new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Nov 4

Comprehensive Attribution: Inherently Explainable Vision Model with Feature Detector

As deep vision models' popularity rapidly increases, there is a growing emphasis on explanations for model predictions. The inherently explainable attribution method aims to enhance the understanding of model behavior by identifying the important regions in images that significantly contribute to predictions. It is achieved by cooperatively training a selector (generating an attribution map to identify important features) and a predictor (making predictions using the identified features). Despite many advancements, existing methods suffer from the incompleteness problem, where discriminative features are masked out, and the interlocking problem, where the non-optimized selector initially selects noise, causing the predictor to fit on this noise and perpetuate the cycle. To address these problems, we introduce a new objective that discourages the presence of discriminative features in the masked-out regions thus enhancing the comprehensiveness of feature selection. A pre-trained detector is introduced to detect discriminative features in the masked-out region. If the selector selects noise instead of discriminative features, the detector can observe and break the interlocking situation by penalizing the selector. Extensive experiments show that our model makes accurate predictions with higher accuracy than the regular black-box model, and produces attribution maps with high feature coverage, localization ability, fidelity and robustness. Our code will be available at https://github.com/Zood123/COMET{https://github.com/Zood123/COMET}.

  • 3 authors
·
Jul 27, 2024

Less Quantum, More Advantage: An End-to-End Quantum Algorithm for the Jones Polynomial

We present an end-to-end reconfigurable algorithmic pipeline for solving a famous problem in knot theory using a noisy digital quantum computer, namely computing the value of the Jones polynomial at the fifth root of unity within additive error for any input link, i.e. a closed braid. This problem is DQC1-complete for Markov-closed braids and BQP-complete for Plat-closed braids, and we accommodate both versions of the problem. Even though it is widely believed that DQC1 is strictly contained in BQP, and so is 'less quantum', the resource requirements of classical algorithms for the DQC1 version are at least as high as for the BQP version, and so we potentially gain 'more advantage' by focusing on Markov-closed braids in our exposition. We demonstrate our quantum algorithm on Quantinuum's H2-2 quantum computer and show the effect of problem-tailored error-mitigation techniques. Further, leveraging that the Jones polynomial is a link invariant, we construct an efficiently verifiable benchmark to characterise the effect of noise present in a given quantum processor. In parallel, we implement and benchmark the state-of-the-art tensor-network-based classical algorithms for computing the Jones polynomial. The practical tools provided in this work allow for precise resource estimation to identify near-term quantum advantage for a meaningful quantum-native problem in knot theory.

  • 9 authors
·
Mar 7

Mechanically Interlocked Polymers in Dilute Solution under Shear and Extensional Flows: A Brownian Dynamics Study

Mechanically interlocked polymers (MIPs) are a novel class of polymer structures in which the components are connected by mechanical bonds instead of covalent bonds. We measure the single-molecule rheological properties of polyrotaxanes, daisy chains, and polycatenanes under steady shear and steady uniaxial extension using coarse-grained Brownian dynamics simulations with hydrodynamic interactions. We obtain key rheological features, including tumbling dynamics, molecular extension, stress, and viscosity. By systematically varying structural features, we demonstrate how MIP topology governs flow response. Compared to linear polymers, all three MIP architectures exhibit enhanced tumbling in shear flow and lower normal stress differences in extensional flow. While polyrotaxanes show higher shear and extensional viscosities, polycatenanes and daisy chains have lower viscosities. In extensional flow, polyrotaxanes and polycatenanes extend earlier than linear polymers. We find that mechanical bonds suppress shear thinning and alter the coil-stretch transition observed in linear polymers. These effects arise from the mechanically bonded rings in MIPs, which expand the polymer profile in gradient direction and increase backbone stiffness due to ring-backbone repulsions. This study provides key insights into MIP flow properties, providing the foundation for their systematic development in engineering applications.

  • 2 authors
·
Jun 16

CayleyPy Growth: Efficient growth computations and hundreds of new conjectures on Cayley graphs (Brief version)

