new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Nov 5

Why Can't Transformers Learn Multiplication? Reverse-Engineering Reveals Long-Range Dependency Pitfalls

Language models are increasingly capable, yet still fail at a seemingly simple task of multi-digit multiplication. In this work, we study why, by reverse-engineering a model that successfully learns multiplication via implicit chain-of-thought, and report three findings: (1) Evidence of long-range structure: Logit attributions and linear probes indicate that the model encodes the necessary long-range dependencies for multi-digit multiplication. (2) Mechanism: the model encodes long-range dependencies using attention to construct a directed acyclic graph to ``cache'' and ``retrieve'' pairwise partial products. (3) Geometry: the model implements partial products in attention heads by forming Minkowski sums between pairs of digits, and digits are represented using a Fourier basis, both of which are intuitive and efficient representations that the standard fine-tuning model lacks. With these insights, we revisit the learning dynamics of standard fine-tuning and find that the model converges to a local optimum that lacks the required long-range dependencies. We further validate this understanding by introducing an auxiliary loss that predicts the ``running sum'' via a linear regression probe, which provides an inductive bias that enables the model to successfully learn multi-digit multiplication. In summary, by reverse-engineering the mechanisms of an implicit chain-of-thought model we uncover a pitfall for learning long-range dependencies in Transformers and provide an example of how the correct inductive bias can address this issue.

  • 8 authors
·
Sep 30 3

Pretraining task diversity and the emergence of non-Bayesian in-context learning for regression

Pretrained transformers exhibit the remarkable ability of in-context learning (ICL): they can learn tasks from just a few examples provided in the prompt without updating any weights. This raises a foundational question: can ICL solve fundamentally new tasks that are very different from those seen during pretraining? To probe this question, we examine ICL's performance on linear regression while varying the diversity of tasks in the pretraining dataset. We empirically demonstrate a task diversity threshold for the emergence of ICL. Below this threshold, the pretrained transformer cannot solve unseen regression tasks, instead behaving like a Bayesian estimator with the non-diverse pretraining task distribution as the prior. Beyond this threshold, the transformer significantly outperforms this estimator; its behavior aligns with that of ridge regression, corresponding to a Gaussian prior over all tasks, including those not seen during pretraining. Thus, when pretrained on data with task diversity greater than the threshold, transformers can optimally solve fundamentally new tasks in-context. Importantly, this capability hinges on it deviating from the Bayes optimal estimator with the pretraining distribution as the prior. This study also explores the effect of regularization, model capacity and task structure and underscores, in a concrete example, the critical role of task diversity, alongside data and model scale, in the emergence of ICL. Code is available at https://github.com/mansheej/icl-task-diversity.

  • 4 authors
·
Jun 26, 2023

Understanding Augmentation-based Self-Supervised Representation Learning via RKHS Approximation and Regression

Data augmentation is critical to the empirical success of modern self-supervised representation learning, such as contrastive learning and masked language modeling. However, a theoretical understanding of the exact role of augmentation remains limited. Recent work has built the connection between self-supervised learning and the approximation of the top eigenspace of a graph Laplacian operator, suggesting that learning a linear probe atop such representation can be connected to RKHS regression. Building on this insight, this work delves into a statistical analysis of augmentation-based pretraining. Starting from the isometry property, a geometric characterization of the target function given by the augmentation, we disentangle the effects of the model and the augmentation, and prove two generalization bounds that are free of model complexity. Our first bound works for an arbitrary encoder, where the prediction error is decomposed as the sum of an estimation error incurred by fitting a linear probe with RKHS regression, and an approximation error entailed by RKHS approximation. Our second bound specifically addresses the case where the encoder is near-optimal, that is it approximates the top-d eigenspace of the RKHS induced by the augmentation. A key ingredient in our analysis is the augmentation complexity, which we use to quantitatively compare different augmentations and analyze their impact on downstream performance.

