new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Nov 3

ERank: Fusing Supervised Fine-Tuning and Reinforcement Learning for Effective and Efficient Text Reranking

Text reranking models are a crucial component in modern systems like Retrieval-Augmented Generation, tasked with selecting the most relevant documents prior to generation. However, current Large Language Models (LLMs) powered rerankers often face a fundamental trade-off. On one hand, Supervised Fine-Tuning based pointwise methods that frame relevance as a binary classification task lack the necessary scoring discrimination, particularly for those built on reasoning LLMs. On the other hand, approaches designed for complex reasoning often employ powerful yet inefficient listwise formulations, rendering them impractical for low latency applications. To resolve this dilemma, we introduce ERank, a highly effective and efficient pointwise reranker built from a reasoning LLM that excels across diverse relevance scenarios. We propose a novel two-stage training pipeline that begins with Supervised Fine-Tuning (SFT). In this stage, we move beyond binary labels and train the model generatively to output fine grained integer scores, which significantly enhances relevance discrimination. The model is then further refined using Reinforcement Learning (RL) with a novel, listwise derived reward. This technique instills global ranking awareness into the efficient pointwise architecture. We evaluate the ERank reranker on the BRIGHT, FollowIR, TREC DL, and BEIR benchmarks, demonstrating superior effectiveness and robustness compared to existing approaches. On the reasoning-intensive BRIGHT benchmark, our ERank-4B achieves an nDCG@10 of 38.7, while a larger 32B variant reaches a state of the art nDCG@10 of 40.2.

  • 6 authors
·
Aug 30

ReasonRank: Empowering Passage Ranking with Strong Reasoning Ability

Large Language Model (LLM) based listwise ranking has shown superior performance in many passage ranking tasks. With the development of Large Reasoning Models, many studies have demonstrated that step-by-step reasoning during test-time helps improve listwise ranking performance. However, due to the scarcity of reasoning-intensive training data, existing rerankers perform poorly in many complex ranking scenarios and the ranking ability of reasoning-intensive rerankers remains largely underdeveloped. In this paper, we first propose an automated reasoning-intensive training data synthesis framework, which sources training queries and passages from diverse domains and applies DeepSeek-R1 to generate high-quality training labels. A self-consistency data filtering mechanism is designed to ensure the data quality. To empower the listwise reranker with strong reasoning ability, we further propose a two-stage post-training approach, which includes a cold-start supervised fine-tuning (SFT) stage for reasoning pattern learning and a reinforcement learning (RL) stage for further ranking ability enhancement. During the RL stage, based on the nature of listwise ranking, we design a multi-view ranking reward, which is more effective than a ranking metric-based reward. Extensive experiments demonstrate that our trained reasoning-intensive reranker ReasonRank outperforms existing baselines significantly and also achieves much lower latency than pointwise reranker Rank1. Through further experiments, our ReasonRank has achieved state-of-the-art (SOTA) performance 40.6 on the BRIGHT leaderboard\footnote{https://brightbenchmark.github.io/.} Our codes are available at https://github.com/8421BCD/ReasonRank.

  • 7 authors
·
Aug 9 4

E^2Rank: Your Text Embedding can Also be an Effective and Efficient Listwise Reranker

Text embedding models serve as a fundamental component in real-world search applications. By mapping queries and documents into a shared embedding space, they deliver competitive retrieval performance with high efficiency. However, their ranking fidelity remains limited compared to dedicated rerankers, especially recent LLM-based listwise rerankers, which capture fine-grained query-document and document-document interactions. In this paper, we propose a simple yet effective unified framework E^2Rank, means Efficient Embedding-based Ranking (also means Embedding-to-Rank), which extends a single text embedding model to perform both high-quality retrieval and listwise reranking through continued training under a listwise ranking objective, thereby achieving strong effectiveness with remarkable efficiency. By applying cosine similarity between the query and document embeddings as a unified ranking function, the listwise ranking prompt, which is constructed from the original query and its candidate documents, serves as an enhanced query enriched with signals from the top-K documents, akin to pseudo-relevance feedback (PRF) in traditional retrieval models. This design preserves the efficiency and representational quality of the base embedding model while significantly improving its reranking performance. Empirically, E^2Rank achieves state-of-the-art results on the BEIR reranking benchmark and demonstrates competitive performance on the reasoning-intensive BRIGHT benchmark, with very low reranking latency. We also show that the ranking training process improves embedding performance on the MTEB benchmark. Our findings indicate that a single embedding model can effectively unify retrieval and reranking, offering both computational efficiency and competitive ranking accuracy.

Alibaba-NLP Alibaba-NLP
·
Oct 26 1

FIRST: Faster Improved Listwise Reranking with Single Token Decoding

Large Language Models (LLMs) have significantly advanced the field of information retrieval, particularly for reranking. Listwise LLM rerankers have showcased superior performance and generalizability compared to existing supervised approaches. However, conventional listwise LLM reranking methods lack efficiency as they provide ranking output in the form of a generated ordered sequence of candidate passage identifiers. Further, they are trained with the typical language modeling objective, which treats all ranking errors uniformly--potentially at the cost of misranking highly relevant passages. Addressing these limitations, we introduce FIRST, a novel listwise LLM reranking approach leveraging the output logits of the first generated identifier to directly obtain a ranked ordering of the candidates. Further, we incorporate a learning-to-rank loss during training, prioritizing ranking accuracy for the more relevant passages. Empirical results demonstrate that FIRST accelerates inference by 50% while maintaining a robust ranking performance with gains across the BEIR benchmark. Finally, to illustrate the practical effectiveness of listwise LLM rerankers, we investigate their application in providing relevance feedback for retrievers during inference. Our results show that LLM rerankers can provide a stronger distillation signal compared to cross-encoders, yielding substantial improvements in retriever recall after relevance feedback.

  • 7 authors
·
Jun 21, 2024

ProRank: Prompt Warmup via Reinforcement Learning for Small Language Models Reranking

Reranking is fundamental to information retrieval and retrieval-augmented generation, with recent Large Language Models (LLMs) significantly advancing reranking quality. While recent advances with LLMs have significantly improved document reranking quality, current approaches primarily rely on large-scale LLMs (>7B parameters) through zero-shot prompting, presenting high computational costs. Small Language Models (SLMs) offer a promising alternative because of their efficiency, but our preliminary quantitative analysis reveals they struggle with understanding task prompts without fine-tuning. This limits their effectiveness for document reranking tasks. To address this issue, we introduce a novel two-stage training approach, ProRank, for SLM-based document reranking. First, we propose a prompt warmup stage using reinforcement learning GRPO to steer SLMs to understand task prompts and generate more accurate coarse-grained binary relevance scores for document reranking. Then, we continuously fine-tune the SLMs with a fine-grained score learning stage without introducing additional layers to further improve the reranking quality. Comprehensive experimental results demonstrate that the proposed ProRank consistently outperforms both the most advanced open-source and proprietary reranking models. Notably, our lightweight ProRank-0.5B model even surpasses the powerful 32B LLM reranking model on the BEIR benchmark, establishing that properly trained SLMs can achieve superior document reranking performance while maintaining computational efficiency.

  • 5 authors
·
Jun 3

MM-R5: MultiModal Reasoning-Enhanced ReRanker via Reinforcement Learning for Document Retrieval

Multimodal document retrieval systems enable information access across text, images, and layouts, benefiting various domains like document-based question answering, report analysis, and interactive content summarization. Rerankers improve retrieval precision by reordering retrieved candidates. However, current multimodal reranking methods remain underexplored, with significant room for improvement in both training strategies and overall effectiveness. Moreover, the lack of explicit reasoning makes it difficult to analyze and optimize these methods further. In this paper, We propose MM-R5, a MultiModal Reasoning-Enhanced ReRanker via Reinforcement Learning for Document Retrieval, aiming to provide a more effective and reliable solution for multimodal reranking tasks. MM-R5 is trained in two stages: supervised fine-tuning (SFT) and reinforcement learning (RL). In the SFT stage, we focus on improving instruction-following and guiding the model to generate complete and high-quality reasoning chains. To support this, we introduce a novel data construction strategy that produces rich, high-quality reasoning data. In the RL stage, we design a task-specific reward framework, including a reranking reward tailored for multimodal candidates and a composite template-based reward to further refine reasoning quality. We conduct extensive experiments on MMDocIR, a challenging public benchmark spanning multiple domains. MM-R5 achieves state-of-the-art performance on most metrics and delivers comparable results to much larger models on the remaining ones. Moreover, compared to the best retrieval-only method, MM-R5 improves recall@1 by over 4%. These results validate the effectiveness of our reasoning-enhanced training pipeline.

