Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribePost-hoc Interpretability for Neural NLP: A Survey
Neural networks for NLP are becoming increasingly complex and widespread, and there is a growing concern if these models are responsible to use. Explaining models helps to address the safety and ethical concerns and is essential for accountability. Interpretability serves to provide these explanations in terms that are understandable to humans. Additionally, post-hoc methods provide explanations after a model is learned and are generally model-agnostic. This survey provides a categorization of how recent post-hoc interpretability methods communicate explanations to humans, it discusses each method in-depth, and how they are validated, as the latter is often a common concern.
Understanding Disparities in Post Hoc Machine Learning Explanation
Previous work has highlighted that existing post-hoc explanation methods exhibit disparities in explanation fidelity (across 'race' and 'gender' as sensitive attributes), and while a large body of work focuses on mitigating these issues at the explanation metric level, the role of the data generating process and black box model in relation to explanation disparities remains largely unexplored. Accordingly, through both simulations as well as experiments on a real-world dataset, we specifically assess challenges to explanation disparities that originate from properties of the data: limited sample size, covariate shift, concept shift, omitted variable bias, and challenges based on model properties: inclusion of the sensitive attribute and appropriate functional form. Through controlled simulation analyses, our study demonstrates that increased covariate shift, concept shift, and omission of covariates increase explanation disparities, with the effect pronounced higher for neural network models that are better able to capture the underlying functional form in comparison to linear models. We also observe consistent findings regarding the effect of concept shift and omitted variable bias on explanation disparities in the Adult income dataset. Overall, results indicate that disparities in model explanations can also depend on data and model properties. Based on this systematic investigation, we provide recommendations for the design of explanation methods that mitigate undesirable disparities.
Attention Meets Post-hoc Interpretability: A Mathematical Perspective
Attention-based architectures, in particular transformers, are at the heart of a technological revolution. Interestingly, in addition to helping obtain state-of-the-art results on a wide range of applications, the attention mechanism intrinsically provides meaningful insights on the internal behavior of the model. Can these insights be used as explanations? Debate rages on. In this paper, we mathematically study a simple attention-based architecture and pinpoint the differences between post-hoc and attention-based explanations. We show that they provide quite different results, and that, despite their limitations, post-hoc methods are capable of capturing more useful insights than merely examining the attention weights.
Interpretability as Alignment: Making Internal Understanding a Design Principle
Large neural models are increasingly deployed in high-stakes settings, raising concerns about whether their behavior reliably aligns with human values. Interpretability provides a route to internal transparency by revealing the computations that drive outputs. We argue that interpretability especially mechanistic approaches should be treated as a design principle for alignment, not an auxiliary diagnostic tool. Post-hoc methods such as LIME or SHAP offer intuitive but correlational explanations, while mechanistic techniques like circuit tracing or activation patching yield causal insight into internal failures, including deceptive or misaligned reasoning that behavioral methods like RLHF, red teaming, or Constitutional AI may overlook. Despite these advantages, interpretability faces challenges of scalability, epistemic uncertainty, and mismatches between learned representations and human concepts. Our position is that progress on safe and trustworthy AI will depend on making interpretability a first-class objective of AI research and development, ensuring that systems are not only effective but also auditable, transparent, and aligned with human intent.
ProtoECGNet: Case-Based Interpretable Deep Learning for Multi-Label ECG Classification with Contrastive Learning
Deep learning-based electrocardiogram (ECG) classification has shown impressive performance but clinical adoption has been slowed by the lack of transparent and faithful explanations. Post hoc methods such as saliency maps may fail to reflect a model's true decision process. Prototype-based reasoning offers a more transparent alternative by grounding decisions in similarity to learned representations of real ECG segments, enabling faithful, case-based explanations. We introduce ProtoECGNet, a prototype-based deep learning model for interpretable, multi-label ECG classification. ProtoECGNet employs a structured, multi-branch architecture that reflects clinical interpretation workflows: it integrates a 1D CNN with global prototypes for rhythm classification, a 2D CNN with time-localized prototypes for morphology-based reasoning, and a 2D CNN with global prototypes for diffuse abnormalities. Each branch is trained with a prototype loss designed for multi-label learning, combining clustering, separation, diversity, and a novel contrastive loss that encourages appropriate separation between prototypes of unrelated classes while allowing clustering for frequently co-occurring diagnoses. We evaluate ProtoECGNet on all 71 diagnostic labels from the PTB-XL dataset, demonstrating competitive performance relative to state-of-the-art black-box models while providing structured, case-based explanations. To assess prototype quality, we conduct a structured clinician review of the final model's projected prototypes, finding that they are rated as representative and clear. ProtoECGNet shows that prototype learning can be effectively scaled to complex, multi-label time-series classification, offering a practical path toward transparent and trustworthy deep learning models for clinical decision support.
FlowCon: Out-of-Distribution Detection using Flow-Based Contrastive Learning
Identifying Out-of-distribution (OOD) data is becoming increasingly critical as the real-world applications of deep learning methods expand. Post-hoc methods modify softmax scores fine-tuned on outlier data or leverage intermediate feature layers to identify distinctive patterns between In-Distribution (ID) and OOD samples. Other methods focus on employing diverse OOD samples to learn discrepancies between ID and OOD. These techniques, however, are typically dependent on the quality of the outlier samples assumed. Density-based methods explicitly model class-conditioned distributions but this requires long training time or retraining the classifier. To tackle these issues, we introduce FlowCon, a new density-based OOD detection technique. Our main innovation lies in efficiently combining the properties of normalizing flow with supervised contrastive learning, ensuring robust representation learning with tractable density estimation. Empirical evaluation shows the enhanced performance of our method across common vision datasets such as CIFAR-10 and CIFAR-100 pretrained on ResNet18 and WideResNet classifiers. We also perform quantitative analysis using likelihood plots and qualitative visualization using UMAP embeddings and demonstrate the robustness of the proposed method under various OOD contexts. Code will be open-sourced post decision.
A Large-Scale Study of Probabilistic Calibration in Neural Network Regression
Accurate probabilistic predictions are essential for optimal decision making. While neural network miscalibration has been studied primarily in classification, we investigate this in the less-explored domain of regression. We conduct the largest empirical study to date to assess the probabilistic calibration of neural networks. We also analyze the performance of recalibration, conformal, and regularization methods to enhance probabilistic calibration. Additionally, we introduce novel differentiable recalibration and regularization methods, uncovering new insights into their effectiveness. Our findings reveal that regularization methods offer a favorable tradeoff between calibration and sharpness. Post-hoc methods exhibit superior probabilistic calibration, which we attribute to the finite-sample coverage guarantee of conformal prediction. Furthermore, we demonstrate that quantile recalibration can be considered as a specific case of conformal prediction. Our study is fully reproducible and implemented in a common code base for fair comparisons.
SMACE: A New Method for the Interpretability of Composite Decision Systems
Interpretability is a pressing issue for decision systems. Many post hoc methods have been proposed to explain the predictions of a single machine learning model. However, business processes and decision systems are rarely centered around a unique model. These systems combine multiple models that produce key predictions, and then apply decision rules to generate the final decision. To explain such decisions, we propose the Semi-Model-Agnostic Contextual Explainer (SMACE), a new interpretability method that combines a geometric approach for decision rules with existing interpretability methods for machine learning models to generate an intuitive feature ranking tailored to the end user. We show that established model-agnostic approaches produce poor results on tabular data in this setting, in particular giving the same importance to several features, whereas SMACE can rank them in a meaningful way.
Reasoned Safety Alignment: Ensuring Jailbreak Defense via Answer-Then-Check
As large language models (LLMs) continue to advance in capabilities, ensuring their safety against jailbreak attacks remains a critical challenge. In this paper, we introduce a novel safety alignment approach called Answer-Then-Check, which enhances LLM robustness against malicious prompts by applying thinking ability to mitigate jailbreaking problems before producing a final answer to the user. Our method enables models to directly answer the question in their thought and then critically evaluate its safety before deciding whether to provide it. To implement this approach, we construct the Reasoned Safety Alignment (ReSA) dataset, comprising 80K examples that teach models to reason through direct responses and then analyze their safety. Experimental results demonstrate that our approach achieves the Pareto frontier with superior safety capability while decreasing over-refusal rates on over-refusal benchmarks. Notably, the model fine-tuned with ReSA maintains general reasoning capabilities on benchmarks like MMLU, MATH500, and HumanEval. Besides, our method equips models with the ability to perform safe completion. Unlike post-hoc methods that can only reject harmful queries, our model can provide helpful and safe alternative responses for sensitive topics (e.g., self-harm). Furthermore, we discover that training on a small subset of just 500 examples can achieve comparable performance to using the full dataset, suggesting that safety alignment may require less data than previously assumed.
Self-Ablating Transformers: More Interpretability, Less Sparsity
A growing intuition in machine learning suggests a link between sparsity and interpretability. We introduce a novel self-ablation mechanism to investigate this connection ante-hoc in the context of language transformers. Our approach dynamically enforces a k-winner-takes-all constraint, forcing the model to demonstrate selective activation across neuron and attention units. Unlike post-hoc methods that analyze already-trained models, our approach integrates interpretability directly into model training, promoting feature localization from inception. Training small models on the TinyStories dataset and employing interpretability tests, we find that self-ablation leads to more localized circuits, concentrated feature representations, and increased neuron specialization without compromising language modelling performance. Surprisingly, our method also decreased overall sparsity, indicating that self-ablation promotes specialization rather than widespread inactivity. This reveals a complex interplay between sparsity and interpretability, where decreased global sparsity can coexist with increased local specialization, leading to enhanced interpretability. To facilitate reproducibility, we make our code available at https://github.com/keenanpepper/self-ablating-transformers.
Mixture of Experts Made Intrinsically Interpretable
Neurons in large language models often exhibit polysemanticity, simultaneously encoding multiple unrelated concepts and obscuring interpretability. Instead of relying on post-hoc methods, we present MoE-X, a Mixture-of-Experts (MoE) language model designed to be intrinsically interpretable. Our approach is motivated by the observation that, in language models, wider networks with sparse activations are more likely to capture interpretable factors. However, directly training such large sparse networks is computationally prohibitive. MoE architectures offer a scalable alternative by activating only a subset of experts for any given input, inherently aligning with interpretability objectives. In MoE-X, we establish this connection by rewriting the MoE layer as an equivalent sparse, large MLP. This approach enables efficient scaling of the hidden size while maintaining sparsity. To further enhance interpretability, we enforce sparse activation within each expert and redesign the routing mechanism to prioritize experts with the highest activation sparsity. These designs ensure that only the most salient features are routed and processed by the experts. We evaluate MoE-X on chess and natural language tasks, showing that it achieves performance comparable to dense models while significantly improving interpretability. MoE-X achieves a perplexity better than GPT-2, with interpretability surpassing even sparse autoencoder (SAE)-based approaches.
Beyond In-Domain Scenarios: Robust Density-Aware Calibration
Calibrating deep learning models to yield uncertainty-aware predictions is crucial as deep neural networks get increasingly deployed in safety-critical applications. While existing post-hoc calibration methods achieve impressive results on in-domain test datasets, they are limited by their inability to yield reliable uncertainty estimates in domain-shift and out-of-domain (OOD) scenarios. We aim to bridge this gap by proposing DAC, an accuracy-preserving as well as Density-Aware Calibration method based on k-nearest-neighbors (KNN). In contrast to existing post-hoc methods, we utilize hidden layers of classifiers as a source for uncertainty-related information and study their importance. We show that DAC is a generic method that can readily be combined with state-of-the-art post-hoc methods. DAC boosts the robustness of calibration performance in domain-shift and OOD, while maintaining excellent in-domain predictive uncertainty estimates. We demonstrate that DAC leads to consistently better calibration across a large number of model architectures, datasets, and metrics. Additionally, we show that DAC improves calibration substantially on recent large-scale neural networks pre-trained on vast amounts of data.
Optimal Counterfactual Explanations for Scorecard modelling
Counterfactual explanations is one of the post-hoc methods used to provide explainability to machine learning models that have been attracting attention in recent years. Most examples in the literature, address the problem of generating post-hoc explanations for black-box machine learning models after the rejection of a loan application. In contrast, in this work, we investigate mathematical programming formulations for scorecard models, a type of interpretable model predominant within the banking industry for lending. The proposed mixed-integer programming formulations combine objective functions to ensure close, realistic and sparse counterfactuals using multi-objective optimization techniques for a binary, probability or continuous outcome. Moreover, we extend these formulations to generate multiple optimal counterfactuals simultaneously while guaranteeing diversity. Experiments on two real-world datasets confirm that the presented approach can generate optimal diverse counterfactuals addressing desired properties with assumable CPU times for practice use.