  • 5 authors
·
Jun 1, 2023

Improved Analysis of Sparse Linear Regression in Local Differential Privacy Model

In this paper, we revisit the problem of sparse linear regression in the local differential privacy (LDP) model. Existing research in the non-interactive and sequentially local models has focused on obtaining the lower bounds for the case where the underlying parameter is 1-sparse, and extending such bounds to the more general k-sparse case has proven to be challenging. Moreover, it is unclear whether efficient non-interactive LDP (NLDP) algorithms exist. To address these issues, we first consider the problem in the epsilon non-interactive LDP model and provide a lower bound of Omega(sqrt{dklog d}{nepsilon}) on the ell_2-norm estimation error for sub-Gaussian data, where n is the sample size and d is the dimension of the space. We propose an innovative NLDP algorithm, the very first of its kind for the problem. As a remarkable outcome, this algorithm also yields a novel and highly efficient estimator as a valuable by-product. Our algorithm achieves an upper bound of O({dsqrt{k}{nepsilon}}) for the estimation error when the data is sub-Gaussian, which can be further improved by a factor of O(d) if the server has additional public but unlabeled data. For the sequentially interactive LDP model, we show a similar lower bound of Omega({sqrt{dk}{nepsilon}}). As for the upper bound, we rectify a previous method and show that it is possible to achieve a bound of O(ksqrt{d}{nepsilon}). Our findings reveal fundamental differences between the non-private case, central DP model, and local DP model in the sparse linear regression problem.

  • 5 authors
·
Oct 11, 2023

RegMean++: Enhancing Effectiveness and Generalization of Regression Mean for Model Merging

Regression Mean (RegMean), an approach that formulates model merging as a linear regression problem, aims to find the optimal weights for each linear layer in the merge model by minimizing the discrepancy in predictions between the merge and candidate models. RegMean provides a precise closed-form solution for the merging problem; therefore, it offers explainability and computational efficiency. However, RegMean merges each linear layer independently, overlooking how the features and information in the earlier layers propagate through the layers and influence the final prediction in the merge model. In this paper, we introduce RegMean++, a simple yet effective alternative to RegMean, that explicitly incorporates both intra- and cross-layer dependencies between merge models' layers into RegMean's objective. By accounting for these dependencies, RegMean++ better captures the behaviors of the merge model. Extensive experiments demonstrate that RegMean++ consistently outperforms RegMean across diverse settings, including in-domain (ID) and out-of-domain (OOD) generalization, sequential merging, large-scale tasks, and robustness under several types of distribution shifts. Furthermore, RegMean++ achieves competitive or state-of-the-art performance compared to various recent advanced model merging methods. Our code is available at https://github.com/nthehai01/RegMean-plusplus.

  • 4 authors
·
Aug 5

Trained Transformers Learn Linear Models In-Context

Attention-based neural networks such as transformers have demonstrated a remarkable ability to exhibit in-context learning (ICL): Given a short prompt sequence of tokens from an unseen task, they can formulate relevant per-token and next-token predictions without any parameter updates. By embedding a sequence of labeled training data and unlabeled test data as a prompt, this allows for transformers to behave like supervised learning algorithms. Indeed, recent work has shown that when training transformer architectures over random instances of linear regression problems, these models' predictions mimic those of ordinary least squares. Towards understanding the mechanisms underlying this phenomenon, we investigate the dynamics of ICL in transformers with a single linear self-attention layer trained by gradient flow on linear regression tasks. We show that despite non-convexity, gradient flow with a suitable random initialization finds a global minimum of the objective function. At this global minimum, when given a test prompt of labeled examples from a new prediction task, the transformer achieves prediction error competitive with the best linear predictor over the test prompt distribution. We additionally characterize the robustness of the trained transformer to a variety of distribution shifts and show that although a number of shifts are tolerated, shifts in the covariate distribution of the prompts are not. Motivated by this, we consider a generalized ICL setting where the covariate distributions can vary across prompts. We show that although gradient flow succeeds at finding a global minimum in this setting, the trained transformer is still brittle under mild covariate shifts. We complement this finding with experiments on large, nonlinear transformer architectures which we show are more robust under covariate shifts.