  • 8 authors
·
Jun 14

TSPRank: Bridging Pairwise and Listwise Methods with a Bilinear Travelling Salesman Model

Traditional Learning-To-Rank (LETOR) approaches, including pairwise methods like RankNet and LambdaMART, often fall short by solely focusing on pairwise comparisons, leading to sub-optimal global rankings. Conversely, deep learning based listwise methods, while aiming to optimise entire lists, require complex tuning and yield only marginal improvements over robust pairwise models. To overcome these limitations, we introduce Travelling Salesman Problem Rank (TSPRank), a hybrid pairwise-listwise ranking method. TSPRank reframes the ranking problem as a Travelling Salesman Problem (TSP), a well-known combinatorial optimisation challenge that has been extensively studied for its numerous solution algorithms and applications. This approach enables the modelling of pairwise relationships and leverages combinatorial optimisation to determine the listwise ranking. This approach can be directly integrated as an additional component into embeddings generated by existing backbone models to enhance ranking performance. Our extensive experiments across three backbone models on diverse tasks, including stock ranking, information retrieval, and historical events ordering, demonstrate that TSPRank significantly outperforms both pure pairwise and listwise methods. Our qualitative analysis reveals that TSPRank's main advantage over existing methods is its ability to harness global information better while ranking. TSPRank's robustness and superior performance across different domains highlight its potential as a versatile and effective LETOR solution.

  • 5 authors
·
Nov 18, 2024

Chain-of-Thought Re-ranking for Image Retrieval Tasks

Image retrieval remains a fundamental yet challenging problem in computer vision. While recent advances in Multimodal Large Language Models (MLLMs) have demonstrated strong reasoning capabilities, existing methods typically employ them only for evaluation, without involving them directly in the ranking process. As a result, their rich multimodal reasoning abilities remain underutilized, leading to suboptimal performance. In this paper, we propose a novel Chain-of-Thought Re-Ranking (CoTRR) method to address this issue. Specifically, we design a listwise ranking prompt that enables MLLM to directly participate in re-ranking candidate images. This ranking process is grounded in an image evaluation prompt, which assesses how well each candidate aligns with users query. By allowing MLLM to perform listwise reasoning, our method supports global comparison, consistent reasoning, and interpretable decision-making - all of which are essential for accurate image retrieval. To enable structured and fine-grained analysis, we further introduce a query deconstruction prompt, which breaks down the original query into multiple semantic components. Extensive experiments on five datasets demonstrate the effectiveness of our CoTRR method, which achieves state-of-the-art performance across three image retrieval tasks, including text-to-image retrieval (TIR), composed image retrieval (CIR) and chat-based image retrieval (Chat-IR). Our code is available at https://github.com/freshfish15/CoTRR .

  • 5 authors
·
Sep 18

Rank-R1: Enhancing Reasoning in LLM-based Document Rerankers via Reinforcement Learning

In this paper, we introduce Rank-R1, a novel LLM-based reranker that performs reasoning over both the user query and candidate documents before performing the ranking task. Existing document reranking methods based on large language models (LLMs) typically rely on prompting or fine-tuning LLMs to order or label candidate documents according to their relevance to a query. For Rank-R1, we use a reinforcement learning algorithm along with only a small set of relevance labels (without any reasoning supervision) to enhance the reasoning ability of LLM-based rerankers. Our hypothesis is that adding reasoning capabilities to the rerankers can improve their relevance assessement and ranking capabilities. Our experiments on the TREC DL and BRIGHT datasets show that Rank-R1 is highly effective, especially for complex queries. In particular, we find that Rank-R1 achieves effectiveness on in-domain datasets at par with that of supervised fine-tuning methods, but utilizing only 18\% of the training data used by the fine-tuning methods. We also find that the model largely outperforms zero-shot and supervised fine-tuning when applied to out-of-domain datasets featuring complex queries, especially when a 14B-size model is used. Finally, we qualitatively observe that Rank-R1's reasoning process improves the explainability of the ranking results, opening new opportunities for search engine results presentation and fruition.

  • 5 authors
·
Mar 7

Global Features are All You Need for Image Retrieval and Reranking

Image retrieval systems conventionally use a two-stage paradigm, leveraging global features for initial retrieval and local features for reranking. However, the scalability of this method is often limited due to the significant storage and computation cost incurred by local feature matching in the reranking stage. In this paper, we present SuperGlobal, a novel approach that exclusively employs global features for both stages, improving efficiency without sacrificing accuracy. SuperGlobal introduces key enhancements to the retrieval system, specifically focusing on the global feature extraction and reranking processes. For extraction, we identify sub-optimal performance when the widely-used ArcFace loss and Generalized Mean (GeM) pooling methods are combined and propose several new modules to improve GeM pooling. In the reranking stage, we introduce a novel method to update the global features of the query and top-ranked images by only considering feature refinement with a small set of images, thus being very compute and memory efficient. Our experiments demonstrate substantial improvements compared to the state of the art in standard benchmarks. Notably, on the Revisited Oxford+1M Hard dataset, our single-stage results improve by 7.1%, while our two-stage gain reaches 3.7% with a strong 64,865x speedup. Our two-stage system surpasses the current single-stage state-of-the-art by 16.3%, offering a scalable, accurate alternative for high-performing image retrieval systems with minimal time overhead. Code: https://github.com/ShihaoShao-GH/SuperGlobal.

  • 6 authors
·
Aug 14, 2023 1

Supervised Fine-Tuning or Contrastive Learning? Towards Better Multimodal LLM Reranking

In information retrieval, training reranking models mainly focuses on two types of objectives: metric learning (e.g. contrastive loss to increase the predicted scores on relevant query-document pairs) and classification (binary label prediction of relevance vs. irrelevance). For BERT-style encoders, various studies have shown that contrastive learning (CL) can be more effective than discriminative (classification) learning. However, for large language models (LLMs), classification via supervised fine-tuning (SFT), which predicts ''yes'' (resp. ''no'') token for relevant (resp. irrelevant) pairs, appears more promising as it aligns well with the generative nature of LLMs. This divergence raises a central question: which objective is intrinsically better suited to LLM-based reranking, and what mechanism underlies the difference? In this work, we conduct a comprehensive comparison and analysis between CL and SFT for reranking, taking the universal multimodal retrieval (UMR) as the experimental playground. We first decompose the objectives into two components: weight, which controls the magnitude of those updates, and direction, which guides the model updates, then present a unified framework for understanding their interactions. Through probing experiments, we find that SFT provides a substantially stronger weighting scheme than CL, whereas the preferred scoring direction shows no clear winner. Taken together, these results point to a consistent advantage of SFT over CL for LLM reranking. To further validate our findings, we conduct large-scale training with SFT and present new state-of-the-art rerankers on the MRB benchmark. We also provide ablations on SFT settings and expect our findings to benefit future research and applications in this area.

  • 9 authors
·
Oct 16

RankList -- A Listwise Preference Learning Framework for Predicting Subjective Preferences

Preference learning has gained significant attention in tasks involving subjective human judgments, such as speech emotion recognition (SER) and image aesthetic assessment. While pairwise frameworks such as RankNet offer robust modeling of relative preferences, they are inherently limited to local comparisons and struggle to capture global ranking consistency. To address these limitations, we propose RankList, a novel listwise preference learning framework that generalizes RankNet to structured list-level supervision. Our formulation explicitly models local and non-local ranking constraints within a probabilistic framework. The paper introduces a log-sum-exp approximation to improve training efficiency. We further extend RankList with skip-wise comparisons, enabling progressive exposure to complex list structures and enhancing global ranking fidelity. Extensive experiments demonstrate the superiority of our method across diverse modalities. On benchmark SER datasets (MSP-Podcast, IEMOCAP, BIIC Podcast), RankList achieves consistent improvements in Kendall's Tau and ranking accuracy compared to standard listwise baselines. We also validate our approach on aesthetic image ranking using the Artistic Image Aesthetics dataset, highlighting its broad applicability. Through ablation and cross-domain studies, we show that RankList not only improves in-domain ranking but also generalizes better across datasets. Our framework offers a unified, extensible approach for modeling ordered preferences in subjective learning scenarios.

