language understanding models. The proposed method combines the back transcription procedure with a fine-grained technique for categorizing the errors that affect the performance of NLU models. The method relies on the usage of synthesized speech for NLU evaluation. We show that the use of synthesized speech in place of audio recording does not change the outcomes of the presented technique in a significant way. 4 authors · Oct 25, 2023
- MALM: Mixing Augmented Language Modeling for Zero-Shot Machine Translation Large pre-trained language models have brought remarkable progress in NLP. Pre-training and Fine-tuning have given state-of-art performance across tasks in text processing. Data Augmentation techniques have also helped build state-of-art models on low or zero resource tasks. Many works in the past have attempted at learning a single massively-multilingual machine translation model for zero-shot translation. Although those translation models are producing correct translations, the main challenge is those models are producing the wrong languages for zero-shot translation. This work and its results indicate that prompt conditioned large models do not suffer from off-target language errors i.e. errors arising due to translation to wrong languages. We empirically demonstrate the effectiveness of self-supervised pre-training and data augmentation for zero-shot multi-lingual machine translation. 1 authors · Oct 1, 2022
- Refining Czech GEC: Insights from a Multi-Experiment Approach We present a grammar error correction (GEC) system that achieves state of the art for the Czech language. Our system is based on a neural network translation approach with the Transformer architecture, and its key feature is its real-time synthetic generation pipeline, which dynamically augments sentences with artificial errors by introducing both language-agnostic and Czech-specific errors. We conduct a comprehensive series of experiments, investigating the Czech GEC corpora as bases for synthetic error introduction, several error generation strategies, domain balancing, tokenization granularity, model size, and data scaling during fine-tuning. Additionally, we evaluate the performance of large language models (LLMs) on Czech GEC in both end-user and expert fine-tuning scenarios. Our best-performing model is superior both in performance and computational efficiency. The source code and the trained model links are available on https://github.com/ufal/tsd2025-gec. 4 authors · Jun 27
- Correcting diacritics and typos with a ByT5 transformer model Due to the fast pace of life and online communications and the prevalence of English and the QWERTY keyboard, people tend to forgo using diacritics, make typographical errors (typos) when typing in other languages. Restoring diacritics and correcting spelling is important for proper language use and the disambiguation of texts for both humans and downstream algorithms. However, both of these problems are typically addressed separately: the state-of-the-art diacritics restoration methods do not tolerate other typos, but classical spellcheckers also cannot deal adequately with all the diacritics missing. In this work, we tackle both problems at once by employing the newly-developed universal ByT5 byte-level seq2seq transformer model that requires no language-specific model structures. For a comparison, we perform diacritics restoration on benchmark datasets of 12 languages, with the addition of Lithuanian. The experimental investigation proves that our approach is able to achieve results (> 98%) comparable to the previous state-of-the-art, despite being trained less and on fewer data. Our approach is also able to restore diacritics in words not seen during training with > 76% accuracy. Our simultaneous diacritics restoration and typos correction approach reaches > 94% alpha-word accuracy on the 13 languages. It has no direct competitors and strongly outperforms classical spell-checking or dictionary-based approaches. We also demonstrate all the accuracies to further improve with more training. Taken together, this shows the great real-world application potential of our suggested methods to more data, languages, and error classes. 5 authors · Jan 31, 2022
- A Benchmark and Dataset for Post-OCR text correction in Sanskrit Sanskrit is a classical language with about 30 million extant manuscripts fit for digitisation, available in written, printed or scannedimage forms. However, it is still considered to be a low-resource language when it comes to available digital resources. In this work, we release a post-OCR text correction dataset containing around 218,000 sentences, with 1.5 million words, from 30 different books. Texts in Sanskrit are known to be diverse in terms of their linguistic and stylistic usage since Sanskrit was the 'lingua franca' for discourse in the Indian subcontinent for about 3 millennia. Keeping this in mind, we release a multi-domain dataset, from areas as diverse as astronomy, medicine and mathematics, with some of them as old as 18 centuries. Further, we release multiple strong baselines as benchmarks for the task, based on pre-trained Seq2Seq language models. We find that our best-performing model, consisting of byte level tokenization in conjunction with phonetic encoding (Byt5+SLP1), yields a 23% point increase over the OCR output in terms of word and character error rates. Moreover, we perform extensive experiments in evaluating these models on their performance and analyse common causes of mispredictions both at the graphemic and lexical levels. Our code and dataset is publicly available at https://github.com/ayushbits/pe-ocr-sanskrit. 4 authors · Nov 15, 2022
- Unify word-level and span-level tasks: NJUNLP's Participation for the WMT2023 Quality Estimation Shared Task We introduce the submissions of the NJUNLP team to the WMT 2023 Quality Estimation (QE) shared task. Our team submitted predictions for the English-German language pair on all two sub-tasks: (i) sentence- and word-level quality prediction; and (ii) fine-grained error span detection. This year, we further explore pseudo data methods for QE based on NJUQE framework (https://github.com/NJUNLP/njuqe). We generate pseudo MQM data using parallel data from the WMT translation task. We pre-train the XLMR large model on pseudo QE data, then fine-tune it on real QE data. At both stages, we jointly learn sentence-level scores and word-level tags. Empirically, we conduct experiments to find the key hyper-parameters that improve the performance. Technically, we propose a simple method that covert the word-level outputs to fine-grained error span results. Overall, our models achieved the best results in English-German for both word-level and fine-grained error span detection sub-tasks by a considerable margin. 7 authors · Sep 22, 2023
- Refining Corpora from a Model Calibration Perspective for Chinese Spelling Correction Chinese Spelling Correction (CSC) commonly lacks large-scale high-quality corpora, due to the labor-intensive labeling of spelling errors in real-life human writing or typing scenarios. Two data augmentation methods are widely adopted: (1) Random Replacement with the guidance of confusion sets and (2) OCR/ASR-based Generation that simulates character misusing. However, both methods inevitably introduce noisy data (e.g., false spelling errors), potentially leading to over-correction. By carefully analyzing the two types of corpora, we find that though the latter achieves more robust generalization performance, the former yields better-calibrated CSC models. We then provide a theoretical analysis of this empirical observation, based on which a corpus refining strategy is proposed. Specifically, OCR/ASR-based data samples are fed into a well-calibrated CSC model trained on random replacement-based corpora and then filtered based on prediction confidence. By learning a simple BERT-based model on the refined OCR/ASR-based corpus, we set up impressive state-of-the-art performance on three widely-used benchmarks, while significantly alleviating over-correction (e.g., lowering false positive predictions). 7 authors · Jul 22, 2024
- Machine Translation Meta Evaluation through Translation Accuracy Challenge Sets Recent machine translation (MT) metrics calibrate their effectiveness by correlating with human judgement but without any insights about their behaviour across different error types. Challenge sets are used to probe specific dimensions of metric behaviour but there are very few such datasets and they either focus on a limited number of phenomena or a limited number of language pairs. We introduce ACES, a contrastive challenge set spanning 146 language pairs, aimed at discovering whether metrics can identify 68 translation accuracy errors. These phenomena range from simple alterations at the word/character level to more complex errors based on discourse and real-world knowledge. We conduct a large-scale study by benchmarking ACES on 50 metrics submitted to the WMT 2022 and 2023 metrics shared tasks. We benchmark metric performance, assess their incremental performance over successive campaigns, and measure their sensitivity to a range of linguistic phenomena. We also investigate claims that Large Language Models (LLMs) are effective as MT evaluators by evaluating on ACES. Our results demonstrate that different metric families struggle with different phenomena and that LLM-based methods fail to demonstrate reliable performance. Our analyses indicate that most metrics ignore the source sentence, tend to prefer surface-level overlap and end up incorporating properties of base models which are not always beneficial. We expand ACES to include error span annotations, denoted as SPAN-ACES and we use this dataset to evaluate span-based error metrics showing these metrics also need considerable improvement. Finally, we provide a set of recommendations for building better MT metrics, including focusing on error labels instead of scores, ensembling, designing strategies to explicitly focus on the source sentence, focusing on semantic content and choosing the right base model for representations. 8 authors · Jan 29, 2024
- A Simple Recipe for Multilingual Grammatical Error Correction This paper presents a simple recipe to train state-of-the-art multilingual Grammatical Error Correction (GEC) models. We achieve this by first proposing a language-agnostic method to generate a large number of synthetic examples. The second ingredient is to use large-scale multilingual language models (up to 11B parameters). Once fine-tuned on language-specific supervised sets we surpass the previous state-of-the-art results on GEC benchmarks in four languages: English, Czech, German and Russian. Having established a new set of baselines for GEC, we make our results easily reproducible and accessible by releasing a cLang-8 dataset. It is produced by using our best model, which we call gT5, to clean the targets of a widely used yet noisy lang-8 dataset. cLang-8 greatly simplifies typical GEC training pipelines composed of multiple fine-tuning stages -- we demonstrate that performing a single fine-tuning step on cLang-8 with the off-the-shelf language models yields further accuracy improvements over an already top-performing gT5 model for English. 5 authors · Jun 7, 2021
- Grammatical Error Correction for Low-Resource Languages: The Case of Zarma Grammatical error correction (GEC) aims to improve quality and readability of texts through accurate correction of linguistic mistakes. Previous work has focused on high-resource languages, while low-resource languages lack robust tools. However, low-resource languages often face problems such as: non-standard orthography, limited annotated corpora, and diverse dialects, which slows down the development of GEC tools. We present a study on GEC for Zarma, spoken by over five million in West Africa. We compare three approaches: rule-based methods, machine translation (MT) models, and large language models (LLMs). We evaluated them using a dataset of more than 250,000 examples, including synthetic and human-annotated data. Our results showed that the MT-based approach using M2M100 outperforms others, with a detection rate of 95. 82% and a suggestion accuracy of 78. 90% in automatic evaluations (AE) and an average score of 3.0 out of 5.0 in manual evaluation (ME) from native speakers for grammar and logical corrections. The rule-based method was effective for spelling errors but failed on complex context-level errors. LLMs -- MT5-small -- showed moderate performance. Our work supports use of MT models to enhance GEC in low-resource settings, and we validated these results with Bambara, another West African language. 7 authors · Oct 20, 2024
- CoAM: Corpus of All-Type Multiword Expressions Multiword expressions (MWEs) refer to idiomatic sequences of multiple words. MWE identification, i.e., detecting MWEs in text, can play a key role in downstream tasks such as machine translation. Existing datasets for MWE identification are inconsistently annotated, limited to a single type of MWE, or limited in size. To enable reliable and comprehensive evaluation, we created CoAM: Corpus of All-Type Multiword Expressions, a dataset of 1.3K sentences constructed through a multi-step process to enhance data quality consisting of human annotation, human review, and automated consistency checking. MWEs in CoAM are tagged with MWE types, such as Noun and Verb, to enable fine-grained error analysis. Annotations for CoAM were collected using a new interface created with our interface generator, which allows easy and flexible annotation of MWEs in any form, including discontinuous ones. Through experiments using CoAM, we find that a fine-tuned large language model outperforms the current state-of-the-art approach for MWE identification. Furthermore, analysis using our MWE type tagged data reveals that Verb MWEs are easier than Noun MWEs to identify across approaches. 7 authors · Dec 23, 2024
- Grammatical Error Correction for Code-Switched Sentences by Learners of English Code-switching (CSW) is a common phenomenon among multilingual speakers where multiple languages are used in a single discourse or utterance. Mixed language utterances may still contain grammatical errors however, yet most existing Grammar Error Correction (GEC) systems have been trained on monolingual data and not developed with CSW in mind. In this work, we conduct the first exploration into the use of GEC systems on CSW text. Through this exploration, we propose a novel method of generating synthetic CSW GEC datasets by translating different spans of text within existing GEC corpora. We then investigate different methods of selecting these spans based on CSW ratio, switch-point factor and linguistic constraints, and identify how they affect the performance of GEC systems on CSW text. Our best model achieves an average increase of 1.57 F_{0.5} across 3 CSW test sets (English-Chinese, English-Korean and English-Japanese) without affecting the model's performance on a monolingual dataset. We furthermore discovered that models trained on one CSW language generalise relatively well to other typologically similar CSW languages. 5 authors · Apr 18, 2024
1 Golos: Russian Dataset for Speech Research This paper introduces a novel Russian speech dataset called Golos, a large corpus suitable for speech research. The dataset mainly consists of recorded audio files manually annotated on the crowd-sourcing platform. The total duration of the audio is about 1240 hours. We have made the corpus freely available to download, along with the acoustic model with CTC loss prepared on this corpus. Additionally, transfer learning was applied to improve the performance of the acoustic model. In order to evaluate the quality of the dataset with the beam-search algorithm, we have built a 3-gram language model on the open Common Crawl dataset. The total word error rate (WER) metrics turned out to be about 3.3% and 11.5%. 3 authors · Jun 18, 2021
1 Correcting Semantic Parses with Natural Language through Dynamic Schema Encoding In addressing the task of converting natural language to SQL queries, there are several semantic and syntactic challenges. It becomes increasingly important to understand and remedy the points of failure as the performance of semantic parsing systems improve. We explore semantic parse correction with natural language feedback, proposing a new solution built on the success of autoregressive decoders in text-to-SQL tasks. By separating the semantic and syntactic difficulties of the task, we show that the accuracy of text-to-SQL parsers can be boosted by up to 26% with only one turn of correction with natural language. Additionally, we show that a T5-base model is capable of correcting the errors of a T5-large model in a zero-shot, cross-parser setting. 3 authors · May 31, 2023
- Misspelling Correction with Pre-trained Contextual Language Model Spelling irregularities, known now as spelling mistakes, have been found for several centuries. As humans, we are able to understand most of the misspelled words based on their location in the sentence, perceived pronunciation, and context. Unlike humans, computer systems do not possess the convenient auto complete functionality of which human brains are capable. While many programs provide spelling correction functionality, many systems do not take context into account. Moreover, Artificial Intelligence systems function in the way they are trained on. With many current Natural Language Processing (NLP) systems trained on grammatically correct text data, many are vulnerable against adversarial examples, yet correctly spelled text processing is crucial for learning. In this paper, we investigate how spelling errors can be corrected in context, with a pre-trained language model BERT. We present two experiments, based on BERT and the edit distance algorithm, for ranking and selecting candidate corrections. The results of our experiments demonstrated that when combined properly, contextual word embeddings of BERT and edit distance are capable of effectively correcting spelling errors. 4 authors · Jan 8, 2021
- Impact of Corpora Quality on Neural Machine Translation Large parallel corpora that are automatically obtained from the web, documents or elsewhere often exhibit many corrupted parts that are bound to negatively affect the quality of the systems and models that learn from these corpora. This paper describes frequent problems found in data and such data affects neural machine translation systems, as well as how to identify and deal with them. The solutions are summarised in a set of scripts that remove problematic sentences from input corpora. 1 authors · Oct 19, 2018
- Chinese Grammatical Error Correction: A Survey Chinese Grammatical Error Correction (CGEC) is a critical task in Natural Language Processing, addressing the growing demand for automated writing assistance in both second-language (L2) and native (L1) Chinese writing. While L2 learners struggle with mastering complex grammatical structures, L1 users also benefit from CGEC in academic, professional, and formal contexts where writing precision is essential. This survey provides a comprehensive review of CGEC research, covering datasets, annotation schemes, evaluation methodologies, and system advancements. We examine widely used CGEC datasets, highlighting their characteristics, limitations, and the need for improved standardization. We also analyze error annotation frameworks, discussing challenges such as word segmentation ambiguity and the classification of Chinese-specific error types. Furthermore, we review evaluation metrics, focusing on their adaptation from English GEC to Chinese, including character-level scoring and the use of multiple references. In terms of system development, we trace the evolution from rule-based and statistical approaches to neural architectures, including Transformer-based models and the integration of large pre-trained language models. By consolidating existing research and identifying key challenges, this survey provides insights into the current state of CGEC and outlines future directions, including refining annotation standards to address segmentation challenges, and leveraging multilingual approaches to enhance CGEC. 7 authors · Apr 1
- Unmasking and Improving Data Credibility: A Study with Datasets for Training Harmless Language Models Language models have shown promise in various tasks but can be affected by undesired data during training, fine-tuning, or alignment. For example, if some unsafe conversations are wrongly annotated as safe ones, the model fine-tuned on these samples may be harmful. Therefore, the correctness of annotations, i.e., the credibility of the dataset, is important. This study focuses on the credibility of real-world datasets, including the popular benchmarks Jigsaw Civil Comments, Anthropic Harmless & Red Team, PKU BeaverTails & SafeRLHF, that can be used for training a harmless language model. Given the cost and difficulty of cleaning these datasets by humans, we introduce a systematic framework for evaluating the credibility of datasets, identifying label errors, and evaluating the influence of noisy labels in the curated language data, specifically focusing on unsafe comments and conversation classification. With the framework, we find and fix an average of 6.16% label errors in 11 datasets constructed from the above benchmarks. The data credibility and downstream learning performance can be remarkably improved by directly fixing label errors, indicating the significance of cleaning existing real-world datasets. We provide an open-source tool, Docta, for data cleaning at https://github.com/Docta-ai/docta. 4 authors · Nov 18, 2023