Large Language Models of Code Fail at Completing Code with Potential Bugs
Large language models of code (Code-LLMs) have recently brought tremendous advances to code completion, a fundamental feature of programming assistance and code intelligence. However, most existing works ignore the possible presence of bugs in the code context for generation, which are inevitable in software development. Therefore, we introduce and study the buggy-code completion problem, inspired by the realistic scenario of real-time code suggestion where the code context contains potential bugs -- anti-patterns that can become bugs in the completed program. To systematically study the task, we introduce two datasets: one with synthetic bugs derived from semantics-altering operator changes (buggy-HumanEval) and one with realistic bugs derived from user submissions to coding problems (buggy-FixEval). We find that the presence of potential bugs significantly degrades the generation performance of the high-performing Code-LLMs. For instance, the passing rates of CodeGen-2B-mono on test cases of buggy-HumanEval drop more than 50% given a single potential bug in the context. Finally, we investigate several post-hoc methods for mitigating the adverse effect of potential bugs and find that there remains a large gap in post-mitigation performance.
Fast Machine Unlearning Without Retraining Through Selective Synaptic Dampening
Machine unlearning, the ability for a machine learning model to forget, is becoming increasingly important to comply with data privacy regulations, as well as to remove harmful, manipulated, or outdated information. The key challenge lies in forgetting specific information while protecting model performance on the remaining data. While current state-of-the-art methods perform well, they typically require some level of retraining over the retained data, in order to protect or restore model performance. This adds computational overhead and mandates that the training data remain available and accessible, which may not be feasible. In contrast, other methods employ a retrain-free paradigm, however, these approaches are prohibitively computationally expensive and do not perform on par with their retrain-based counterparts. We present Selective Synaptic Dampening (SSD), a novel two-step, post hoc, retrain-free approach to machine unlearning which is fast, performant, and does not require long-term storage of the training data. First, SSD uses the Fisher information matrix of the training and forgetting data to select parameters that are disproportionately important to the forget set. Second, SSD induces forgetting by dampening these parameters proportional to their relative importance to the forget set with respect to the wider training data. We evaluate our method against several existing unlearning methods in a range of experiments using ResNet18 and Vision Transformer. Results show that the performance of SSD is competitive with retrain-based post hoc methods, demonstrating the viability of retrain-free post hoc unlearning approaches.
Quantifying Attention Flow in Transformers
In the Transformer model, "self-attention" combines information from attended embeddings into the representation of the focal embedding in the next layer. Thus, across layers of the Transformer, information originating from different tokens gets increasingly mixed. This makes attention weights unreliable as explanations probes. In this paper, we consider the problem of quantifying this flow of information through self-attention. We propose two methods for approximating the attention to input tokens given attention weights, attention rollout and attention flow, as post hoc methods when we use attention weights as the relative relevance of the input tokens. We show that these methods give complementary views on the flow of information, and compared to raw attention, both yield higher correlations with importance scores of input tokens obtained using an ablation method and input gradients.
If at First You Don't Succeed, Try, Try Again: Faithful Diffusion-based Text-to-Image Generation by Selection
Despite their impressive capabilities, diffusion-based text-to-image (T2I) models can lack faithfulness to the text prompt, where generated images may not contain all the mentioned objects, attributes or relations. To alleviate these issues, recent works proposed post-hoc methods to improve model faithfulness without costly retraining, by modifying how the model utilizes the input prompt. In this work, we take a step back and show that large T2I diffusion models are more faithful than usually assumed, and can generate images faithful to even complex prompts without the need to manipulate the generative process. Based on that, we show how faithfulness can be simply treated as a candidate selection problem instead, and introduce a straightforward pipeline that generates candidate images for a text prompt and picks the best one according to an automatic scoring system that can leverage already existing T2I evaluation metrics. Quantitative comparisons alongside user studies on diverse benchmarks show consistently improved faithfulness over post-hoc enhancement methods, with comparable or lower computational cost. Code is available at https://github.com/ExplainableML/ImageSelect.
Weakly-supervised segmentation using inherently-explainable classification models and their application to brain tumour classification
Deep learning models have shown their potential for several applications. However, most of the models are opaque and difficult to trust due to their complex reasoning - commonly known as the black-box problem. Some fields, such as medicine, require a high degree of transparency to accept and adopt such technologies. Consequently, creating explainable/interpretable models or applying post-hoc methods on classifiers to build trust in deep learning models are required. Moreover, deep learning methods can be used for segmentation tasks, which typically require hard-to-obtain, time-consuming manually-annotated segmentation labels for training. This paper introduces three inherently-explainable classifiers to tackle both of these problems as one. The localisation heatmaps provided by the networks -- representing the models' focus areas and being used in classification decision-making -- can be directly interpreted, without requiring any post-hoc methods to derive information for model explanation. The models are trained by using the input image and only the classification labels as ground-truth in a supervised fashion - without using any information about the location of the region of interest (i.e. the segmentation labels), making the segmentation training of the models weakly-supervised through classification labels. The final segmentation is obtained by thresholding these heatmaps. The models were employed for the task of multi-class brain tumour classification using two different datasets, resulting in the best F1-score of 0.93 for the supervised classification task while securing a median Dice score of 0.67pm0.08 for the weakly-supervised segmentation task. Furthermore, the obtained accuracy on a subset of tumour-only images outperformed the state-of-the-art glioma tumour grading binary classifiers with the best model achieving 98.7\% accuracy.
LAN: Learning Adaptive Neighbors for Real-Time Insider Threat Detection
Enterprises and organizations are faced with potential threats from insider employees that may lead to serious consequences. Previous studies on insider threat detection (ITD) mainly focus on detecting abnormal users or abnormal time periods (e.g., a week or a day). However, a user may have hundreds of thousands of activities in the log, and even within a day there may exist thousands of activities for a user, requiring a high investigation budget to verify abnormal users or activities given the detection results. On the other hand, existing works are mainly post-hoc methods rather than real-time detection, which can not report insider threats in time before they cause loss. In this paper, we conduct the first study towards real-time ITD at activity level, and present a fine-grained and efficient framework LAN. Specifically, LAN simultaneously learns the temporal dependencies within an activity sequence and the relationships between activities across sequences with graph structure learning. Moreover, to mitigate the data imbalance problem in ITD, we propose a novel hybrid prediction loss, which integrates self-supervision signals from normal activities and supervision signals from abnormal activities into a unified loss for anomaly detection. We evaluate the performance of LAN on two widely used datasets, i.e., CERT r4.2 and CERT r5.2. Extensive and comparative experiments demonstrate the superiority of LAN, outperforming 9 state-of-the-art baselines by at least 9.92% and 6.35% in AUC for real-time ITD on CERT r4.2 and r5.2, respectively. Moreover, LAN can be also applied to post-hoc ITD, surpassing 8 competitive baselines by at least 7.70% and 4.03% in AUC on two datasets. Finally, the ablation study, parameter analysis, and compatibility analysis evaluate the impact of each module and hyper-parameter in LAN. The source code can be obtained from https://github.com/Li1Neo/LAN.
Orientation Matters: Making 3D Generative Models Orientation-Aligned
Humans intuitively perceive object shape and orientation from a single image, guided by strong priors about canonical poses. However, existing 3D generative models often produce misaligned results due to inconsistent training data, limiting their usability in downstream tasks. To address this gap, we introduce the task of orientation-aligned 3D object generation: producing 3D objects from single images with consistent orientations across categories. To facilitate this, we construct Objaverse-OA, a dataset of 14,832 orientation-aligned 3D models spanning 1,008 categories. Leveraging Objaverse-OA, we fine-tune two representative 3D generative models based on multi-view diffusion and 3D variational autoencoder frameworks to produce aligned objects that generalize well to unseen objects across various categories. Experimental results demonstrate the superiority of our method over post-hoc alignment approaches. Furthermore, we showcase downstream applications enabled by our aligned object generation, including zero-shot object orientation estimation via analysis-by-synthesis and efficient arrow-based object rotation manipulation.
Interpretable graph-based models on multimodal biomedical data integration: A technical review and benchmarking
Integrating heterogeneous biomedical data including imaging, omics, and clinical records supports accurate diagnosis and personalised care. Graph-based models fuse such non-Euclidean data by capturing spatial and relational structure, yet clinical uptake requires regulator-ready interpretability. We present the first technical survey of interpretable graph based models for multimodal biomedical data, covering 26 studies published between Jan 2019 and Sep 2024. Most target disease classification, notably cancer and rely on static graphs from simple similarity measures, while graph-native explainers are rare; post-hoc methods adapted from non-graph domains such as gradient saliency, and SHAP predominate. We group existing approaches into four interpretability families, outline trends such as graph-in-graph hierarchies, knowledge-graph edges, and dynamic topology learning, and perform a practical benchmark. Using an Alzheimer disease cohort, we compare Sensitivity Analysis, Gradient Saliency, SHAP and Graph Masking. SHAP and Sensitivity Analysis recover the broadest set of known AD pathways and Gene-Ontology terms, whereas Gradient Saliency and Graph Masking surface complementary metabolic and transport signatures. Permutation tests show all four beat random gene sets, but with distinct trade-offs: SHAP and Graph Masking offer deeper biology at higher compute cost, while Gradient Saliency and Sensitivity Analysis are quicker though coarser. We also provide a step-by-step flowchart covering graph construction, explainer choice and resource budgeting to help researchers balance transparency and performance. This review synthesises the state of interpretable graph learning for multimodal medicine, benchmarks leading techniques, and charts future directions, from advanced XAI tools to under-studied diseases, serving as a concise reference for method developers and translational scientists.
FactCheckmate: Preemptively Detecting and Mitigating Hallucinations in LMs
Language models (LMs) hallucinate. We inquire: Can we detect and mitigate hallucinations before they happen? This work answers this research question in the positive, by showing that the internal representations of LMs provide rich signals that can be used for this purpose. We introduce FactCheckMate, which preemptively detects hallucinations by learning a classifier that predicts whether the LM will hallucinate, based on the model's hidden states produced over the inputs, before decoding begins. If a hallucination is detected, FactCheckMate then intervenes, by adjusting the LM's hidden states such that the model will produce more factual outputs. FactCheckMate provides fresh insights that the inner workings of LMs can be revealed by their hidden states. Practically, both the detection and mitigation models in FactCheckMate are lightweight, adding little inference overhead; FactCheckMate proves a more efficient approach for mitigating hallucinations compared to many post-hoc alternatives. We evaluate FactCheckMate over LMs of different scales and model families (including Llama, Mistral, and Gemma), across a variety of QA datasets from different domains. Our results demonstrate the effectiveness of leveraging internal representations for early hallucination detection and mitigation, achieving over 70% preemptive detection accuracy. On average, outputs generated by LMs with intervention are 34.4% more factual compared to those without intervention. The average overhead difference in the inference time introduced by FactCheckMate is around 3.16 seconds.
Focal Modulation Networks for Interpretable Sound Classification
The increasing success of deep neural networks has raised concerns about their inherent black-box nature, posing challenges related to interpretability and trust. While there has been extensive exploration of interpretation techniques in vision and language, interpretability in the audio domain has received limited attention, primarily focusing on post-hoc explanations. This paper addresses the problem of interpretability by-design in the audio domain by utilizing the recently proposed attention-free focal modulation networks (FocalNets). We apply FocalNets to the task of environmental sound classification for the first time and evaluate their interpretability properties on the popular ESC-50 dataset. Our method outperforms a similarly sized vision transformer both in terms of accuracy and interpretability. Furthermore, it is competitive against PIQ, a method specifically designed for post-hoc interpretation in the audio domain.
xai_evals : A Framework for Evaluating Post-Hoc Local Explanation Methods
The growing complexity of machine learning and deep learning models has led to an increased reliance on opaque "black box" systems, making it difficult to understand the rationale behind predictions. This lack of transparency is particularly challenging in high-stakes applications where interpretability is as important as accuracy. Post-hoc explanation methods are commonly used to interpret these models, but they are seldom rigorously evaluated, raising concerns about their reliability. The Python package xai_evals addresses this by providing a comprehensive framework for generating, benchmarking, and evaluating explanation methods across both tabular and image data modalities. It integrates popular techniques like SHAP, LIME, Grad-CAM, Integrated Gradients (IG), and Backtrace, while supporting evaluation metrics such as faithfulness, sensitivity, and robustness. xai_evals enhances the interpretability of machine learning models, fostering transparency and trust in AI systems. The library is open-sourced at https://pypi.org/project/xai-evals/ .
Post Hoc Explanations of Language Models Can Improve Language Models
Large Language Models (LLMs) have demonstrated remarkable capabilities in performing complex tasks. Moreover, recent research has shown that incorporating human-annotated rationales (e.g., Chain-of-Thought prompting) during in-context learning can significantly enhance the performance of these models, particularly on tasks that require reasoning capabilities. However, incorporating such rationales poses challenges in terms of scalability as this requires a high degree of human involvement. In this work, we present a novel framework, Amplifying Model Performance by Leveraging In-Context Learning with Post Hoc Explanations (AMPLIFY), which addresses the aforementioned challenges by automating the process of rationale generation. To this end, we leverage post hoc explanation methods which output attribution scores (explanations) capturing the influence of each of the input features on model predictions. More specifically, we construct automated natural language rationales that embed insights from post hoc explanations to provide corrective signals to LLMs. Extensive experimentation with real-world datasets demonstrates that our framework, AMPLIFY, leads to prediction accuracy improvements of about 10-25% over a wide range of tasks, including those where prior approaches which rely on human-annotated rationales such as Chain-of-Thought prompting fall short. Our work makes one of the first attempts at highlighting the potential of post hoc explanations as valuable tools for enhancing the effectiveness of LLMs. Furthermore, we conduct additional empirical analyses and ablation studies to demonstrate the impact of each of the components of AMPLIFY, which, in turn, leads to critical insights for refining in-context learning.