  • 3 authors
·
Aug 13

Large Language Models are Effective Text Rankers with Pairwise Ranking Prompting

Ranking documents using Large Language Models (LLMs) by directly feeding the query and candidate documents into the prompt is an interesting and practical problem. However, there has been limited success so far, as researchers have found it difficult to outperform fine-tuned baseline rankers on benchmark datasets. We analyze pointwise and listwise ranking prompts used by existing methods and argue that off-the-shelf LLMs do not fully understand these ranking formulations, possibly due to the nature of how LLMs are trained. In this paper, we propose to significantly reduce the burden on LLMs by using a new technique called Pairwise Ranking Prompting (PRP). Our results are the first in the literature to achieve state-of-the-art ranking performance on standard benchmarks using moderate-sized open-sourced LLMs. On TREC-DL2020, PRP based on the Flan-UL2 model with 20B parameters outperforms the previous best approach in the literature, which is based on the blackbox commercial GPT-4 that has 50x (estimated) model size, by over 5% at NDCG@1. On TREC-DL2019, PRP is only inferior to the GPT-4 solution on the NDCG@5 and NDCG@10 metrics, while outperforming other existing solutions, such as InstructGPT which has 175B parameters, by over 10% for nearly all ranking metrics. Furthermore, we propose several variants of PRP to improve efficiency and show that it is possible to achieve competitive results even with linear complexity. We also discuss other benefits of PRP, such as supporting both generation and scoring LLM APIs, as well as being insensitive to input ordering.

  • 11 authors
·
Jun 30, 2023

Rankify: A Comprehensive Python Toolkit for Retrieval, Re-Ranking, and Retrieval-Augmented Generation

Retrieval, re-ranking, and retrieval-augmented generation (RAG) are critical components of modern applications in information retrieval, question answering, or knowledge-based text generation. However, existing solutions are often fragmented, lacking a unified framework that easily integrates these essential processes. The absence of a standardized implementation, coupled with the complexity of retrieval and re-ranking workflows, makes it challenging for researchers to compare and evaluate different approaches in a consistent environment. While existing toolkits such as Rerankers and RankLLM provide general-purpose reranking pipelines, they often lack the flexibility required for fine-grained experimentation and benchmarking. In response to these challenges, we introduce Rankify, a powerful and modular open-source toolkit designed to unify retrieval, re-ranking, and RAG within a cohesive framework. Rankify supports a wide range of retrieval techniques, including dense and sparse retrievers, while incorporating state-of-the-art re-ranking models to enhance retrieval quality. Additionally, Rankify includes a collection of pre-retrieved datasets to facilitate benchmarking, available at Huggingface (https://huggingface.co/datasets/abdoelsayed/reranking-datasets-light). To encourage adoption and ease of integration, we provide comprehensive documentation (http://rankify.readthedocs.io/), an open-source implementation on GitHub (https://github.com/DataScienceUIBK/rankify), and a PyPI package for easy installation (https://pypi.org/project/rankify/). As a unified and lightweight framework, Rankify allows researchers and practitioners to advance retrieval and re-ranking methodologies while ensuring consistency, scalability, and ease of use.

  • 5 authors
·
Feb 4

Multi-view-guided Passage Reranking with Large Language Models

Recent advances in large language models (LLMs) have shown impressive performance in passage reranking tasks. Despite their success, LLM-based methods still face challenges in efficiency and sensitivity to external biases. (1) Existing models rely mostly on autoregressive generation and sliding window strategies to rank passages, which incur heavy computational overhead as the number of passages increases. (2) External biases, such as position or selection bias, hinder the model's ability to accurately represent passages and increase input-order sensitivity. To address these limitations, we introduce a novel passage reranking model, called Multi-View-guided Passage Reranking (MVP). MVP is a non-generative LLM-based reranking method that encodes query-passage information into diverse view embeddings without being influenced by external biases. For each view, it combines query-aware passage embeddings to produce a distinct anchor vector, which is then used to directly compute relevance scores in a single decoding step. In addition, it employs an orthogonal loss to make the views more distinctive. Extensive experiments demonstrate that MVP, with just 220M parameters, matches the performance of much larger 7B-scale fine-tuned models while achieving a 100x reduction in inference latency. Notably, the 3B-parameter variant of MVP achieves state-of-the-art performance on both in-domain and out-of-domain benchmarks. The source code is available at: https://github.com/bulbna/MVP

  • 4 authors
·
Sep 9

SQUARE: Semantic Query-Augmented Fusion and Efficient Batch Reranking for Training-free Zero-Shot Composed Image Retrieval

Composed Image Retrieval (CIR) aims to retrieve target images that preserve the visual content of a reference image while incorporating user-specified textual modifications. Training-free zero-shot CIR (ZS-CIR) approaches, which require no task-specific training or labeled data, are highly desirable, yet accurately capturing user intent remains challenging. In this paper, we present SQUARE, a novel two-stage training-free framework that leverages Multimodal Large Language Models (MLLMs) to enhance ZS-CIR. In the Semantic Query-Augmented Fusion (SQAF) stage, we enrich the query embedding derived from a vision-language model (VLM) such as CLIP with MLLM-generated captions of the target image. These captions provide high-level semantic guidance, enabling the query to better capture the user's intent and improve global retrieval quality. In the Efficient Batch Reranking (EBR) stage, top-ranked candidates are presented as an image grid with visual marks to the MLLM, which performs joint visual-semantic reasoning across all candidates. Our reranking strategy operates in a single pass and yields more accurate rankings. Experiments show that SQUARE, with its simplicity and effectiveness, delivers strong performance on four standard CIR benchmarks. Notably, it maintains high performance even with lightweight pre-trained, demonstrating its potential applicability.

  • 3 authors
·
Sep 30 3

Generating EDU Extracts for Plan-Guided Summary Re-Ranking

Two-step approaches, in which summary candidates are generated-then-reranked to return a single summary, can improve ROUGE scores over the standard single-step approach. Yet, standard decoding methods (i.e., beam search, nucleus sampling, and diverse beam search) produce candidates with redundant, and often low quality, content. In this paper, we design a novel method to generate candidates for re-ranking that addresses these issues. We ground each candidate abstract on its own unique content plan and generate distinct plan-guided abstracts using a model's top beam. More concretely, a standard language model (a BART LM) auto-regressively generates elemental discourse unit (EDU) content plans with an extractive copy mechanism. The top K beams from the content plan generator are then used to guide a separate LM, which produces a single abstractive candidate for each distinct plan. We apply an existing re-ranker (BRIO) to abstractive candidates generated from our method, as well as baseline decoding methods. We show large relevance improvements over previously published methods on widely used single document news article corpora, with ROUGE-2 F1 gains of 0.88, 2.01, and 0.38 on CNN / Dailymail, NYT, and Xsum, respectively. A human evaluation on CNN / DM validates these results. Similarly, on 1k samples from CNN / DM, we show that prompting GPT-3 to follow EDU plans outperforms sampling-based methods by 1.05 ROUGE-2 F1 points. Code to generate and realize plans is available at https://github.com/griff4692/edu-sum.

  • 5 authors
·
May 28, 2023

Enhancing Sampling Protocol for Point Cloud Classification Against Corruptions

Established sampling protocols for 3D point cloud learning, such as Farthest Point Sampling (FPS) and Fixed Sample Size (FSS), have long been relied upon. However, real-world data often suffer from corruptions, such as sensor noise, which violates the benign data assumption in current protocols. As a result, these protocols are highly vulnerable to noise, posing significant safety risks in critical applications like autonomous driving. To address these issues, we propose an enhanced point cloud sampling protocol, PointSP, designed to improve robustness against point cloud corruptions. PointSP incorporates key point reweighting to mitigate outlier sensitivity and ensure the selection of representative points. It also introduces a local-global balanced downsampling strategy, which allows for scalable and adaptive sampling while maintaining geometric consistency. Additionally, a lightweight tangent plane interpolation method is used to preserve local geometry while enhancing the density of the point cloud. Unlike learning-based approaches that require additional model training, PointSP is architecture-agnostic, requiring no extra learning or modification to the network. This enables seamless integration into existing pipelines. Extensive experiments on synthetic and real-world corrupted datasets show that PointSP significantly improves the robustness and accuracy of point cloud classification, outperforming state-of-the-art methods across multiple benchmarks.