1 GrammarGPT: Exploring Open-Source LLMs for Native Chinese Grammatical Error Correction with Supervised Fine-Tuning Grammatical error correction aims to correct ungrammatical sentences automatically. Recently, some work has demonstrated the excellent capabilities of closed-source Large Language Models (LLMs, e.g., ChatGPT) in grammatical error correction. However, the potential of open-source LLMs remains unexplored. In this paper, we introduced GrammarGPT, an open-source LLM, to preliminary explore its potential for native Chinese grammatical error correction. The core recipe of GrammarGPT is to leverage the hybrid dataset of ChatGPT-generated and human-annotated. For grammatical errors with clues, we proposed a heuristic method to guide ChatGPT to generate ungrammatical sentences by providing those clues. For grammatical errors without clues, we collected ungrammatical sentences from publicly available websites and manually corrected them. In addition, we employed an error-invariant augmentation method to enhance the ability of the model to correct native Chinese grammatical errors. We ultimately constructed about 1k parallel data and utilized these data to fine-tune open-source LLMs (e.g., Phoenix, released by The Chinese University of Hong Kong, Shenzhen) with instruction tuning. The experimental results show that GrammarGPT outperforms the existing SOTA system significantly. Although model parameters are 20x larger than the SOTA baseline, the required amount of data for instruction tuning is 1200x smaller, illustrating the potential of open-source LLMs on native CGEC. Our GrammarGPT ranks 3^{rd} on NLPCC2023 SharedTask1, demonstrating our approach's effectiveness. The code and data are available at https://github.com/FreedomIntelligence/GrammarGPT. 4 authors · Jul 25, 2023 1
- Speak to your Parser: Interactive Text-to-SQL with Natural Language Feedback We study the task of semantic parse correction with natural language feedback. Given a natural language utterance, most semantic parsing systems pose the problem as one-shot translation where the utterance is mapped to a corresponding logical form. In this paper, we investigate a more interactive scenario where humans can further interact with the system by providing free-form natural language feedback to correct the system when it generates an inaccurate interpretation of an initial utterance. We focus on natural language to SQL systems and construct, SPLASH, a dataset of utterances, incorrect SQL interpretations and the corresponding natural language feedback. We compare various reference models for the correction task and show that incorporating such a rich form of feedback can significantly improve the overall semantic parsing accuracy while retaining the flexibility of natural language interaction. While we estimated human correction accuracy is 81.5%, our best model achieves only 25.1%, which leaves a large gap for improvement in future research. SPLASH is publicly available at https://aka.ms/Splash_dataset. 3 authors · May 5, 2020
1 A Survey of Corpora for Germanic Low-Resource Languages and Dialects Despite much progress in recent years, the vast majority of work in natural language processing (NLP) is on standard languages with many speakers. In this work, we instead focus on low-resource languages and in particular non-standardized low-resource languages. Even within branches of major language families, often considered well-researched, little is known about the extent and type of available resources and what the major NLP challenges are for these language varieties. The first step to address this situation is a systematic survey of available corpora (most importantly, annotated corpora, which are particularly valuable for NLP research). Focusing on Germanic low-resource language varieties, we provide such a survey in this paper. Except for geolocation (origin of speaker or document), we find that manually annotated linguistic resources are sparse and, if they exist, mostly cover morphosyntax. Despite this lack of resources, we observe that interest in this area is increasing: there is active development and a growing research community. To facilitate research, we make our overview of over 80 corpora publicly available. We share a companion website of this overview at https://github.com/mainlp/germanic-lrl-corpora . 3 authors · Apr 19, 2023
- Organic Data-Driven Approach for Turkish Grammatical Error Correction and LLMs Grammatical Error Correction has seen significant progress with the recent advancements in deep learning. As those methods require huge amounts of data, synthetic datasets are being built to fill this gap. Unfortunately, synthetic datasets are not organic enough in some cases and even require clean data to start with. Furthermore, most of the work that has been done is focused mostly on English. In this work, we introduce a new organic data-driven approach, clean insertions, to build parallel Turkish Grammatical Error Correction datasets from any organic data, and to clean the data used for training Large Language Models. We achieve state-of-the-art results on two Turkish Grammatical Error Correction test sets out of the three publicly available ones. We also show the effectiveness of our method on the training losses of training language models. 2 authors · May 24, 2024
- FRED: Financial Retrieval-Enhanced Detection and Editing of Hallucinations in Language Models Hallucinations in large language models pose a critical challenge for applications requiring factual reliability, particularly in high-stakes domains such as finance. This work presents an effective approach for detecting and editing factually incorrect content in model-generated responses based on the provided context. Given a user-defined domain-specific error taxonomy, we construct a synthetic dataset by inserting tagged errors into financial question-answering corpora and then fine-tune four language models, Phi-4, Phi-4-mini, Qwen3-4B, and Qwen3-14B, to detect and edit these factual inaccuracies. Our best-performing model, fine-tuned Phi-4, achieves an 8% improvement in binary F1 score and a 30% gain in overall detection performance compared to OpenAI-o3. Notably, our fine-tuned Phi-4-mini model, despite having only 4 billion parameters, maintains competitive performance with just a 2% drop in binary detection and a 0.1% decline in overall detection compared to OpenAI-o3. Our work provides a practical solution for detecting and editing factual inconsistencies in financial text generation while introducing a generalizable framework that can enhance the trustworthiness and alignment of large language models across diverse applications beyond finance. Our code and data are available at https://github.com/pegasi-ai/shield. 3 authors · Jul 28
15 Are LLMs Better than Reported? Detecting Label Errors and Mitigating Their Effect on Model Performance NLP benchmarks rely on standardized datasets for training and evaluating models and are crucial for advancing the field. Traditionally, expert annotations ensure high-quality labels; however, the cost of expert annotation does not scale well with the growing demand for larger datasets required by modern models. While crowd-sourcing provides a more scalable solution, it often comes at the expense of annotation precision and consistency. Recent advancements in large language models (LLMs) offer new opportunities to enhance the annotation process, particularly for detecting label errors in existing datasets. In this work, we consider the recent approach of LLM-as-a-judge, leveraging an ensemble of LLMs to flag potentially mislabeled examples. Through a case study of four datasets from the TRUE benchmark, covering different tasks and domains, we empirically analyze the labeling quality of existing datasets, and compare expert, crowd-sourced, and our LLM-based annotations in terms of agreement, label quality, and efficiency, demonstrating the strengths and limitations of each annotation method. Our findings reveal a substantial number of label errors, which, when corrected, induce a significant upward shift in reported model performance. This suggests that many of the LLMs so-called mistakes are due to label errors rather than genuine model failures. Additionally, we discuss the implications of mislabeled data and propose methods to mitigate them in training to improve model performance. 5 authors · Oct 24, 2024 2
2 Translation Errors Significantly Impact Low-Resource Languages in Cross-Lingual Learning Popular benchmarks (e.g., XNLI) used to evaluate cross-lingual language understanding consist of parallel versions of English evaluation sets in multiple target languages created with the help of professional translators. When creating such parallel data, it is critical to ensure high-quality translations for all target languages for an accurate characterization of cross-lingual transfer. In this work, we find that translation inconsistencies do exist and interestingly they disproportionally impact low-resource languages in XNLI. To identify such inconsistencies, we propose measuring the gap in performance between zero-shot evaluations on the human-translated and machine-translated target text across multiple target languages; relatively large gaps are indicative of translation errors. We also corroborate that translation errors exist for two target languages, namely Hindi and Urdu, by doing a manual reannotation of human-translated test instances in these two languages and finding poor agreement with the original English labels these instances were supposed to inherit. 3 authors · Feb 3, 2024 3
- Spelling Correction with Denoising Transformer We present a novel method of performing spelling correction on short input strings, such as search queries or individual words. At its core lies a procedure for generating artificial typos which closely follow the error patterns manifested by humans. This procedure is used to train the production spelling correction model based on a transformer architecture. This model is currently served in the HubSpot product search. We show that our approach to typo generation is superior to the widespread practice of adding noise, which ignores human patterns. We also demonstrate how our approach may be extended to resource-scarce settings and train spelling correction models for Arabic, Greek, Russian, and Setswana languages, without using any labeled data. 2 authors · May 12, 2021
- Analyzing the Performance of GPT-3.5 and GPT-4 in Grammatical Error Correction GPT-3 and GPT-4 models are powerful, achieving high performance on a variety of Natural Language Processing tasks. However, there is a relative lack of detailed published analysis of their performance on the task of grammatical error correction (GEC). To address this, we perform experiments testing the capabilities of a GPT-3.5 model (text-davinci-003) and a GPT-4 model (gpt-4-0314) on major GEC benchmarks. We compare the performance of different prompts in both zero-shot and few-shot settings, analyzing intriguing or problematic outputs encountered with different prompt formats. We report the performance of our best prompt on the BEA-2019 and JFLEG datasets, finding that the GPT models can perform well in a sentence-level revision setting, with GPT-4 achieving a new high score on the JFLEG benchmark. Through human evaluation experiments, we compare the GPT models' corrections to source, human reference, and baseline GEC system sentences and observe differences in editing strategies and how they are scored by human raters. 5 authors · Mar 24, 2023
1 Advancements in Arabic Grammatical Error Detection and Correction: An Empirical Investigation Grammatical error correction (GEC) is a well-explored problem in English with many existing models and datasets. However, research on GEC in morphologically rich languages has been limited due to challenges such as data scarcity and language complexity. In this paper, we present the first results on Arabic GEC by using two newly developed Transformer-based pretrained sequence-to-sequence models. We address the task of multi-class Arabic grammatical error detection (GED) and present the first results on multi-class Arabic GED. We show that using GED information as auxiliary input in GEC models improves GEC performance across three datasets spanning different genres. Moreover, we also investigate the use of contextual morphological preprocessing in aiding GEC systems. Our models achieve state-of-the-art results on two Arabic GEC shared tasks datasets and establish a strong benchmark on a newly created dataset. 4 authors · May 24, 2023
1 BLEU Meets COMET: Combining Lexical and Neural Metrics Towards Robust Machine Translation Evaluation Although neural-based machine translation evaluation metrics, such as COMET or BLEURT, have achieved strong correlations with human judgements, they are sometimes unreliable in detecting certain phenomena that can be considered as critical errors, such as deviations in entities and numbers. In contrast, traditional evaluation metrics, such as BLEU or chrF, which measure lexical or character overlap between translation hypotheses and human references, have lower correlations with human judgements but are sensitive to such deviations. In this paper, we investigate several ways of combining the two approaches in order to increase robustness of state-of-the-art evaluation methods to translations with critical errors. We show that by using additional information during training, such as sentence-level features and word-level tags, the trained metrics improve their capability to penalize translations with specific troublesome phenomena, which leads to gains in correlation with human judgments and on recent challenge sets on several language pairs. 3 authors · May 30, 2023
1 Building a Japanese Document-Level Relation Extraction Dataset Assisted by Cross-Lingual Transfer Document-level Relation Extraction (DocRE) is the task of extracting all semantic relationships from a document. While studies have been conducted on English DocRE, limited attention has been given to DocRE in non-English languages. This work delves into effectively utilizing existing English resources to promote DocRE studies in non-English languages, with Japanese as the representative case. As an initial attempt, we construct a dataset by transferring an English dataset to Japanese. However, models trained on such a dataset suffer from low recalls. We investigate the error cases and attribute the failure to different surface structures and semantics of documents translated from English and those written by native speakers. We thus switch to explore if the transferred dataset can assist human annotation on Japanese documents. In our proposal, annotators edit relation predictions from a model trained on the transferred dataset. Quantitative analysis shows that relation recommendations suggested by the model help reduce approximately 50% of the human edit steps compared with the previous approach. Experiments quantify the performance of existing DocRE models on our collected dataset, portraying the challenges of Japanese and cross-lingual DocRE. 3 authors · Apr 25, 2024
- Evaluating the Quality of Benchmark Datasets for Low-Resource Languages: A Case Study on Turkish The reliance on translated or adapted datasets from English or multilingual resources introduces challenges regarding linguistic and cultural suitability. This study addresses the need for robust and culturally appropriate benchmarks by evaluating the quality of 17 commonly used Turkish benchmark datasets. Using a comprehensive framework that assesses six criteria, both human and LLM-judge annotators provide detailed evaluations to identify dataset strengths and shortcomings. Our results reveal that 70% of the benchmark datasets fail to meet our heuristic quality standards. The correctness of the usage of technical terms is the strongest criterion, but 85% of the criteria are not satisfied in the examined datasets. Although LLM judges demonstrate potential, they are less effective than human annotators, particularly in understanding cultural common sense knowledge and interpreting fluent, unambiguous text. GPT-4o has stronger labeling capabilities for grammatical and technical tasks, while Llama3.3-70B excels at correctness and cultural knowledge evaluation. Our findings emphasize the urgent need for more rigorous quality control in creating and adapting datasets for low-resource languages. 9 authors · Apr 13 1
- The USYD-JD Speech Translation System for IWSLT 2021 This paper describes the University of Sydney& JD's joint submission of the IWSLT 2021 low resource speech translation task. We participated in the Swahili-English direction and got the best scareBLEU (25.3) score among all the participants. Our constrained system is based on a pipeline framework, i.e. ASR and NMT. We trained our models with the officially provided ASR and MT datasets. The ASR system is based on the open-sourced tool Kaldi and this work mainly explores how to make the most of the NMT models. To reduce the punctuation errors generated by the ASR model, we employ our previous work SlotRefine to train a punctuation correction model. To achieve better translation performance, we explored the most recent effective strategies, including back translation, knowledge distillation, multi-feature reranking and transductive finetuning. For model structure, we tried auto-regressive and non-autoregressive models, respectively. In addition, we proposed two novel pre-train approaches, i.e. de-noising training and bidirectional training to fully exploit the data. Extensive experiments show that adding the above techniques consistently improves the BLEU scores, and the final submission system outperforms the baseline (Transformer ensemble model trained with the original parallel data) by approximately 10.8 BLEU score, achieving the SOTA performance. 3 authors · Jul 24, 2021
- Towards Better Inclusivity: A Diverse Tweet Corpus of English Varieties The prevalence of social media presents a growing opportunity to collect and analyse examples of English varieties. Whilst usage of these varieties was - and, in many cases, still is - used only in spoken contexts or hard-to-access private messages, social media sites like Twitter provide a platform for users to communicate informally in a scrapeable format. Notably, Indian English (Hinglish), Singaporean English (Singlish), and African-American English (AAE) can be commonly found online. These varieties pose a challenge to existing natural language processing (NLP) tools as they often differ orthographically and syntactically from standard English for which the majority of these tools are built. NLP models trained on standard English texts produced biased outcomes for users of underrepresented varieties. Some research has aimed to overcome the inherent biases caused by unrepresentative data through techniques like data augmentation or adjusting training models. We aim to address the issue of bias at its root - the data itself. We curate a dataset of tweets from countries with high proportions of underserved English variety speakers, and propose an annotation framework of six categorical classifications along a pseudo-spectrum that measures the degree of standard English and that thereby indirectly aims to surface the manifestations of English varieties in these tweets. Following best annotation practices, our growing corpus features 170,800 tweets taken from 7 countries, labeled by annotators who are from those countries and can communicate in regionally-dominant varieties of English. Our corpus highlights the accuracy discrepancies in pre-trained language identifiers between western English and non-western (i.e., less standard) English varieties. We hope to contribute to the growing literature identifying and reducing the implicit demographic discrepancies in NLP. 3 authors · Jan 21, 2024
1 Modern Models, Medieval Texts: A POS Tagging Study of Old Occitan Large language models (LLMs) have demonstrated remarkable capabilities in natural language processing, yet their effectiveness in handling historical languages remains largely unexplored. This study examines the performance of open-source LLMs in part-of-speech (POS) tagging for Old Occitan, a historical language characterized by non-standardized orthography and significant diachronic variation. Through comparative analysis of two distinct corpora-hagiographical and medical texts-we evaluate how current models handle the inherent challenges of processing a low-resource historical language. Our findings demonstrate critical limitations in LLM performance when confronted with extreme orthographic and syntactic variability. We provide detailed error analysis and specific recommendations for improving model performance in historical language processing. This research advances our understanding of LLM capabilities in challenging linguistic contexts while offering practical insights for both computational linguistics and historical language studies. 6 authors · Mar 10
- NaSGEC: a Multi-Domain Chinese Grammatical Error Correction Dataset from Native Speaker Texts We introduce NaSGEC, a new dataset to facilitate research on Chinese grammatical error correction (CGEC) for native speaker texts from multiple domains. Previous CGEC research primarily focuses on correcting texts from a single domain, especially learner essays. To broaden the target domain, we annotate multiple references for 12,500 sentences from three native domains, i.e., social media, scientific writing, and examination. We provide solid benchmark results for NaSGEC by employing cutting-edge CGEC models and different training data. We further perform detailed analyses of the connections and gaps between our domains from both empirical and statistical views. We hope this work can inspire future studies on an important but under-explored direction--cross-domain GEC. 7 authors · May 25, 2023
38 Are We Done with MMLU? Maybe not. We identify and analyse errors in the popular Massive Multitask Language Understanding (MMLU) benchmark. Even though MMLU is widely adopted, our analysis demonstrates numerous ground truth errors that obscure the true capabilities of LLMs. For example, we find that 57% of the analysed questions in the Virology subset contain errors. To address this issue, we introduce a comprehensive framework for identifying dataset errors using a novel error taxonomy. Then, we create MMLU-Redux, which is a subset of 3,000 manually re-annotated questions across 30 MMLU subjects. Using MMLU-Redux, we demonstrate significant discrepancies with the model performance metrics that were originally reported. Our results strongly advocate for revising MMLU's error-ridden questions to enhance its future utility and reliability as a benchmark. Therefore, we open up MMLU-Redux for additional annotation https://huggingface.co/datasets/edinburgh-dawg/mmlu-redux. 16 authors · Jun 6, 2024 1