Which Explanation Should I Choose? A Function Approximation Perspective to Characterizing Post Hoc Explanations
A critical problem in the field of post hoc explainability is the lack of a common foundational goal among methods. For example, some methods are motivated by function approximation, some by game theoretic notions, and some by obtaining clean visualizations. This fragmentation of goals causes not only an inconsistent conceptual understanding of explanations but also the practical challenge of not knowing which method to use when. In this work, we begin to address these challenges by unifying eight popular post hoc explanation methods (LIME, C-LIME, KernelSHAP, Occlusion, Vanilla Gradients, Gradients x Input, SmoothGrad, and Integrated Gradients). We show that these methods all perform local function approximation of the black-box model, differing only in the neighbourhood and loss function used to perform the approximation. This unification enables us to (1) state a no free lunch theorem for explanation methods, demonstrating that no method can perform optimally across all neighbourhoods, and (2) provide a guiding principle to choose among methods based on faithfulness to the black-box model. We empirically validate these theoretical results using various real-world datasets, model classes, and prediction tasks. By bringing diverse explanation methods into a common framework, this work (1) advances the conceptual understanding of these methods, revealing their shared local function approximation objective, properties, and relation to one another, and (2) guides the use of these methods in practice, providing a principled approach to choose among methods and paving the way for the creation of new ones.
TextGenSHAP: Scalable Post-hoc Explanations in Text Generation with Long Documents
Large language models (LLMs) have attracted huge interest in practical applications given their increasingly accurate responses and coherent reasoning abilities. Given their nature as black-boxes using complex reasoning processes on their inputs, it is inevitable that the demand for scalable and faithful explanations for LLMs' generated content will continue to grow. There have been major developments in the explainability of neural network models over the past decade. Among them, post-hoc explainability methods, especially Shapley values, have proven effective for interpreting deep learning models. However, there are major challenges in scaling up Shapley values for LLMs, particularly when dealing with long input contexts containing thousands of tokens and autoregressively generated output sequences. Furthermore, it is often unclear how to effectively utilize generated explanations to improve the performance of LLMs. In this paper, we introduce TextGenSHAP, an efficient post-hoc explanation method incorporating LM-specific techniques. We demonstrate that this leads to significant increases in speed compared to conventional Shapley value computations, reducing processing times from hours to minutes for token-level explanations, and to just seconds for document-level explanations. In addition, we demonstrate how real-time Shapley values can be utilized in two important scenarios, providing better understanding of long-document question answering by localizing important words and sentences; and improving existing document retrieval systems through enhancing the accuracy of selected passages and ultimately the final responses.
Token Transformation Matters: Towards Faithful Post-hoc Explanation for Vision Transformer
While Transformers have rapidly gained popularity in various computer vision applications, post-hoc explanations of their internal mechanisms remain largely unexplored. Vision Transformers extract visual information by representing image regions as transformed tokens and integrating them via attention weights. However, existing post-hoc explanation methods merely consider these attention weights, neglecting crucial information from the transformed tokens, which fails to accurately illustrate the rationales behind the models' predictions. To incorporate the influence of token transformation into interpretation, we propose TokenTM, a novel post-hoc explanation method that utilizes our introduced measurement of token transformation effects. Specifically, we quantify token transformation effects by measuring changes in token lengths and correlations in their directions pre- and post-transformation. Moreover, we develop initialization and aggregation rules to integrate both attention weights and token transformation effects across all layers, capturing holistic token contributions throughout the model. Experimental results on segmentation and perturbation tests demonstrate the superiority of our proposed TokenTM compared to state-of-the-art Vision Transformer explanation methods.
Are Large Language Models Post Hoc Explainers?
Large Language Models (LLMs) are increasingly used as powerful tools for a plethora of natural language processing (NLP) applications. A recent innovation, in-context learning (ICL), enables LLMs to learn new tasks by supplying a few examples in the prompt during inference time, thereby eliminating the need for model fine-tuning. While LLMs have been utilized in several applications, their applicability in explaining the behavior of other models remains relatively unexplored. Despite the growing number of new explanation techniques, many require white-box access to the model and/or are computationally expensive, highlighting a need for next-generation post hoc explainers. In this work, we present the first framework to study the effectiveness of LLMs in explaining other predictive models. More specifically, we propose a novel framework encompassing multiple prompting strategies: i) Perturbation-based ICL, ii) Prediction-based ICL, iii) Instruction-based ICL, and iv) Explanation-based ICL, with varying levels of information about the underlying ML model and the local neighborhood of the test sample. We conduct extensive experiments with real-world benchmark datasets to demonstrate that LLM-generated explanations perform on par with state-of-the-art post hoc explainers using their ability to leverage ICL examples and their internal knowledge in generating model explanations. On average, across four datasets and two ML models, we observe that LLMs identify the most important feature with 72.19% accuracy, opening up new frontiers in explainable artificial intelligence (XAI) to explore LLM-based explanation frameworks.
Beyond Over-Refusal: Scenario-Based Diagnostics and Post-Hoc Mitigation for Exaggerated Refusals in LLMs
Large language models (LLMs) frequently produce false refusals, declining benign requests that contain terms resembling unsafe queries. We address this challenge by introducing two comprehensive benchmarks: the Exaggerated Safety Benchmark (XSB) for single-turn prompts, annotated with "Focus" keywords that identify refusal-inducing triggers, and the Multi-turn Scenario-based Exaggerated Safety Benchmark (MS-XSB), which systematically evaluates refusal calibration in realistic, context-rich dialog settings. Our benchmarks reveal that exaggerated refusals persist across diverse recent LLMs and are especially pronounced in complex, multi-turn scenarios. To mitigate these failures, we leverage post-hoc explanation methods to identify refusal triggers and deploy three lightweight, model-agnostic approaches, ignore-word instructions, prompt rephrasing, and attention steering, at inference time, all without retraining or parameter access. Experiments on four instruction-tuned Llama models demonstrate that these strategies substantially improve compliance on safe prompts while maintaining robust safety protections. Our findings establish a reproducible framework for diagnosing and mitigating exaggerated refusals, highlighting practical pathways to safer and more helpful LLM deployments.
Self-AMPLIFY: Improving Small Language Models with Self Post Hoc Explanations
Incorporating natural language rationales in the prompt and In-Context Learning (ICL) has led to a significant improvement of Large Language Models (LLMs) performance. However, rationales currently require human-annotation or the use of auxiliary proxy models to target promising samples or generate high-quality rationales. In this work, we propose Self-AMPLIFY to generate automatically rationales from post hoc explanation methods applied to Small Language Models (SLMs) to improve their own performance. Self-AMPLIFY is a 3-step method that targets samples, generates rationales and builds a final prompt to leverage ICL. Self-AMPLIFY performance is evaluated on two SLMs and two datasets requiring reasoning abilities: these experiments show that Self-AMPLIFY achieves good results against competitors. Self-AMPLIFY is the first method to apply post hoc explanation methods to SLM to generate rationales to improve their own performance in a fully automated manner.
When Explainability Meets Privacy: An Investigation at the Intersection of Post-hoc Explainability and Differential Privacy in the Context of Natural Language Processing
In the study of trustworthy Natural Language Processing (NLP), a number of important research fields have emerged, including that of explainability and privacy. While research interest in both explainable and privacy-preserving NLP has increased considerably in recent years, there remains a lack of investigation at the intersection of the two. This leaves a considerable gap in understanding of whether achieving both explainability and privacy is possible, or whether the two are at odds with each other. In this work, we conduct an empirical investigation into the privacy-explainability trade-off in the context of NLP, guided by the popular overarching methods of Differential Privacy (DP) and Post-hoc Explainability. Our findings include a view into the intricate relationship between privacy and explainability, which is formed by a number of factors, including the nature of the downstream task and choice of the text privatization and explainability method. In this, we highlight the potential for privacy and explainability to co-exist, and we summarize our findings in a collection of practical recommendations for future work at this important intersection.
Better Understanding Differences in Attribution Methods via Systematic Evaluations
Deep neural networks are very successful on many vision tasks, but hard to interpret due to their black box nature. To overcome this, various post-hoc attribution methods have been proposed to identify image regions most influential to the models' decisions. Evaluating such methods is challenging since no ground truth attributions exist. We thus propose three novel evaluation schemes to more reliably measure the faithfulness of those methods, to make comparisons between them more fair, and to make visual inspection more systematic. To address faithfulness, we propose a novel evaluation setting (DiFull) in which we carefully control which parts of the input can influence the output in order to distinguish possible from impossible attributions. To address fairness, we note that different methods are applied at different layers, which skews any comparison, and so evaluate all methods on the same layers (ML-Att) and discuss how this impacts their performance on quantitative metrics. For more systematic visualizations, we propose a scheme (AggAtt) to qualitatively evaluate the methods on complete datasets. We use these evaluation schemes to study strengths and shortcomings of some widely used attribution methods over a wide range of models. Finally, we propose a post-processing smoothing step that significantly improves the performance of some attribution methods, and discuss its applicability.
Towards Better Understanding Attribution Methods
Deep neural networks are very successful on many vision tasks, but hard to interpret due to their black box nature. To overcome this, various post-hoc attribution methods have been proposed to identify image regions most influential to the models' decisions. Evaluating such methods is challenging since no ground truth attributions exist. We thus propose three novel evaluation schemes to more reliably measure the faithfulness of those methods, to make comparisons between them more fair, and to make visual inspection more systematic. To address faithfulness, we propose a novel evaluation setting (DiFull) in which we carefully control which parts of the input can influence the output in order to distinguish possible from impossible attributions. To address fairness, we note that different methods are applied at different layers, which skews any comparison, and so evaluate all methods on the same layers (ML-Att) and discuss how this impacts their performance on quantitative metrics. For more systematic visualizations, we propose a scheme (AggAtt) to qualitatively evaluate the methods on complete datasets. We use these evaluation schemes to study strengths and shortcomings of some widely used attribution methods. Finally, we propose a post-processing smoothing step that significantly improves the performance of some attribution methods, and discuss its applicability.
DeViL: Decoding Vision features into Language
Post-hoc explanation methods have often been criticised for abstracting away the decision-making process of deep neural networks. In this work, we would like to provide natural language descriptions for what different layers of a vision backbone have learned. Our DeViL method decodes vision features into language, not only highlighting the attribution locations but also generating textual descriptions of visual features at different layers of the network. We train a transformer network to translate individual image features of any vision layer into a prompt that a separate off-the-shelf language model decodes into natural language. By employing dropout both per-layer and per-spatial-location, our model can generalize training on image-text pairs to generate localized explanations. As it uses a pre-trained language model, our approach is fast to train, can be applied to any vision backbone, and produces textual descriptions at different layers of the vision network. Moreover, DeViL can create open-vocabulary attribution maps corresponding to words or phrases even outside the training scope of the vision model. We demonstrate that DeViL generates textual descriptions relevant to the image content on CC3M surpassing previous lightweight captioning models and attribution maps uncovering the learned concepts of the vision backbone. Finally, we show DeViL also outperforms the current state-of-the-art on the neuron-wise descriptions of the MILANNOTATIONS dataset. Code available at https://github.com/ExplainableML/DeViL
Safety Pretraining: Toward the Next Generation of Safe AI
As large language models (LLMs) are increasingly deployed in high-stakes settings, the risk of generating harmful or toxic content remains a central challenge. Post-hoc alignment methods are brittle: once unsafe patterns are learned during pretraining, they are hard to remove. We present a data-centric pretraining framework that builds safety into the model from the start. Our contributions include: (i) a safety classifier trained on 10,000 GPT-4 labeled examples, used to filter 600B tokens; (ii) the largest synthetic safety dataset to date (100B tokens) generated via recontextualization of harmful web data; (iii) RefuseWeb and Moral Education datasets that convert harmful prompts into refusal dialogues and web-style educational material; (iv) Harmfulness-Tag annotations injected during pretraining to flag unsafe content and steer away inference from harmful generations; and (v) safety evaluations measuring base model behavior before instruction tuning. Our safety-pretrained models reduce attack success rates from 38.8% to 8.4% with no performance degradation on standard LLM safety benchmarks.