  • 3 authors
·
Jun 16, 2023

Dynamic Loss-Based Sample Reweighting for Improved Large Language Model Pretraining

Pretraining large language models (LLMs) on vast and heterogeneous datasets is crucial for achieving state-of-the-art performance across diverse downstream tasks. However, current training paradigms treat all samples equally, overlooking the importance or relevance of individual samples throughout the training process. Existing reweighting strategies, which primarily focus on group-level data importance, fail to leverage fine-grained instance-level information and do not adapt dynamically to individual sample importance as training progresses. In this paper, we introduce novel algorithms for dynamic, instance-level data reweighting aimed at improving both the efficiency and effectiveness of LLM pretraining. Our methods adjust the weight of each training sample based on its loss value in an online fashion, allowing the model to dynamically focus on more informative or important samples at the current training stage. In particular, our framework allows us to systematically devise reweighting strategies deprioritizing redundant or uninformative data, which we find tend to work best. Furthermore, we develop a new theoretical framework for analyzing the impact of loss-based reweighting on the convergence of gradient-based optimization, providing the first formal characterization of how these strategies affect convergence bounds. We empirically validate our approach across a spectrum of tasks, from pretraining 7B and 1.4B parameter LLMs to smaller-scale language models and linear regression problems, demonstrating that our loss-based reweighting approach can lead to faster convergence and significantly improved performance.

  • 6 authors
·
Feb 10

What learning algorithm is in-context learning? Investigations with linear models

Neural sequence models, especially transformers, exhibit a remarkable capacity for in-context learning. They can construct new predictors from sequences of labeled examples (x, f(x)) presented in the input without further parameter updates. We investigate the hypothesis that transformer-based in-context learners implement standard learning algorithms implicitly, by encoding smaller models in their activations, and updating these implicit models as new examples appear in the context. Using linear regression as a prototypical problem, we offer three sources of evidence for this hypothesis. First, we prove by construction that transformers can implement learning algorithms for linear models based on gradient descent and closed-form ridge regression. Second, we show that trained in-context learners closely match the predictors computed by gradient descent, ridge regression, and exact least-squares regression, transitioning between different predictors as transformer depth and dataset noise vary, and converging to Bayesian estimators for large widths and depths. Third, we present preliminary evidence that in-context learners share algorithmic features with these predictors: learners' late layers non-linearly encode weight vectors and moment matrices. These results suggest that in-context learning is understandable in algorithmic terms, and that (at least in the linear case) learners may rediscover standard estimation algorithms. Code and reference implementations are released at https://github.com/ekinakyurek/google-research/blob/master/incontext.

  • 5 authors
·
Nov 28, 2022

Oracle Efficient Algorithms for Groupwise Regret

We study the problem of online prediction, in which at each time step t, an individual x_t arrives, whose label we must predict. Each individual is associated with various groups, defined based on their features such as age, sex, race etc., which may intersect. Our goal is to make predictions that have regret guarantees not just overall but also simultaneously on each sub-sequence comprised of the members of any single group. Previous work such as [Blum & Lykouris] and [Lee et al] provide attractive regret guarantees for these problems; however, these are computationally intractable on large model classes. We show that a simple modification of the sleeping experts technique of [Blum & Lykouris] yields an efficient reduction to the well-understood problem of obtaining diminishing external regret absent group considerations. Our approach gives similar regret guarantees compared to [Blum & Lykouris]; however, we run in time linear in the number of groups, and are oracle-efficient in the hypothesis class. This in particular implies that our algorithm is efficient whenever the number of groups is polynomially bounded and the external-regret problem can be solved efficiently, an improvement on [Blum & Lykouris]'s stronger condition that the model class must be small. Our approach can handle online linear regression and online combinatorial optimization problems like online shortest paths. Beyond providing theoretical regret bounds, we evaluate this algorithm with an extensive set of experiments on synthetic data and on two real data sets -- Medical costs and the Adult income dataset, both instantiated with intersecting groups defined in terms of race, sex, and other demographic characteristics. We find that uniformly across groups, our algorithm gives substantial error improvements compared to running a standard online linear regression algorithm with no groupwise regret guarantees.

  • 5 authors
·
Oct 6, 2023

Adaptive Testing for Connected and Automated Vehicles with Sparse Control Variates in Overtaking Scenarios

Testing and evaluation is a critical step in the development and deployment of connected and automated vehicles (CAVs). Due to the black-box property and various types of CAVs, how to test and evaluate CAVs adaptively remains a major challenge. Many approaches have been proposed to adaptively generate testing scenarios during the testing process. However, most existing approaches cannot be applied to complex scenarios, where the variables needed to define such scenarios are high dimensional. Towards filling this gap, the adaptive testing with sparse control variates method is proposed in this paper. Instead of adaptively generating testing scenarios, our approach evaluates CAVs' performances by adaptively utilizing the testing results. Specifically, each testing result is adjusted using multiple linear regression techniques based on control variates. As the regression coefficients can be adaptively optimized for the CAV under test, using the adjusted results can reduce the estimation variance, compared with using the testing results directly. To overcome the high dimensionality challenge, sparse control variates are utilized only for the critical variables of testing scenarios. To validate the proposed method, the high-dimensional overtaking scenarios are investigated, and the results demonstrate that our approach can further accelerate the evaluation process by about 30 times.