- Enhancing Grammatical Error Detection using BERT with Cleaned Lang-8 Dataset This paper presents an improved LLM based model for Grammatical Error Detection (GED), which is a very challenging and equally important problem for many applications. The traditional approach to GED involved hand-designed features, but recently, Neural Networks (NN) have automated the discovery of these features, improving performance in GED. Traditional rule-based systems have an F1 score of 0.50-0.60 and earlier machine learning models give an F1 score of 0.65-0.75, including decision trees and simple neural networks. Previous deep learning models, for example, Bi-LSTM, have reported F1 scores within the range from 0.80 to 0.90. In our study, we have fine-tuned various transformer models using the Lang8 dataset rigorously cleaned by us. In our experiments, the BERT-base-uncased model gave an impressive performance with an F1 score of 0.91 and accuracy of 98.49% on training data and 90.53% on testing data, also showcasing the importance of data cleaning. Increasing model size using BERT-large-uncased or RoBERTa-large did not give any noticeable improvements in performance or advantage for this task, underscoring that larger models are not always better. Our results clearly show how far rigorous data cleaning and simple transformer-based models can go toward significantly improving the quality of GED. 2 authors · Nov 23, 2024
- N-Best Hypotheses Reranking for Text-To-SQL Systems Text-to-SQL task maps natural language utterances to structured queries that can be issued to a database. State-of-the-art (SOTA) systems rely on finetuning large, pre-trained language models in conjunction with constrained decoding applying a SQL parser. On the well established Spider dataset, we begin with Oracle studies: specifically, choosing an Oracle hypothesis from a SOTA model's 10-best list, yields a 7.7% absolute improvement in both exact match (EM) and execution (EX) accuracy, showing significant potential improvements with reranking. Identifying coherence and correctness as reranking approaches, we design a model generating a query plan and propose a heuristic schema linking algorithm. Combining both approaches, with T5-Large, we obtain a consistent 1% improvement in EM accuracy, and a ~2.5% improvement in EX, establishing a new SOTA for this task. Our comprehensive error studies on DEV data show the underlying difficulty in making progress on this task. 3 authors · Oct 19, 2022
- System Combination via Quality Estimation for Grammatical Error Correction Quality estimation models have been developed to assess the corrections made by grammatical error correction (GEC) models when the reference or gold-standard corrections are not available. An ideal quality estimator can be utilized to combine the outputs of multiple GEC systems by choosing the best subset of edits from the union of all edits proposed by the GEC base systems. However, we found that existing GEC quality estimation models are not good enough in differentiating good corrections from bad ones, resulting in a low F0.5 score when used for system combination. In this paper, we propose GRECO, a new state-of-the-art quality estimation model that gives a better estimate of the quality of a corrected sentence, as indicated by having a higher correlation to the F0.5 score of a corrected sentence. It results in a combined GEC system with a higher F0.5 score. We also propose three methods for utilizing GEC quality estimation models for system combination with varying generality: model-agnostic, model-agnostic with voting bias, and model-dependent method. The combined GEC system outperforms the state of the art on the CoNLL-2014 test set and the BEA-2019 test set, achieving the highest F0.5 scores published to date. 2 authors · Oct 23, 2023
- A Part-of-Speech Tagger for Yiddish: First Steps in Tagging the Yiddish Book Center Corpus We describe the construction and evaluation of a part-of-speech tagger for Yiddish (the first one, to the best of our knowledge). This is the first step in a larger project of automatically assigning part-of-speech tags and syntactic structure to Yiddish text for purposes of linguistic research. We combine two resources for the current work - an 80K word subset of the Penn Parsed Corpus of Historical Yiddish (PPCHY) (Santorini, 2021) and 650 million words of OCR'd Yiddish text from the Yiddish Book Center (YBC). We compute word embeddings on the YBC corpus, and these embeddings are used with a tagger model trained and evaluated on the PPCHY. Yiddish orthography in the YBC corpus has many spelling inconsistencies, and we present some evidence that even simple non-contextualized embeddings are able to capture the relationships among spelling variants without the need to first "standardize" the corpus. We evaluate the tagger performance on a 10-fold cross-validation split, with and without the embeddings, showing that the embeddings improve tagger performance. However, a great deal of work remains to be done, and we conclude by discussing some next steps, including the need for additional annotated training and test data. 4 authors · Apr 3, 2022
- Normalization of Lithuanian Text Using Regular Expressions Text Normalization is an integral part of any text-to-speech synthesis system. In a natural language text, there are elements such as numbers, dates, abbreviations, etc. that belong to other semiotic classes. They are called non-standard words (NSW) and need to be expanded into ordinary words. For this purpose, it is necessary to identify the semiotic class of each NSW. The taxonomy of semiotic classes adapted to the Lithuanian language is presented in the work. Sets of rules are created for detecting and expanding NSWs based on regular expressions. Experiments with three completely different data sets were performed and the accuracy was assessed. Causes of errors are explained and recommendations are given for the development of text normalization rules. 1 authors · Dec 29, 2023
- GECTurk: Grammatical Error Correction and Detection Dataset for Turkish Grammatical Error Detection and Correction (GEC) tools have proven useful for native speakers and second language learners. Developing such tools requires a large amount of parallel, annotated data, which is unavailable for most languages. Synthetic data generation is a common practice to overcome the scarcity of such data. However, it is not straightforward for morphologically rich languages like Turkish due to complex writing rules that require phonological, morphological, and syntactic information. In this work, we present a flexible and extensible synthetic data generation pipeline for Turkish covering more than 20 expert-curated grammar and spelling rules (a.k.a., writing rules) implemented through complex transformation functions. Using this pipeline, we derive 130,000 high-quality parallel sentences from professionally edited articles. Additionally, we create a more realistic test set by manually annotating a set of movie reviews. We implement three baselines formulating the task as i) neural machine translation, ii) sequence tagging, and iii) prefix tuning with a pretrained decoder-only model, achieving strong results. Furthermore, we perform exhaustive experiments on out-of-domain datasets to gain insights on the transferability and robustness of the proposed approaches. Our results suggest that our corpus, GECTurk, is high-quality and allows knowledge transfer for the out-of-domain setting. To encourage further research on Turkish GEC, we release our datasets, baseline models, and the synthetic data generation pipeline at https://github.com/GGLAB-KU/gecturk. 4 authors · Sep 20, 2023 1
- An Error-Guided Correction Model for Chinese Spelling Error Correction Although existing neural network approaches have achieved great success on Chinese spelling correction, there is still room to improve. The model is required to avoid over-correction and to distinguish a correct token from its phonological and visually similar ones. In this paper, we propose an error-guided correction model (EGCM) to improve Chinese spelling correction. By borrowing the powerful ability of BERT, we propose a novel zero-shot error detection method to do a preliminary detection, which guides our model to attend more on the probably wrong tokens in encoding and to avoid modifying the correct tokens in generating. Furthermore, we introduce a new loss function to integrate the error confusion set, which enables our model to distinguish easily misused tokens. Moreover, our model supports highly parallel decoding to meet real application requirements. Experiments are conducted on widely used benchmarks. Our model achieves superior performance against state-of-the-art approaches by a remarkable margin, on both the correction quality and computation speed. 3 authors · Jan 16, 2023
- Malaysian English News Decoded: A Linguistic Resource for Named Entity and Relation Extraction Standard English and Malaysian English exhibit notable differences, posing challenges for natural language processing (NLP) tasks on Malaysian English. Unfortunately, most of the existing datasets are mainly based on standard English and therefore inadequate for improving NLP tasks in Malaysian English. An experiment using state-of-the-art Named Entity Recognition (NER) solutions on Malaysian English news articles highlights that they cannot handle morphosyntactic variations in Malaysian English. To the best of our knowledge, there is no annotated dataset available to improvise the model. To address these issues, we constructed a Malaysian English News (MEN) dataset, which contains 200 news articles that are manually annotated with entities and relations. We then fine-tuned the spaCy NER tool and validated that having a dataset tailor-made for Malaysian English could improve the performance of NER in Malaysian English significantly. This paper presents our effort in the data acquisition, annotation methodology, and thorough analysis of the annotated dataset. To validate the quality of the annotation, inter-annotator agreement was used, followed by adjudication of disagreements by a subject matter expert. Upon completion of these tasks, we managed to develop a dataset with 6,061 entities and 3,268 relation instances. Finally, we discuss on spaCy fine-tuning setup and analysis on the NER performance. This unique dataset will contribute significantly to the advancement of NLP research in Malaysian English, allowing researchers to accelerate their progress, particularly in NER and relation extraction. The dataset and annotation guideline has been published on Github. 4 authors · Feb 22, 2024
- GLEU Without Tuning The GLEU metric was proposed for evaluating grammatical error corrections using n-gram overlap with a set of reference sentences, as opposed to precision/recall of specific annotated errors (Napoles et al., 2015). This paper describes improvements made to the GLEU metric that address problems that arise when using an increasing number of reference sets. Unlike the originally presented metric, the modified metric does not require tuning. We recommend that this version be used instead of the original version. 4 authors · May 9, 2016
- Evaluating LLMs on Chinese Idiom Translation Idioms, whose figurative meanings usually differ from their literal interpretations, are common in everyday language, especially in Chinese, where they often contain historical references and follow specific structural patterns. Despite recent progress in machine translation with large language models, little is known about Chinese idiom translation. In this work, we introduce IdiomEval, a framework with a comprehensive error taxonomy for Chinese idiom translation. We annotate 900 translation pairs from nine modern systems, including GPT-4o and Google Translate, across four domains: web, news, Wikipedia, and social media. We find these systems fail at idiom translation, producing incorrect, literal, partial, or even missing translations. The best-performing system, GPT-4, makes errors in 28% of cases. We also find that existing evaluation metrics measure idiom quality poorly with Pearson correlation below 0.48 with human ratings. We thus develop improved models that achieve F_1 scores of 0.68 for detecting idiom translation errors. 5 authors · Aug 14
- DSGram: Dynamic Weighting Sub-Metrics for Grammatical Error Correction in the Era of Large Language Models Evaluating the performance of Grammatical Error Correction (GEC) models has become increasingly challenging, as large language model (LLM)-based GEC systems often produce corrections that diverge from provided gold references. This discrepancy undermines the reliability of traditional reference-based evaluation metrics. In this study, we propose a novel evaluation framework for GEC models, DSGram, integrating Semantic Coherence, Edit Level, and Fluency, and utilizing a dynamic weighting mechanism. Our framework employs the Analytic Hierarchy Process (AHP) in conjunction with large language models to ascertain the relative importance of various evaluation criteria. Additionally, we develop a dataset incorporating human annotations and LLM-simulated sentences to validate our algorithms and fine-tune more cost-effective models. Experimental results indicate that our proposed approach enhances the effectiveness of GEC model evaluations. 4 authors · Dec 17, 2024
7 A New Pair of GloVes This report documents, describes, and evaluates new 2024 English GloVe (Global Vectors for Word Representation) models. While the original GloVe models built in 2014 have been widely used and found useful, languages and the world continue to evolve and we thought that current usage could benefit from updated models. Moreover, the 2014 models were not carefully documented as to the exact data versions and preprocessing that were used, and we rectify this by documenting these new models. We trained two sets of word embeddings using Wikipedia, Gigaword, and a subset of Dolma. Evaluation through vocabulary comparison, direct testing, and NER tasks shows that the 2024 vectors incorporate new culturally and linguistically relevant words, perform comparably on structural tasks like analogy and similarity, and demonstrate improved performance on recent, temporally dependent NER datasets such as non-Western newswire data. 3 authors · Jul 24 2
3 Salamandra Technical Report This work introduces Salamandra, a suite of open-source decoder-only large language models available in three different sizes: 2, 7, and 40 billion parameters. The models were trained from scratch on highly multilingual data that comprises text in 35 European languages and code. Our carefully curated corpus is made exclusively from open-access data compiled from a wide variety of sources. Along with the base models, supplementary checkpoints that were fine-tuned on public-domain instruction data are also released for chat applications. Additionally, we also share our preliminary experiments on multimodality, which serve as proof-of-concept to showcase potential applications for the Salamandra family. Our extensive evaluations on multilingual benchmarks reveal that Salamandra has strong capabilities, achieving competitive performance when compared to similarly sized open-source models. We provide comprehensive evaluation results both on standard downstream tasks as well as key aspects related to bias and safety.With this technical report, we intend to promote open science by sharing all the details behind our design choices, data curation strategy and evaluation methodology. In addition to that, we deviate from the usual practice by making our training and evaluation scripts publicly accessible. We release all models under a permissive Apache 2.0 license in order to foster future research and facilitate commercial use, thereby contributing to the open-source ecosystem of large language models. 23 authors · Feb 12
2 Do Language Models Care About Text Quality? Evaluating Web-Crawled Corpora Across 11 Languages Large, curated, web-crawled corpora play a vital role in training language models (LMs). They form the lion's share of the training data in virtually all recent LMs, such as the well-known GPT, LLaMA and XLM-RoBERTa models. However, despite this importance, relatively little attention has been given to the quality of these corpora. In this paper, we compare four of the currently most relevant large, web-crawled corpora (CC100, MaCoCu, mC4 and OSCAR) across eleven lower-resourced European languages. Our approach is two-fold: first, we perform an intrinsic evaluation by performing a human evaluation of the quality of samples taken from different corpora; then, we assess the practical impact of the qualitative differences by training specific LMs on each of the corpora and evaluating their performance on downstream tasks. We find that there are clear differences in quality of the corpora, with MaCoCu and OSCAR obtaining the best results. However, during the extrinsic evaluation, we actually find that the CC100 corpus achieves the highest scores. We conclude that, in our experiments, the quality of the web-crawled corpora does not seem to play a significant role when training LMs. 7 authors · Mar 13, 2024 1
- Understanding and Tackling Label Errors in Individual-Level Nature Language Understanding Natural language understanding (NLU) is a task that enables machines to understand human language. Some tasks, such as stance detection and sentiment analysis, are closely related to individual subjective perspectives, thus termed individual-level NLU. Previously, these tasks are often simplified to text-level NLU tasks, ignoring individual factors. This not only makes inference difficult and unexplainable but often results in a large number of label errors when creating datasets. To address the above limitations, we propose a new NLU annotation guideline based on individual-level factors. Specifically, we incorporate other posts by the same individual and then annotate individual subjective perspectives after considering all individual posts. We use this guideline to expand and re-annotate the stance detection and topic-based sentiment analysis datasets. We find that error rates in the samples were as high as 31.7\% and 23.3\%. We further use large language models to conduct experiments on the re-annotation datasets and find that the large language models perform well on both datasets after adding individual factors. Both GPT-4o and Llama3-70B can achieve an accuracy greater than 87\% on the re-annotation datasets. We also verify the effectiveness of individual factors through ablation studies. We call on future researchers to add individual factors when creating such datasets. Our re-annotation dataset can be found at https://github.com/24yearsoldstudent/Individual-NLU 3 authors · Feb 18 1
- Earnings-21: A Practical Benchmark for ASR in the Wild Commonly used speech corpora inadequately challenge academic and commercial ASR systems. In particular, speech corpora lack metadata needed for detailed analysis and WER measurement. In response, we present Earnings-21, a 39-hour corpus of earnings calls containing entity-dense speech from nine different financial sectors. This corpus is intended to benchmark ASR systems in the wild with special attention towards named entity recognition. We benchmark four commercial ASR models, two internal models built with open-source tools, and an open-source LibriSpeech model and discuss their differences in performance on Earnings-21. Using our recently released fstalign tool, we provide a candid analysis of each model's recognition capabilities under different partitions. Our analysis finds that ASR accuracy for certain NER categories is poor, presenting a significant impediment to transcript comprehension and usage. Earnings-21 bridges academic and commercial ASR system evaluation and enables further research on entity modeling and WER on real world audio. 10 authors · Apr 22, 2021
1 Earnings-22: A Practical Benchmark for Accents in the Wild Modern automatic speech recognition (ASR) systems have achieved superhuman Word Error Rate (WER) on many common corpora despite lacking adequate performance on speech in the wild. Beyond that, there is a lack of real-world, accented corpora to properly benchmark academic and commercial models. To ensure this type of speech is represented in ASR benchmarking, we present Earnings-22, a 125 file, 119 hour corpus of English-language earnings calls gathered from global companies. We run a comparison across 4 commercial models showing the variation in performance when taking country of origin into consideration. Looking at hypothesis transcriptions, we explore errors common to all ASR systems tested. By examining Individual Word Error Rate (IWER), we find that key speech features impact model performance more for certain accents than others. Earnings-22 provides a free-to-use benchmark of real-world, accented audio to bridge academic and industrial research. 5 authors · Mar 29, 2022
- REPA: Russian Error Types Annotation for Evaluating Text Generation and Judgment Capabilities Recent advances in large language models (LLMs) have introduced the novel paradigm of using LLMs as judges, where an LLM evaluates and scores the outputs of another LLM, which often correlates highly with human preferences. However, the use of LLM-as-a-judge has been primarily studied in English. In this paper, we evaluate this framework in Russian by introducing the Russian Error tyPes Annotation dataset (REPA), a dataset of 1k user queries and 2k LLM-generated responses. Human annotators labeled each response pair expressing their preferences across ten specific error types, as well as selecting an overall preference. We rank six generative LLMs across the error types using three rating systems based on human preferences. We also evaluate responses using eight LLM judges in zero-shot and few-shot settings. We describe the results of analyzing the judges and position and length biases. Our findings reveal a notable gap between LLM judge performance in Russian and English. However, rankings based on human and LLM preferences show partial alignment, suggesting that while current LLM judges struggle with fine-grained evaluation in Russian, there is potential for improvement. 4 authors · Mar 17