  • 5 authors
·
Aug 21, 2024

An Early FIRST Reproduction and Improvements to Single-Token Decoding for Fast Listwise Reranking

Recent advances have demonstrated that large language models (LLMs) excel as listwise rerankers, but their high computational demands remain a barrier to widespread adoption. Further, the traditional language modeling (LM) objective is not ideally suited for reranking tasks. FIRST is a novel approach that addresses these challenges by integrating a learning-to-rank objective and leveraging the logits of only the first generated token, thereby significantly reducing inference latency compared to traditional LLM rerankers. In this study, we extend the evaluation of FIRST to the TREC Deep Learning datasets (DL19-22), validating its robustness across diverse domains. We investigate the influence of different first-stage retrievers on FIRST rerankers, observing diminishing returns and patterns consistent with traditional LLM rerankers. Through applying the FIRST objective to a broader range of backbone models, we achieve effectiveness surpassing the original implementation. Our experiments confirm that fast reranking with single-token logits does not compromise out-of-domain reranking quality. To better quantify the computational savings in the original study, we measure and compare latency to find a 21%-42% gain across various models and benchmarks. Moreover, while LM training implicitly improves zero-shot single-token reranking, our experiments also raise questions about whether LM pre-training may hinder subsequent fine-tuning with the FIRST objective. These findings pave the way for more efficient and effective listwise reranking in future applications.

  • 3 authors
·
Nov 8, 2024

Iterative Self-Training for Code Generation via Reinforced Re-Ranking

Generating high-quality code that solves complex programming tasks is challenging, especially with current decoder-based models that produce highly stochastic outputs. In code generation, even minor errors can easily break the entire solution. Leveraging multiple sampled solutions can significantly improve the overall output quality. One effective way to enhance code generation is by pairing a code generation model with a reranker model, which selects the best solution from the generated samples. We propose a novel iterative self-training approach for self-training reranker models using Proximal Policy Optimization (PPO), aimed at improving both reranking accuracy and the overall code generation process. Unlike traditional PPO approaches, where the focus is on optimizing a generative model with a reward model, our approach emphasizes the development of a robust reward/reranking model. This model improves the quality of generated code through reranking and addresses problems and errors that the reward model might overlook during PPO alignment with the reranker. Our method iteratively refines the training dataset by re-evaluating outputs, identifying high-scoring negative examples, and incorporating them into the training loop, that boosting model performance. Our evaluation on the MultiPL-E dataset demonstrates that our 13.4B parameter model outperforms a 33B model in code generation quality while being three times faster. Moreover, it achieves performance comparable to GPT-4 and surpasses it in one programming language.

  • 3 authors
·
Apr 13 2

OneRec: Unifying Retrieve and Rank with Generative Recommender and Iterative Preference Alignment

Recently, generative retrieval-based recommendation systems have emerged as a promising paradigm. However, most modern recommender systems adopt a retrieve-and-rank strategy, where the generative model functions only as a selector during the retrieval stage. In this paper, we propose OneRec, which replaces the cascaded learning framework with a unified generative model. To the best of our knowledge, this is the first end-to-end generative model that significantly surpasses current complex and well-designed recommender systems in real-world scenarios. Specifically, OneRec includes: 1) an encoder-decoder structure, which encodes the user's historical behavior sequences and gradually decodes the videos that the user may be interested in. We adopt sparse Mixture-of-Experts (MoE) to scale model capacity without proportionally increasing computational FLOPs. 2) a session-wise generation approach. In contrast to traditional next-item prediction, we propose a session-wise generation, which is more elegant and contextually coherent than point-by-point generation that relies on hand-crafted rules to properly combine the generated results. 3) an Iterative Preference Alignment module combined with Direct Preference Optimization (DPO) to enhance the quality of the generated results. Unlike DPO in NLP, a recommendation system typically has only one opportunity to display results for each user's browsing request, making it impossible to obtain positive and negative samples simultaneously. To address this limitation, We design a reward model to simulate user generation and customize the sampling strategy. Extensive experiments have demonstrated that a limited number of DPO samples can align user interest preferences and significantly improve the quality of generated results. We deployed OneRec in the main scene of Kuaishou, achieving a 1.6\% increase in watch-time, which is a substantial improvement.

  • 8 authors
·
Feb 26 2

DeAR: Dual-Stage Document Reranking with Reasoning Agents via LLM Distillation

Large Language Models (LLMs) have transformed listwise document reranking by enabling global reasoning over candidate sets, yet single models often struggle to balance fine-grained relevance scoring with holistic cross-document analysis. We propose DeepAgentRank (\DeAR), an open-source framework that decouples these tasks through a dual-stage approach, achieving superior accuracy and interpretability. In Stage 1, we distill token-level relevance signals from a frozen 13B LLaMA teacher into a compact \{3, 8\}B student model using a hybrid of cross-entropy, RankNet, and KL divergence losses, ensuring robust pointwise scoring. In Stage 2, we attach a second LoRA adapter and fine-tune on 20K GPT-4o-generated chain-of-thought permutations, enabling listwise reasoning with natural-language justifications. Evaluated on TREC-DL19/20, eight BEIR datasets, and NovelEval-2306, \DeAR surpasses open-source baselines by +5.1 nDCG@5 on DL20 and achieves 90.97 nDCG@10 on NovelEval, outperforming GPT-4 by +3.09. Without fine-tuning on Wikipedia, DeAR also excels in open-domain QA, achieving 54.29 Top-1 accuracy on Natural Questions, surpassing baselines like MonoT5, UPR, and RankGPT. Ablations confirm that dual-loss distillation ensures stable calibration, making \DeAR a highly effective and interpretable solution for modern reranking systems.Dataset and code available at https://github.com/DataScienceUIBK/DeAR-Reranking..

  • 4 authors
·
Aug 23

REG4Rec: Reasoning-Enhanced Generative Model for Large-Scale Recommendation Systems

Sequential recommendation aims to predict a user's next action in large-scale recommender systems. While traditional methods often suffer from insufficient information interaction, recent generative recommendation models partially address this issue by directly generating item predictions. To better capture user intents, recent studies have introduced a reasoning process into generative recommendation, significantly improving recommendation performance. However, these approaches are constrained by the singularity of item semantic representations, facing challenges such as limited diversity in reasoning pathways and insufficient reliability in the reasoning process. To tackle these issues, we introduce REG4Rec, a reasoning-enhanced generative model that constructs multiple dynamic semantic reasoning paths alongside a self-reflection process, ensuring high-confidence recommendations. Specifically, REG4Rec utilizes an MoE-based parallel quantization codebook (MPQ) to generate multiple unordered semantic tokens for each item, thereby constructing a larger-scale diverse reasoning space. Furthermore, to enhance the reliability of reasoning, we propose a training reasoning enhancement stage, which includes Preference Alignment for Reasoning (PARS) and a Multi-Step Reward Augmentation (MSRA) strategy. PARS uses reward functions tailored for recommendation to enhance reasoning and reflection, while MSRA introduces future multi-step actions to improve overall generalization. During inference, Consistency-Oriented Self-Reflection for Pruning (CORP) is proposed to discard inconsistent reasoning paths, preventing the propagation of erroneous reasoning. Lastly, we develop an efficient offline training strategy for large-scale recommendation. Experiments on real-world datasets and online evaluations show that REG4Rec delivers outstanding performance and substantial practical value.

  • 11 authors
·
Aug 21

SynerGen: Contextualized Generative Recommender for Unified Search and Recommendation

The dominant retrieve-then-rank pipeline in large-scale recommender systems suffers from mis-calibration and engineering overhead due to its architectural split and differing optimization objectives. While recent generative sequence models have shown promise in unifying retrieval and ranking by auto-regressively generating ranked items, existing solutions typically address either personalized search or query-free recommendation, often exhibiting performance trade-offs when attempting to unify both. We introduce SynerGen, a novel generative recommender model that bridges this critical gap by providing a single generative backbone for both personalized search and recommendation, while simultaneously excelling at retrieval and ranking tasks. Trained on behavioral sequences, our decoder-only Transformer leverages joint optimization with InfoNCE for retrieval and a hybrid pointwise-pairwise loss for ranking, allowing semantic signals from search to improve recommendation and vice versa. We also propose a novel time-aware rotary positional embedding to effectively incorporate time information into the attention mechanism. SynerGen achieves significant improvements on widely adopted recommendation and search benchmarks compared to strong generative recommender and joint search and recommendation baselines. This work demonstrates the viability of a single generative foundation model for industrial-scale unified information access.