  • 5 authors
·
Jul 19, 2022

In-Context Learning through the Bayesian Prism

In-context learning is one of the surprising and useful features of large language models. How it works is an active area of research. Recently, stylized meta-learning-like setups have been devised that train these models on a sequence of input-output pairs (x, f(x)) from a function class using the language modeling loss and observe generalization to unseen functions from the same class. One of the main discoveries in this line of research has been that for several problems such as linear regression, trained transformers learn algorithms for learning functions in context. However, the inductive biases of these models resulting in this behavior are not clearly understood. A model with unlimited training data and compute is a Bayesian predictor: it learns the pretraining distribution. It has been shown that high-capacity transformers mimic the Bayesian predictor for linear regression. In this paper, we show empirical evidence of transformers exhibiting the behavior of this ideal learner across different linear and non-linear function classes. We also extend the previous setups to work in the multitask setting and verify that transformers can do in-context learning in this setup as well and the Bayesian perspective sheds light on this setting also. Finally, via the example of learning Fourier series, we study the inductive bias for in-context learning. We find that in-context learning may or may not have simplicity bias depending on the pretraining data distribution.

  • 3 authors
·
Jun 7, 2023

In-Context Language Learning: Architectures and Algorithms

Large-scale neural language models exhibit a remarkable capacity for in-context learning (ICL): they can infer novel functions from datasets provided as input. Most of our current understanding of when and how ICL arises comes from LMs trained on extremely simple learning problems like linear regression and associative recall. There remains a significant gap between these model problems and the "real" ICL exhibited by LMs trained on large text corpora, which involves not just retrieval and function approximation but free-form generation of language and other structured outputs. In this paper, we study ICL through the lens of a new family of model problems we term in context language learning (ICLL). In ICLL, LMs are presented with a set of strings from a formal language, and must generate additional strings from the same language. We focus on in-context learning of regular languages generated by random finite automata. We evaluate a diverse set of neural sequence models (including several RNNs, Transformers, and state-space model variants) on regular ICLL tasks, aiming to answer three questions: (1) Which model classes are empirically capable of ICLL? (2) What algorithmic solutions do successful models implement to perform ICLL? (3) What architectural changes can improve ICLL in less performant models? We first show that Transformers significantly outperform neural sequence models with recurrent or convolutional representations on ICLL tasks. Next, we provide evidence that their ability to do so relies on specialized "n-gram heads" (higher-order variants of induction heads) that compute input-conditional next-token distributions. Finally, we show that hard-wiring these heads into neural models improves performance not just on ICLL, but natural language modeling -- improving the perplexity of 340M-parameter models by up to 1.14 points (6.7%) on the SlimPajama dataset.

  • 4 authors
·
Jan 23, 2024

Diving into the Fusion of Monocular Priors for Generalized Stereo Matching

The matching formulation makes it naturally hard for the stereo matching to handle ill-posed regions like occlusions and non-Lambertian surfaces. Fusing monocular priors has been proven helpful for ill-posed matching, but the biased monocular prior learned from small stereo datasets constrains the generalization. Recently, stereo matching has progressed by leveraging the unbiased monocular prior from the vision foundation model (VFM) to improve the generalization in ill-posed regions. We dive into the fusion process and observe three main problems limiting the fusion of the VFM monocular prior. The first problem is the misalignment between affine-invariant relative monocular depth and absolute depth of disparity. Besides, when we use the monocular feature in an iterative update structure, the over-confidence in the disparity update leads to local optima results. A direct fusion of a monocular depth map could alleviate the local optima problem, but noisy disparity results computed at the first several iterations will misguide the fusion. In this paper, we propose a binary local ordering map to guide the fusion, which converts the depth map into a binary relative format, unifying the relative and absolute depth representation. The computed local ordering map is also used to re-weight the initial disparity update, resolving the local optima and noisy problem. In addition, we formulate the final direct fusion of monocular depth to the disparity as a registration problem, where a pixel-wise linear regression module can globally and adaptively align them. Our method fully exploits the monocular prior to support stereo matching results effectively and efficiently. We significantly improve the performance from the experiments when generalizing from SceneFlow to Middlebury and Booster datasets while barely reducing the efficiency.