- A Multilingual Parallel Corpora Collection Effort for Indian Languages We present sentence aligned parallel corpora across 10 Indian Languages - Hindi, Telugu, Tamil, Malayalam, Gujarati, Urdu, Bengali, Oriya, Marathi, Punjabi, and English - many of which are categorized as low resource. The corpora are compiled from online sources which have content shared across languages. The corpora presented significantly extends present resources that are either not large enough or are restricted to a specific domain (such as health). We also provide a separate test corpus compiled from an independent online source that can be independently used for validating the performance in 10 Indian languages. Alongside, we report on the methods of constructing such corpora using tools enabled by recent advances in machine translation and cross-lingual retrieval using deep neural network based methods. 4 authors · Jul 15, 2020
- Automatic Spell Checker and Correction for Under-represented Spoken Languages: Case Study on Wolof This paper presents a spell checker and correction tool specifically designed for Wolof, an under-represented spoken language in Africa. The proposed spell checker leverages a combination of a trie data structure, dynamic programming, and the weighted Levenshtein distance to generate suggestions for misspelled words. We created novel linguistic resources for Wolof, such as a lexicon and a corpus of misspelled words, using a semi-automatic approach that combines manual and automatic annotation methods. Despite the limited data available for the Wolof language, the spell checker's performance showed a predictive accuracy of 98.31% and a suggestion accuracy of 93.33%. Our primary focus remains the revitalization and preservation of Wolof as an Indigenous and spoken language in Africa, providing our efforts to develop novel linguistic resources. This work represents a valuable contribution to the growth of computational tools and resources for the Wolof language and provides a strong foundation for future studies in the automatic spell checking and correction field. 2 authors · May 22, 2023
4 Expanding FLORES+ Benchmark for more Low-Resource Settings: Portuguese-Emakhuwa Machine Translation Evaluation As part of the Open Language Data Initiative shared tasks, we have expanded the FLORES+ evaluation set to include Emakhuwa, a low-resource language widely spoken in Mozambique. We translated the dev and devtest sets from Portuguese into Emakhuwa, and we detail the translation process and quality assurance measures used. Our methodology involved various quality checks, including post-editing and adequacy assessments. The resulting datasets consist of multiple reference sentences for each source. We present baseline results from training a Neural Machine Translation system and fine-tuning existing multilingual translation models. Our findings suggest that spelling inconsistencies remain a challenge in Emakhuwa. Additionally, the baseline models underperformed on this evaluation set, underscoring the necessity for further research to enhance machine translation quality for Emakhuwa. The data is publicly available at https://huggingface.co/datasets/LIACC/Emakhuwa-FLORES. 3 authors · Aug 21, 2024 1
- On the application of Large Language Models for language teaching and assessment technology The recent release of very large language models such as PaLM and GPT-4 has made an unprecedented impact in the popular media and public consciousness, giving rise to a mixture of excitement and fear as to their capabilities and potential uses, and shining a light on natural language processing research which had not previously received so much attention. The developments offer great promise for education technology, and in this paper we look specifically at the potential for incorporating large language models in AI-driven language teaching and assessment systems. We consider several research areas and also discuss the risks and ethical considerations surrounding generative AI in education technology for language learners. Overall we find that larger language models offer improvements over previous models in text generation, opening up routes toward content generation which had not previously been plausible. For text generation they must be prompted carefully and their outputs may need to be reshaped before they are ready for use. For automated grading and grammatical error correction, tasks whose progress is checked on well-known benchmarks, early investigations indicate that large language models on their own do not improve on state-of-the-art results according to standard evaluation metrics. For grading it appears that linguistic features established in the literature should still be used for best performance, and for error correction it may be that the models can offer alternative feedback styles which are not measured sensitively with existing methods. In all cases, there is work to be done to experiment with the inclusion of large language models in education technology for language learners, in order to properly understand and report on their capacities and limitations, and to ensure that foreseeable risks such as misinformation and harmful bias are mitigated. 15 authors · Jul 17, 2023
6 To Err Is Human, but Llamas Can Learn It Too This study explores enhancing grammatical error correction (GEC) through artificial error generation (AEG) using language models (LMs). Specifically, we fine-tune Llama 2-based LMs for error generation and find that this approach yields synthetic errors akin to human errors. Next, we train GEC Llama models with the help of these artificial errors and outperform previous state-of-the-art error correction models, with gains ranging between 0.8 and 6 F0.5 points across all tested languages (German, Ukrainian, and Estonian). Moreover, we demonstrate that generating errors by fine-tuning smaller sequence-to-sequence models and prompting large commercial LMs (GPT-3.5 and GPT-4) also results in synthetic errors beneficially affecting error generation models. 5 authors · Mar 8, 2024
10 Failing Forward: Improving Generative Error Correction for ASR with Synthetic Data and Retrieval Augmentation Generative Error Correction (GEC) has emerged as a powerful post-processing method to enhance the performance of Automatic Speech Recognition (ASR) systems. However, we show that GEC models struggle to generalize beyond the specific types of errors encountered during training, limiting their ability to correct new, unseen errors at test time, particularly in out-of-domain (OOD) scenarios. This phenomenon amplifies with named entities (NEs), where, in addition to insufficient contextual information or knowledge about the NEs, novel NEs keep emerging. To address these issues, we propose DARAG (Data- and Retrieval-Augmented Generative Error Correction), a novel approach designed to improve GEC for ASR in in-domain (ID) and OOD scenarios. We augment the GEC training dataset with synthetic data generated by prompting LLMs and text-to-speech models, thereby simulating additional errors from which the model can learn. For OOD scenarios, we simulate test-time errors from new domains similarly and in an unsupervised fashion. Additionally, to better handle named entities, we introduce retrieval-augmented correction by augmenting the input with entities retrieved from a database. Our approach is simple, scalable, and both domain- and language-agnostic. We experiment on multiple datasets and settings, showing that DARAG outperforms all our baselines, achieving 8\% -- 30\% relative WER improvements in ID and 10\% -- 33\% improvements in OOD settings. 7 authors · Oct 17, 2024 2
- DaLAJ - a dataset for linguistic acceptability judgments for Swedish: Format, baseline, sharing We present DaLAJ 1.0, a Dataset for Linguistic Acceptability Judgments for Swedish, comprising 9 596 sentences in its first version; and the initial experiment using it for the binary classification task. DaLAJ is based on the SweLL second language learner data, consisting of essays at different levels of proficiency. To make sure the dataset can be freely available despite the GDPR regulations, we have sentence-scrambled learner essays and removed part of the metadata about learners, keeping for each sentence only information about the mother tongue and the level of the course where the essay has been written. We use the normalized version of learner language as the basis for the DaLAJ sentences, and keep only one error per sentence. We repeat the same sentence for each individual correction tag used in the sentence. For DaLAJ 1.0 we have used four error categories (out of 35 available in SweLL), all connected to lexical or word-building choices. Our baseline results for the binary classification show an accuracy of 58% for DaLAJ 1.0 using BERT embeddings. The dataset is included in the SwedishGlue (Swe. SuperLim) benchmark. Below, we describe the format of the dataset, first experiments, our insights and the motivation for the chosen approach to data sharing. 3 authors · May 14, 2021
- Multi-IF: Benchmarking LLMs on Multi-Turn and Multilingual Instructions Following Large Language Models (LLMs) have demonstrated impressive capabilities in various tasks, including instruction following, which is crucial for aligning model outputs with user expectations. However, evaluating LLMs' ability to follow instructions remains challenging due to the complexity and subjectivity of human language. Current benchmarks primarily focus on single-turn, monolingual instructions, which do not adequately reflect the complexities of real-world applications that require handling multi-turn and multilingual interactions. To address this gap, we introduce Multi-IF, a new benchmark designed to assess LLMs' proficiency in following multi-turn and multilingual instructions. Multi-IF, which utilizes a hybrid framework combining LLM and human annotators, expands upon the IFEval by incorporating multi-turn sequences and translating the English prompts into another 7 languages, resulting in a dataset of 4,501 multilingual conversations, where each has three turns. Our evaluation of 14 state-of-the-art LLMs on Multi-IF reveals that it presents a significantly more challenging task than existing benchmarks. All the models tested showed a higher rate of failure in executing instructions correctly with each additional turn. For example, o1-preview drops from 0.877 at the first turn to 0.707 at the third turn in terms of average accuracy over all languages. Moreover, languages with non-Latin scripts (Hindi, Russian, and Chinese) generally exhibit higher error rates, suggesting potential limitations in the models' multilingual capabilities. We release Multi-IF prompts and the evaluation code base to encourage further research in this critical area. 19 authors · Oct 20, 2024
8 BiPhone: Modeling Inter Language Phonetic Influences in Text A large number of people are forced to use the Web in a language they have low literacy in due to technology asymmetries. Written text in the second language (L2) from such users often contains a large number of errors that are influenced by their native language (L1). We propose a method to mine phoneme confusions (sounds in L2 that an L1 speaker is likely to conflate) for pairs of L1 and L2. These confusions are then plugged into a generative model (Bi-Phone) for synthetically producing corrupted L2 text. Through human evaluations, we show that Bi-Phone generates plausible corruptions that differ across L1s and also have widespread coverage on the Web. We also corrupt the popular language understanding benchmark SuperGLUE with our technique (FunGLUE for Phonetically Noised GLUE) and show that SoTA language understating models perform poorly. We also introduce a new phoneme prediction pre-training task which helps byte models to recover performance close to SuperGLUE. Finally, we also release the FunGLUE benchmark to promote further research in phonetically robust language models. To the best of our knowledge, FunGLUE is the first benchmark to introduce L1-L2 interactions in text. 8 authors · Jul 6, 2023 3
11 What's In My Big Data? Large text corpora are the backbone of language models. However, we have a limited understanding of the content of these corpora, including general statistics, quality, social factors, and inclusion of evaluation data (contamination). In this work, we propose What's In My Big Data? (WIMBD), a platform and a set of sixteen analyses that allow us to reveal and compare the contents of large text corpora. WIMBD builds on two basic capabilities -- count and search -- at scale, which allows us to analyze more than 35 terabytes on a standard compute node. We apply WIMBD to ten different corpora used to train popular language models, including C4, The Pile, and RedPajama. Our analysis uncovers several surprising and previously undocumented findings about these corpora, including the high prevalence of duplicate, synthetic, and low-quality content, personally identifiable information, toxic language, and benchmark contamination. For instance, we find that about 50% of the documents in RedPajama and LAION-2B-en are duplicates. In addition, several datasets used for benchmarking models trained on such corpora are contaminated with respect to important benchmarks, including the Winograd Schema Challenge and parts of GLUE and SuperGLUE. We open-source WIMBD's code and artifacts to provide a standard set of evaluations for new text-based corpora and to encourage more analyses and transparency around them: github.com/allenai/wimbd. 13 authors · Oct 31, 2023 1
- Unveiling the Impact of Multimodal Features on Chinese Spelling Correction: From Analysis to Design The Chinese Spelling Correction (CSC) task focuses on detecting and correcting spelling errors in sentences. Current research primarily explores two approaches: traditional multimodal pre-trained models and large language models (LLMs). However, LLMs face limitations in CSC, particularly over-correction, making them suboptimal for this task. While existing studies have investigated the use of phonetic and graphemic information in multimodal CSC models, effectively leveraging these features to enhance correction performance remains a challenge. To address this, we propose the Multimodal Analysis for Character Usage (MACU) experiment, identifying potential improvements for multimodal correctison. Based on empirical findings, we introduce NamBert, a novel multimodal model for Chinese spelling correction. Experiments on benchmark datasets demonstrate NamBert's superiority over SOTA methods. We also conduct a comprehensive comparison between NamBert and LLMs, systematically evaluating their strengths and limitations in CSC. Our code and model are available at https://github.com/iioSnail/NamBert. 4 authors · Apr 10
- Toxicity Classification in Ukrainian The task of toxicity detection is still a relevant task, especially in the context of safe and fair LMs development. Nevertheless, labeled binary toxicity classification corpora are not available for all languages, which is understandable given the resource-intensive nature of the annotation process. Ukrainian, in particular, is among the languages lacking such resources. To our knowledge, there has been no existing toxicity classification corpus in Ukrainian. In this study, we aim to fill this gap by investigating cross-lingual knowledge transfer techniques and creating labeled corpora by: (i)~translating from an English corpus, (ii)~filtering toxic samples using keywords, and (iii)~annotating with crowdsourcing. We compare LLMs prompting and other cross-lingual transfer approaches with and without fine-tuning offering insights into the most robust and efficient baselines. 4 authors · Apr 27, 2024
- Lost in Variation? Evaluating NLI Performance in Basque and Spanish Geographical Variants In this paper, we evaluate the capacity of current language technologies to understand Basque and Spanish language varieties. We use Natural Language Inference (NLI) as a pivot task and introduce a novel, manually-curated parallel dataset in Basque and Spanish, along with their respective variants. Our empirical analysis of crosslingual and in-context learning experiments using encoder-only and decoder-based Large Language Models (LLMs) shows a performance drop when handling linguistic variation, especially in Basque. Error analysis suggests that this decline is not due to lexical overlap, but rather to the linguistic variation itself. Further ablation experiments indicate that encoder-only models particularly struggle with Western Basque, which aligns with linguistic theory that identifies peripheral dialects (e.g., Western) as more distant from the standard. All data and code are publicly available. 3 authors · Jun 18
4 GlotCC: An Open Broad-Coverage CommonCrawl Corpus and Pipeline for Minority Languages The need for large text corpora has increased with the advent of pretrained language models and, in particular, the discovery of scaling laws for these models. Most available corpora have sufficient data only for languages with large dominant communities. However, there is no corpus available that (i) covers a wide range of minority languages; (ii) is generated by an open-source reproducible pipeline; and (iii) is rigorously cleaned from noise, making it trustworthy to use. We present GlotCC, a clean, document-level, 2TB general domain corpus derived from CommonCrawl, covering more than 1000 languages. We make GlotCC and the system used to generate it - including the pipeline, language identification model, and filters - available to the research community. Corpus v. 1.0 https://huggingface.co/datasets/cis-lmu/GlotCC-v1, Pipeline v. 3.0 https://github.com/cisnlp/GlotCC. 3 authors · Oct 31, 2024 2
- MultiCoNER v2: a Large Multilingual dataset for Fine-grained and Noisy Named Entity Recognition We present MULTICONER V2, a dataset for fine-grained Named Entity Recognition covering 33 entity classes across 12 languages, in both monolingual and multilingual settings. This dataset aims to tackle the following practical challenges in NER: (i) effective handling of fine-grained classes that include complex entities like movie titles, and (ii) performance degradation due to noise generated from typing mistakes or OCR errors. The dataset is compiled from open resources like Wikipedia and Wikidata, and is publicly available. Evaluation based on the XLM-RoBERTa baseline highlights the unique challenges posed by MULTICONER V2: (i) the fine-grained taxonomy is challenging, where the scores are low with macro-F1=0.63 (across all languages), and (ii) the corruption strategy significantly impairs performance, with entity corruption resulting in 9% lower performance relative to non-entity corruptions across all languages. This highlights the greater impact of entity noise in contrast to context noise. 5 authors · Oct 19, 2023
- Machine Translation for Nko: Tools, Corpora and Baseline Results Currently, there is no usable machine translation system for Nko, a language spoken by tens of millions of people across multiple West African countries, which holds significant cultural and educational value. To address this issue, we present a set of tools, resources, and baseline results aimed towards the development of usable machine translation systems for Nko and other languages that do not currently have sufficiently large parallel text corpora available. (1) Friaparallelel: A novel collaborative parallel text curation software that incorporates quality control through copyedit-based workflows. (2) Expansion of the FLoRes-200 and NLLB-Seed corpora with 2,009 and 6,193 high-quality Nko translations in parallel with 204 and 40 other languages. (3) nicolingua-0005: A collection of trilingual and bilingual corpora with 130,850 parallel segments and monolingual corpora containing over 3 million Nko words. (4) Baseline bilingual and multilingual neural machine translation results with the best model scoring 30.83 English-Nko chrF++ on FLoRes-devtest. 12 authors · Oct 24, 2023
- Real or Fake Text?: Investigating Human Ability to Detect Boundaries Between Human-Written and Machine-Generated Text As text generated by large language models proliferates, it becomes vital to understand how humans engage with such text, and whether or not they are able to detect when the text they are reading did not originate with a human writer. Prior work on human detection of generated text focuses on the case where an entire passage is either human-written or machine-generated. In this paper, we study a more realistic setting where text begins as human-written and transitions to being generated by state-of-the-art neural language models. We show that, while annotators often struggle at this task, there is substantial variance in annotator skill and that given proper incentives, annotators can improve at this task over time. Furthermore, we conduct a detailed comparison study and analyze how a variety of variables (model size, decoding strategy, fine-tuning, prompt genre, etc.) affect human detection performance. Finally, we collect error annotations from our participants and use them to show that certain textual genres influence models to make different types of errors and that certain sentence-level features correlate highly with annotator selection. We release the RoFT dataset: a collection of over 21,000 human annotations paired with error classifications to encourage future work in human detection and evaluation of generated text. 5 authors · Dec 24, 2022
- Learning From How Humans Correct In industry NLP application, our manually labeled data has a certain number of noisy data. We present a simple method to find the noisy data and relabel them manually, meanwhile we collect the correction information. Then we present novel method to incorporate the human correction information into deep learning model. Human know how to correct noisy data. So the correction information can be inject into deep learning model. We do the experiment on our own text classification dataset, which is manually labeled, because we need to relabel the noisy data in our dataset for our industry application. The experiment result shows that our learn-on-correction method improve the classification accuracy from 91.7% to 92.5% in test dataset. The 91.7% accuracy is trained on the corrected dataset, which improve the baseline from 83.3% to 91.7% in test dataset. The accuracy under human evaluation achieves more than 97%. 1 authors · Jan 30, 2021