Interpretable by AI Mother Tongue: Native Symbolic Reasoning in Neural Models
We present a framework where neural models develop an AI Mother Tongue, a native symbolic language that simultaneously supports intuitive reasoning, compositional symbol chains, and inherent interpretability. Unlike post-hoc explanation methods, our approach embeds reasoning directly into the model's representations: symbols capture meaningful semantic patterns, chains trace decision paths, and gated induction mechanisms guide selective focus, yielding transparent yet flexible reasoning. We introduce complementary training objectives to enhance symbol purity and decision sparsity, and employ a sequential specialization strategy to first build broad symbolic competence and then refine intuitive judgments. Experiments on AI tasks demonstrate competitive accuracy alongside verifiable reasoning traces, showing that AI Mother Tongue can serve as a unified mechanism for interpretability, intuition, and symbolic reasoning in neural models.
An Explainable Diagnostic Framework for Neurodegenerative Dementias via Reinforcement-Optimized LLM Reasoning
The differential diagnosis of neurodegenerative dementias is a challenging clinical task, mainly because of the overlap in symptom presentation and the similarity of patterns observed in structural neuroimaging. To improve diagnostic efficiency and accuracy, deep learning-based methods such as Convolutional Neural Networks and Vision Transformers have been proposed for the automatic classification of brain MRIs. However, despite their strong predictive performance, these models find limited clinical utility due to their opaque decision making. In this work, we propose a framework that integrates two core components to enhance diagnostic transparency. First, we introduce a modular pipeline for converting 3D T1-weighted brain MRIs into textual radiology reports. Second, we explore the potential of modern Large Language Models (LLMs) to assist clinicians in the differential diagnosis between Frontotemporal dementia subtypes, Alzheimer's disease, and normal aging based on the generated reports. To bridge the gap between predictive accuracy and explainability, we employ reinforcement learning to incentivize diagnostic reasoning in LLMs. Without requiring supervised reasoning traces or distillation from larger models, our approach enables the emergence of structured diagnostic rationales grounded in neuroimaging findings. Unlike post-hoc explainability methods that retrospectively justify model decisions, our framework generates diagnostic rationales as part of the inference process-producing causally grounded explanations that inform and guide the model's decision-making process. In doing so, our framework matches the diagnostic performance of existing deep learning methods while offering rationales that support its diagnostic conclusions.
Exploring the Trade-off Between Model Performance and Explanation Plausibility of Text Classifiers Using Human Rationales
Saliency post-hoc explainability methods are important tools for understanding increasingly complex NLP models. While these methods can reflect the model's reasoning, they may not align with human intuition, making the explanations not plausible. In this work, we present a methodology for incorporating rationales, which are text annotations explaining human decisions, into text classification models. This incorporation enhances the plausibility of post-hoc explanations while preserving their faithfulness. Our approach is agnostic to model architectures and explainability methods. We introduce the rationales during model training by augmenting the standard cross-entropy loss with a novel loss function inspired by contrastive learning. By leveraging a multi-objective optimization algorithm, we explore the trade-off between the two loss functions and generate a Pareto-optimal frontier of models that balance performance and plausibility. Through extensive experiments involving diverse models, datasets, and explainability methods, we demonstrate that our approach significantly enhances the quality of model explanations without causing substantial (sometimes negligible) degradation in the original model's performance.
UKP-SQuARE v2: Explainability and Adversarial Attacks for Trustworthy QA
Question Answering (QA) systems are increasingly deployed in applications where they support real-world decisions. However, state-of-the-art models rely on deep neural networks, which are difficult to interpret by humans. Inherently interpretable models or post hoc explainability methods can help users to comprehend how a model arrives at its prediction and, if successful, increase their trust in the system. Furthermore, researchers can leverage these insights to develop new methods that are more accurate and less biased. In this paper, we introduce SQuARE v2, the new version of SQuARE, to provide an explainability infrastructure for comparing models based on methods such as saliency maps and graph-based explanations. While saliency maps are useful to inspect the importance of each input token for the model's prediction, graph-based explanations from external Knowledge Graphs enable the users to verify the reasoning behind the model prediction. In addition, we provide multiple adversarial attacks to compare the robustness of QA models. With these explainability methods and adversarial attacks, we aim to ease the research on trustworthy QA models. SQuARE is available on https://square.ukp-lab.de.
SynthID-Image: Image watermarking at internet scale
We introduce SynthID-Image, a deep learning-based system for invisibly watermarking AI-generated imagery. This paper documents the technical desiderata, threat models, and practical challenges of deploying such a system at internet scale, addressing key requirements of effectiveness, fidelity, robustness, and security. SynthID-Image has been used to watermark over ten billion images and video frames across Google's services and its corresponding verification service is available to trusted testers. For completeness, we present an experimental evaluation of an external model variant, SynthID-O, which is available through partnerships. We benchmark SynthID-O against other post-hoc watermarking methods from the literature, demonstrating state-of-the-art performance in both visual quality and robustness to common image perturbations. While this work centers on visual media, the conclusions on deployment, constraints, and threat modeling generalize to other modalities, including audio. This paper provides a comprehensive documentation for the large-scale deployment of deep learning-based media provenance systems.
Who Wrote this Code? Watermarking for Code Generation
With the remarkable generation performance of large language models, ethical and legal concerns about using them have been raised, such as plagiarism and copyright issues. For such concerns, several approaches to watermark and detect LLM-generated text have been proposed very recently. However, we discover that the previous methods fail to function appropriately with code generation tasks because of the syntactic and semantic characteristics of code. Based on Kirchenbauer2023watermark, we propose a new watermarking method, Selective WatErmarking via Entropy Thresholding (SWEET), that promotes "green" tokens only at the position with high entropy of the token distribution during generation, thereby preserving the correctness of the generated code. The watermarked code is detected by the statistical test and Z-score based on the entropy information. Our experiments on HumanEval and MBPP show that SWEET significantly improves the Pareto Frontier between the code correctness and watermark detection performance. We also show that notable post-hoc detection methods (e.g. DetectGPT) fail to work well in this task. Finally, we show that setting a reasonable entropy threshold is not much of a challenge. Code is available at https://github.com/hongcheki/sweet-watermark.
Uncertainty quantification for improving radiomic-based models in radiation pneumonitis prediction
Background and Objective: Radiation pneumonitis (RP) is a side effect of thoracic radiation therapy. Recently, Machine learning (ML) models enhanced with radiomic and dosiomic features provide better predictions by incorporating spatial information beyond DVHs. However, to improve the clinical decision process, we propose to use uncertainty quantification (UQ) to improve the confidence in model prediction. This study evaluates the impact of post hoc UQ methods on the discriminative performance and calibration of ML models for RP prediction. Methods: This study evaluated four ML models: logistic regression (LR), support vector machines (SVM), extreme gradient boosting (XGB), and random forest (RF), using radiomic, dosiomic, and dosimetric features to predict RP. We applied UQ methods, including Patt scaling, isotonic regression, Venn-ABERS predictor, and Conformal Prediction, to quantify uncertainty. Model performance was assessed through Area Under the Receiver Operating Characteristic curve (AUROC), Area Under the Precision-Recall Curve (AUPRC), and Adaptive Calibration Error (ACE) using Leave-One-Out Cross-Validation (LOO-CV). Results: UQ methods enhanced predictive performance, particularly for high-certainty predictions, while also improving calibration. Radiomic and dosiomic features increased model accuracy but introduced calibration challenges, especially for non-linear models like XGB and RF. Performance gains from UQ methods were most noticeable at higher certainty thresholds. Conclusion: Integrating UQ into ML models with radiomic and dosiomic features improves both predictive accuracy and calibration, supporting more reliable clinical decision-making. The findings emphasize the value of UQ methods in enhancing applicability of predictive models for RP in healthcare settings.
On Calibration of Object Detectors: Pitfalls, Evaluation and Baselines
Reliable usage of object detectors require them to be calibrated -- a crucial problem that requires careful attention. Recent approaches towards this involve (1) designing new loss functions to obtain calibrated detectors by training them from scratch, and (2) post-hoc Temperature Scaling (TS) that learns to scale the likelihood of a trained detector to output calibrated predictions. These approaches are then evaluated based on a combination of Detection Expected Calibration Error (D-ECE) and Average Precision. In this work, via extensive analysis and insights, we highlight that these recent evaluation frameworks, evaluation metrics, and the use of TS have notable drawbacks leading to incorrect conclusions. As a step towards fixing these issues, we propose a principled evaluation framework to jointly measure calibration and accuracy of object detectors. We also tailor efficient and easy-to-use post-hoc calibration approaches such as Platt Scaling and Isotonic Regression specifically for object detection task. Contrary to the common notion, our experiments show that once designed and evaluated properly, post-hoc calibrators, which are extremely cheap to build and use, are much more powerful and effective than the recent train-time calibration methods. To illustrate, D-DETR with our post-hoc Isotonic Regression calibrator outperforms the recent train-time state-of-the-art calibration method Cal-DETR by more than 7 D-ECE on the COCO dataset. Additionally, we propose improved versions of the recently proposed Localization-aware ECE and show the efficacy of our method on these metrics as well. Code is available at: https://github.com/fiveai/detection_calibration.
Neural Prototype Trees for Interpretable Fine-grained Image Recognition
Prototype-based methods use interpretable representations to address the black-box nature of deep learning models, in contrast to post-hoc explanation methods that only approximate such models. We propose the Neural Prototype Tree (ProtoTree), an intrinsically interpretable deep learning method for fine-grained image recognition. ProtoTree combines prototype learning with decision trees, and thus results in a globally interpretable model by design. Additionally, ProtoTree can locally explain a single prediction by outlining a decision path through the tree. Each node in our binary tree contains a trainable prototypical part. The presence or absence of this learned prototype in an image determines the routing through a node. Decision making is therefore similar to human reasoning: Does the bird have a red throat? And an elongated beak? Then it's a hummingbird! We tune the accuracy-interpretability trade-off using ensemble methods, pruning and binarizing. We apply pruning without sacrificing accuracy, resulting in a small tree with only 8 learned prototypes along a path to classify a bird from 200 species. An ensemble of 5 ProtoTrees achieves competitive accuracy on the CUB-200- 2011 and Stanford Cars data sets. Code is available at https://github.com/M-Nauta/ProtoTree
Beyond Classification: Definition and Density-based Estimation of Calibration in Object Detection
Despite their impressive predictive performance in various computer vision tasks, deep neural networks (DNNs) tend to make overly confident predictions, which hinders their widespread use in safety-critical applications. While there have been recent attempts to calibrate DNNs, most of these efforts have primarily been focused on classification tasks, thus neglecting DNN-based object detectors. Although several recent works addressed calibration for object detection and proposed differentiable penalties, none of them are consistent estimators of established concepts in calibration. In this work, we tackle the challenge of defining and estimating calibration error specifically for this task. In particular, we adapt the definition of classification calibration error to handle the nuances associated with object detection, and predictions in structured output spaces more generally. Furthermore, we propose a consistent and differentiable estimator of the detection calibration error, utilizing kernel density estimation. Our experiments demonstrate the effectiveness of our estimator against competing train-time and post-hoc calibration methods, while maintaining similar detection performance.
h-calibration: Rethinking Classifier Recalibration with Probabilistic Error-Bounded Objective
Deep neural networks have demonstrated remarkable performance across numerous learning tasks but often suffer from miscalibration, resulting in unreliable probability outputs. This has inspired many recent works on mitigating miscalibration, particularly through post-hoc recalibration methods that aim to obtain calibrated probabilities without sacrificing the classification performance of pre-trained models. In this study, we summarize and categorize previous works into three general strategies: intuitively designed methods, binning-based methods, and methods based on formulations of ideal calibration. Through theoretical and practical analysis, we highlight ten common limitations in previous approaches. To address these limitations, we propose a probabilistic learning framework for calibration called h-calibration, which theoretically constructs an equivalent learning formulation for canonical calibration with boundedness. On this basis, we design a simple yet effective post-hoc calibration algorithm. Our method not only overcomes the ten identified limitations but also achieves markedly better performance than traditional methods, as validated by extensive experiments. We further analyze, both theoretically and experimentally, the relationship and advantages of our learning objective compared to traditional proper scoring rule. In summary, our probabilistic framework derives an approximately equivalent differentiable objective for learning error-bounded calibrated probabilities, elucidating the correspondence and convergence properties of computational statistics with respect to theoretical bounds in canonical calibration. The theoretical effectiveness is verified on standard post-hoc calibration benchmarks by achieving state-of-the-art performance. This research offers valuable reference for learning reliable likelihood in related fields.
What Makes Graph Neural Networks Miscalibrated?