  • 6 authors
·
May 20

Deep Human Parsing with Active Template Regression

In this work, the human parsing task, namely decomposing a human image into semantic fashion/body regions, is formulated as an Active Template Regression (ATR) problem, where the normalized mask of each fashion/body item is expressed as the linear combination of the learned mask templates, and then morphed to a more precise mask with the active shape parameters, including position, scale and visibility of each semantic region. The mask template coefficients and the active shape parameters together can generate the human parsing results, and are thus called the structure outputs for human parsing. The deep Convolutional Neural Network (CNN) is utilized to build the end-to-end relation between the input human image and the structure outputs for human parsing. More specifically, the structure outputs are predicted by two separate networks. The first CNN network is with max-pooling, and designed to predict the template coefficients for each label mask, while the second CNN network is without max-pooling to preserve sensitivity to label mask position and accurately predict the active shape parameters. For a new image, the structure outputs of the two networks are fused to generate the probability of each label for each pixel, and super-pixel smoothing is finally used to refine the human parsing result. Comprehensive evaluations on a large dataset well demonstrate the significant superiority of the ATR framework over other state-of-the-arts for human parsing. In particular, the F1-score reaches 64.38% by our ATR framework, significantly higher than 44.76% based on the state-of-the-art algorithm.

  • 8 authors
·
Mar 9, 2015

Gradient-Normalized Smoothness for Optimization with Approximate Hessians

In this work, we develop new optimization algorithms that use approximate second-order information combined with the gradient regularization technique to achieve fast global convergence rates for both convex and non-convex objectives. The key innovation of our analysis is a novel notion called Gradient-Normalized Smoothness, which characterizes the maximum radius of a ball around the current point that yields a good relative approximation of the gradient field. Our theory establishes a natural intrinsic connection between Hessian approximation and the linearization of the gradient. Importantly, Gradient-Normalized Smoothness does not depend on the specific problem class of the objective functions, while effectively translating local information about the gradient field and Hessian approximation into the global behavior of the method. This new concept equips approximate second-order algorithms with universal global convergence guarantees, recovering state-of-the-art rates for functions with H\"older-continuous Hessians and third derivatives, quasi-self-concordant functions, as well as smooth classes in first-order optimization. These rates are achieved automatically and extend to broader classes, such as generalized self-concordant functions. We demonstrate direct applications of our results for global linear rates in logistic regression and softmax problems with approximate Hessians, as well as in non-convex optimization using Fisher and Gauss-Newton approximations.

  • 3 authors
·
Jun 16

The CAMELS project: Cosmology and Astrophysics with MachinE Learning Simulations

We present the Cosmology and Astrophysics with MachinE Learning Simulations --CAMELS-- project. CAMELS is a suite of 4,233 cosmological simulations of (25~h^{-1}{rm Mpc})^3 volume each: 2,184 state-of-the-art (magneto-)hydrodynamic simulations run with the AREPO and GIZMO codes, employing the same baryonic subgrid physics as the IllustrisTNG and SIMBA simulations, and 2,049 N-body simulations. The goal of the CAMELS project is to provide theory predictions for different observables as a function of cosmology and astrophysics, and it is the largest suite of cosmological (magneto-)hydrodynamic simulations designed to train machine learning algorithms. CAMELS contains thousands of different cosmological and astrophysical models by way of varying Omega_m, sigma_8, and four parameters controlling stellar and AGN feedback, following the evolution of more than 100 billion particles and fluid elements over a combined volume of (400~h^{-1}{rm Mpc})^3. We describe the simulations in detail and characterize the large range of conditions represented in terms of the matter power spectrum, cosmic star formation rate density, galaxy stellar mass function, halo baryon fractions, and several galaxy scaling relations. We show that the IllustrisTNG and SIMBA suites produce roughly similar distributions of galaxy properties over the full parameter space but significantly different halo baryon fractions and baryonic effects on the matter power spectrum. This emphasizes the need for marginalizing over baryonic effects to extract the maximum amount of information from cosmological surveys. We illustrate the unique potential of CAMELS using several machine learning applications, including non-linear interpolation, parameter estimation, symbolic regression, data generation with Generative Adversarial Networks (GANs), dimensionality reduction, and anomaly detection.