- Error Norm Truncation: Robust Training in the Presence of Data Noise for Text Generation Models Text generation models are notoriously vulnerable to errors in the training data. With the wide-spread availability of massive amounts of web-crawled data becoming more commonplace, how can we enhance the robustness of models trained on a massive amount of noisy web-crawled text? In our work, we propose Error Norm Truncation (ENT), a robust enhancement method to the standard training objective that truncates noisy data. Compared to methods that only uses the negative log-likelihood loss to estimate data quality, our method provides a more accurate estimation by considering the distribution of non-target tokens, which is often overlooked by previous work. Through comprehensive experiments across language modeling, machine translation, and text summarization, we show that equipping text generation models with ENT improves generation quality over standard training and previous soft and hard truncation methods. Furthermore, we show that our method improves the robustness of models against two of the most detrimental types of noise in machine translation, resulting in an increase of more than 2 BLEU points over the MLE baseline when up to 50% of noise is added to the data. 5 authors · Oct 1, 2023
1 Pre-trained Language Models as Re-Annotators Annotation noise is widespread in datasets, but manually revising a flawed corpus is time-consuming and error-prone. Hence, given the prior knowledge in Pre-trained Language Models and the expected uniformity across all annotations, we attempt to reduce annotation noise in the corpus through two tasks automatically: (1) Annotation Inconsistency Detection that indicates the credibility of annotations, and (2) Annotation Error Correction that rectifies the abnormal annotations. We investigate how to acquire semantic sensitive annotation representations from Pre-trained Language Models, expecting to embed the examples with identical annotations to the mutually adjacent positions even without fine-tuning. We proposed a novel credibility score to reveal the likelihood of annotation inconsistencies based on the neighbouring consistency. Then, we fine-tune the Pre-trained Language Models based classifier with cross-validation for annotation correction. The annotation corrector is further elaborated with two approaches: (1) soft labelling by Kernel Density Estimation and (2) a novel distant-peer contrastive loss. We study the re-annotation in relation extraction and create a new manually revised dataset, Re-DocRED, for evaluating document-level re-annotation. The proposed credibility scores show promising agreement with human revisions, achieving a Binary F1 of 93.4 and 72.5 in detecting inconsistencies on TACRED and DocRED respectively. Moreover, the neighbour-aware classifiers based on distant-peer contrastive learning and uncertain labels achieve Macro F1 up to 66.2 and 57.8 in correcting annotations on TACRED and DocRED respectively. These improvements are not merely theoretical: Rather, automatically denoised training sets demonstrate up to 3.6% performance improvement for state-of-the-art relation extraction models. 1 authors · May 11, 2022
- WenetSpeech: A 10000+ Hours Multi-domain Mandarin Corpus for Speech Recognition In this paper, we present WenetSpeech, a multi-domain Mandarin corpus consisting of 10000+ hours high-quality labeled speech, 2400+ hours weakly labeled speech, and about 10000 hours unlabeled speech, with 22400+ hours in total. We collect the data from YouTube and Podcast, which covers a variety of speaking styles, scenarios, domains, topics, and noisy conditions. An optical character recognition (OCR) based method is introduced to generate the audio/text segmentation candidates for the YouTube data on its corresponding video captions, while a high-quality ASR transcription system is used to generate audio/text pair candidates for the Podcast data. Then we propose a novel end-to-end label error detection approach to further validate and filter the candidates. We also provide three manually labelled high-quality test sets along with WenetSpeech for evaluation -- Dev for cross-validation purpose in training, Test_Net, collected from Internet for matched test, and Test\_Meeting, recorded from real meetings for more challenging mismatched test. Baseline systems trained with WenetSpeech are provided for three popular speech recognition toolkits, namely Kaldi, ESPnet, and WeNet, and recognition results on the three test sets are also provided as benchmarks. To the best of our knowledge, WenetSpeech is the current largest open-sourced Mandarin speech corpus with transcriptions, which benefits research on production-level speech recognition. 12 authors · Oct 7, 2021
- On the Usability of Transformers-based models for a French Question-Answering task For many tasks, state-of-the-art results have been achieved with Transformer-based architectures, resulting in a paradigmatic shift in practices from the use of task-specific architectures to the fine-tuning of pre-trained language models. The ongoing trend consists in training models with an ever-increasing amount of data and parameters, which requires considerable resources. It leads to a strong search to improve resource efficiency based on algorithmic and hardware improvements evaluated only for English. This raises questions about their usability when applied to small-scale learning problems, for which a limited amount of training data is available, especially for under-resourced languages tasks. The lack of appropriately sized corpora is a hindrance to applying data-driven and transfer learning-based approaches with strong instability cases. In this paper, we establish a state-of-the-art of the efforts dedicated to the usability of Transformer-based models and propose to evaluate these improvements on the question-answering performances of French language which have few resources. We address the instability relating to data scarcity by investigating various training strategies with data augmentation, hyperparameters optimization and cross-lingual transfer. We also introduce a new compact model for French FrALBERT which proves to be competitive in low-resource settings. 3 authors · Jul 19, 2022
1 CMHG: A Dataset and Benchmark for Headline Generation of Minority Languages in China Minority languages in China, such as Tibetan, Uyghur, and Traditional Mongolian, face significant challenges due to their unique writing systems, which differ from international standards. This discrepancy has led to a severe lack of relevant corpora, particularly for supervised tasks like headline generation. To address this gap, we introduce a novel dataset, Chinese Minority Headline Generation (CMHG), which includes 100,000 entries for Tibetan, and 50,000 entries each for Uyghur and Mongolian, specifically curated for headline generation tasks. Additionally, we propose a high-quality test set annotated by native speakers, designed to serve as a benchmark for future research in this domain. We hope this dataset will become a valuable resource for advancing headline generation in Chinese minority languages and contribute to the development of related benchmarks. 7 authors · Sep 12 2
- Monolingual and Cross-Lingual Acceptability Judgments with the Italian CoLA corpus The development of automated approaches to linguistic acceptability has been greatly fostered by the availability of the English CoLA corpus, which has also been included in the widely used GLUE benchmark. However, this kind of research for languages other than English, as well as the analysis of cross-lingual approaches, has been hindered by the lack of resources with a comparable size in other languages. We have therefore developed the ItaCoLA corpus, containing almost 10,000 sentences with acceptability judgments, which has been created following the same approach and the same steps as the English one. In this paper we describe the corpus creation, we detail its content, and we present the first experiments on this new resource. We compare in-domain and out-of-domain classification, and perform a specific evaluation of nine linguistic phenomena. We also present the first cross-lingual experiments, aimed at assessing whether multilingual transformerbased approaches can benefit from using sentences in two languages during fine-tuning. 4 authors · Sep 24, 2021
2 Evaluating GPT-3.5 and GPT-4 on Grammatical Error Correction for Brazilian Portuguese We investigate the effectiveness of GPT-3.5 and GPT-4, two large language models, as Grammatical Error Correction (GEC) tools for Brazilian Portuguese and compare their performance against Microsoft Word and Google Docs. We introduce a GEC dataset for Brazilian Portuguese with four categories: Grammar, Spelling, Internet, and Fast typing. Our results show that while GPT-4 has higher recall than other methods, LLMs tend to have lower precision, leading to overcorrection. This study demonstrates the potential of LLMs as practical GEC tools for Brazilian Portuguese and encourages further exploration of LLMs for non-English languages and other educational settings. 2 authors · Jun 27, 2023
1 Mark My Words: A Robust Multilingual Model for Punctuation in Text and Speech Transcripts Punctuation plays a vital role in structuring meaning, yet current models often struggle to restore it accurately in transcripts of spontaneous speech, especially in the presence of disfluencies such as false starts and backtracking. These limitations hinder the performance of downstream tasks like translation, text to speech, summarization, etc. where sentence boundaries are critical for preserving quality. In this work, we introduce Cadence, a generalist punctuation restoration model adapted from a pretrained large language model. Cadence is designed to handle both clean written text and highly spontaneous spoken transcripts. It surpasses the previous state of the art in performance while expanding support from 14 to all 22 Indian languages and English. We conduct a comprehensive analysis of model behavior across punctuation types and language families, identifying persistent challenges under domain shift and with rare punctuation marks. Our findings demonstrate the efficacy of utilizing pretrained language models for multilingual punctuation restoration and highlight Cadence practical value for low resource NLP pipelines at scale. 4 authors · Jun 4
- Patent-CR: A Dataset for Patent Claim Revision This paper presents Patent-CR, the first dataset created for the patent claim revision task in English. It includes both initial patent applications rejected by patent examiners and the final granted versions. Unlike normal text revision tasks that predominantly focus on enhancing sentence quality, such as grammar correction and coherence improvement, patent claim revision aims at ensuring the claims meet stringent legal criteria. These criteria are beyond novelty and inventiveness, including clarity of scope, technical accuracy, language precision, and legal robustness. We assess various large language models (LLMs) through professional human evaluation, including general LLMs with different sizes and architectures, text revision models, and domain-specific models. Our results indicate that LLMs often bring ineffective edits that deviate from the target revisions. In addition, domain-specific models and the method of fine-tuning show promising results. Notably, GPT-4 outperforms other tested LLMs, but further revisions are still necessary to reach the examination standard. Furthermore, we demonstrate the inconsistency between automated and human evaluation results, suggesting that GPT-4-based automated evaluation has the highest correlation with human judgment. This dataset, along with our preliminary empirical research, offers invaluable insights for further exploration in patent claim revision. 3 authors · Dec 3, 2024
- Leveraging Web-Crawled Data for High-Quality Fine-Tuning Most large language models are fine-tuned using either expensive human-annotated data or GPT-4 generated data which cannot guarantee performance in certain domains. We argue that although the web-crawled data often has formatting errors causing semantic inaccuracies, it can still serve as a valuable source for high-quality supervised fine-tuning in specific domains without relying on advanced models like GPT-4. To this end, we create a paired training dataset automatically by aligning web-crawled data with a smaller set of high-quality data. By training a language model on this dataset, we can convert web data with irregular formats into high-quality ones. Our experiments show that training with the model-transformed data yields better results, surpassing training with only high-quality data by an average score of 9.4% in Chinese math problems. Additionally, our 7B model outperforms several open-source models larger than 32B and surpasses well-known closed-source models such as GPT-3.5, highlighting the efficacy of our approach. 5 authors · Aug 15, 2024
- MiTTenS: A Dataset for Evaluating Misgendering in Translation Misgendering is the act of referring to someone in a way that does not reflect their gender identity. Translation systems, including foundation models capable of translation, can produce errors that result in misgendering harms. To measure the extent of such potential harms when translating into and out of English, we introduce a dataset, MiTTenS, covering 26 languages from a variety of language families and scripts, including several traditionally underpresented in digital resources. The dataset is constructed with handcrafted passages that target known failure patterns, longer synthetically generated passages, and natural passages sourced from multiple domains. We demonstrate the usefulness of the dataset by evaluating both dedicated neural machine translation systems and foundation models, and show that all systems exhibit errors resulting in misgendering harms, even in high resource languages. 5 authors · Jan 12, 2024
- ASR-EC Benchmark: Evaluating Large Language Models on Chinese ASR Error Correction Automatic speech Recognition (ASR) is a fundamental and important task in the field of speech and natural language processing. It is an inherent building block in many applications such as voice assistant, speech translation, etc. Despite the advancement of ASR technologies in recent years, it is still inevitable for modern ASR systems to have a substantial number of erroneous recognition due to environmental noise, ambiguity, etc. Therefore, the error correction in ASR is crucial. Motivated by this, this paper studies ASR error correction in the Chinese language, which is one of the most popular languages and enjoys a large number of users in the world. We first create a benchmark dataset named ASR-EC that contains a wide spectrum of ASR errors generated by industry-grade ASR systems. To the best of our knowledge, it is the first Chinese ASR error correction benchmark. Then, inspired by the recent advances in large language models (LLMs), we investigate how to harness the power of LLMs to correct ASR errors. We apply LLMs to ASR error correction in three paradigms. The first paradigm is prompting, which is further categorized as zero-shot, few-shot, and multi-step. The second paradigm is finetuning, which finetunes LLMs with ASR error correction data. The third paradigm is multi-modal augmentation, which collectively utilizes the audio and ASR transcripts for error correction. Extensive experiments reveal that prompting is not effective for ASR error correction. Finetuning is effective only for a portion of LLMs. Multi-modal augmentation is the most effective method for error correction and achieves state-of-the-art performance. 5 authors · Dec 4, 2024
- New Textual Corpora for Serbian Language Modeling This paper will present textual corpora for Serbian (and Serbo-Croatian), usable for the training of large language models and publicly available at one of the several notable online repositories. Each corpus will be classified using multiple methods and its characteristics will be detailed. Additionally, the paper will introduce three new corpora: a new umbrella web corpus of Serbo-Croatian, a new high-quality corpus based on the doctoral dissertations stored within National Repository of Doctoral Dissertations from all Universities in Serbia, and a parallel corpus of abstract translation from the same source. The uniqueness of both old and new corpora will be accessed via frequency-based stylometric methods, and the results will be briefly discussed. 2 authors · May 15, 2024
1 More efficient manual review of automatically transcribed tabular data Machine learning methods have proven useful in transcribing historical data. However, results from even highly accurate methods require manual verification and correction. Such manual review can be time-consuming and expensive, therefore the objective of this paper was to make it more efficient. Previously, we used machine learning to transcribe 2.3 million handwritten occupation codes from the Norwegian 1950 census with high accuracy (97%). We manually reviewed the 90,000 (3%) codes with the lowest model confidence. We allocated those 90,000 codes to human reviewers, who used our annotation tool to review the codes. To assess reviewer agreement, some codes were assigned to multiple reviewers. We then analyzed the review results to understand the relationship between accuracy improvements and effort. Additionally, we interviewed the reviewers to improve the workflow. The reviewers corrected 62.8% of the labels and agreed with the model label in 31.9% of cases. About 0.2% of the images could not be assigned a label, while for 5.1% the reviewers were uncertain, or they assigned an invalid label. 9,000 images were independently reviewed by multiple reviewers, resulting in an agreement of 86.43% and disagreement of 8.96%. We learned that our automatic transcription is biased towards the most frequent codes, with a higher degree of misclassification for the lowest frequency codes. Our interview findings show that the reviewers did internal quality control and found our custom tool well-suited. So, only one reviewer is needed, but they should report uncertainty. 5 authors · Jun 28, 2023
- Parallel Corpora for Machine Translation in Low-resource Indic Languages: A Comprehensive Review Parallel corpora play an important role in training machine translation (MT) models, particularly for low-resource languages where high-quality bilingual data is scarce. This review provides a comprehensive overview of available parallel corpora for Indic languages, which span diverse linguistic families, scripts, and regional variations. We categorize these corpora into text-to-text, code-switched, and various categories of multimodal datasets, highlighting their significance in the development of robust multilingual MT systems. Beyond resource enumeration, we critically examine the challenges faced in corpus creation, including linguistic diversity, script variation, data scarcity, and the prevalence of informal textual content.We also discuss and evaluate these corpora in various terms such as alignment quality and domain representativeness. Furthermore, we address open challenges such as data imbalance across Indic languages, the trade-off between quality and quantity, and the impact of noisy, informal, and dialectal data on MT performance. Finally, we outline future directions, including leveraging cross-lingual transfer learning, expanding multilingual datasets, and integrating multimodal resources to enhance translation quality. To the best of our knowledge, this paper presents the first comprehensive review of parallel corpora specifically tailored for low-resource Indic languages in the context of machine translation. 2 authors · Mar 2
- Binary and Multitask Classification Model for Dutch Anaphora Resolution: Die/Dat Prediction The correct use of Dutch pronouns 'die' and 'dat' is a stumbling block for both native and non-native speakers of Dutch due to the multiplicity of syntactic functions and the dependency on the antecedent's gender and number. Drawing on previous research conducted on neural context-dependent dt-mistake correction models (Heyman et al. 2018), this study constructs the first neural network model for Dutch demonstrative and relative pronoun resolution that specifically focuses on the correction and part-of-speech prediction of these two pronouns. Two separate datasets are built with sentences obtained from, respectively, the Dutch Europarl corpus (Koehn 2015) - which contains the proceedings of the European Parliament from 1996 to the present - and the SoNaR corpus (Oostdijk et al. 2013) - which contains Dutch texts from a variety of domains such as newspapers, blogs and legal texts. Firstly, a binary classification model solely predicts the correct 'die' or 'dat'. The classifier with a bidirectional long short-term memory architecture achieves 84.56% accuracy. Secondly, a multitask classification model simultaneously predicts the correct 'die' or 'dat' and its part-of-speech tag. The model containing a combination of a sentence and context encoder with both a bidirectional long short-term memory architecture results in 88.63% accuracy for die/dat prediction and 87.73% accuracy for part-of-speech prediction. More evenly-balanced data, larger word embeddings, an extra bidirectional long short-term memory layer and integrated part-of-speech knowledge positively affects die/dat prediction performance, while a context encoder architecture raises part-of-speech prediction performance. This study shows promising results and can serve as a starting point for future research on machine learning models for Dutch anaphora resolution. 3 authors · Jan 9, 2020