Given the importance of getting calibrated predictions and reliable uncertainty estimations, various post-hoc calibration methods have been developed for neural networks on standard multi-class classification tasks. However, these methods are not well suited for calibrating graph neural networks (GNNs), which presents unique challenges such as accounting for the graph structure and the graph-induced correlations between the nodes. In this work, we conduct a systematic study on the calibration qualities of GNN node predictions. In particular, we identify five factors which influence the calibration of GNNs: general under-confident tendency, diversity of nodewise predictive distributions, distance to training nodes, relative confidence level, and neighborhood similarity. Furthermore, based on the insights from this study, we design a novel calibration method named Graph Attention Temperature Scaling (GATS), which is tailored for calibrating graph neural networks. GATS incorporates designs that address all the identified influential factors and produces nodewise temperature scaling using an attention-based architecture. GATS is accuracy-preserving, data-efficient, and expressive at the same time. Our experiments empirically verify the effectiveness of GATS, demonstrating that it can consistently achieve state-of-the-art calibration results on various graph datasets for different GNN backbones.
Rather a Nurse than a Physician -- Contrastive Explanations under Investigation
Contrastive explanations, where one decision is explained in contrast to another, are supposed to be closer to how humans explain a decision than non-contrastive explanations, where the decision is not necessarily referenced to an alternative. This claim has never been empirically validated. We analyze four English text-classification datasets (SST2, DynaSent, BIOS and DBpedia-Animals). We fine-tune and extract explanations from three different models (RoBERTa, GTP-2, and T5), each in three different sizes and apply three post-hoc explainability methods (LRP, GradientxInput, GradNorm). We furthermore collect and release human rationale annotations for a subset of 100 samples from the BIOS dataset for contrastive and non-contrastive settings. A cross-comparison between model-based rationales and human annotations, both in contrastive and non-contrastive settings, yields a high agreement between the two settings for models as well as for humans. Moreover, model-based explanations computed in both settings align equally well with human rationales. Thus, we empirically find that humans do not necessarily explain in a contrastive manner.9 pages, long paper at ACL 2022 proceedings.
ChaosMining: A Benchmark to Evaluate Post-Hoc Local Attribution Methods in Low SNR Environments
In this study, we examine the efficacy of post-hoc local attribution methods in identifying features with predictive power from irrelevant ones in domains characterized by a low signal-to-noise ratio (SNR), a common scenario in real-world machine learning applications. We developed synthetic datasets encompassing symbolic functional, image, and audio data, incorporating a benchmark on the {\it (Model \(\times\) Attribution\(\times\) Noise Condition)} triplet. By rigorously testing various classic models trained from scratch, we gained valuable insights into the performance of these attribution methods in multiple conditions. Based on these findings, we introduce a novel extension to the notable recursive feature elimination (RFE) algorithm, enhancing its applicability for neural networks. Our experiments highlight its strengths in prediction and feature selection, alongside limitations in scalability. Further details and additional minor findings are included in the appendix, with extensive discussions. The codes and resources are available at https://github.com/geshijoker/ChaosMining/{URL}.
Circumventing Concept Erasure Methods For Text-to-Image Generative Models
Text-to-image generative models can produce photo-realistic images for an extremely broad range of concepts, and their usage has proliferated widely among the general public. On the flip side, these models have numerous drawbacks, including their potential to generate images featuring sexually explicit content, mirror artistic styles without permission, or even hallucinate (or deepfake) the likenesses of celebrities. Consequently, various methods have been proposed in order to "erase" sensitive concepts from text-to-image models. In this work, we examine five recently proposed concept erasure methods, and show that targeted concepts are not fully excised from any of these methods. Specifically, we leverage the existence of special learned word embeddings that can retrieve "erased" concepts from the sanitized models with no alterations to their weights. Our results highlight the brittleness of post hoc concept erasure methods, and call into question their use in the algorithmic toolkit for AI safety.
Be Careful When Evaluating Explanations Regarding Ground Truth
Evaluating explanations of image classifiers regarding ground truth, e.g. segmentation masks defined by human perception, primarily evaluates the quality of the models under consideration rather than the explanation methods themselves. Driven by this observation, we propose a framework for jointly evaluating the robustness of safety-critical systems that combine a deep neural network with an explanation method. These are increasingly used in real-world applications like medical image analysis or robotics. We introduce a fine-tuning procedure to (mis)align modelx2013explanation pipelines with ground truth and use it to quantify the potential discrepancy between worst and best-case scenarios of human alignment. Experiments across various model architectures and post-hoc local interpretation methods provide insights into the robustness of vision transformers and the overall vulnerability of such AI systems to potential adversarial attacks.
A noisy elephant in the room: Is your out-of-distribution detector robust to label noise?
The ability to detect unfamiliar or unexpected images is essential for safe deployment of computer vision systems. In the context of classification, the task of detecting images outside of a model's training domain is known as out-of-distribution (OOD) detection. While there has been a growing research interest in developing post-hoc OOD detection methods, there has been comparably little discussion around how these methods perform when the underlying classifier is not trained on a clean, carefully curated dataset. In this work, we take a closer look at 20 state-of-the-art OOD detection methods in the (more realistic) scenario where the labels used to train the underlying classifier are unreliable (e.g. crowd-sourced or web-scraped labels). Extensive experiments across different datasets, noise types & levels, architectures and checkpointing strategies provide insights into the effect of class label noise on OOD detection, and show that poor separation between incorrectly classified ID samples vs. OOD samples is an overlooked yet important limitation of existing methods. Code: https://github.com/glhr/ood-labelnoise
Understanding Post-hoc Explainers: The Case of Anchors
In many scenarios, the interpretability of machine learning models is a highly required but difficult task. To explain the individual predictions of such models, local model-agnostic approaches have been proposed. However, the process generating the explanations can be, for a user, as mysterious as the prediction to be explained. Furthermore, interpretability methods frequently lack theoretical guarantees, and their behavior on simple models is frequently unknown. While it is difficult, if not impossible, to ensure that an explainer behaves as expected on a cutting-edge model, we can at least ensure that everything works on simple, already interpretable models. In this paper, we present a theoretical analysis of Anchors (Ribeiro et al., 2018): a popular rule-based interpretability method that highlights a small set of words to explain a text classifier's decision. After formalizing its algorithm and providing useful insights, we demonstrate mathematically that Anchors produces meaningful results when used with linear text classifiers on top of a TF-IDF vectorization. We believe that our analysis framework can aid in the development of new explainability methods based on solid theoretical foundations.
Inherent Challenges of Post-Hoc Membership Inference for Large Language Models
Large Language Models (LLMs) are often trained on vast amounts of undisclosed data, motivating the development of post-hoc Membership Inference Attacks (MIAs) to gain insight into their training data composition. However, in this paper, we identify inherent challenges in post-hoc MIA evaluation due to potential distribution shifts between collected member and non-member datasets. Using a simple bag-of-words classifier, we demonstrate that datasets used in recent post-hoc MIAs suffer from significant distribution shifts, in some cases achieving near-perfect distinction between members and non-members. This implies that previously reported high MIA performance may be largely attributable to these shifts rather than model memorization. We confirm that randomized, controlled setups eliminate such shifts and thus enable the development and fair evaluation of new MIAs. However, we note that such randomized setups are rarely available for the latest LLMs, making post-hoc data collection still required to infer membership for real-world LLMs. As a potential solution, we propose a Regression Discontinuity Design (RDD) approach for post-hoc data collection, which substantially mitigates distribution shifts. Evaluating various MIA methods on this RDD setup yields performance barely above random guessing, in stark contrast to previously reported results. Overall, our findings highlight the challenges in accurately measuring LLM memorization and the need for careful experimental design in (post-hoc) membership inference tasks.
Post-Hoc Split-Point Self-Consistency Verification for Efficient, Unified Quantification of Aleatoric and Epistemic Uncertainty in Deep Learning
Uncertainty quantification (UQ) is vital for trustworthy deep learning, yet existing methods are either computationally intensive, such as Bayesian or ensemble methods, or provide only partial, task-specific estimates, such as single-forward-pass techniques. In this paper, we propose a post-hoc single-forward-pass framework that jointly captures aleatoric and epistemic uncertainty without modifying or retraining pretrained models. Our method applies Split-Point Analysis (SPA) to decompose predictive residuals into upper and lower subsets, computing Mean Absolute Residuals (MARs) on each side. We prove that, under ideal conditions, the total MAR equals the harmonic mean of subset MARs; deviations define a novel Self-consistency Discrepancy Score (SDS) for fine-grained epistemic estimation across regression and classification. For regression, side-specific quantile regression yields prediction intervals with improved empirical coverage, which are further calibrated via SDS. For classification, when calibration data are available, we apply SPA-based calibration identities to adjust the softmax outputs and then compute predictive entropy on these calibrated probabilities. Extensive experiments on diverse regression and classification benchmarks demonstrate that our framework matches or exceeds several state-of-the-art UQ methods while incurring minimal overhead. Our source code is available at https://github.com/zzz0527/SPC-UQ.
Tell Your Model Where to Attend: Post-hoc Attention Steering for LLMs
In human-written articles, we often leverage the subtleties of text style, such as bold and italics, to guide the attention of readers. These textual emphases are vital for the readers to grasp the conveyed information. When interacting with large language models (LLMs), we have a similar need - steering the model to pay closer attention to user-specified information, e.g., an instruction. Existing methods, however, are constrained to process plain text and do not support such a mechanism. This motivates us to introduce PASTA - Post-hoc Attention STeering Approach, a method that allows LLMs to read text with user-specified emphasis marks. To this end, PASTA identifies a small subset of attention heads and applies precise attention reweighting on them, directing the model attention to user-specified parts. Like prompting, PASTA is applied at inference time and does not require changing any model parameters. Experiments demonstrate that PASTA can substantially enhance an LLM's ability to follow user instructions or integrate new knowledge from user inputs, leading to a significant performance improvement on a variety of tasks, e.g., an average accuracy improvement of 22% for LLAMA-7B. Our code is publicly available at https://github.com/QingruZhang/PASTA .
Scaling for Training Time and Post-hoc Out-of-distribution Detection Enhancement
The capacity of a modern deep learning system to determine if a sample falls within its realm of knowledge is fundamental and important. In this paper, we offer insights and analyses of recent state-of-the-art out-of-distribution (OOD) detection methods - extremely simple activation shaping (ASH). We demonstrate that activation pruning has a detrimental effect on OOD detection, while activation scaling enhances it. Moreover, we propose SCALE, a simple yet effective post-hoc network enhancement method for OOD detection, which attains state-of-the-art OOD detection performance without compromising in-distribution (ID) accuracy. By integrating scaling concepts into the training process to capture a sample's ID characteristics, we propose Intermediate Tensor SHaping (ISH), a lightweight method for training time OOD detection enhancement. We achieve AUROC scores of +1.85\% for near-OOD and +0.74\% for far-OOD datasets on the OpenOOD v1.5 ImageNet-1K benchmark. Our code and models are available at https://github.com/kai422/SCALE.
Q(D)O-ES: Population-based Quality (Diversity) Optimisation for Post Hoc Ensemble Selection in AutoML
Automated machine learning (AutoML) systems commonly ensemble models post hoc to improve predictive performance, typically via greedy ensemble selection (GES). However, we believe that GES may not always be optimal, as it performs a simple deterministic greedy search. In this work, we introduce two novel population-based ensemble selection methods, QO-ES and QDO-ES, and compare them to GES. While QO-ES optimises solely for predictive performance, QDO-ES also considers the diversity of ensembles within the population, maintaining a diverse set of well-performing ensembles during optimisation based on ideas of quality diversity optimisation. The methods are evaluated using 71 classification datasets from the AutoML benchmark, demonstrating that QO-ES and QDO-ES often outrank GES, albeit only statistically significant on validation data. Our results further suggest that diversity can be beneficial for post hoc ensembling but also increases the risk of overfitting.
To Each Metric Its Decoding: Post-Hoc Optimal Decision Rules of Probabilistic Hierarchical Classifiers
Hierarchical classification offers an approach to incorporate the concept of mistake severity by leveraging a structured, labeled hierarchy. However, decoding in such settings frequently relies on heuristic decision rules, which may not align with task-specific evaluation metrics. In this work, we propose a framework for the optimal decoding of an output probability distribution with respect to a target metric. We derive optimal decision rules for increasingly complex prediction settings, providing universal algorithms when candidates are limited to the set of nodes. In the most general case of predicting a subset of nodes, we focus on rules dedicated to the hierarchical hF_{beta} scores, tailored to hierarchical settings. To demonstrate the practical utility of our approach, we conduct extensive empirical evaluations, showcasing the superiority of our proposed optimal strategies, particularly in underdetermined scenarios. These results highlight the potential of our methods to enhance the performance and reliability of hierarchical classifiers in real-world applications. The code is available at https://github.com/RomanPlaud/hierarchical_decision_rules
Separate the Wheat from the Chaff: A Post-Hoc Approach to Safety Re-Alignment for Fine-Tuned Language Models
Although large language models (LLMs) achieve effective safety alignment at the time of release, they still face various safety challenges. A key issue is that fine-tuning often compromises the safety alignment of LLMs. To address this issue, we propose a method named IRR (Identify, Remove, and Recalibrate for Safety Realignment) that performs safety realignment for LLMs. The core of IRR is to identify and remove unsafe delta parameters from the fine-tuned models, while recalibrating the retained ones. We evaluate the effectiveness of IRR across various datasets, including both full fine-tuning and LoRA methods. Our results demonstrate that IRR significantly enhances the safety performance of fine-tuned models on safety benchmarks, such as harmful queries and jailbreak attacks, while maintaining their performance on downstream tasks. The source code is available at: https://anonymous.4open.science/r/IRR-BD4F.