  • 14 authors
·
Sep 25

Focus on Local: Finding Reliable Discriminative Regions for Visual Place Recognition

Visual Place Recognition (VPR) is aimed at predicting the location of a query image by referencing a database of geotagged images. For VPR task, often fewer discriminative local regions in an image produce important effects while mundane background regions do not contribute or even cause perceptual aliasing because of easy overlap. However, existing methods lack precisely modeling and full exploitation of these discriminative regions. In this paper, we propose the Focus on Local (FoL) approach to stimulate the performance of image retrieval and re-ranking in VPR simultaneously by mining and exploiting reliable discriminative local regions in images and introducing pseudo-correlation supervision. First, we design two losses, Extraction-Aggregation Spatial Alignment Loss (SAL) and Foreground-Background Contrast Enhancement Loss (CEL), to explicitly model reliable discriminative local regions and use them to guide the generation of global representations and efficient re-ranking. Second, we introduce a weakly-supervised local feature training strategy based on pseudo-correspondences obtained from aggregating global features to alleviate the lack of local correspondences ground truth for the VPR task. Third, we suggest an efficient re-ranking pipeline that is efficiently and precisely based on discriminative region guidance. Finally, experimental results show that our FoL achieves the state-of-the-art on multiple VPR benchmarks in both image retrieval and re-ranking stages and also significantly outperforms existing two-stage VPR methods in terms of computational efficiency. Code and models are available at https://github.com/chenshunpeng/FoL

  • 14 authors
·
Apr 14

Universal Biological Sequence Reranking for Improved De Novo Peptide Sequencing

De novo peptide sequencing is a critical task in proteomics. However, the performance of current deep learning-based methods is limited by the inherent complexity of mass spectrometry data and the heterogeneous distribution of noise signals, leading to data-specific biases. We present RankNovo, the first deep reranking framework that enhances de novo peptide sequencing by leveraging the complementary strengths of multiple sequencing models. RankNovo employs a list-wise reranking approach, modeling candidate peptides as multiple sequence alignments and utilizing axial attention to extract informative features across candidates. Additionally, we introduce two new metrics, PMD (Peptide Mass Deviation) and RMD (residual Mass Deviation), which offer delicate supervision by quantifying mass differences between peptides at both the sequence and residue levels. Extensive experiments demonstrate that RankNovo not only surpasses its base models used to generate training candidates for reranking pre-training, but also sets a new state-of-the-art benchmark. Moreover, RankNovo exhibits strong zero-shot generalization to unseen models whose generations were not exposed during training, highlighting its robustness and potential as a universal reranking framework for peptide sequencing. Our work presents a novel reranking strategy that fundamentally challenges existing single-model paradigms and advances the frontier of accurate de novo sequencing. Our source code is provided on GitHub.

  • 9 authors
·
May 23 2

DynamicRetriever: A Pre-training Model-based IR System with Neither Sparse nor Dense Index

Web search provides a promising way for people to obtain information and has been extensively studied. With the surgence of deep learning and large-scale pre-training techniques, various neural information retrieval models are proposed and they have demonstrated the power for improving search (especially, the ranking) quality. All these existing search methods follow a common paradigm, i.e. index-retrieve-rerank, where they first build an index of all documents based on document terms (i.e., sparse inverted index) or representation vectors (i.e., dense vector index), then retrieve and rerank retrieved documents based on similarity between the query and documents via ranking models. In this paper, we explore a new paradigm of information retrieval with neither sparse nor dense index but only a model. Specifically, we propose a pre-training model-based IR system called DynamicRetriever. As for this system, the training stage embeds the token-level and document-level information (especially, document identifiers) of the corpus into the model parameters, then the inference stage directly generates document identifiers for a given query. Compared with existing search methods, the model-based IR system has two advantages: i) it parameterizes the traditional static index with a pre-training model, which converts the document semantic mapping into a dynamic and updatable process; ii) with separate document identifiers, it captures both the term-level and document-level information for each document. Extensive experiments conducted on the public search benchmark MS MARCO verify the effectiveness and potential of our proposed new paradigm for information retrieval.

  • 5 authors
·
Mar 1, 2022

UniME-V2: MLLM-as-a-Judge for Universal Multimodal Embedding Learning

Universal multimodal embedding models are foundational to various tasks. Existing approaches typically employ in-batch negative mining by measuring the similarity of query-candidate pairs. However, these methods often struggle to capture subtle semantic differences among candidates and lack diversity in negative samples. Moreover, the embeddings exhibit limited discriminative ability in distinguishing false and hard negatives. In this paper, we leverage the advanced understanding capabilities of MLLMs to enhance representation learning and present a novel Universal Multimodal Embedding (UniME-V2) model. Our approach first constructs a potential hard negative set through global retrieval. We then introduce the MLLM-as-a-Judge mechanism, which utilizes MLLMs to assess the semantic alignment of query-candidate pairs and generate soft semantic matching scores. These scores serve as a foundation for hard negative mining, mitigating the impact of false negatives and enabling the identification of diverse, high-quality hard negatives. Furthermore, the semantic matching scores are used as soft labels to mitigate the rigid one-to-one mapping constraint. By aligning the similarity matrix with the soft semantic matching score matrix, the model learns semantic distinctions among candidates, significantly enhancing its discriminative capacity. To further improve performance, we propose UniME-V2-Reranker, a reranking model trained on our mined hard negatives through a joint pairwise and listwise optimization approach. We conduct comprehensive experiments on the MMEB benchmark and multiple retrieval tasks, demonstrating that our method achieves state-of-the-art performance on average across all tasks.

  • 9 authors
·
Oct 15 2

PowerWalk: Scalable Personalized PageRank via Random Walks with Vertex-Centric Decomposition

Most methods for Personalized PageRank (PPR) precompute and store all accurate PPR vectors, and at query time, return the ones of interest directly. However, the storage and computation of all accurate PPR vectors can be prohibitive for large graphs, especially in caching them in memory for real-time online querying. In this paper, we propose a distributed framework that strikes a better balance between offline indexing and online querying. The offline indexing attains a fingerprint of the PPR vector of each vertex by performing billions of "short" random walks in parallel across a cluster of machines. We prove that our indexing method has an exponential convergence, achieving the same precision with previous methods using a much smaller number of random walks. At query time, the new PPR vector is composed by a linear combination of related fingerprints, in a highly efficient vertex-centric decomposition manner. Interestingly, the resulting PPR vector is much more accurate than its offline counterpart because it actually uses more random walks in its estimation. More importantly, we show that such decomposition for a batch of queries can be very efficiently processed using a shared decomposition. Our implementation, PowerWalk, takes advantage of advanced distributed graph engines and it outperforms the state-of-the-art algorithms by orders of magnitude. Particularly, it responses to tens of thousands of queries on graphs with billions of edges in just a few seconds.

  • 4 authors
·
Aug 22, 2016

K-Sort Arena: Efficient and Reliable Benchmarking for Generative Models via K-wise Human Preferences

The rapid advancement of visual generative models necessitates efficient and reliable evaluation methods. Arena platform, which gathers user votes on model comparisons, can rank models with human preferences. However, traditional Arena methods, while established, require an excessive number of comparisons for ranking to converge and are vulnerable to preference noise in voting, suggesting the need for better approaches tailored to contemporary evaluation challenges. In this paper, we introduce K-Sort Arena, an efficient and reliable platform based on a key insight: images and videos possess higher perceptual intuitiveness than texts, enabling rapid evaluation of multiple samples simultaneously. Consequently, K-Sort Arena employs K-wise comparisons, allowing K models to engage in free-for-all competitions, which yield much richer information than pairwise comparisons. To enhance the robustness of the system, we leverage probabilistic modeling and Bayesian updating techniques. We propose an exploration-exploitation-based matchmaking strategy to facilitate more informative comparisons. In our experiments, K-Sort Arena exhibits 16.3x faster convergence compared to the widely used ELO algorithm. To further validate the superiority and obtain a comprehensive leaderboard, we collect human feedback via crowdsourced evaluations of numerous cutting-edge text-to-image and text-to-video models. Thanks to its high efficiency, K-Sort Arena can continuously incorporate emerging models and update the leaderboard with minimal votes. Our project has undergone several months of internal testing and is now available at https://huggingface.co/spaces/ksort/K-Sort-Arena