1 SERENGETI: Massively Multilingual Language Models for Africa Multilingual pretrained language models (mPLMs) acquire valuable, generalizable linguistic information during pretraining and have advanced the state of the art on task-specific finetuning. To date, only ~31 out of ~2,000 African languages are covered in existing language models. We ameliorate this limitation by developing SERENGETI, a massively multilingual language model that covers 517 African languages and language varieties. We evaluate our novel models on eight natural language understanding tasks across 20 datasets, comparing to 4 mPLMs that cover 4-23 African languages. SERENGETI outperforms other models on 11 datasets across the eights tasks, achieving 82.27 average F_1. We also perform analyses of errors from our models, which allows us to investigate the influence of language genealogy and linguistic similarity when the models are applied under zero-shot settings. We will publicly release our models for research.\href{https://github.com/UBC-NLP/serengeti{https://github.com/UBC-NLP/serengeti}} 4 authors · Dec 21, 2022
- LexMatcher: Dictionary-centric Data Collection for LLM-based Machine Translation The fine-tuning of open-source large language models (LLMs) for machine translation has recently received considerable attention, marking a shift towards data-centric research from traditional neural machine translation. However, the area of data collection for instruction fine-tuning in machine translation remains relatively underexplored. In this paper, we present LexMatcher, a simple yet effective method for data collection that leverages bilingual dictionaries to generate a dataset, the design of which is driven by the coverage of senses found in these dictionaries. The dataset comprises a subset retrieved from an existing corpus and a smaller synthesized subset which supplements the infrequent senses of polysemous words. Utilizing LLaMA2 as our base model, our approach outperforms the established baselines on the WMT2022 test sets and also exhibits significant performance improvements in tasks related to word sense disambiguation and specialized terminology translation. These results underscore the effectiveness of LexMatcher in enhancing LLM-based machine translation. 5 authors · Jun 3, 2024
4 WikiNER-fr-gold: A Gold-Standard NER Corpus We address in this article the the quality of the WikiNER corpus, a multilingual Named Entity Recognition corpus, and provide a consolidated version of it. The annotation of WikiNER was produced in a semi-supervised manner i.e. no manual verification has been carried out a posteriori. Such corpus is called silver-standard. In this paper we propose WikiNER-fr-gold which is a revised version of the French proportion of WikiNER. Our corpus consists of randomly sampled 20% of the original French sub-corpus (26,818 sentences with 700k tokens). We start by summarizing the entity types included in each category in order to define an annotation guideline, and then we proceed to revise the corpus. Finally we present an analysis of errors and inconsistency observed in the WikiNER-fr corpus, and we discuss potential future work directions. 3 authors · Oct 29, 2024 4
- Lost in Translation? Translation Errors and Challenges for Fair Assessment of Text-to-Image Models on Multilingual Concepts Benchmarks of the multilingual capabilities of text-to-image (T2I) models compare generated images prompted in a test language to an expected image distribution over a concept set. One such benchmark, "Conceptual Coverage Across Languages" (CoCo-CroLa), assesses the tangible noun inventory of T2I models by prompting them to generate pictures from a concept list translated to seven languages and comparing the output image populations. Unfortunately, we find that this benchmark contains translation errors of varying severity in Spanish, Japanese, and Chinese. We provide corrections for these errors and analyze how impactful they are on the utility and validity of CoCo-CroLa as a benchmark. We reassess multiple baseline T2I models with the revisions, compare the outputs elicited under the new translations to those conditioned on the old, and show that a correction's impactfulness on the image-domain benchmark results can be predicted in the text domain with similarity scores. Our findings will guide the future development of T2I multilinguality metrics by providing analytical tools for practical translation decisions. 6 authors · Mar 17, 2024
1 Evaluating the Capability of Large-scale Language Models on Chinese Grammatical Error Correction Task Large-scale language models (LLMs) has shown remarkable capability in various of Natural Language Processing (NLP) tasks and attracted lots of attention recently. However, some studies indicated that large language models fail to achieve promising result beyond the state-of-the-art models in English grammatical error correction (GEC) tasks. In this report, we aim to explore the how large language models perform on Chinese grammatical error correction tasks and provide guidance for future work. We conduct experiments with 3 different LLMs of different model scale on 4 Chinese GEC dataset. Our experimental results indicate that the performances of LLMs on automatic evaluation metrics falls short of the previous sota models because of the problem of over-correction. Furthermore, we also discover notable variations in the performance of LLMs when evaluated on different data distributions. Our findings demonstrates that further investigation is required for the application of LLMs on Chinese GEC task. 2 authors · Jul 8, 2023
- Enhancing Low-Resource Minority Language Translation with LLMs and Retrieval-Augmented Generation for Cultural Nuances This study investigates the challenges of translating low-resource languages by integrating Large Language Models (LLMs) with Retrieval-Augmented Generation (RAG). Various model configurations were tested on Hakka translations, with BLEU scores ranging from 12% (dictionary-only) to 31% (RAG with Gemini 2.0). The best-performing model (Model 4) combined retrieval and advanced language modeling, improving lexical coverage, particularly for specialized or culturally nuanced terms, and enhancing grammatical coherence. A two-stage method (Model 3) using dictionary outputs refined by Gemini 2.0 achieved a BLEU score of 26%, highlighting iterative correction's value and the challenges of domain-specific expressions. Static dictionary-based approaches struggled with context-sensitive content, demonstrating the limitations of relying solely on predefined resources. These results emphasize the need for curated resources, domain knowledge, and ethical collaboration with local communities, offering a framework that improves translation accuracy and fluency while supporting cultural preservation. 4 authors · May 15
5 Discovering Knowledge Deficiencies of Language Models on Massive Knowledge Base Large language models (LLMs) possess impressive linguistic capabilities but often fail to faithfully retain factual knowledge, leading to hallucinations and unreliable outputs. Understanding LLMs' knowledge deficiencies by exhaustively evaluating against full-scale knowledge bases is computationally prohibitive, especially for closed-weight models. We propose stochastic error ascent (SEA), a scalable and efficient framework for discovering knowledge deficiencies (errors) in closed-weight LLMs under a strict query budget. Rather than naively probing all knowledge candidates, SEA formulates error discovery as a stochastic optimization process: it iteratively retrieves new high-error candidates by leveraging the semantic similarity to previously observed failures. To further enhance search efficiency and coverage, SEA employs hierarchical retrieval across document and paragraph levels, and constructs a relation directed acyclic graph to model error propagation and identify systematic failure modes. Empirically, SEA uncovers 40.7x more knowledge errors than Automated Capability Discovery and 26.7% more than AutoBencher, while reducing the cost-per-error by 599x and 9x, respectively. Human evaluation confirms the high quality of generated questions, while ablation and convergence analyses validate the contribution of each component in SEA. Further analysis on the discovered errors reveals correlated failure patterns across LLM families and recurring deficits, highlighting the need for better data coverage and targeted fine-tuning in future LLM development. 9 authors · Mar 30 2
- Not All Errors are Equal: Learning Text Generation Metrics using Stratified Error Synthesis Is it possible to build a general and automatic natural language generation (NLG) evaluation metric? Existing learned metrics either perform unsatisfactorily or are restricted to tasks where large human rating data is already available. We introduce SESCORE, a model-based metric that is highly correlated with human judgements without requiring human annotation, by utilizing a novel, iterative error synthesis and severity scoring pipeline. This pipeline applies a series of plausible errors to raw text and assigns severity labels by simulating human judgements with entailment. We evaluate SESCORE against existing metrics by comparing how their scores correlate with human ratings. SESCORE outperforms all prior unsupervised metrics on multiple diverse NLG tasks including machine translation, image captioning, and WebNLG text generation. For WMT 20/21 En-De and Zh-En, SESCORE improve the average Kendall correlation with human judgement from 0.154 to 0.195. SESCORE even achieves comparable performance to the best supervised metric COMET, despite receiving no human-annotated training data. 6 authors · Oct 10, 2022
- TACRED Revisited: A Thorough Evaluation of the TACRED Relation Extraction Task TACRED (Zhang et al., 2017) is one of the largest, most widely used crowdsourced datasets in Relation Extraction (RE). But, even with recent advances in unsupervised pre-training and knowledge enhanced neural RE, models still show a high error rate. In this paper, we investigate the questions: Have we reached a performance ceiling or is there still room for improvement? And how do crowd annotations, dataset, and models contribute to this error rate? To answer these questions, we first validate the most challenging 5K examples in the development and test sets using trained annotators. We find that label errors account for 8% absolute F1 test error, and that more than 50% of the examples need to be relabeled. On the relabeled test set the average F1 score of a large baseline model set improves from 62.1 to 70.1. After validation, we analyze misclassifications on the challenging instances, categorize them into linguistically motivated error groups, and verify the resulting error hypotheses on three state-of-the-art RE models. We show that two groups of ambiguous relations are responsible for most of the remaining errors and that models may adopt shallow heuristics on the dataset when entities are not masked. 3 authors · Apr 30, 2020
5 Building a Large Japanese Web Corpus for Large Language Models Open Japanese large language models (LLMs) have been trained on the Japanese portions of corpora such as CC-100, mC4, and OSCAR. However, these corpora were not created for the quality of Japanese texts. This study builds a large Japanese web corpus by extracting and refining text from the Common Crawl archive (21 snapshots of approximately 63.4 billion pages crawled between 2020 and 2023). This corpus consists of approximately 312.1 billion characters (approximately 173 million pages), which is the largest of all available training corpora for Japanese LLMs, surpassing CC-100 (approximately 25.8 billion characters), mC4 (approximately 239.7 billion characters) and OSCAR 23.10 (approximately 74 billion characters). To confirm the quality of the corpus, we performed continual pre-training on Llama 2 7B, 13B, 70B, Mistral 7B v0.1, and Mixtral 8x7B Instruct as base LLMs and gained consistent (6.6-8.1 points) improvements on Japanese benchmark datasets. We also demonstrate that the improvement on Llama 2 13B brought from the presented corpus was the largest among those from other existing corpora. 10 authors · Apr 26, 2024
- xTower: A Multilingual LLM for Explaining and Correcting Translation Errors While machine translation (MT) systems are achieving increasingly strong performance on benchmarks, they often produce translations with errors and anomalies. Understanding these errors can potentially help improve the translation quality and user experience. This paper introduces xTower, an open large language model (LLM) built on top of TowerBase designed to provide free-text explanations for translation errors in order to guide the generation of a corrected translation. The quality of the generated explanations by xTower are assessed via both intrinsic and extrinsic evaluation. We ask expert translators to evaluate the quality of the explanations across two dimensions: relatedness towards the error span being explained and helpfulness in error understanding and improving translation quality. Extrinsically, we test xTower across various experimental setups in generating translation corrections, demonstrating significant improvements in translation quality. Our findings highlight xTower's potential towards not only producing plausible and helpful explanations of automatic translations, but also leveraging them to suggest corrected translations. 10 authors · Jun 27, 2024
4 CleanCoNLL: A Nearly Noise-Free Named Entity Recognition Dataset The CoNLL-03 corpus is arguably the most well-known and utilized benchmark dataset for named entity recognition (NER). However, prior works found significant numbers of annotation errors, incompleteness, and inconsistencies in the data. This poses challenges to objectively comparing NER approaches and analyzing their errors, as current state-of-the-art models achieve F1-scores that are comparable to or even exceed the estimated noise level in CoNLL-03. To address this issue, we present a comprehensive relabeling effort assisted by automatic consistency checking that corrects 7.0% of all labels in the English CoNLL-03. Our effort adds a layer of entity linking annotation both for better explainability of NER labels and as additional safeguard of annotation quality. Our experimental evaluation finds not only that state-of-the-art approaches reach significantly higher F1-scores (97.1%) on our data, but crucially that the share of correct predictions falsely counted as errors due to annotation noise drops from 47% to 6%. This indicates that our resource is well suited to analyze the remaining errors made by state-of-the-art models, and that the theoretical upper bound even on high resource, coarse-grained NER is not yet reached. To facilitate such analysis, we make CleanCoNLL publicly available to the research community. 2 authors · Oct 24, 2023 2
- ClinText-SP and RigoBERTa Clinical: a new set of open resources for Spanish Clinical NLP We present a novel contribution to Spanish clinical natural language processing by introducing the largest publicly available clinical corpus, ClinText-SP, along with a state-of-the-art clinical encoder language model, RigoBERTa Clinical. Our corpus was meticulously curated from diverse open sources, including clinical cases from medical journals and annotated corpora from shared tasks, providing a rich and diverse dataset that was previously difficult to access. RigoBERTa Clinical, developed through domain-adaptive pretraining on this comprehensive dataset, significantly outperforms existing models on multiple clinical NLP benchmarks. By publicly releasing both the dataset and the model, we aim to empower the research community with robust resources that can drive further advancements in clinical NLP and ultimately contribute to improved healthcare applications. 3 authors · Mar 24
- Neural Networks for Text Correction and Completion in Keyboard Decoding Despite the ubiquity of mobile and wearable text messaging applications, the problem of keyboard text decoding is not tackled sufficiently in the light of the enormous success of the deep learning Recurrent Neural Network (RNN) and Convolutional Neural Networks (CNN) for natural language understanding. In particular, considering that the keyboard decoders should operate on devices with memory and processor resource constraints, makes it challenging to deploy industrial scale deep neural network (DNN) models. This paper proposes a sequence-to-sequence neural attention network system for automatic text correction and completion. Given an erroneous sequence, our model encodes character level hidden representations and then decodes the revised sequence thus enabling auto-correction and completion. We achieve this by a combination of character level CNN and gated recurrent unit (GRU) encoder along with and a word level gated recurrent unit (GRU) attention decoder. Unlike traditional language models that learn from billions of words, our corpus size is only 12 million words; an order of magnitude smaller. The memory footprint of our learnt model for inference and prediction is also an order of magnitude smaller than the conventional language model based text decoders. We report baseline performance for neural keyboard decoders in such limited domain. Our models achieve a word level accuracy of 90% and a character error rate CER of 2.4% over the Twitter typo dataset. We present a novel dataset of noisy to corrected mappings by inducing the noise distribution from the Twitter data over the OpenSubtitles 2009 dataset; on which our model predicts with a word level accuracy of 98% and sequence accuracy of 68.9%. In our user study, our model achieved an average CER of 2.6% with the state-of-the-art non-neural touch-screen keyboard decoder at CER of 1.6%. 2 authors · Sep 19, 2017
6 The Devil is in the Errors: Leveraging Large Language Models for Fine-grained Machine Translation Evaluation Automatic evaluation of machine translation (MT) is a critical tool driving the rapid iterative development of MT systems. While considerable progress has been made on estimating a single scalar quality score, current metrics lack the informativeness of more detailed schemes that annotate individual errors, such as Multidimensional Quality Metrics (MQM). In this paper, we help fill this gap by proposing AutoMQM, a prompting technique which leverages the reasoning and in-context learning capabilities of large language models (LLMs) and asks them to identify and categorize errors in translations. We start by evaluating recent LLMs, such as PaLM and PaLM-2, through simple score prediction prompting, and we study the impact of labeled data through in-context learning and finetuning. We then evaluate AutoMQM with PaLM-2 models, and we find that it improves performance compared to just prompting for scores (with particularly large gains for larger models) while providing interpretability through error spans that align with human annotations. 10 authors · Aug 14, 2023
- A Parallel Corpus of Theses and Dissertations Abstracts In Brazil, the governmental body responsible for overseeing and coordinating post-graduate programs, CAPES, keeps records of all theses and dissertations presented in the country. Information regarding such documents can be accessed online in the Theses and Dissertations Catalog (TDC), which contains abstracts in Portuguese and English, and additional metadata. Thus, this database can be a potential source of parallel corpora for the Portuguese and English languages. In this article, we present the development of a parallel corpus from TDC, which is made available by CAPES under the open data initiative. Approximately 240,000 documents were collected and aligned using the Hunalign tool. We demonstrate the capability of our developed corpus by training Statistical Machine Translation (SMT) and Neural Machine Translation (NMT) models for both language directions, followed by a comparison with Google Translate (GT). Both translation models presented better BLEU scores than GT, with NMT system being the most accurate one. Sentence alignment was also manually evaluated, presenting an average of 82.30% correctly aligned sentences. Our parallel corpus is freely available in TMX format, with complementary information regarding document metadata 3 authors · May 5, 2019
- Dancing Between Success and Failure: Edit-level Simplification Evaluation using SALSA Large language models (e.g., GPT-3.5) are uniquely capable of producing highly rated text simplification, yet current human evaluation methods fail to provide a clear understanding of systems' specific strengths and weaknesses. To address this limitation, we introduce SALSA, an edit-based human annotation framework that enables holistic and fine-grained text simplification evaluation. We develop twenty one linguistically grounded edit types, covering the full spectrum of success and failure across dimensions of conceptual, syntactic and lexical simplicity. Using SALSA, we collect 12K edit annotations on 700 simplifications, revealing discrepancies in the distribution of transformation approaches performed by fine-tuned models, few-shot LLMs and humans, and finding GPT-3.5 performs more quality edits than humans, but still exhibits frequent errors. Using our fine-grained annotations, we develop LENS-SALSA, a reference-free automatic simplification metric, trained to predict sentence- and word-level quality simultaneously. Additionally, we introduce word-level quality estimation for simplification and report promising baseline results. Our training material, annotation toolkit, and data are released at http://salsa-eval.com. 4 authors · May 23, 2023
- SpokesBiz -- an Open Corpus of Conversational Polish This paper announces the early release of SpokesBiz, a freely available corpus of conversational Polish developed within the CLARIN-BIZ project and comprising over 650 hours of recordings. The transcribed recordings have been diarized and manually annotated for punctuation and casing. We outline the general structure and content of the corpus, showcasing selected applications in linguistic research, evaluation and improvement of automatic speech recognition (ASR) systems 11 authors · Dec 19, 2023
- Open Challenge for Correcting Errors of Speech Recognition Systems The paper announces the new long-term challenge for improving the performance of automatic speech recognition systems. The goal of the challenge is to investigate methods of correcting the recognition results on the basis of previously made errors by the speech processing system. The dataset prepared for the task is described and evaluation criteria are presented. 4 authors · Jan 9, 2020