  • 22 authors
·
Oct 1, 2020

Learning on Model Weights using Tree Experts

The number of publicly available models is rapidly increasing, yet most remain undocumented. Users looking for suitable models for their tasks must first determine what each model does. Training machine learning models to infer missing documentation directly from model weights is challenging, as these weights often contain significant variation unrelated to model functionality (denoted nuisance). Here, we identify a key property of real-world models: most public models belong to a small set of Model Trees, where all models within a tree are fine-tuned from a common ancestor (e.g., a foundation model). Importantly, we find that within each tree there is less nuisance variation between models. Concretely, while learning across Model Trees requires complex architectures, even a linear classifier trained on a single model layer often works within trees. While effective, these linear classifiers are computationally expensive, especially when dealing with larger models that have many parameters. To address this, we introduce Probing Experts (ProbeX), a theoretically motivated and lightweight method. Notably, ProbeX is the first probing method specifically designed to learn from the weights of a single hidden model layer. We demonstrate the effectiveness of ProbeX by predicting the categories in a model's training dataset based only on its weights. Excitingly, ProbeX can map the weights of Stable Diffusion into a weight-language embedding space, enabling model search via text, i.e., zero-shot model classification.

  • 4 authors
·
Oct 17, 2024

Debiasing Machine Learning Predictions for Causal Inference Without Additional Ground Truth Data: "One Map, Many Trials" in Satellite-Driven Poverty Analysis

Machine learning models trained on Earth observation data, such as satellite imagery, have demonstrated significant promise in predicting household-level wealth indices, enabling the creation of high-resolution wealth maps that can be leveraged across multiple causal trials. However, because standard training objectives prioritize overall predictive accuracy, these predictions inherently suffer from shrinkage toward the mean, leading to attenuated estimates of causal treatment effects and limiting their utility in policy. Existing debiasing methods, such as Prediction-Powered Inference, can handle this attenuation bias but require additional fresh ground-truth data at the downstream stage of causal inference, which restricts their applicability in data-scarce environments. Here, we introduce and evaluate two correction methods -- linear calibration correction and Tweedie's correction -- that substantially reduce prediction bias without relying on newly collected labeled data. Linear calibration corrects bias through a straightforward linear transformation derived from held-out calibration data, whereas Tweedie's correction leverages empirical Bayes principles to directly address shrinkage-induced biases by exploiting score functions derived from the model's learning patterns. Through analytical exercises and experiments using Demographic and Health Survey data, we demonstrate that the proposed methods meet or outperform existing approaches that either require (a) adjustments to training pipelines or (b) additional labeled data. These approaches may represent a promising avenue for improving the reliability of causal inference when direct outcome measures are limited or unavailable, enabling a "one map, many trials" paradigm where a single upstream data creation team produces predictions usable by many downstream teams across diverse ML pipelines.

  • 3 authors
·
Aug 2

Model Surgery: Modulating LLM's Behavior Via Simple Parameter Editing

Large Language Models (LLMs) have demonstrated great potential as generalist assistants, showcasing powerful task understanding and problem-solving capabilities. To deploy LLMs as AI assistants, it is crucial that these models exhibit desirable behavioral traits, such as non-toxicity and resilience against jailbreak attempts. Current methods for detoxification or preventing jailbreaking usually involve Supervised Fine-Tuning (SFT) or Reinforcement Learning from Human Feedback (RLHF), which requires finetuning billions of parameters through gradient descent with substantial computation cost. Furthermore, models modified through SFT and RLHF may deviate from the pretrained models, potentially leading to a degradation in foundational LLM capabilities. In this paper, we observe that surprisingly, directly editing a small subset of parameters can effectively modulate specific behaviors of LLMs, such as detoxification and resistance to jailbreaking. Specifically, for a behavior that we aim to avoid, we employ a linear classifier, which we term the behavior probe, to classify binary behavior labels within the hidden state space of the LLM. Using this probe, we introduce an algorithm to identify a critical subset of LLM parameters that significantly influence this targeted behavior. Then we directly edit these selected parameters by shifting them towards the behavior probe. Such a direct parameter editing method necessitates only inference-level computational resources. Experiments demonstrate that in the representative detoxification task, our approach achieves reductions of up to 90.0\% in toxicity on the RealToxicityPrompts dataset and 49.2\% on ToxiGen, while maintaining the LLM's general capabilities in areas such as common sense, question answering, and mathematics. Our code is available at https://github.com/lucywang720/model-surgery.