  • 7 authors
·
Aug 26, 2024 3

INQUIRE: A Natural World Text-to-Image Retrieval Benchmark

We introduce INQUIRE, a text-to-image retrieval benchmark designed to challenge multimodal vision-language models on expert-level queries. INQUIRE includes iNaturalist 2024 (iNat24), a new dataset of five million natural world images, along with 250 expert-level retrieval queries. These queries are paired with all relevant images comprehensively labeled within iNat24, comprising 33,000 total matches. Queries span categories such as species identification, context, behavior, and appearance, emphasizing tasks that require nuanced image understanding and domain expertise. Our benchmark evaluates two core retrieval tasks: (1) INQUIRE-Fullrank, a full dataset ranking task, and (2) INQUIRE-Rerank, a reranking task for refining top-100 retrievals. Detailed evaluation of a range of recent multimodal models demonstrates that INQUIRE poses a significant challenge, with the best models failing to achieve an mAP@50 above 50%. In addition, we show that reranking with more powerful multimodal models can enhance retrieval performance, yet there remains a significant margin for improvement. By focusing on scientifically-motivated ecological challenges, INQUIRE aims to bridge the gap between AI capabilities and the needs of real-world scientific inquiry, encouraging the development of retrieval systems that can assist with accelerating ecological and biodiversity research. Our dataset and code are available at https://inquire-benchmark.github.io

  • 8 authors
·
Nov 4, 2024

Natural Logic-guided Autoregressive Multi-hop Document Retrieval for Fact Verification

A key component of fact verification is thevevidence retrieval, often from multiple documents. Recent approaches use dense representations and condition the retrieval of each document on the previously retrieved ones. The latter step is performed over all the documents in the collection, requiring storing their dense representations in an index, thus incurring a high memory footprint. An alternative paradigm is retrieve-and-rerank, where documents are retrieved using methods such as BM25, their sentences are reranked, and further documents are retrieved conditioned on these sentences, reducing the memory requirements. However, such approaches can be brittle as they rely on heuristics and assume hyperlinks between documents. We propose a novel retrieve-and-rerank method for multi-hop retrieval, that consists of a retriever that jointly scores documents in the knowledge source and sentences from previously retrieved documents using an autoregressive formulation and is guided by a proof system based on natural logic that dynamically terminates the retrieval process if the evidence is deemed sufficient. This method is competitive with current state-of-the-art methods on FEVER, HoVer and FEVEROUS-S, while using 5 to 10 times less memory than competing systems. Evaluation on an adversarial dataset indicates improved stability of our approach compared to commonly deployed threshold-based methods. Finally, the proof system helps humans predict model decisions correctly more often than using the evidence alone.

  • 2 authors
·
Dec 10, 2022

Attention in Large Language Models Yields Efficient Zero-Shot Re-Rankers

Information retrieval (IR) systems have played a vital role in modern digital life and have cemented their continued usefulness in this new era of generative AI via retrieval-augmented generation. With strong language processing capabilities and remarkable versatility, large language models (LLMs) have become popular choices for zero-shot re-ranking in IR systems. So far, LLM-based re-ranking methods rely on strong generative capabilities, which restricts their use to either specialized or powerful proprietary models. Given these restrictions, we ask: is autoregressive generation necessary and optimal for LLMs to perform re-ranking? We hypothesize that there are abundant signals relevant to re-ranking within LLMs that might not be used to their full potential via generation. To more directly leverage such signals, we propose in-context re-ranking (ICR), a novel method that leverages the change in attention pattern caused by the search query for accurate and efficient re-ranking. To mitigate the intrinsic biases in LLMs, we propose a calibration method using a content-free query. Due to the absence of generation, ICR only requires two (O(1)) forward passes to re-rank N documents, making it substantially more efficient than generative re-ranking methods that require at least O(N) forward passes. Our novel design also enables ICR to be applied to any LLM without specialized training while guaranteeing a well-formed ranking. Extensive experiments with two popular open-weight LLMs on standard single-hop and multi-hop information retrieval benchmarks show that ICR outperforms RankGPT while cutting the latency by more than 60% in practice. Through detailed analyses, we show that ICR's performance is specially strong on tasks that require more complex re-ranking signals. Our findings call for further exploration on novel ways of utilizing open-weight LLMs beyond text generation.

  • 3 authors
·
Oct 3, 2024

OutRank: Speeding up AutoML-based Model Search for Large Sparse Data sets with Cardinality-aware Feature Ranking

The design of modern recommender systems relies on understanding which parts of the feature space are relevant for solving a given recommendation task. However, real-world data sets in this domain are often characterized by their large size, sparsity, and noise, making it challenging to identify meaningful signals. Feature ranking represents an efficient branch of algorithms that can help address these challenges by identifying the most informative features and facilitating the automated search for more compact and better-performing models (AutoML). We introduce OutRank, a system for versatile feature ranking and data quality-related anomaly detection. OutRank was built with categorical data in mind, utilizing a variant of mutual information that is normalized with regard to the noise produced by features of the same cardinality. We further extend the similarity measure by incorporating information on feature similarity and combined relevance. The proposed approach's feasibility is demonstrated by speeding up the state-of-the-art AutoML system on a synthetic data set with no performance loss. Furthermore, we considered a real-life click-through-rate prediction data set where it outperformed strong baselines such as random forest-based approaches. The proposed approach enables exploration of up to 300% larger feature spaces compared to AutoML-only approaches, enabling faster search for better models on off-the-shelf hardware.

  • 2 authors
·
Sep 4, 2023

Fast and Accurate Network Embeddings via Very Sparse Random Projection

We present FastRP, a scalable and performant algorithm for learning distributed node representations in a graph. FastRP is over 4,000 times faster than state-of-the-art methods such as DeepWalk and node2vec, while achieving comparable or even better performance as evaluated on several real-world networks on various downstream tasks. We observe that most network embedding methods consist of two components: construct a node similarity matrix and then apply dimension reduction techniques to this matrix. We show that the success of these methods should be attributed to the proper construction of this similarity matrix, rather than the dimension reduction method employed. FastRP is proposed as a scalable algorithm for network embeddings. Two key features of FastRP are: 1) it explicitly constructs a node similarity matrix that captures transitive relationships in a graph and normalizes matrix entries based on node degrees; 2) it utilizes very sparse random projection, which is a scalable optimization-free method for dimension reduction. An extra benefit from combining these two design choices is that it allows the iterative computation of node embeddings so that the similarity matrix need not be explicitly constructed, which further speeds up FastRP. FastRP is also advantageous for its ease of implementation, parallelization and hyperparameter tuning. The source code is available at https://github.com/GTmac/FastRP.

  • 5 authors
·
Aug 29, 2019

Rethinking Large Language Model Architectures for Sequential Recommendations

Recently, sequential recommendation has been adapted to the LLM paradigm to enjoy the power of LLMs. LLM-based methods usually formulate recommendation information into natural language and the model is trained to predict the next item in an auto-regressive manner. Despite their notable success, the substantial computational overhead of inference poses a significant obstacle to their real-world applicability. In this work, we endeavor to streamline existing LLM-based recommendation models and propose a simple yet highly effective model Lite-LLM4Rec. The primary goal of Lite-LLM4Rec is to achieve efficient inference for the sequential recommendation task. Lite-LLM4Rec circumvents the beam search decoding by using a straight item projection head for ranking scores generation. This design stems from our empirical observation that beam search decoding is ultimately unnecessary for sequential recommendations. Additionally, Lite-LLM4Rec introduces a hierarchical LLM structure tailored to efficiently handle the extensive contextual information associated with items, thereby reducing computational overhead while enjoying the capabilities of LLMs. Experiments on three publicly available datasets corroborate the effectiveness of Lite-LLM4Rec in both performance and inference efficiency (notably 46.8% performance improvement and 97.28% efficiency improvement on ML-1m) over existing LLM-based methods. Our implementations will be open sourced.