1 PRESENT: Zero-Shot Text-to-Prosody Control Current strategies for achieving fine-grained prosody control in speech synthesis entail extracting additional style embeddings or adopting more complex architectures. To enable zero-shot application of pretrained text-to-speech (TTS) models, we present PRESENT (PRosody Editing without Style Embeddings or New Training), which exploits explicit prosody prediction in FastSpeech2-based models by modifying the inference process directly. We apply our text-to-prosody framework to zero-shot language transfer using a JETS model exclusively trained on English LJSpeech data. We obtain character error rates (CER) of 12.8%, 18.7% and 5.9% for German, Hungarian and Spanish respectively, beating the previous state-of-the-art CER by over 2x for all three languages. Furthermore, we allow subphoneme-level control, a first in this field. To evaluate its effectiveness, we show that PRESENT can improve the prosody of questions, and use it to generate Mandarin, a tonal language where vowel pitch varies at subphoneme level. We attain 25.3% hanzi CER and 13.0% pinyin CER with the JETS model. All our code and audio samples are available online. 5 authors · Aug 13, 2024
- MultiOCR-QA: Dataset for Evaluating Robustness of LLMs in Question Answering on Multilingual OCR Texts Optical Character Recognition (OCR) plays a crucial role in digitizing historical and multilingual documents, yet OCR errors -- imperfect extraction of the text, including character insertion, deletion and permutation -- can significantly impact downstream tasks like question-answering (QA). In this work, we introduce a multilingual QA dataset MultiOCR-QA, designed to analyze the effects of OCR noise on QA systems' performance. The MultiOCR-QA dataset comprises 60K question-answer pairs covering three languages, English, French, and German. The dataset is curated from OCR-ed old documents, allowing for the evaluation of OCR-induced challenges on question answering. We evaluate MultiOCR-QA on various levels and types of OCR errors to access the robustness of LLMs in handling real-world digitization errors. Our findings show that QA systems are highly prone to OCR induced errors and exhibit performance degradation on noisy OCR text. 5 authors · Feb 23
- Computer-assisted Pronunciation Training -- Speech synthesis is almost all you need The research community has long studied computer-assisted pronunciation training (CAPT) methods in non-native speech. Researchers focused on studying various model architectures, such as Bayesian networks and deep learning methods, as well as on the analysis of different representations of the speech signal. Despite significant progress in recent years, existing CAPT methods are not able to detect pronunciation errors with high accuracy (only 60\% precision at 40\%-80\% recall). One of the key problems is the low availability of mispronounced speech that is needed for the reliable training of pronunciation error detection models. If we had a generative model that could mimic non-native speech and produce any amount of training data, then the task of detecting pronunciation errors would be much easier. We present three innovative techniques based on phoneme-to-phoneme (P2P), text-to-speech (T2S), and speech-to-speech (S2S) conversion to generate correctly pronounced and mispronounced synthetic speech. We show that these techniques not only improve the accuracy of three machine learning models for detecting pronunciation errors but also help establish a new state-of-the-art in the field. Earlier studies have used simple speech generation techniques such as P2P conversion, but only as an additional mechanism to improve the accuracy of pronunciation error detection. We, on the other hand, consider speech generation to be the first-class method of detecting pronunciation errors. The effectiveness of these techniques is assessed in the tasks of detecting pronunciation and lexical stress errors. Non-native English speech corpora of German, Italian, and Polish speakers are used in the evaluations. The best proposed S2S technique improves the accuracy of detecting pronunciation errors in AUC metric by 41\% from 0.528 to 0.749 compared to the state-of-the-art approach. 4 authors · Jul 2, 2022
- Logion: Machine Learning for Greek Philology This paper presents machine-learning methods to address various problems in Greek philology. After training a BERT model on the largest premodern Greek dataset used for this purpose to date, we identify and correct previously undetected errors made by scribes in the process of textual transmission, in what is, to our knowledge, the first successful identification of such errors via machine learning. Additionally, we demonstrate the model's capacity to fill gaps caused by material deterioration of premodern manuscripts and compare the model's performance to that of a domain expert. We find that best performance is achieved when the domain expert is provided with model suggestions for inspiration. With such human-computer collaborations in mind, we explore the model's interpretability and find that certain attention heads appear to encode select grammatical features of premodern Greek. 4 authors · May 1, 2023
- Breaking the HISCO Barrier: Automatic Occupational Standardization with OccCANINE This paper introduces a new tool, OccCANINE, to automatically transform occupational descriptions into the HISCO classification system. The manual work involved in processing and classifying occupational descriptions is error-prone, tedious, and time-consuming. We finetune a preexisting language model (CANINE) to do this automatically thereby performing in seconds and minutes what previously took days and weeks. The model is trained on 14 million pairs of occupational descriptions and HISCO codes in 13 different languages contributed by 22 different sources. Our approach is shown to have accuracy, recall and precision above 90 percent. Our tool breaks the metaphorical HISCO barrier and makes this data readily available for analysis of occupational structures with broad applicability in economics, economic history and various related disciplines. 2 authors · Feb 21, 2024
- Scaling up COMETKIWI: Unbabel-IST 2023 Submission for the Quality Estimation Shared Task We present the joint contribution of Unbabel and Instituto Superior T\'ecnico to the WMT 2023 Shared Task on Quality Estimation (QE). Our team participated on all tasks: sentence- and word-level quality prediction (task 1) and fine-grained error span detection (task 2). For all tasks, we build on the COMETKIWI-22 model (Rei et al., 2022b). Our multilingual approaches are ranked first for all tasks, reaching state-of-the-art performance for quality estimation at word-, span- and sentence-level granularity. Compared to the previous state-of-the-art COMETKIWI-22, we show large improvements in correlation with human judgements (up to 10 Spearman points). Moreover, we surpass the second-best multilingual submission to the shared-task with up to 3.8 absolute points. 8 authors · Sep 21, 2023
- Improving Yorùbá Diacritic Restoration Yor\`ub\'a is a widely spoken West African language with a writing system rich in orthographic and tonal diacritics. They provide morphological information, are crucial for lexical disambiguation, pronunciation and are vital for any computational Speech or Natural Language Processing tasks. However diacritic marks are commonly excluded from electronic texts due to limited device and application support as well as general education on proper usage. We report on recent efforts at dataset cultivation. By aggregating and improving disparate texts from the web and various personal libraries, we were able to significantly grow our clean Yor\`ub\'a dataset from a majority Bibilical text corpora with three sources to millions of tokens from over a dozen sources. We evaluate updated diacritic restoration models on a new, general purpose, public-domain Yor\`ub\'a evaluation dataset of modern journalistic news text, selected to be multi-purpose and reflecting contemporary usage. All pre-trained models, datasets and source-code have been released as an open-source project to advance efforts on Yor\`ub\'a language technology. 7 authors · Mar 23, 2020
1 AGB-DE: A Corpus for the Automated Legal Assessment of Clauses in German Consumer Contracts Legal tasks and datasets are often used as benchmarks for the capabilities of language models. However, openly available annotated datasets are rare. In this paper, we introduce AGB-DE, a corpus of 3,764 clauses from German consumer contracts that have been annotated and legally assessed by legal experts. Together with the data, we present a first baseline for the task of detecting potentially void clauses, comparing the performance of an SVM baseline with three fine-tuned open language models and the performance of GPT-3.5. Our results show the challenging nature of the task, with no approach exceeding an F1-score of 0.54. While the fine-tuned models often performed better with regard to precision, GPT-3.5 outperformed the other approaches with regard to recall. An analysis of the errors indicates that one of the main challenges could be the correct interpretation of complex clauses, rather than the decision boundaries of what is permissible and what is not. 2 authors · Jun 10, 2024
- A standardized Project Gutenberg corpus for statistical analysis of natural language and quantitative linguistics The use of Project Gutenberg (PG) as a text corpus has been extremely popular in statistical analysis of language for more than 25 years. However, in contrast to other major linguistic datasets of similar importance, no consensual full version of PG exists to date. In fact, most PG studies so far either consider only a small number of manually selected books, leading to potential biased subsets, or employ vastly different pre-processing strategies (often specified in insufficient details), raising concerns regarding the reproducibility of published results. In order to address these shortcomings, here we present the Standardized Project Gutenberg Corpus (SPGC), an open science approach to a curated version of the complete PG data containing more than 50,000 books and more than 3 times 10^9 word-tokens. Using different sources of annotated metadata, we not only provide a broad characterization of the content of PG, but also show different examples highlighting the potential of SPGC for investigating language variability across time, subjects, and authors. We publish our methodology in detail, the code to download and process the data, as well as the obtained corpus itself on 3 different levels of granularity (raw text, timeseries of word tokens, and counts of words). In this way, we provide a reproducible, pre-processed, full-size version of Project Gutenberg as a new scientific resource for corpus linguistics, natural language processing, and information retrieval. 2 authors · Dec 19, 2018
1 FineEdit: Unlock Instruction-Based Text Editing for LLMs Large Language Models (LLMs) have significantly advanced natural language processing, demonstrating strong capabilities in tasks such as text generation, summarization, and reasoning. Recently, their potential for automating precise text editing tasks across specialized domains, such as programming code, LaTeX, and structured database languages, has gained attention. However, current state-of-the-art LLMs still struggle with executing precise, instruction-driven edits, particularly when structural accuracy and strict adherence to domain conventions are required. To address these challenges, we introduce InstrEditBench, an automated benchmark dataset comprising over 30,000 structured editing tasks spanning diverse domains, including Wikipedia articles, LaTeX documents, source code, and database languages. Using this benchmark, we develop FineEdit, a specialized editing model explicitly trained for accurate, context-aware text modifications. Experimental evaluations demonstrate that FineEdit outperforms state-of-the-art models, achieving improvements of approximately 10% over Gemini models on single-turn edits, up to 30% over Llama-3.2-3B, and exceeding Mistral-7B-OpenOrca performance by over 40% on direct editing tasks. FineEdit also effectively generalizes to realistic multi-turn editing scenarios, highlighting its practical applicability. 8 authors · Feb 18
- Rephrasing natural text data with different languages and quality levels for Large Language Model pre-training Recently published work on rephrasing natural text data for pre-training LLMs has shown promising results when combining the original dataset with the synthetically rephrased data. We build upon previous work by replicating existing results on C4 and extending them with our optimized rephrasing pipeline to the English, German, Italian, and Spanish Oscar subsets of CulturaX. Our pipeline leads to increased performance on standard evaluation benchmarks in both the mono- and multilingual setup. In addition, we provide a detailed study of our pipeline, investigating the choice of the base dataset and LLM for the rephrasing, as well as the relationship between the model size and the performance after pre-training. By exploring data with different perceived quality levels, we show that gains decrease with higher quality. Furthermore, we find the difference in performance between model families to be bigger than between different model sizes. This highlights the necessity for detailed tests before choosing an LLM to rephrase large amounts of data. Moreover, we investigate the effect of pre-training with synthetic data on supervised fine-tuning. Here, we find increasing but inconclusive results that highly depend on the used benchmark. These results (again) highlight the need for better benchmarking setups. In summary, we show that rephrasing multilingual and low-quality data is a very promising direction to extend LLM pre-training data. 12 authors · Oct 28, 2024
7 Mangosteen: An Open Thai Corpus for Language Model Pretraining Pre-training data shapes a language model's quality, but raw web text is noisy and demands careful cleaning. Existing large-scale corpora rely on English-centric or language-agnostic pipelines whose heuristics do not capture Thai script or cultural nuances, leaving risky material such as gambling content untreated. Prior Thai-specific efforts customize pipelines or build new ones, yet seldom release their data or document design choices, hindering reproducibility and raising the question of how to construct a transparent, high-quality Thai corpus. We introduce Mangosteen: a 47 billion-token Thai corpus built through a Thai-adapted Dolma pipeline that includes custom rule-based language ID, revised C4/Gopher quality filters, and Thai-trained content filters, plus curated non-web sources such as Wikipedia, Royal Gazette texts, OCR-extracted books, and CC-licensed YouTube subtitles. Systematic ablations using GPT-2 show the pipeline trims CommonCrawl from 202M to 25M documents while raising SEA-HELM NLG from 3 to 11; an 8B-parameter SEA-LION model continually pre-trained on Mangosteen then surpasses SEA-LION-v3 and Llama-3.1 by about four points on Thai benchmarks. We release the full pipeline code, cleaning manifests, corpus snapshot, and all checkpoints, providing a fully reproducible foundation for future Thai and regional LLM research. 7 authors · Jul 19
1 Beyond English: Evaluating LLMs for Arabic Grammatical Error Correction Large language models (LLMs) finetuned to follow human instruction have recently exhibited significant capabilities in various English NLP tasks. However, their performance in grammatical error correction (GEC), especially on languages other than English, remains significantly unexplored. In this work, we evaluate the abilities of instruction finetuned LLMs in Arabic GEC, a complex task due to Arabic's rich morphology. Our findings suggest that various prompting methods, coupled with (in-context) few-shot learning, demonstrate considerable effectiveness, with GPT-4 achieving up to 65.49 F_{1} score under expert prompting (approximately 5 points higher than our established baseline). Despite these positive results, we find that instruction finetuned models, regardless of their size, are still outperformed by fully finetuned ones, even if they are significantly smaller in size. This disparity highlights substantial room for improvements for LLMs. Inspired by methods used in low-resource machine translation, we also develop a method exploiting synthetic data that significantly outperforms previous models on two standard Arabic benchmarks. Our best model achieves a new SOTA on Arabic GEC, with 73.29 and 73.26 F_{1} on the 2014 and 2015 QALB datasets, respectively, compared to peer-reviewed published baselines. 4 authors · Dec 13, 2023 2
- Fixing It in Post: A Comparative Study of LLM Post-Training Data Quality and Model Performance Recent work on large language models (LLMs) has increasingly focused on post-training and alignment with datasets curated to enhance instruction following, world knowledge, and specialized skills. However, most post-training datasets used in leading open- and closed-source LLMs remain inaccessible to the public, with limited information about their construction process. This lack of transparency has motivated the recent development of open-source post-training corpora. While training on these open alternatives can yield performance comparable to that of leading models, systematic comparisons remain challenging due to the significant computational cost of conducting them rigorously at scale, and are therefore largely absent. As a result, it remains unclear how specific samples, task types, or curation strategies influence downstream performance when assessing data quality. In this work, we conduct the first comprehensive side-by-side analysis of two prominent open post-training datasets: Tulu-3-SFT-Mix and SmolTalk. Using the Magpie framework, we annotate each sample with detailed quality metrics, including turn structure (single-turn vs. multi-turn), task category, input quality, and response quality, and we derive statistics that reveal structural and qualitative similarities and differences between the two datasets. Based on these insights, we design a principled curation recipe that produces a new data mixture, TuluTalk, which contains 14% fewer samples than either source dataset while matching or exceeding their performance on key benchmarks. Our findings offer actionable insights for constructing more effective post-training datasets that improve model performance within practical resource limits. To support future research, we publicly release both the annotated source datasets and our curated TuluTalk mixture. 6 authors · Jun 6
- Kompetencer: Fine-grained Skill Classification in Danish Job Postings via Distant Supervision and Transfer Learning Skill Classification (SC) is the task of classifying job competences from job postings. This work is the first in SC applied to Danish job vacancy data. We release the first Danish job posting dataset: Kompetencer (en: competences), annotated for nested spans of competences. To improve upon coarse-grained annotations, we make use of The European Skills, Competences, Qualifications and Occupations (ESCO; le Vrang et al., 2014) taxonomy API to obtain fine-grained labels via distant supervision. We study two setups: The zero-shot and few-shot classification setting. We fine-tune English-based models and RemBERT (Chung et al., 2020) and compare them to in-language Danish models. Our results show RemBERT significantly outperforms all other models in both the zero-shot and the few-shot setting. 3 authors · May 3, 2022
1 Boosting Norwegian Automatic Speech Recognition In this paper, we present several baselines for automatic speech recognition (ASR) models for the two official written languages in Norway: Bokm{\aa}l and Nynorsk. We compare the performance of models of varying sizes and pre-training approaches on multiple Norwegian speech datasets. Additionally, we measure the performance of these models against previous state-of-the-art ASR models, as well as on out-of-domain datasets. We improve the state of the art on the Norwegian Parliamentary Speech Corpus (NPSC) from a word error rate (WER) of 17.10\% to 7.60\%, with models achieving 5.81\% for Bokm{\aa}l and 11.54\% for Nynorsk. We also discuss the challenges and potential solutions for further improving ASR models for Norwegian. 5 authors · Jul 4, 2023
- Samanantar: The Largest Publicly Available Parallel Corpora Collection for 11 Indic Languages We present Samanantar, the largest publicly available parallel corpora collection for Indic languages. The collection contains a total of 49.7 million sentence pairs between English and 11 Indic languages (from two language families). Specifically, we compile 12.4 million sentence pairs from existing, publicly-available parallel corpora, and additionally mine 37.4 million sentence pairs from the web, resulting in a 4x increase. We mine the parallel sentences from the web by combining many corpora, tools, and methods: (a) web-crawled monolingual corpora, (b) document OCR for extracting sentences from scanned documents, (c) multilingual representation models for aligning sentences, and (d) approximate nearest neighbor search for searching in a large collection of sentences. Human evaluation of samples from the newly mined corpora validate the high quality of the parallel sentences across 11 languages. Further, we extract 83.4 million sentence pairs between all 55 Indic language pairs from the English-centric parallel corpus using English as the pivot language. We trained multilingual NMT models spanning all these languages on Samanantar, which outperform existing models and baselines on publicly available benchmarks, such as FLORES, establishing the utility of Samanantar. Our data and models are available publicly at https://indicnlp.ai4bharat.org/samanantar/ and we hope they will help advance research in NMT and multilingual NLP for Indic languages. 18 authors · Apr 12, 2021