  • 8 authors
·
Jul 11, 2024 4

Impact of a Batter in ODI Cricket Implementing Regression Models from Match Commentary

Cricket, "a Gentleman's Game", is a prominent sport rising worldwide. Due to the rising competitiveness of the sport, players and team management have become more professional with their approach. Prior studies predicted individual performance or chose the best team but did not highlight the batter's potential. On the other hand, our research aims to evaluate a player's impact while considering his control in various circumstances. This paper seeks to understand the conundrum behind this impactful performance by determining how much control a player has over the circumstances and generating the "Effective Runs",a new measure we propose. We first gathered the fundamental cricket data from open-source datasets; however, variables like pitch, weather, and control were not readily available for all matches. As a result, we compiled our corpus data by analyzing the commentary of the match summaries. This gave us an insight into the particular game's weather and pitch conditions. Furthermore, ball-by-ball inspection from the commentary led us to determine the control of the shots played by the batter. We collected data for the entire One Day International career, up to February 2022, of 3 prominent cricket players: Rohit G Sharma, David A Warner, and Kane S Williamson. Lastly, to prepare the dataset, we encoded, scaled, and split the dataset to train and test Machine Learning Algorithms. We used Multiple Linear Regression (MLR), Polynomial Regression, Support Vector Regression (SVR), Decision Tree Regression, and Random Forest Regression on each player's data individually to train them and predict the Impact the player will have on the game. Multiple Linear Regression and Random Forest give the best predictions accuracy of 90.16 percent and 87.12 percent, respectively.

  • 6 authors
·
Feb 22, 2023

A Nearly-Optimal Bound for Fast Regression with ell_infty Guarantee

Given a matrix Ain R^{ntimes d} and a vector bin R^n, we consider the regression problem with ell_infty guarantees: finding a vector x'in R^d such that |x'-x^*|_infty leq epsilon{d}cdot |Ax^*-b|_2cdot |A^dagger| where x^*=argmin_{xin R^d}|Ax-b|_2. One popular approach for solving such ell_2 regression problem is via sketching: picking a structured random matrix Sin R^{mtimes n} with mll n and SA can be quickly computed, solve the ``sketched'' regression problem argmin_{xin R^d} |SAx-Sb|_2. In this paper, we show that in order to obtain such ell_infty guarantee for ell_2 regression, one has to use sketching matrices that are dense. To the best of our knowledge, this is the first user case in which dense sketching matrices are necessary. On the algorithmic side, we prove that there exists a distribution of dense sketching matrices with m=epsilon^{-2}dlog^3(n/delta) such that solving the sketched regression problem gives the ell_infty guarantee, with probability at least 1-delta. Moreover, the matrix SA can be computed in time O(ndlog n). Our row count is nearly-optimal up to logarithmic factors, and significantly improves the result in [Price, Song and Woodruff, ICALP'17], in which a super-linear in d rows, m=Omega(epsilon^{-2}d^{1+gamma}) for gamma=Theta(frac{loglog n{log d}}) is required. We also develop a novel analytical framework for ell_infty guarantee regression that utilizes the Oblivious Coordinate-wise Embedding (OCE) property introduced in [Song and Yu, ICML'21]. Our analysis is arguably much simpler and more general than [Price, Song and Woodruff, ICALP'17], and it extends to dense sketches for tensor product of vectors.