Do Input Gradients Highlight Discriminative Features?
Post-hoc gradient-based interpretability methods [Simonyan et al., 2013, Smilkov et al., 2017] that provide instance-specific explanations of model predictions are often based on assumption (A): magnitude of input gradients -- gradients of logits with respect to input -- noisily highlight discriminative task-relevant features. In this work, we test the validity of assumption (A) using a three-pronged approach. First, we develop an evaluation framework, DiffROAR, to test assumption (A) on four image classification benchmarks. Our results suggest that (i) input gradients of standard models (i.e., trained on original data) may grossly violate (A), whereas (ii) input gradients of adversarially robust models satisfy (A). Second, we introduce BlockMNIST, an MNIST-based semi-real dataset, that by design encodes a priori knowledge of discriminative features. Our analysis on BlockMNIST leverages this information to validate as well as characterize differences between input gradient attributions of standard and robust models. Finally, we theoretically prove that our empirical findings hold on a simplified version of the BlockMNIST dataset. Specifically, we prove that input gradients of standard one-hidden-layer MLPs trained on this dataset do not highlight instance-specific signal coordinates, thus grossly violating assumption (A). Our findings motivate the need to formalize and test common assumptions in interpretability in a falsifiable manner [Leavitt and Morcos, 2020]. We believe that the DiffROAR evaluation framework and BlockMNIST-based datasets can serve as sanity checks to audit instance-specific interpretability methods; code and data available at https://github.com/harshays/inputgradients.
Tree-Ring Watermarks: Fingerprints for Diffusion Images that are Invisible and Robust
Watermarking the outputs of generative models is a crucial technique for tracing copyright and preventing potential harm from AI-generated content. In this paper, we introduce a novel technique called Tree-Ring Watermarking that robustly fingerprints diffusion model outputs. Unlike existing methods that perform post-hoc modifications to images after sampling, Tree-Ring Watermarking subtly influences the entire sampling process, resulting in a model fingerprint that is invisible to humans. The watermark embeds a pattern into the initial noise vector used for sampling. These patterns are structured in Fourier space so that they are invariant to convolutions, crops, dilations, flips, and rotations. After image generation, the watermark signal is detected by inverting the diffusion process to retrieve the noise vector, which is then checked for the embedded signal. We demonstrate that this technique can be easily applied to arbitrary diffusion models, including text-conditioned Stable Diffusion, as a plug-in with negligible loss in FID. Our watermark is semantically hidden in the image space and is far more robust than watermarking alternatives that are currently deployed. Code is available at github.com/YuxinWenRick/tree-ring-watermark.
ConCISE: Confidence-guided Compression in Step-by-step Efficient Reasoning
Large Reasoning Models (LRMs) perform strongly in complex reasoning tasks via Chain-of-Thought (CoT) prompting, but often suffer from verbose outputs caused by redundant content, increasing computational overhead, and degrading user experience. Existing compression methods either operate post-hoc pruning, risking disruption to reasoning coherence, or rely on sampling-based selection, which fails to intervene effectively during generation. In this work, we introduce a confidence-guided perspective to explain the emergence of redundant reflection in LRMs, identifying two key patterns: Confidence Deficit, where the model reconsiders correct steps due to low internal confidence, and Termination Delay, where reasoning continues even after reaching a confident answer. Based on this analysis, we propose ConCISE (Confidence-guided Compression In Step-by-step Efficient Reasoning), a framework that simplifies reasoning chains by reinforcing the model's confidence during inference, thus preventing the generation of redundant reflection steps. It integrates Confidence Injection to stabilize intermediate steps and Early Stopping to terminate reasoning when confidence is sufficient. Extensive experiments demonstrate that fine-tuning LRMs on ConCISE-generated data yields significantly shorter outputs, reducing length by up to approximately 50% under SimPO, while maintaining high task accuracy. ConCISE consistently outperforms existing baselines across multiple reasoning benchmarks.
The Gaussian Discriminant Variational Autoencoder (GdVAE): A Self-Explainable Model with Counterfactual Explanations
Visual counterfactual explanation (CF) methods modify image concepts, e.g, shape, to change a prediction to a predefined outcome while closely resembling the original query image. Unlike self-explainable models (SEMs) and heatmap techniques, they grant users the ability to examine hypothetical "what-if" scenarios. Previous CF methods either entail post-hoc training, limiting the balance between transparency and CF quality, or demand optimization during inference. To bridge the gap between transparent SEMs and CF methods, we introduce the GdVAE, a self-explainable model based on a conditional variational autoencoder (CVAE), featuring a Gaussian discriminant analysis (GDA) classifier and integrated CF explanations. Full transparency is achieved through a generative classifier that leverages class-specific prototypes for the downstream task and a closed-form solution for CFs in the latent space. The consistency of CFs is improved by regularizing the latent space with the explainer function. Extensive comparisons with existing approaches affirm the effectiveness of our method in producing high-quality CF explanations while preserving transparency. Code and models are public.
NeighborRetr: Balancing Hub Centrality in Cross-Modal Retrieval
Cross-modal retrieval aims to bridge the semantic gap between different modalities, such as visual and textual data, enabling accurate retrieval across them. Despite significant advancements with models like CLIP that align cross-modal representations, a persistent challenge remains: the hubness problem, where a small subset of samples (hubs) dominate as nearest neighbors, leading to biased representations and degraded retrieval accuracy. Existing methods often mitigate hubness through post-hoc normalization techniques, relying on prior data distributions that may not be practical in real-world scenarios. In this paper, we directly mitigate hubness during training and introduce NeighborRetr, a novel method that effectively balances the learning of hubs and adaptively adjusts the relations of various kinds of neighbors. Our approach not only mitigates the hubness problem but also enhances retrieval performance, achieving state-of-the-art results on multiple cross-modal retrieval benchmarks. Furthermore, NeighborRetr demonstrates robust generalization to new domains with substantial distribution shifts, highlighting its effectiveness in real-world applications. We make our code publicly available at: https://github.com/zzezze/NeighborRetr .
ViTree: Single-path Neural Tree for Step-wise Interpretable Fine-grained Visual Categorization
As computer vision continues to advance and finds widespread applications across various domains, the need for interpretability in deep learning models becomes paramount. Existing methods often resort to post-hoc techniques or prototypes to explain the decision-making process, which can be indirect and lack intrinsic illustration. In this research, we introduce ViTree, a novel approach for fine-grained visual categorization that combines the popular vision transformer as a feature extraction backbone with neural decision trees. By traversing the tree paths, ViTree effectively selects patches from transformer-processed features to highlight informative local regions, thereby refining representations in a step-wise manner. Unlike previous tree-based models that rely on soft distributions or ensembles of paths, ViTree selects a single tree path, offering a clearer and simpler decision-making process. This patch and path selectivity enhances model interpretability of ViTree, enabling better insights into the model's inner workings. Remarkably, extensive experimentation validates that this streamlined approach surpasses various strong competitors and achieves state-of-the-art performance while maintaining exceptional interpretability which is proved by multi-perspective methods. Code can be found at https://github.com/SJTU-DeepVisionLab/ViTree.
Temporal Score Analysis for Understanding and Correcting Diffusion Artifacts
Visual artifacts remain a persistent challenge in diffusion models, even with training on massive datasets. Current solutions primarily rely on supervised detectors, yet lack understanding of why these artifacts occur in the first place. In our analysis, we identify three distinct phases in the diffusion generative process: Profiling, Mutation, and Refinement. Artifacts typically emerge during the Mutation phase, where certain regions exhibit anomalous score dynamics over time, causing abrupt disruptions in the normal evolution pattern. This temporal nature explains why existing methods focusing only on spatial uncertainty of the final output fail at effective artifact localization. Based on these insights, we propose ASCED (Abnormal Score Correction for Enhancing Diffusion), that detects artifacts by monitoring abnormal score dynamics during the diffusion process, with a trajectory-aware on-the-fly mitigation strategy that appropriate generation of noise in the detected areas. Unlike most existing methods that apply post hoc corrections, \eg, by applying a noising-denoising scheme after generation, our mitigation strategy operates seamlessly within the existing diffusion process. Extensive experiments demonstrate that our proposed approach effectively reduces artifacts across diverse domains, matching or surpassing existing supervised methods without additional training.
ReEx-SQL: Reasoning with Execution-Aware Reinforcement Learning for Text-to-SQL
In Text-to-SQL, execution feedback is essential for guiding large language models (LLMs) to reason accurately and generate reliable SQL queries. However, existing methods treat execution feedback solely as a post-hoc signal for correction or selection, failing to integrate it into the generation process. This limitation hinders their ability to address reasoning errors as they occur, ultimately reducing query accuracy and robustness. To address this issue, we propose ReEx-SQL (Reasoning with Execution-Aware Reinforcement Learning), a framework for Text-to-SQL that enables models to interact with the database during decoding and dynamically adjust their reasoning based on execution feedback. ReEx-SQL introduces an execution-aware reasoning paradigm that interleaves intermediate SQL execution into reasoning paths, facilitating context-sensitive revisions. It achieves this through structured prompts with markup tags and a stepwise rollout strategy that integrates execution feedback into each stage of generation. To supervise policy learning, we develop a composite reward function that includes an exploration reward, explicitly encouraging effective database interaction. Additionally, ReEx-SQL adopts a tree-based decoding strategy to support exploratory reasoning, enabling dynamic expansion of alternative reasoning paths. Notably, ReEx-SQL achieves 88.8% on Spider and 64.9% on BIRD at the 7B scale, surpassing the standard reasoning baseline by 2.7% and 2.6%, respectively. It also shows robustness, achieving 85.2% on Spider-Realistic with leading performance. In addition, its tree-structured decoding improves efficiency and performance over linear decoding, reducing inference time by 51.9% on the BIRD development set.
GenerationPrograms: Fine-grained Attribution with Executable Programs
Recent large language models (LLMs) achieve impressive performance in source-conditioned text generation but often fail to correctly provide fine-grained attributions for their outputs, undermining verifiability and trust. Moreover, existing attribution methods do not explain how and why models leverage the provided source documents to generate their final responses, limiting interpretability. To overcome these challenges, we introduce a modular generation framework, GenerationPrograms, inspired by recent advancements in executable "code agent" architectures. Unlike conventional generation methods that simultaneously generate outputs and attributions or rely on post-hoc attribution, GenerationPrograms decomposes the process into two distinct stages: first, creating an executable program plan composed of modular text operations (such as paraphrasing, compression, and fusion) explicitly tailored to the query, and second, executing these operations following the program's specified instructions to produce the final response. Empirical evaluations demonstrate that GenerationPrograms significantly improves attribution quality at both the document level and sentence level across two long-form question-answering tasks and a multi-document summarization task. We further demonstrate that GenerationPrograms can effectively function as a post-hoc attribution method, outperforming traditional techniques in recovering accurate attributions. In addition, the interpretable programs generated by GenerationPrograms enable localized refinement through modular-level improvements that further enhance overall attribution quality.
On Measuring Intrinsic Causal Attributions in Deep Neural Networks
Quantifying the causal influence of input features within neural networks has become a topic of increasing interest. Existing approaches typically assess direct, indirect, and total causal effects. This work treats NNs as structural causal models (SCMs) and extends our focus to include intrinsic causal contributions (ICC). We propose an identifiable generative post-hoc framework for quantifying ICC. We also draw a relationship between ICC and Sobol' indices. Our experiments on synthetic and real-world datasets demonstrate that ICC generates more intuitive and reliable explanations compared to existing global explanation techniques.
Optimizing Calibration by Gaining Aware of Prediction Correctness
Model calibration aims to align confidence with prediction correctness. The Cross-Entropy (CE) loss is widely used for calibrator training, which enforces the model to increase confidence on the ground truth class. However, we find the CE loss has intrinsic limitations. For example, for a narrow misclassification, a calibrator trained by the CE loss often produces high confidence on the wrongly predicted class (e.g., a test sample is wrongly classified and its softmax score on the ground truth class is around 0.4), which is undesirable. In this paper, we propose a new post-hoc calibration objective derived from the aim of calibration. Intuitively, the proposed objective function asks that the calibrator decrease model confidence on wrongly predicted samples and increase confidence on correctly predicted samples. Because a sample itself has insufficient ability to indicate correctness, we use its transformed versions (e.g., rotated, greyscaled and color-jittered) during calibrator training. Trained on an in-distribution validation set and tested with isolated, individual test samples, our method achieves competitive calibration performance on both in-distribution and out-of-distribution test sets compared with the state of the art. Further, our analysis points out the difference between our method and commonly used objectives such as CE loss and mean square error loss, where the latters sometimes deviates from the calibration aim.