- A Dataset for Pharmacovigilance in German, French, and Japanese: Annotating Adverse Drug Reactions across Languages User-generated data sources have gained significance in uncovering Adverse Drug Reactions (ADRs), with an increasing number of discussions occurring in the digital world. However, the existing clinical corpora predominantly revolve around scientific articles in English. This work presents a multilingual corpus of texts concerning ADRs gathered from diverse sources, including patient fora, social media, and clinical reports in German, French, and Japanese. Our corpus contains annotations covering 12 entity types, four attribute types, and 13 relation types. It contributes to the development of real-world multilingual language models for healthcare. We provide statistics to highlight certain challenges associated with the corpus and conduct preliminary experiments resulting in strong baselines for extracting entities and relations between these entities, both within and across languages. 14 authors · Mar 27, 2024
1 Are Pre-trained Language Models Useful for Model Ensemble in Chinese Grammatical Error Correction? Model ensemble has been in widespread use for Grammatical Error Correction (GEC), boosting model performance. We hypothesize that model ensemble based on the perplexity (PPL) computed by pre-trained language models (PLMs) should benefit the GEC system. To this end, we explore several ensemble strategies based on strong PLMs with four sophisticated single models. However, the performance does not improve but even gets worse after the PLM-based ensemble. This surprising result sets us doing a detailed analysis on the data and coming up with some insights on GEC. The human references of correct sentences is far from sufficient in the test data, and the gap between a correct sentence and an idiomatic one is worth our attention. Moreover, the PLM-based ensemble strategies provide an effective way to extend and improve GEC benchmark data. Our source code is available at https://github.com/JamyDon/PLM-based-CGEC-Model-Ensemble. 3 authors · May 24, 2023
- JParaCrawl: A Large Scale Web-Based English-Japanese Parallel Corpus Recent machine translation algorithms mainly rely on parallel corpora. However, since the availability of parallel corpora remains limited, only some resource-rich language pairs can benefit from them. We constructed a parallel corpus for English-Japanese, for which the amount of publicly available parallel corpora is still limited. We constructed the parallel corpus by broadly crawling the web and automatically aligning parallel sentences. Our collected corpus, called JParaCrawl, amassed over 8.7 million sentence pairs. We show how it includes a broader range of domains and how a neural machine translation model trained with it works as a good pre-trained model for fine-tuning specific domains. The pre-training and fine-tuning approaches achieved or surpassed performance comparable to model training from the initial state and reduced the training time. Additionally, we trained the model with an in-domain dataset and JParaCrawl to show how we achieved the best performance with them. JParaCrawl and the pre-trained models are freely available online for research purposes. 3 authors · Nov 24, 2019
- ChatLang-8: An LLM-Based Synthetic Data Generation Framework for Grammatical Error Correction We explore and improve the capabilities of LLMs to generate data for grammatical error correction (GEC). When merely producing parallel sentences, their patterns are too simplistic to be valuable as a corpus. To address this issue, we propose an automated framework that includes a Subject Selector, Grammar Selector, Prompt Manager, and Evaluator. Additionally, we introduce a new dataset for GEC tasks, named ChatLang-8, which encompasses eight types of subject nouns and 23 types of grammar. It consists of 1 million pairs featuring human-like grammatical errors. Our experiments reveal that ChatLang-8 exhibits a more uniform pattern composition compared to existing GEC datasets. Furthermore, we observe improved model performance when using ChatLang-8 instead of existing GEC datasets. The experimental results suggest that our framework and ChatLang-8 are valuable resources for enhancing ChatGPT's data generation capabilities. 3 authors · Jun 5, 2024
1 Evaluating Language Model Finetuning Techniques for Low-resource Languages Unlike mainstream languages (such as English and French), low-resource languages often suffer from a lack of expert-annotated corpora and benchmark resources that make it hard to apply state-of-the-art techniques directly. In this paper, we alleviate this scarcity problem for the low-resourced Filipino language in two ways. First, we introduce a new benchmark language modeling dataset in Filipino which we call WikiText-TL-39. Second, we show that language model finetuning techniques such as BERT and ULMFiT can be used to consistently train robust classifiers in low-resource settings, experiencing at most a 0.0782 increase in validation error when the number of training examples is decreased from 10K to 1K while finetuning using a privately-held sentiment dataset. 2 authors · Jun 30, 2019
1 A New Massive Multilingual Dataset for High-Performance Language Technologies We present the HPLT (High Performance Language Technologies) language resources, a new massive multilingual dataset including both monolingual and bilingual corpora extracted from CommonCrawl and previously unused web crawls from the Internet Archive. We describe our methods for data acquisition, management and processing of large corpora, which rely on open-source software tools and high-performance computing. Our monolingual collection focuses on low- to medium-resourced languages and covers 75 languages and a total of ~5.6 trillion word tokens de-duplicated on the document level. Our English-centric parallel corpus is derived from its monolingual counterpart and covers 18 language pairs and more than 96 million aligned sentence pairs with roughly 1.4 billion English tokens. The HPLT language resources are one of the largest open text corpora ever released, providing a great resource for language modeling and machine translation training. We publicly release the corpora, the software, and the tools used in this work. 13 authors · Mar 20, 2024
- Data Centric Domain Adaptation for Historical Text with OCR Errors We propose new methods for in-domain and cross-domain Named Entity Recognition (NER) on historical data for Dutch and French. For the cross-domain case, we address domain shift by integrating unsupervised in-domain data via contextualized string embeddings; and OCR errors by injecting synthetic OCR errors into the source domain and address data centric domain adaptation. We propose a general approach to imitate OCR errors in arbitrary input data. Our cross-domain as well as our in-domain results outperform several strong baselines and establish state-of-the-art results. We publish preprocessed versions of the French and Dutch Europeana NER corpora. 5 authors · Jul 2, 2021
- Chinese Spelling Correction as Rephrasing Language Model This paper studies Chinese Spelling Correction (CSC), which aims to detect and correct the potential spelling errors in a given sentence. Current state-of-the-art methods regard CSC as a sequence tagging task and fine-tune BERT-based models on sentence pairs. However, we note a critical flaw in the process of tagging one character to another, that the correction is excessively conditioned on the error. This is opposite from human mindset, where individuals rephrase the complete sentence based on its semantics, rather than solely on the error patterns memorized before. Such a counter-intuitive learning process results in the bottleneck of generalizability and transferability of machine spelling correction. To address this, we propose Rephrasing Language Model (ReLM), where the model is trained to rephrase the entire sentence by infilling additional slots, instead of character-to-character tagging. This novel training paradigm achieves the new state-of-the-art results across fine-tuned and zero-shot CSC benchmarks, outperforming previous counterparts by a large margin. Our method also learns transferable language representation when CSC is jointly trained with other tasks. 3 authors · Aug 17, 2023
- Uhura: A Benchmark for Evaluating Scientific Question Answering and Truthfulness in Low-Resource African Languages Evaluations of Large Language Models (LLMs) on knowledge-intensive tasks and factual accuracy often focus on high-resource languages primarily because datasets for low-resource languages (LRLs) are scarce. In this paper, we present Uhura -- a new benchmark that focuses on two tasks in six typologically-diverse African languages, created via human translation of existing English benchmarks. The first dataset, Uhura-ARC-Easy, is composed of multiple-choice science questions. The second, Uhura-TruthfulQA, is a safety benchmark testing the truthfulness of models on topics including health, law, finance, and politics. We highlight the challenges creating benchmarks with highly technical content for LRLs and outline mitigation strategies. Our evaluation reveals a significant performance gap between proprietary models such as GPT-4o and o1-preview, and Claude models, and open-source models like Meta's LLaMA and Google's Gemma. Additionally, all models perform better in English than in African languages. These results indicate that LMs struggle with answering scientific questions and are more prone to generating false claims in low-resource African languages. Our findings underscore the necessity for continuous improvement of multilingual LM capabilities in LRL settings to ensure safe and reliable use in real-world contexts. We open-source the Uhura Benchmark and Uhura Platform to foster further research and development in NLP for LRLs. 14 authors · Dec 1, 2024
- MBR and QE Finetuning: Training-time Distillation of the Best and Most Expensive Decoding Methods Recent research in decoding methods for Natural Language Generation (NLG) tasks has shown that MAP decoding is not optimal, because model probabilities do not always align with human preferences. Stronger decoding methods, including Quality Estimation (QE) reranking and Minimum Bayes' Risk (MBR) decoding, have since been proposed to mitigate the model-perplexity-vs-quality mismatch. While these decoding methods achieve state-of-the-art performance, they are prohibitively expensive to compute. In this work, we propose MBR finetuning and QE finetuning which distill the quality gains from these decoding methods at training time, while using an efficient decoding algorithm at inference time. Using the canonical NLG task of Neural Machine Translation (NMT), we show that even with self-training, these finetuning methods significantly outperform the base model. Moreover, when using an external LLM as a teacher model, these finetuning methods outperform finetuning on human-generated references. These findings suggest new ways to leverage monolingual data to achieve improvements in model quality that are on par with, or even exceed, improvements from human-curated data, while maintaining maximum efficiency during decoding. 5 authors · Sep 19, 2023
- NorNE: Annotating Named Entities for Norwegian This paper presents NorNE, a manually annotated corpus of named entities which extends the annotation of the existing Norwegian Dependency Treebank. Comprising both of the official standards of written Norwegian (Bokm{\aa}l and Nynorsk), the corpus contains around 600,000 tokens and annotates a rich set of entity types including persons, organizations, locations, geo-political entities, products, and events, in addition to a class corresponding to nominals derived from names. We here present details on the annotation effort, guidelines, inter-annotator agreement and an experimental analysis of the corpus using a neural sequence labeling architecture. 5 authors · Nov 27, 2019
3 OpenNER 1.0: Standardized Open-Access Named Entity Recognition Datasets in 50+ Languages We present OpenNER 1.0, a standardized collection of openly available named entity recognition (NER) datasets. OpenNER contains 34 datasets spanning 51 languages, annotated in varying named entity ontologies. We correct annotation format issues, standardize the original datasets into a uniform representation, map entity type names to be more consistent across corpora, and provide the collection in a structure that enables research in multilingual and multi-ontology NER. We provide baseline models using three pretrained multilingual language models to compare the performance of recent models and facilitate future research in NER. 5 authors · Dec 12, 2024 5
- LatinCy: Synthetic Trained Pipelines for Latin NLP This paper introduces LatinCy, a set of trained general purpose Latin-language "core" pipelines for use with the spaCy natural language processing framework. The models are trained on a large amount of available Latin data, including all five of the Latin Universal Dependency treebanks, which have been preprocessed to be compatible with each other. The result is a set of general models for Latin with good performance on a number of natural language processing tasks (e.g. the top-performing model yields POS tagging, 97.41% accuracy; lemmatization, 94.66% accuracy; morphological tagging 92.76% accuracy). The paper describes the model training, including its training data and parameterization, and presents the advantages to Latin-language researchers of having a spaCy model available for NLP work. 1 authors · May 7, 2023
- The Nordic Pile: A 1.2TB Nordic Dataset for Language Modeling Pre-training Large Language Models (LLMs) require massive amounts of text data, and the performance of the LLMs typically correlates with the scale and quality of the datasets. This means that it may be challenging to build LLMs for smaller languages such as Nordic ones, where the availability of text corpora is limited. In order to facilitate the development of the LLMS in the Nordic languages, we curate a high-quality dataset consisting of 1.2TB of text, in all of the major North Germanic languages (Danish, Icelandic, Norwegian, and Swedish), as well as some high-quality English data. This paper details our considerations and processes for collecting, cleaning, and filtering the dataset. 8 authors · Mar 30, 2023
- Towards Open Foundation Language Model and Corpus for Macedonian: A Low-Resource Language The increase in technological adoption worldwide comes with demands for novel tools to be used by the general population. Large Language Models (LLMs) provide a great opportunity in this respect, but their capabilities remain limited for low-resource languages, restricting applications in countries where such languages are spoken. We create several resources to facilitate the adoption of LLMs and to support research advancements for Macedonian. We collect the largest Macedonian corpus to date, consisting of 40GB of textual data and totaling 3.5B words. To support conversational applications, we collect a 106k-instance instruction dataset, carefully built to be culturally grounded. For evaluation, we construct a Macedonian evaluation suite covering seven benchmarks. Finally, we train domestic-yak, a state-of-the-art 8B-parameter model, on our curated datasets and evaluate it against eight baseline models using the newly constructed benchmark suite. Our model outperforms all existing models in the 8B parameter range across all benchmarks, and achieves performance comparable to models up to 10x larger. Furthermore, a qualitative analysis with native speakers reveals that our model is preferred over larger counterparts, receiving higher ratings for grammatical correctness and cultural appropriateness. All datasets, code, and model weights are openly released, setting a foundation for advancing LLMs in similarly underrepresented languages. These resources are publicly available at github.com/LVSTCK for source code, and at huggingface.co/LVSTCK for pretrained model weights and data. 5 authors · Jun 11
- XATU: A Fine-grained Instruction-based Benchmark for Explainable Text Updates Text editing is a crucial task that involves modifying text to better align with user intents. However, existing text editing benchmark datasets have limitations in providing only coarse-grained instructions. Consequently, although the edited output may seem reasonable, it often deviates from the intended changes outlined in the gold reference, resulting in low evaluation scores. To comprehensively investigate the text editing capabilities of large language models, this paper introduces XATU, the first benchmark specifically designed for fine-grained instruction-based explainable text editing. XATU covers a wide range of topics and text types, incorporating lexical, syntactic, semantic, and knowledge-intensive edits. To enhance interpretability, we leverage high-quality data sources and human annotation, resulting in a benchmark that includes fine-grained instructions and gold-standard edit explanations. By evaluating existing open and closed large language models against our benchmark, we demonstrate the effectiveness of instruction tuning and the impact of underlying architecture across various editing tasks. Furthermore, extensive experimentation reveals the significant role of explanations in fine-tuning language models for text editing tasks. The benchmark will be open-sourced to support reproduction and facilitate future research. 4 authors · Sep 20, 2023
- IMPARA-GED: Grammatical Error Detection is Boosting Reference-free Grammatical Error Quality Estimator We propose IMPARA-GED, a novel reference-free automatic grammatical error correction (GEC) evaluation method with grammatical error detection (GED) capabilities. We focus on the quality estimator of IMPARA, an existing automatic GEC evaluation method, and construct that of IMPARA-GED using a pre-trained language model with enhanced GED capabilities. Experimental results on SEEDA, a meta-evaluation dataset for automatic GEC evaluation methods, demonstrate that IMPARA-GED achieves the highest correlation with human sentence-level evaluations. 3 authors · Jun 3
1 ChatGPT for Arabic Grammatical Error Correction Recently, large language models (LLMs) fine-tuned to follow human instruction have exhibited significant capabilities in various English NLP tasks. However, their performance in grammatical error correction (GEC) tasks, particularly in non-English languages, remains significantly unexplored. In this paper, we delve into abilities of instruction fine-tuned LLMs in Arabic GEC, a task made complex due to Arabic's rich morphology. Our findings suggest that various prompting methods, coupled with (in-context) few-shot learning, demonstrate considerable effectiveness, with GPT-4 achieving up to 65.49 F1 score under expert prompting (approximately 5 points higher than our established baseline). This highlights the potential of LLMs in low-resource settings, offering a viable approach for generating useful synthetic data for model training. Despite these positive results, we find that instruction fine-tuned models, regardless of their size, significantly underperform compared to fully fine-tuned models of significantly smaller sizes. This disparity highlights a substantial room for improvements for LLMs. Inspired by methods from low-resource machine translation, we also develop a method exploiting synthetic data that significantly outperforms previous models on two standard Arabic benchmarks. Our work sets new SoTA for Arabic GEC, with 72.19% and 73.26 F_{1} on the 2014 and 2015 QALB datasets, respectively. 4 authors · Aug 8, 2023
- Who Wrote This? The Key to Zero-Shot LLM-Generated Text Detection Is GECScore The efficacy of an large language model (LLM) generated text detector depends substantially on the availability of sizable training data. White-box zero-shot detectors, which require no such data, are nonetheless limited by the accessibility of the source model of the LLM-generated text. In this paper, we propose an simple but effective black-box zero-shot detection approach, predicated on the observation that human-written texts typically contain more grammatical errors than LLM-generated texts. This approach entails computing the Grammar Error Correction Score (GECScore) for the given text to distinguish between human-written and LLM-generated text. Extensive experimental results show that our method outperforms current state-of-the-art (SOTA) zero-shot and supervised methods, achieving an average AUROC of 98.7% and showing strong robustness against paraphrase and adversarial perturbation attacks. 7 authors · May 7, 2024
- Does Corpus Quality Really Matter for Low-Resource Languages? The vast majority of non-English corpora are derived from automatically filtered versions of CommonCrawl. While prior work has identified major issues on the quality of these datasets (Kreutzer et al., 2021), it is not clear how this impacts downstream performance. Taking representation learning in Basque as a case study, we explore tailored crawling (manually identifying and scraping websites with high-quality content) as an alternative to filtering CommonCrawl. Our new corpus, called EusCrawl, is similar in size to the Basque portion of popular multilingual corpora like CC100 and mC4, yet it has a much higher quality according to native annotators. For instance, 66% of documents are rated as high-quality for EusCrawl, in contrast with <33% for both mC4 and CC100. Nevertheless, we obtain similar results on downstream NLU tasks regardless of the corpus used for pre-training. Our work suggests that NLU performance in low-resource languages is not primarily constrained by the quality of the data, and other factors like corpus size and domain coverage can play a more important role. 5 authors · Mar 15, 2022
- SLURP: A Spoken Language Understanding Resource Package Spoken Language Understanding infers semantic meaning directly from audio data, and thus promises to reduce error propagation and misunderstandings in end-user applications. However, publicly available SLU resources are limited. In this paper, we release SLURP, a new SLU package containing the following: (1) A new challenging dataset in English spanning 18 domains, which is substantially bigger and linguistically more diverse than existing datasets; (2) Competitive baselines based on state-of-the-art NLU and ASR systems; (3) A new transparent metric for entity labelling which enables a detailed error analysis for identifying potential areas of improvement. SLURP is available at https: //github.com/pswietojanski/slurp. 4 authors · Nov 26, 2020