  • 10 authors
·
Feb 14, 2024

Ada-Retrieval: An Adaptive Multi-Round Retrieval Paradigm for Sequential Recommendations

Retrieval models aim at selecting a small set of item candidates which match the preference of a given user. They play a vital role in large-scale recommender systems since subsequent models such as rankers highly depend on the quality of item candidates. However, most existing retrieval models employ a single-round inference paradigm, which may not adequately capture the dynamic nature of user preferences and stuck in one area in the item space. In this paper, we propose Ada-Retrieval, an adaptive multi-round retrieval paradigm for recommender systems that iteratively refines user representations to better capture potential candidates in the full item space. Ada-Retrieval comprises two key modules: the item representation adapter and the user representation adapter, designed to inject context information into items' and users' representations. The framework maintains a model-agnostic design, allowing seamless integration with various backbone models such as RNNs or Transformers. We perform experiments on three widely used public datasets, incorporating five powerful sequential recommenders as backbone models. Our results demonstrate that Ada-Retrieval significantly enhances the performance of various base models, with consistent improvements observed across different datasets. Our code and data are publicly available at: https://github.com/ll0ruc/Ada-Retrieval.

  • 4 authors
·
Jan 12, 2024

Think Before Recommend: Unleashing the Latent Reasoning Power for Sequential Recommendation

Sequential Recommendation (SeqRec) aims to predict the next item by capturing sequential patterns from users' historical interactions, playing a crucial role in many real-world recommender systems. However, existing approaches predominantly adopt a direct forward computation paradigm, where the final hidden state of the sequence encoder serves as the user representation. We argue that this inference paradigm, due to its limited computational depth, struggles to model the complex evolving nature of user preferences and lacks a nuanced understanding of long-tail items, leading to suboptimal performance. To address this issue, we propose ReaRec, the first inference-time computing framework for recommender systems, which enhances user representations through implicit multi-step reasoning. Specifically, ReaRec autoregressively feeds the sequence's last hidden state into the sequential recommender while incorporating special reasoning position embeddings to decouple the original item encoding space from the multi-step reasoning space. Moreover, we introduce two lightweight reasoning-based learning methods, Ensemble Reasoning Learning (ERL) and Progressive Reasoning Learning (PRL), to further effectively exploit ReaRec's reasoning potential. Extensive experiments on five public real-world datasets and different SeqRec architectures demonstrate the generality and effectiveness of our proposed ReaRec. Remarkably, post-hoc analyses reveal that ReaRec significantly elevates the performance ceiling of multiple sequential recommendation backbones by approximately 30\%-50\%. Thus, we believe this work can open a new and promising avenue for future research in inference-time computing for sequential recommendation.

  • 8 authors
·
Mar 28 2

InsertRank: LLMs can reason over BM25 scores to Improve Listwise Reranking

Large Language Models (LLMs) have demonstrated significant strides across various information retrieval tasks, particularly as rerankers, owing to their strong generalization and knowledge-transfer capabilities acquired from extensive pretraining. In parallel, the rise of LLM-based chat interfaces has raised user expectations, encouraging users to pose more complex queries that necessitate retrieval by ``reasoning'' over documents rather than through simple keyword matching or semantic similarity. While some recent efforts have exploited reasoning abilities of LLMs for reranking such queries, considerable potential for improvement remains. In that regards, we introduce InsertRank, an LLM-based reranker that leverages lexical signals like BM25 scores during reranking to further improve retrieval performance. InsertRank demonstrates improved retrieval effectiveness on -- BRIGHT, a reasoning benchmark spanning 12 diverse domains, and R2MED, a specialized medical reasoning retrieval benchmark spanning 8 different tasks. We conduct an exhaustive evaluation and several ablation studies and demonstrate that InsertRank consistently improves retrieval effectiveness across multiple families of LLMs, including GPT, Gemini, and Deepseek models. %In addition, we also conduct ablation studies on normalization by varying the scale of the BM25 scores, and positional bias by shuffling the order of the documents. With Deepseek-R1, InsertRank achieves a score of 37.5 on the BRIGHT benchmark. and 51.1 on the R2MED benchmark, surpassing previous methods.

  • 3 authors
·
Jun 16

Distributed Algorithms for Fully Personalized PageRank on Large Graphs

Personalized PageRank (PPR) has enormous applications, such as link prediction and recommendation systems for social networks, which often require the fully PPR to be known. Besides, most of real-life graphs are edge-weighted, e.g., the interaction between users on the Facebook network. However, it is computationally difficult to compute the fully PPR, especially on large graphs, not to mention that most existing approaches do not consider the weights of edges. In particular, the existing approach cannot handle graphs with billion edges on a moderate-size cluster. To address this problem, this paper presents a novel study on the computation of fully edge-weighted PPR on large graphs using the distributed computing framework. Specifically, we employ the Monte Carlo approximation that performs a large number of random walks from each node of the graph, and exploits the parallel pipeline framework to reduce the overall running time of the fully PPR. Based on that, we develop several optimization techniques which (i) alleviate the issue of large nodes that could explode the memory space, (ii) pre-compute short walks for small nodes that largely speedup the computation of random walks, and (iii) optimize the amount of random walks to compute in each pipeline that significantly reduces the overhead. With extensive experiments on a variety of real-life graph datasets, we demonstrate that our solution is several orders of magnitude faster than the state-of-the-arts, and meanwhile, largely outperforms the baseline algorithms in terms of accuracy.

  • 1 authors
·
Mar 27, 2019

Language Models Improve When Pretraining Data Matches Target Tasks

Every data selection method inherently has a target. In practice, these targets often emerge implicitly through benchmark-driven iteration: researchers develop selection strategies, train models, measure benchmark performance, then refine accordingly. This raises a natural question: what happens when we make this optimization explicit? To explore this, we propose benchmark-targeted ranking (BETR), a simple method that selects pretraining documents based on similarity to benchmark training examples. BETR embeds benchmark examples and a sample of pretraining documents in a shared space, scores this sample by similarity to benchmarks, then trains a lightweight classifier to predict these scores for the full corpus. We compare data selection methods by training over 500 models spanning 10^{19} to 10^{22} FLOPs and fitting scaling laws to them. From this, we find that simply aligning pretraining data to evaluation benchmarks using BETR achieves a 2.1x compute multiplier over DCLM-Baseline (4.7x over unfiltered data) and improves performance on 9 out of 10 tasks across all scales. BETR also generalizes well: when targeting a diverse set of benchmarks disjoint from our evaluation suite, it still matches or outperforms baselines. Our scaling analysis further reveals a clear trend: larger models require less aggressive filtering. Overall, our findings show that directly matching pretraining data to target tasks precisely shapes model capabilities and highlight that optimal selection strategies must adapt to model scale.

  • 10 authors
·
Jul 16

Retro*: Optimizing LLMs for Reasoning-Intensive Document Retrieval

With the growing popularity of LLM agents and RAG, it has become increasingly important to retrieve documents that are essential for solving a task, even when their connection to the task is indirect or implicit. Addressing this problem requires fine-grained reasoning to accurately assess the relevance between the task and each candidate document. This capability, however, poses a significant challenge for existing IR techniques. Despite recent progress in reasoning-enhanced IR, existing approaches still face significant challenges in applicability, scalability, and efficiency. In this work, we propose Retro*, a novel approach for reasoning-intensive document retrieval. Our method introduces a rubric-based relevance scoring mechanism, enabling the model to reason about the relationship between a task and a document based on explicitly defined criteria, whereby producing a fine-grained, interpretable relevance score. Retro* also supports test-time scaling by combining multiple reasoning trajectories via score integration, which produces more reliable relevance estimates. To optimize Retro*'s reasoning capabilities, we introduce a novel reinforcement learning algorithm tailored for its relevance scoring mechanism, which employs two composite rewards to fully exploit the trajectories of each training sample. Our experiments show that Retro* outperforms existing document retrieval methods with notable advantages, leading to state-of-the-art performance on the BRIGHT benchmark.

  • 6 authors
·
Sep 29

Efficient Nearest Neighbor Search for Cross-Encoder Models using Matrix Factorization

Efficient k-nearest neighbor search is a fundamental task, foundational for many problems in NLP. When the similarity is measured by dot-product between dual-encoder vectors or ell_2-distance, there already exist many scalable and efficient search methods. But not so when similarity is measured by more accurate and expensive black-box neural similarity models, such as cross-encoders, which jointly encode the query and candidate neighbor. The cross-encoders' high computational cost typically limits their use to reranking candidates retrieved by a cheaper model, such as dual encoder or TF-IDF. However, the accuracy of such a two-stage approach is upper-bounded by the recall of the initial candidate set, and potentially requires additional training to align the auxiliary retrieval model with the cross-encoder model. In this paper, we present an approach that avoids the use of a dual-encoder for retrieval, relying solely on the cross-encoder. Retrieval is made efficient with CUR decomposition, a matrix decomposition approach that approximates all pairwise cross-encoder distances from a small subset of rows and columns of the distance matrix. Indexing items using our approach is computationally cheaper than training an auxiliary dual-encoder model through distillation. Empirically, for k > 10, our approach provides test-time recall-vs-computational cost trade-offs superior to the current widely-used methods that re-rank items retrieved using a dual-encoder or TF-IDF.

