12 Lynx: Towards High-Fidelity Personalized Video Generation We present Lynx, a high-fidelity model for personalized video synthesis from a single input image. Built on an open-source Diffusion Transformer (DiT) foundation model, Lynx introduces two lightweight adapters to ensure identity fidelity. The ID-adapter employs a Perceiver Resampler to convert ArcFace-derived facial embeddings into compact identity tokens for conditioning, while the Ref-adapter integrates dense VAE features from a frozen reference pathway, injecting fine-grained details across all transformer layers through cross-attention. These modules collectively enable robust identity preservation while maintaining temporal coherence and visual realism. Through evaluation on a curated benchmark of 40 subjects and 20 unbiased prompts, which yielded 800 test cases, Lynx has demonstrated superior face resemblance, competitive prompt following, and strong video quality, thereby advancing the state of personalized video generation. 5 authors · Sep 18 4
- Lynx: An Open Source Hallucination Evaluation Model Retrieval Augmented Generation (RAG) techniques aim to mitigate hallucinations in Large Language Models (LLMs). However, LLMs can still produce information that is unsupported or contradictory to the retrieved contexts. We introduce LYNX, a SOTA hallucination detection LLM that is capable of advanced reasoning on challenging real-world hallucination scenarios. To evaluate LYNX, we present HaluBench, a comprehensive hallucination evaluation benchmark, consisting of 15k samples sourced from various real-world domains. Our experiment results show that LYNX outperforms GPT-4o, Claude-3-Sonnet, and closed and open-source LLM-as-a-judge models on HaluBench. We release LYNX, HaluBench and our evaluation code for public access. 5 authors · Jul 11, 2024
6 One-shot Entropy Minimization We trained 13,440 large language models and found that entropy minimization requires only a single unlabeled data and 10 steps optimization to achieve performance improvements comparable to or even greater than those obtained using thousands of data and carefully designed rewards in rule-based reinforcement learning. This striking result may prompt a rethinking of post-training paradigms for large language models. Our code is avaliable at https://github.com/zitian-gao/one-shot-em. 4 authors · May 26 2