  • 4 authors
·
Feb 1, 2023

An Analysis of Causal Effect Estimation using Outcome Invariant Data Augmentation

The technique of data augmentation (DA) is often used in machine learning for regularization purposes to better generalize under i.i.d. settings. In this work, we present a unifying framework with topics in causal inference to make a case for the use of DA beyond just the i.i.d. setting, but for generalization across interventions as well. Specifically, we argue that when the outcome generating mechanism is invariant to our choice of DA, then such augmentations can effectively be thought of as interventions on the treatment generating mechanism itself. This can potentially help to reduce bias in causal effect estimation arising from hidden confounders. In the presence of such unobserved confounding we typically make use of instrumental variables (IVs) -- sources of treatment randomization that are conditionally independent of the outcome. However, IVs may not be as readily available as DA for many applications, which is the main motivation behind this work. By appropriately regularizing IV based estimators, we introduce the concept of IV-like (IVL) regression for mitigating confounding bias and improving predictive performance across interventions even when certain IV properties are relaxed. Finally, we cast parameterized DA as an IVL regression problem and show that when used in composition can simulate a worst-case application of such DA, further improving performance on causal estimation and generalization tasks beyond what simple DA may offer. This is shown both theoretically for the population case and via simulation experiments for the finite sample case using a simple linear example. We also present real data experiments to support our case.

  • 5 authors
·
Oct 28 1

Site-Level Fine-Tuning with Progressive Layer Freezing: Towards Robust Prediction of Bronchopulmonary Dysplasia from Day-1 Chest Radiographs in Extremely Preterm Infants

Bronchopulmonary dysplasia (BPD) is a chronic lung disease affecting 35% of extremely low birth weight infants. Defined by oxygen dependence at 36 weeks postmenstrual age, it causes lifelong respiratory complications. However, preventive interventions carry severe risks, including neurodevelopmental impairment, ventilator-induced lung injury, and systemic complications. Therefore, early BPD prognosis and prediction of BPD outcome is crucial to avoid unnecessary toxicity in low risk infants. Admission radiographs of extremely preterm infants are routinely acquired within 24h of life and could serve as a non-invasive prognostic tool. In this work, we developed and investigated a deep learning approach using chest X-rays from 163 extremely low-birth-weight infants (leq32 weeks gestation, 401-999g) obtained within 24 hours of birth. We fine-tuned a ResNet-50 pretrained specifically on adult chest radiographs, employing progressive layer freezing with discriminative learning rates to prevent overfitting and evaluated a CutMix augmentation and linear probing. For moderate/severe BPD outcome prediction, our best performing model with progressive freezing, linear probing and CutMix achieved an AUROC of 0.78 pm 0.10, balanced accuracy of 0.69 pm 0.10, and an F1-score of 0.67 pm 0.11. In-domain pre-training significantly outperformed ImageNet initialization (p = 0.031) which confirms domain-specific pretraining to be important for BPD outcome prediction. Routine IRDS grades showed limited prognostic value (AUROC 0.57 pm 0.11), confirming the need of learned markers. Our approach demonstrates that domain-specific pretraining enables accurate BPD prediction from routine day-1 radiographs. Through progressive freezing and linear probing, the method remains computationally feasible for site-level implementation and future federated learning deployments.

  • 16 authors
·
Jul 16

Attack Detection in Dynamic Games with Quadratic Measurements

This paper studies attack detection for discrete-time linear systems with stochastic process noise that produce both a vulnerable (i.e., attackable) linear measurement and a secured (i.e., unattackable) quadratic measurement. The motivating application of this model is a dynamic-game setting where the quadratic measurement is interpreted as a system-level utility or reward, and control inputs into the linear system are interpreted as control policies that, once applied, are known to all game participants and which steer the system towards a game-theoretic equilibrium (e.g., Nash equilibrium). To detect attacks on the linear channel, we develop a novel quadratic-utility-aware observer that leverages the secured quadratic output and enforces measurement consistency via a projection step. We establish three properties for this observer: feasibility of the true state, prox-regularity of the quadratic-constraint set, and a monotone error-reduction guarantee in the noise-free case. To detect adversarial manipulation, we compare linear and quadratic observer trajectories using a wild bootstrap maximum mean discrepancy (MMD) test that provides valid inference under temporal dependence. We validate our framework using numerical experiments of a pursuit-evasion game, where the quadratic observer preserves estimation accuracy under linear-sensor attacks, while the statistical test detects distributional divergence between the observers' trajectories.

  • 2 authors
·
Sep 30