This is the third paper of the CayleyPy project applying artificial intelligence to problems in group theory. We announce the first public release of CayleyPy, an open source Python library for computations with Cayley and Schreier graphs. Compared with systems such as GAP and Sage, CayleyPy handles much larger graphs and performs several orders of magnitude faster. Using CayleyPy we obtained about 200 new conjectures on Cayley and Schreier graphs, focused on diameters and growth. For many Cayley graphs of symmetric groups Sn we observe quasi polynomial diameter formulas: a small set of quadratic or linear polynomials indexed by n mod s. We conjecture that this is a general phenomenon, giving efficient diameter computation despite the problem being NP hard. We propose a refinement of the Babai type conjecture on diameters of Sn: n^2/2 + 4n upper bounds in the undirected case, compared to previous O(n^2) bounds. We also provide explicit generator families, related to involutions in a square with whiskers pattern, conjectured to maximize the diameter; search confirms this for all n up to 15. We further conjecture an answer to a question posed by V M Glushkov in 1968 on directed Cayley graphs generated by a cyclic shift and a transposition. For nilpotent groups we conjecture an improvement of J S Ellenberg's results on upper unitriangular matrices over Z/pZ, showing linear dependence of diameter on p. Moreover. Some conjectures are LLM friendly, naturally stated as sorting problems verifiable by algorithms or Python code. To benchmark path finding we created more than 10 Kaggle datasets. CayleyPy works with arbitrary permutation or matrix groups and includes over 100 predefined generators. Our growth computation code outperforms GAP and Sage up to 1000 times in speed and size.

  • 49 authors
·
Sep 23

A Survey on Machine Learning Solutions for Graph Pattern Extraction

A subgraph is constructed by using a subset of vertices and edges of a given graph. There exist many graph properties that are hereditary for subgraphs. Hence, researchers from different communities have paid a great deal of attention in studying numerous subgraph problems, on top of the ordinary graph problems. Many algorithms are proposed in studying subgraph problems, where one common approach is by extracting the patterns and structures of a given graph. Due to the complex structures of certain types of graphs and to improve overall performances of the existing frameworks, machine learning techniques have recently been employed in dealing with various subgraph problems. In this article, we present a comprehensive review on five well known subgraph problems that have been tackled by using machine learning methods. They are subgraph isomorphism (both counting and matching), maximum common subgraph, community detection and community search problems. We provide an outline of each proposed method, and examine its designs and performances. We also explore non-learning-based algorithms for each problem and a brief discussion is given. We then suggest some promising research directions in this area, hoping that relevant subgraph problems can be tackled by using a similar strategy. Since there is a huge growth in employing machine learning techniques in recent years, we believe that this survey will serve as a good reference point to relevant research communities.

  • 6 authors
·
Apr 3, 2022

Adaptive Graph Shrinking for Quantum Optimization of Constrained Combinatorial Problems

A range of quantum algorithms, especially those leveraging variational parameterization and circuit-based optimization, are being studied as alternatives for solving classically intractable combinatorial optimization problems (COPs). However, their applicability is limited by hardware constraints, including shallow circuit depth, limited qubit counts, and noise. To mitigate these issues, we propose a hybrid classical--quantum framework based on graph shrinking to reduce the number of variables and constraints in QUBO formulations of COPs, while preserving problem structure. Our approach introduces three key ideas: (i) constraint-aware shrinking that prevents merges that will likely violate problem-specific feasibility constraints, (ii) a verification-and-repair pipeline to correct infeasible solutions post-optimization, and (iii) adaptive strategies for recalculating correlations and controlling the graph shrinking process. We apply our approach to three standard benchmark problems: Multidimensional Knapsack (MDKP), Maximum Independent Set (MIS), and the Quadratic Assignment Problem (QAP). Empirical results show that our approach improves solution feasibility, reduces repair complexity, and enhances quantum optimization quality on hardware-limited instances. These findings demonstrate a scalable pathway for applying near-term quantum algorithms to classically challenging constrained optimization problems.

  • 2 authors
·
Jun 17

An analytical framework for the Levine hats problem: new strategies, bounds and generalizations

We study the Levine hat problem, a classic combinatorial puzzle introduced by Lionel Levine in 2010. This problem involves a game in which n geq 2 players, each seeing an infinite stack of hats on each of their teammates' heads but not on their own, must simultaneously guess the index of a black hat on their own stack. If one of the players fails to do so, the team loses collectively. The players must therefore come up with a good strategy before the game starts. While the optimal winning probability V_{n} remains unknown even for n=2, we make three key advances. First, we develop a novel geometric framework for representing strategies through measurable functions, providing a new expression of V_{n} and a unified treatment of the game for finite and for infinite stacks via integral formulations. Secondly, we construct a new strategy K_{5} that reaches the conjectured optimal probability of victory : 0.35. We also show that K_{5} is part of a larger class of strategies that allow us to improve current bounds and resolve conjectured inequalities. Finally, we introduce and entirely solve a continuous generalization of the problem, demonstrating that extending to uncountable hat stacks increases the optimal winning probability to exactly 1/2. This generalization naturally leads to a broader and smoother strategic framework, within which we also describe how to compute optimal responses to a range of strategies.