  • 5 authors
·
Oct 22, 2022

Dynamic Slate Recommendation with Gated Recurrent Units and Thompson Sampling

We consider the problem of recommending relevant content to users of an internet platform in the form of lists of items, called slates. We introduce a variational Bayesian Recurrent Neural Net recommender system that acts on time series of interactions between the internet platform and the user, and which scales to real world industrial situations. The recommender system is tested both online on real users, and on an offline dataset collected from a Norwegian web-based marketplace, FINN.no, that is made public for research. This is one of the first publicly available datasets which includes all the slates that are presented to users as well as which items (if any) in the slates were clicked on. Such a data set allows us to move beyond the common assumption that implicitly assumes that users are considering all possible items at each interaction. Instead we build our likelihood using the items that are actually in the slate, and evaluate the strengths and weaknesses of both approaches theoretically and in experiments. We also introduce a hierarchical prior for the item parameters based on group memberships. Both item parameters and user preferences are learned probabilistically. Furthermore, we combine our model with bandit strategies to ensure learning, and introduce `in-slate Thompson Sampling' which makes use of the slates to maximise explorative opportunities. We show experimentally that explorative recommender strategies perform on par or above their greedy counterparts. Even without making use of exploration to learn more effectively, click rates increase simply because of improved diversity in the recommended slates.

  • 3 authors
·
Apr 30, 2021

Subset Selection Based On Multiple Rankings in the Presence of Bias: Effectiveness of Fairness Constraints for Multiwinner Voting Score Functions

We consider the problem of subset selection where one is given multiple rankings of items and the goal is to select the highest ``quality'' subset. Score functions from the multiwinner voting literature have been used to aggregate rankings into quality scores for subsets. We study this setting of subset selection problems when, in addition, rankings may contain systemic or unconscious biases toward a group of items. For a general model of input rankings and biases, we show that requiring the selected subset to satisfy group fairness constraints can improve the quality of the selection with respect to unbiased rankings. Importantly, we show that for fairness constraints to be effective, different multiwinner score functions may require a drastically different number of rankings: While for some functions, fairness constraints need an exponential number of rankings to recover a close-to-optimal solution, for others, this dependency is only polynomial. This result relies on a novel notion of ``smoothness'' of submodular functions in this setting that quantifies how well a function can ``correctly'' assess the quality of items in the presence of bias. The results in this paper can be used to guide the choice of multiwinner score functions for the subset selection setting considered here; we additionally provide a tool to empirically enable this.

  • 5 authors
·
Jun 16, 2023

Sampler Design for Implicit Feedback Data by Noisy-label Robust Learning

Implicit feedback data is extensively explored in recommendation as it is easy to collect and generally applicable. However, predicting users' preference on implicit feedback data is a challenging task since we can only observe positive (voted) samples and unvoted samples. It is difficult to distinguish between the negative samples and unlabeled positive samples from the unvoted ones. Existing works, such as Bayesian Personalized Ranking (BPR), sample unvoted items as negative samples uniformly, therefore suffer from a critical noisy-label issue. To address this gap, we design an adaptive sampler based on noisy-label robust learning for implicit feedback data. To formulate the issue, we first introduce Bayesian Point-wise Optimization (BPO) to learn a model, e.g., Matrix Factorization (MF), by maximum likelihood estimation. We predict users' preferences with the model and learn it by maximizing likelihood of observed data labels, i.e., a user prefers her positive samples and has no interests in her unvoted samples. However, in reality, a user may have interests in some of her unvoted samples, which are indeed positive samples mislabeled as negative ones. We then consider the risk of these noisy labels, and propose a Noisy-label Robust BPO (NBPO). NBPO also maximizes the observation likelihood while connects users' preference and observed labels by the likelihood of label flipping based on the Bayes' theorem. In NBPO, a user prefers her true positive samples and shows no interests in her true negative samples, hence the optimization quality is dramatically improved. Extensive experiments on two public real-world datasets show the significant improvement of our proposed optimization methods.

  • 2 authors
·
Jun 28, 2020

Lifelong Personalized Low-Rank Adaptation of Large Language Models for Recommendation

We primarily focus on the field of large language models (LLMs) for recommendation, which has been actively explored recently and poses a significant challenge in effectively enhancing recommender systems with logical reasoning abilities and open-world knowledge. Current mainstream efforts mainly center around injecting personalized information from recommendation models into LLMs by customizing input templates or aligning representations between semantic and recommendation spaces at the prediction layer. However, they face three significant limitations: (1) LoRA is mostly used as a core component in existing works, but personalization is not well established in LoRA parameters as the LoRA matrix shared by every user may not cater to different users' characteristics, leading to suboptimal performance. (2) Although lifelong personalized behavior sequences are ideal for personalization, their use raises effectiveness and efficiency issues since LLMs require escalating training and inference time to extend text lengths. (3) Existing approaches aren't scalable for large datasets due to training efficiency constraints. Thus, LLMs only see a small fraction of the datasets (e.g., less than 10%) instead of the whole datasets, limiting their exposure to the full training space. To address these problems, we propose RecLoRA. This model incorporates a Personalized LoRA module that maintains independent LoRAs for different users and a Long-Short Modality Retriever that retrieves different history lengths for different modalities, significantly improving performance while adding minimal time cost. Furthermore, we design a Few2Many Learning Strategy, using a conventional recommendation model as a lens to magnify small training spaces to full spaces. Extensive experiments on public datasets demonstrate the efficacy of our RecLoRA compared to existing baseline models.

  • 9 authors
·
Aug 7, 2024

Transductive Few-Shot Learning: Clustering is All You Need?

We investigate a general formulation for clustering and transductive few-shot learning, which integrates prototype-based objectives, Laplacian regularization and supervision constraints from a few labeled data points. We propose a concave-convex relaxation of the problem, and derive a computationally efficient block-coordinate bound optimizer, with convergence guarantee. At each iteration,our optimizer computes independent (parallel) updates for each point-to-cluster assignment. Therefore, it could be trivially distributed for large-scale clustering and few-shot tasks. Furthermore, we provides a thorough convergence analysis based on point-to-set maps. Were port comprehensive clustering and few-shot learning experiments over various data sets, showing that our method yields competitive performances, in term of accuracy and optimization quality, while scaling up to large problems. Using standard training on the base classes, without resorting to complex meta-learning and episodic-training strategies, our approach outperforms state-of-the-art few-shot methods by significant margins, across various models, settings and data sets. Surprisingly, we found that even standard clustering procedures (e.g., K-means), which correspond to particular, non-regularized cases of our general model, already achieve competitive performances in comparison to the state-of-the-art in few-shot learning. These surprising results point to the limitations of the current few-shot benchmarks, and question the viability of a large body of convoluted few-shot learning techniques in the recent literature.

  • 5 authors
·
Jun 16, 2021

Coarse-to-Fine: Learning Compact Discriminative Representation for Single-Stage Image Retrieval

Image retrieval targets to find images from a database that are visually similar to the query image. Two-stage methods following retrieve-and-rerank paradigm have achieved excellent performance, but their separate local and global modules are inefficient to real-world applications. To better trade-off retrieval efficiency and accuracy, some approaches fuse global and local feature into a joint representation to perform single-stage image retrieval. However, they are still challenging due to various situations to tackle, e.g., background, occlusion and viewpoint. In this work, we design a Coarse-to-Fine framework to learn Compact Discriminative representation (CFCD) for end-to-end single-stage image retrieval-requiring only image-level labels. Specifically, we first design a novel adaptive softmax-based loss which dynamically tunes its scale and margin within each mini-batch and increases them progressively to strengthen supervision during training and intra-class compactness. Furthermore, we propose a mechanism which attentively selects prominent local descriptors and infuse fine-grained semantic relations into the global representation by a hard negative sampling strategy to optimize inter-class distinctiveness at a global scale. Extensive experimental results have demonstrated the effectiveness of our method, which achieves state-of-the-art single-stage image retrieval performance on benchmarks such as Revisited Oxford and Revisited Paris. Code is available at https://github.com/bassyess/CFCD.

  • 5 authors
·
Aug 7, 2023