Interactively Providing Explanations for Transformer Language Models
Transformer language models are state of the art in a multitude of NLP tasks. Despite these successes, their opaqueness remains problematic. Recent methods aiming to provide interpretability and explainability to black-box models primarily focus on post-hoc explanations of (sometimes spurious) input-output correlations. Instead, we emphasize using prototype networks directly incorporated into the model architecture and hence explain the reasoning process behind the network's decisions. Our architecture performs on par with several language models and, moreover, enables learning from user interactions. This not only offers a better understanding of language models but uses human capabilities to incorporate knowledge outside of the rigid range of purely data-driven approaches.
Positional Encoding via Token-Aware Phase Attention
We prove under practical assumptions that Rotary Positional Embedding (RoPE) introduces an intrinsic distance-dependent bias in attention scores that limits RoPE's ability to model long-context. RoPE extension methods may alleviate this issue, but they typically require post-hoc adjustments after pretraining, such as rescaling or hyperparameters retuning. This paper introduces Token-Aware Phase Attention (TAPA), a new positional encoding method that incorporates a learnable phase function into the attention mechanism. TAPA preserves token interactions over long range, extends to longer contexts with direct and light fine-tuning, extrapolates to unseen lengths, and attains significantly lower perplexity on long-context than RoPE families.
Potential and Challenges of Model Editing for Social Debiasing
Large language models (LLMs) trained on vast corpora suffer from inevitable stereotype biases. Mitigating these biases with fine-tuning could be both costly and data-hungry. Model editing methods, which focus on modifying LLMs in a post-hoc manner, are of great potential to address debiasing. However, it lacks a comprehensive study that facilitates both internal and external model editing methods, supports various bias types, as well as understands the pros and cons of applying editing methods to stereotypical debiasing. To mitigate this gap, we carefully formulate social debiasing into an editing problem and benchmark seven existing model editing algorithms on stereotypical debiasing, i.e., debias editing. Our findings in three scenarios reveal both the potential and challenges of debias editing: (1) Existing model editing methods can effectively preserve knowledge and mitigate biases, while the generalization of debias effect from edited sentences to semantically equivalent sentences is limited.(2) Sequential editing highlights the robustness of SERAC (Mitchell et al. 2022b), while internal editing methods degenerate with the number of edits. (3) Model editing algorithms achieve generalization towards unseen biases both within the same type and from different types. In light of these findings, we further propose two simple but effective methods to improve debias editing, and experimentally show the effectiveness of the proposed methods.
QuoTA: Query-oriented Token Assignment via CoT Query Decouple for Long Video Comprehension
Recent advances in long video understanding typically mitigate visual redundancy through visual token pruning based on attention distribution. However, while existing methods employ post-hoc low-response token pruning in decoder layers, they overlook the input-level semantic correlation between visual tokens and instructions (query). In this paper, we propose QuoTA, an ante-hoc training-free modular that extends existing large video-language models (LVLMs) for visual token assignment based on query-oriented frame-level importance assessment. The query-oriented token selection is crucial as it aligns visual processing with task-specific requirements, optimizing token budget utilization while preserving semantically relevant content. Specifically, (i) QuoTA strategically allocates frame-level importance scores based on query relevance, enabling one-time visual token assignment before cross-modal interactions in decoder layers, (ii) we decouple the query through Chain-of-Thoughts reasoning to facilitate more precise LVLM-based frame importance scoring, and (iii) QuoTA offers a plug-and-play functionality that extends to existing LVLMs. Extensive experimental results demonstrate that implementing QuoTA with LLaVA-Video-7B yields an average performance improvement of 3.2% across six benchmarks (including Video-MME and MLVU) while operating within an identical visual token budget as the baseline. Codes are open-sourced at https://github.com/MAC-AutoML/QuoTA.
Reduce, Reuse, Recycle: Compositional Generation with Energy-Based Diffusion Models and MCMC
Since their introduction, diffusion models have quickly become the prevailing approach to generative modeling in many domains. They can be interpreted as learning the gradients of a time-varying sequence of log-probability density functions. This interpretation has motivated classifier-based and classifier-free guidance as methods for post-hoc control of diffusion models. In this work, we build upon these ideas using the score-based interpretation of diffusion models, and explore alternative ways to condition, modify, and reuse diffusion models for tasks involving compositional generation and guidance. In particular, we investigate why certain types of composition fail using current techniques and present a number of solutions. We conclude that the sampler (not the model) is responsible for this failure and propose new samplers, inspired by MCMC, which enable successful compositional generation. Further, we propose an energy-based parameterization of diffusion models which enables the use of new compositional operators and more sophisticated, Metropolis-corrected samplers. Intriguingly we find these samplers lead to notable improvements in compositional generation across a wide set of problems such as classifier-guided ImageNet modeling and compositional text-to-image generation.
Generate, but Verify: Reducing Hallucination in Vision-Language Models with Retrospective Resampling
Vision-Language Models (VLMs) excel at visual understanding but often suffer from visual hallucinations, where they generate descriptions of nonexistent objects, actions, or concepts, posing significant risks in safety-critical applications. Existing hallucination mitigation methods typically follow one of two paradigms: generation adjustment, which modifies decoding behavior to align text with visual inputs, and post-hoc verification, where external models assess and correct outputs. While effective, generation adjustment methods often rely on heuristics and lack correction mechanisms, while post-hoc verification is complicated, typically requiring multiple models and tending to reject outputs rather than refine them. In this work, we introduce REVERSE, a unified framework that integrates hallucination-aware training with on-the-fly self-verification. By leveraging a new hallucination-verification dataset containing over 1.3M semi-synthetic samples, along with a novel inference-time retrospective resampling technique, our approach enables VLMs to both detect hallucinations during generation and dynamically revise those hallucinations. Our evaluations show that REVERSE achieves state-of-the-art hallucination reduction, outperforming the best existing methods by up to 12% on CHAIR-MSCOCO and 28% on HaloQuest. Our dataset, model, and code are available at: https://reverse-vlm.github.io.
ImmerseGen: Agent-Guided Immersive World Generation with Alpha-Textured Proxies
Automatic creation of 3D scenes for immersive VR presence has been a significant research focus for decades. However, existing methods often rely on either high-poly mesh modeling with post-hoc simplification or massive 3D Gaussians, resulting in a complex pipeline or limited visual realism. In this paper, we demonstrate that such exhaustive modeling is unnecessary for achieving compelling immersive experience. We introduce ImmerseGen, a novel agent-guided framework for compact and photorealistic world modeling. ImmerseGen represents scenes as hierarchical compositions of lightweight geometric proxies, i.e., simplified terrain and billboard meshes, and generates photorealistic appearance by synthesizing RGBA textures onto these proxies. Specifically, we propose terrain-conditioned texturing for user-centric base world synthesis, and RGBA asset texturing for midground and foreground scenery. This reformulation offers several advantages: (i) it simplifies modeling by enabling agents to guide generative models in producing coherent textures that integrate seamlessly with the scene; (ii) it bypasses complex geometry creation and decimation by directly synthesizing photorealistic textures on proxies, preserving visual quality without degradation; (iii) it enables compact representations suitable for real-time rendering on mobile VR headsets. To automate scene creation from text prompts, we introduce VLM-based modeling agents enhanced with semantic grid-based analysis for improved spatial reasoning and accurate asset placement. ImmerseGen further enriches scenes with dynamic effects and ambient audio to support multisensory immersion. Experiments on scene generation and live VR showcases demonstrate that ImmerseGen achieves superior photorealism, spatial coherence and rendering efficiency compared to prior methods. Project webpage: https://immersegen.github.io.
Optimize Any Topology: A Foundation Model for Shape- and Resolution-Free Structural Topology Optimization
Structural topology optimization (TO) is central to engineering design but remains computationally intensive due to complex physics and hard constraints. Existing deep-learning methods are limited to fixed square grids, a few hand-coded boundary conditions, and post-hoc optimization, preventing general deployment. We introduce Optimize Any Topology (OAT), a foundation-model framework that directly predicts minimum-compliance layouts for arbitrary aspect ratios, resolutions, volume fractions, loads, and fixtures. OAT combines a resolution- and shape-agnostic autoencoder with an implicit neural-field decoder and a conditional latent-diffusion model trained on OpenTO, a new corpus of 2.2 million optimized structures covering 2 million unique boundary-condition configurations. On four public benchmarks and two challenging unseen tests, OAT lowers mean compliance up to 90% relative to the best prior models and delivers sub-1 second inference on a single GPU across resolutions from 64 x 64 to 256 x 256 and aspect ratios as high as 10:1. These results establish OAT as a general, fast, and resolution-free framework for physics-aware topology optimization and provide a large-scale dataset to spur further research in generative modeling for inverse design. Code & data can be found at https://github.com/ahnobari/OptimizeAnyTopology.
CRISP: Clustering Multi-Vector Representations for Denoising and Pruning
Multi-vector models, such as ColBERT, are a significant advancement in neural information retrieval (IR), delivering state-of-the-art performance by representing queries and documents by multiple contextualized token-level embeddings. However, this increased representation size introduces considerable storage and computational overheads which have hindered widespread adoption in practice. A common approach to mitigate this overhead is to cluster the model's frozen vectors, but this strategy's effectiveness is fundamentally limited by the intrinsic clusterability of these embeddings. In this work, we introduce CRISP (Clustered Representations with Intrinsic Structure Pruning), a novel multi-vector training method which learns inherently clusterable representations directly within the end-to-end training process. By integrating clustering into the training phase rather than imposing it post-hoc, CRISP significantly outperforms post-hoc clustering at all representation sizes, as well as other token pruning methods. On the BEIR retrieval benchmarks, CRISP achieves a significant rate of ~3x reduction in the number of vectors while outperforming the original unpruned model. This indicates that learned clustering effectively denoises the model by filtering irrelevant information, thereby generating more robust multi-vector representations. With more aggressive clustering, CRISP achieves an 11x reduction in the number of vectors with only a 3.6% quality loss.
Generalized Correctness Models: Learning Calibrated and Model-Agnostic Correctness Predictors from Historical Patterns
Generating accurate and calibrated confidence estimates is critical for deploying LLMs in high-stakes or user-facing applications, and remains an open challenge. Prior research has often framed confidence as a problem of eliciting a model's "self-knowledge", i.e., the ability of an LLM to judge whether its own answers are correct; this approach implicitly assumes that there is some privileged information about the answer's correctness that is accessible to the model itself. However, our experiments reveal that an LLM attempting to predict the correctness of its own outputs generally performs no better than an unrelated LLM. Moreover, we hypothesize that a key factor in building a "Correctness Model" (CM) is exposure to a target model's historical predictions. We propose multiple methods to inject this historical correctness information, creating a Generalized Correctness Model (GCM). We first show that GCMs can be trained on the correctness data from many LLMs and learn patterns for correctness prediction applicable across datasets and models. We then use CMs as a lens for studying the source of correctness prediction ability and its generalization, systematically controlling their training data and finding that answer phrasing is a strong predictor for correctness. We further explore alternative methods of injecting history without training an LLM, finding that including history as in-context examples can help improve correctness prediction, and post-hoc calibration can provide complementary reductions in calibration error. We evaluate GCMs based on Qwen3-8B across 5 model families and the MMLU and TriviaQA datasets, as well as on a downstream selective prediction task, finding that reliable LLM confidence estimation is a generalizable and model-agnostic skill learned by systematically encoding correctness history rather than a model-specific skill reliant on self-introspection.
CC-3DT: Panoramic 3D Object Tracking via Cross-Camera Fusion
To track the 3D locations and trajectories of the other traffic participants at any given time, modern autonomous vehicles are equipped with multiple cameras that cover the vehicle's full surroundings. Yet, camera-based 3D object tracking methods prioritize optimizing the single-camera setup and resort to post-hoc fusion in a multi-camera setup. In this paper, we propose a method for panoramic 3D object tracking, called CC-3DT, that associates and models object trajectories both temporally and across views, and improves the overall tracking consistency. In particular, our method fuses 3D detections from multiple cameras before association, reducing identity switches significantly and improving motion modeling. Our experiments on large-scale driving datasets show that fusion before association leads to a large margin of improvement over post-hoc fusion. We set a new state-of-the-art with 12.6% improvement in average multi-object tracking accuracy (AMOTA) among all camera-based methods on the competitive NuScenes 3D tracking benchmark, outperforming previously published methods by 6.5% in AMOTA with the same 3D detector.
A Causal Lens for Evaluating Faithfulness Metrics
Large Language Models (LLMs) offer natural language explanations as an alternative to feature attribution methods for model interpretability. However, despite their plausibility, they may not reflect the model's internal reasoning faithfully, which is crucial for understanding the model's true decision-making processes. Although several faithfulness metrics have been proposed, a unified evaluation framework remains absent. To address this gap, we present Causal Diagnosticity, a framework to evaluate faithfulness metrics for natural language explanations. Our framework employs the concept of causal diagnosticity, and uses model-editing methods to generate faithful-unfaithful explanation pairs. Our benchmark includes four tasks: fact-checking, analogy, object counting, and multi-hop reasoning. We evaluate a variety of faithfulness metrics, including post-hoc explanation and chain-of-thought-based methods. We find that all tested faithfulness metrics often fail to surpass a random baseline. Our work underscores the need for improved metrics and more reliable interpretability methods in LLMs.