  • 5 authors
·
Aug 3

The Price of Differential Privacy under Continual Observation

We study the accuracy of differentially private mechanisms in the continual release model. A continual release mechanism receives a sensitive dataset as a stream of T inputs and produces, after receiving each input, an accurate output on the obtained inputs. In contrast, a batch algorithm receives the data as one batch and produces a single output. We provide the first strong lower bounds on the error of continual release mechanisms. In particular, for two fundamental problems that are widely studied and used in the batch model, we show that the worst case error of every continual release algorithm is tilde Omega(T^{1/3}) times larger than that of the best batch algorithm. Previous work shows only a polylogarithimic (in T) gap between the worst case error achievable in these two models; further, for many problems, including the summation of binary attributes, the polylogarithmic gap is tight (Dwork et al., 2010; Chan et al., 2010). Our results show that problems closely related to summation -- specifically, those that require selecting the largest of a set of sums -- are fundamentally harder in the continual release model than in the batch model. Our lower bounds assume only that privacy holds for streams fixed in advance (the "nonadaptive" setting). However, we provide matching upper bounds that hold in a model where privacy is required even for adaptively selected streams. This model may be of independent interest.

  • 4 authors
·
Dec 1, 2021

Dynamic Constrained Submodular Optimization with Polylogarithmic Update Time

Maximizing a monotone submodular function under cardinality constraint k is a core problem in machine learning and database with many basic applications, including video and data summarization, recommendation systems, feature extraction, exemplar clustering, and coverage problems. We study this classic problem in the fully dynamic model where a stream of insertions and deletions of elements of an underlying ground set is given and the goal is to maintain an approximate solution using a fast update time. A recent paper at NeurIPS'20 by Lattanzi, Mitrovic, Norouzi{-}Fard, Tarnawski, Zadimoghaddam claims to obtain a dynamic algorithm for this problem with a 1{2} -epsilon approximation ratio and a query complexity bounded by poly(log(n),log(k),epsilon^{-1}). However, as we explain in this paper, the analysis has some important gaps. Having a dynamic algorithm for the problem with polylogarithmic update time is even more important in light of a recent result by Chen and Peng at STOC'22 who show a matching lower bound for the problem -- any randomized algorithm with a 1{2}+epsilon approximation ratio must have an amortized query complexity that is polynomial in n. In this paper, we develop a simpler algorithm for the problem that maintains a (1{2}-epsilon)-approximate solution for submodular maximization under cardinality constraint k using a polylogarithmic amortized update time.

  • 6 authors
·
May 24, 2023

Generating Dispatching Rules for the Interrupting Swap-Allowed Blocking Job Shop Problem Using Graph Neural Network and Reinforcement Learning

The interrupting swap-allowed blocking job shop problem (ISBJSSP) is a complex scheduling problem that is able to model many manufacturing planning and logistics applications realistically by addressing both the lack of storage capacity and unforeseen production interruptions. Subjected to random disruptions due to machine malfunction or maintenance, industry production settings often choose to adopt dispatching rules to enable adaptive, real-time re-scheduling, rather than traditional methods that require costly re-computation on the new configuration every time the problem condition changes dynamically. To generate dispatching rules for the ISBJSSP problem, a method that uses graph neural networks and reinforcement learning is proposed. ISBJSSP is formulated as a Markov decision process. Using proximal policy optimization, an optimal scheduling policy is learnt from randomly generated instances. Employing a set of reported benchmark instances, we conduct a detailed experimental study on ISBJSSP instances with a range of machine shutdown probabilities to show that the scheduling policies generated can outperform or are at least as competitive as existing dispatching rules with predetermined priority. This study shows that the ISBJSSP, which requires real-time adaptive solutions, can be scheduled efficiently with the proposed machine learning method when production interruptions occur with random machine shutdowns.

  • 5 authors
·
Feb 5, 2023

X-Boundary: Establishing Exact Safety Boundary to Shield LLMs from Multi-Turn Jailbreaks without Compromising Usability

Despite the rapid development of safety alignment techniques for LLMs, defending against multi-turn jailbreaks is still a challenging task. In this paper, we conduct a comprehensive comparison, revealing that some existing defense methods can improve the robustness of LLMs against multi-turn jailbreaks but compromise usability, i.e., reducing general capabilities or causing the over-refusal problem. From the perspective of mechanism interpretability of LLMs, we discover that these methods fail to establish a boundary that exactly distinguishes safe and harmful feature representations. Therefore, boundary-safe representations close to harmful representations are inevitably disrupted, leading to a decline in usability. To address this issue, we propose X-Boundary to push harmful representations away from boundary-safe representations and obtain an exact distinction boundary. In this way, harmful representations can be precisely erased without disrupting safe ones. Experimental results show that X-Boundary achieves state-of-the-art defense performance against multi-turn jailbreaks, while reducing the over-refusal rate by about 20% and maintaining nearly complete general capability. Furthermore, we theoretically prove and empirically verify that X-Boundary can accelerate the convergence process during training. Please see our code at: https://github.com/AI45Lab/X-Boundary.

  • 5 authors
·
Feb 14