Probabilistic Conceptual Explainers: Trustworthy Conceptual Explanations for Vision Foundation Models
Vision transformers (ViTs) have emerged as a significant area of focus, particularly for their capacity to be jointly trained with large language models and to serve as robust vision foundation models. Yet, the development of trustworthy explanation methods for ViTs has lagged, particularly in the context of post-hoc interpretations of ViT predictions. Existing sub-image selection approaches, such as feature-attribution and conceptual models, fall short in this regard. This paper proposes five desiderata for explaining ViTs -- faithfulness, stability, sparsity, multi-level structure, and parsimony -- and demonstrates the inadequacy of current methods in meeting these criteria comprehensively. We introduce a variational Bayesian explanation framework, dubbed ProbAbilistic Concept Explainers (PACE), which models the distributions of patch embeddings to provide trustworthy post-hoc conceptual explanations. Our qualitative analysis reveals the distributions of patch-level concepts, elucidating the effectiveness of ViTs by modeling the joint distribution of patch embeddings and ViT's predictions. Moreover, these patch-level explanations bridge the gap between image-level and dataset-level explanations, thus completing the multi-level structure of PACE. Through extensive experiments on both synthetic and real-world datasets, we demonstrate that PACE surpasses state-of-the-art methods in terms of the defined desiderata.
A Comprehensive Evaluation framework of Alignment Techniques for LLMs
As Large Language Models (LLMs) become increasingly integrated into real-world applications, ensuring their outputs align with human values and safety standards has become critical. The field has developed diverse alignment approaches including traditional fine-tuning methods (RLHF, instruction tuning), post-hoc correction systems, and inference-time interventions, each with distinct advantages and limitations. However, the lack of unified evaluation frameworks makes it difficult to systematically compare these paradigms and guide deployment decisions. This paper introduces a multi-dimensional evaluation of alignment techniques for LLMs, a comprehensive evaluation framework that provides a systematic comparison across all major alignment paradigms. Our framework assesses methods along four key dimensions: alignment detection, alignment quality, computational efficiency, and robustness. Through experiments across diverse base models and alignment strategies, we demonstrate the utility of our framework in identifying strengths and limitations of current state-of-the-art models, providing valuable insights for future research directions.
VerifiNER: Verification-augmented NER via Knowledge-grounded Reasoning with Large Language Models
Recent approaches in domain-specific named entity recognition (NER), such as biomedical NER, have shown remarkable advances. However, they still lack of faithfulness, producing erroneous predictions. We assume that knowledge of entities can be useful in verifying the correctness of the predictions. Despite the usefulness of knowledge, resolving such errors with knowledge is nontrivial, since the knowledge itself does not directly indicate the ground-truth label. To this end, we propose VerifiNER, a post-hoc verification framework that identifies errors from existing NER methods using knowledge and revises them into more faithful predictions. Our framework leverages the reasoning abilities of large language models to adequately ground on knowledge and the contextual information in the verification process. We validate effectiveness of VerifiNER through extensive experiments on biomedical datasets. The results suggest that VerifiNER can successfully verify errors from existing models as a model-agnostic approach. Further analyses on out-of-domain and low-resource settings show the usefulness of VerifiNER on real-world applications.
Explainability in Deep Reinforcement Learning
A large set of the explainable Artificial Intelligence (XAI) literature is emerging on feature relevance techniques to explain a deep neural network (DNN) output or explaining models that ingest image source data. However, assessing how XAI techniques can help understand models beyond classification tasks, e.g. for reinforcement learning (RL), has not been extensively studied. We review recent works in the direction to attain Explainable Reinforcement Learning (XRL), a relatively new subfield of Explainable Artificial Intelligence, intended to be used in general public applications, with diverse audiences, requiring ethical, responsible and trustable algorithms. In critical situations where it is essential to justify and explain the agent's behaviour, better explainability and interpretability of RL models could help gain scientific insight on the inner workings of what is still considered a black box. We evaluate mainly studies directly linking explainability to RL, and split these into two categories according to the way the explanations are generated: transparent algorithms and post-hoc explainaility. We also review the most prominent XAI works from the lenses of how they could potentially enlighten the further deployment of the latest advances in RL, in the demanding present and future of everyday problems.
Learning to Route Among Specialized Experts for Zero-Shot Generalization
Recently, there has been a widespread proliferation of "expert" language models that are specialized to a specific task or domain through parameter-efficient fine-tuning. How can we recycle large collections of expert language models to improve zero-shot generalization to unseen tasks? In this work, we propose Post-Hoc Adaptive Tokenwise Gating Over an Ocean of Specialized Experts (PHATGOOSE), which learns to route among specialized modules that were produced through parameter-efficient fine-tuning. Unlike past methods that learn to route among specialized models, PHATGOOSE explores the possibility that zero-shot generalization will be improved if different experts can be adaptively chosen for each token and at each layer in the model. Crucially, our method is post-hoc - it does not require simultaneous access to the datasets used to create the specialized models and only requires a modest amount of additional compute after each expert model is trained. In experiments covering a range of specialized model collections and zero-shot generalization benchmarks, we find that PHATGOOSE outperforms past methods for post-hoc routing and, in some cases, outperforms explicit multitask training (which requires simultaneous data access). To better understand the routing strategy learned by PHATGOOSE, we perform qualitative experiments to validate that PHATGOOSE's performance stems from its ability to make adaptive per-token and per-module expert choices. We release all of our code to support future work on improving zero-shot generalization by recycling specialized experts.
VideoRFSplat: Direct Scene-Level Text-to-3D Gaussian Splatting Generation with Flexible Pose and Multi-View Joint Modeling
We propose VideoRFSplat, a direct text-to-3D model leveraging a video generation model to generate realistic 3D Gaussian Splatting (3DGS) for unbounded real-world scenes. To generate diverse camera poses and unbounded spatial extent of real-world scenes, while ensuring generalization to arbitrary text prompts, previous methods fine-tune 2D generative models to jointly model camera poses and multi-view images. However, these methods suffer from instability when extending 2D generative models to joint modeling due to the modality gap, which necessitates additional models to stabilize training and inference. In this work, we propose an architecture and a sampling strategy to jointly model multi-view images and camera poses when fine-tuning a video generation model. Our core idea is a dual-stream architecture that attaches a dedicated pose generation model alongside a pre-trained video generation model via communication blocks, generating multi-view images and camera poses through separate streams. This design reduces interference between the pose and image modalities. Additionally, we propose an asynchronous sampling strategy that denoises camera poses faster than multi-view images, allowing rapidly denoised poses to condition multi-view generation, reducing mutual ambiguity and enhancing cross-modal consistency. Trained on multiple large-scale real-world datasets (RealEstate10K, MVImgNet, DL3DV-10K, ACID), VideoRFSplat outperforms existing text-to-3D direct generation methods that heavily depend on post-hoc refinement via score distillation sampling, achieving superior results without such refinement.
Enhanced OoD Detection through Cross-Modal Alignment of Multi-Modal Representations
Prior research on out-of-distribution detection (OoDD) has primarily focused on single-modality models. Recently, with the advent of large-scale pretrained vision-language models such as CLIP, OoDD methods utilizing such multi-modal representations through zero-shot and prompt learning strategies have emerged. However, these methods typically involve either freezing the pretrained weights or only partially tuning them, which can be suboptimal for downstream datasets. In this paper, we highlight that multi-modal fine-tuning (MMFT) can achieve notable OoDD performance. Despite some recent works demonstrating the impact of fine-tuning methods for OoDD, there remains significant potential for performance improvement. We investigate the limitation of na\"ive fine-tuning methods, examining why they fail to fully leverage the pretrained knowledge. Our empirical analysis suggests that this issue could stem from the modality gap within in-distribution (ID) embeddings. To address this, we propose a training objective that enhances cross-modal alignment by regularizing the distances between image and text embeddings of ID data. This adjustment helps in better utilizing pretrained textual information by aligning similar semantics from different modalities (i.e., text and image) more closely in the hyperspherical representation space. We theoretically demonstrate that the proposed regularization corresponds to the maximum likelihood estimation of an energy-based model on a hypersphere. Utilizing ImageNet-1k OoD benchmark datasets, we show that our method, combined with post-hoc OoDD approaches leveraging pretrained knowledge (e.g., NegLabel), significantly outperforms existing methods, achieving state-of-the-art OoDD performance and leading ID accuracy.
DivBO: Diversity-aware CASH for Ensemble Learning
The Combined Algorithm Selection and Hyperparameters optimization (CASH) problem is one of the fundamental problems in Automated Machine Learning (AutoML). Motivated by the success of ensemble learning, recent AutoML systems build post-hoc ensembles to output the final predictions instead of using the best single learner. However, while most CASH methods focus on searching for a single learner with the best performance, they neglect the diversity among base learners (i.e., they may suggest similar configurations to previously evaluated ones), which is also a crucial consideration when building an ensemble. To tackle this issue and further enhance the ensemble performance, we propose DivBO, a diversity-aware framework to inject explicit search of diversity into the CASH problems. In the framework, we propose to use a diversity surrogate to predict the pair-wise diversity of two unseen configurations. Furthermore, we introduce a temporary pool and a weighted acquisition function to guide the search of both performance and diversity based on Bayesian optimization. Empirical results on 15 public datasets show that DivBO achieves the best average ranks (1.82 and 1.73) on both validation and test errors among 10 compared methods, including post-hoc designs in recent AutoML systems and state-of-the-art baselines for ensemble learning on CASH problems.
SSP: Self-Supervised Post-training for Conversational Search
Conversational search has been regarded as the next-generation search paradigm. Constrained by data scarcity, most existing methods distill the well-trained ad-hoc retriever to the conversational retriever. However, these methods, which usually initialize parameters by query reformulation to discover contextualized dependency, have trouble in understanding the dialogue structure information and struggle with contextual semantic vanishing. In this paper, we propose \fullmodel (\model) which is a new post-training paradigm with three self-supervised tasks to efficiently initialize the conversational search model to enhance the dialogue structure and contextual semantic understanding. Furthermore, the \model can be plugged into most of the existing conversational models to boost their performance. To verify the effectiveness of our proposed method, we apply the conversational encoder post-trained by \model on the conversational search task using two benchmark datasets: CAsT-19 and CAsT-20. Extensive experiments that our \model can boost the performance of several existing conversational search methods. Our source code is available at https://github.com/morecry/SSP.
Smoothie-Qwen: Post-Hoc Smoothing to Reduce Language Bias in Multilingual LLMs
Multilingual large language models (LLMs) often exhibit language confusion, a tendency to generate responses in a dominant language irrespective of the prompt's language. To address this, we propose Smoothie-Qwen, a lightweight, post-hoc method that mitigates language bias without retraining. This technique selectively adjusts token-level output probabilities to effectively suppress undesired language generation. Applied to the Qwen model, our method reduces unintended Chinese output by over 95% while preserving task accuracy on multilingual benchmarks. This work provides a practical and efficient solution for enhancing the language controllability of LLMs, making them more reliable for global applications.
Fair Classifiers that Abstain without Harm
In critical applications, it is vital for classifiers to defer decision-making to humans. We propose a post-hoc method that makes existing classifiers selectively abstain from predicting certain samples. Our abstaining classifier is incentivized to maintain the original accuracy for each sub-population (i.e. no harm) while achieving a set of group fairness definitions to a user specified degree. To this end, we design an Integer Programming (IP) procedure that assigns abstention decisions for each training sample to satisfy a set of constraints. To generalize the abstaining decisions to test samples, we then train a surrogate model to learn the abstaining decisions based on the IP solutions in an end-to-end manner. We analyze the feasibility of the IP procedure to determine the possible abstention rate for different levels of unfairness tolerance and accuracy constraint for achieving no harm. To the best of our knowledge, this work is the first to identify the theoretical relationships between the constraint parameters and the required abstention rate. Our theoretical results are important since a high abstention rate is often infeasible in practice due to a lack of human resources. Our framework outperforms existing methods in terms of fairness disparity without sacrificing accuracy at similar abstention rates.
Out-of-Distribution Detection for Monocular Depth Estimation
In monocular depth estimation, uncertainty estimation approaches mainly target the data uncertainty introduced by image noise. In contrast to prior work, we address the uncertainty due to lack of knowledge, which is relevant for the detection of data not represented by the training distribution, the so-called out-of-distribution (OOD) data. Motivated by anomaly detection, we propose to detect OOD images from an encoder-decoder depth estimation model based on the reconstruction error. Given the features extracted with the fixed depth encoder, we train an image decoder for image reconstruction using only in-distribution data. Consequently, OOD images result in a high reconstruction error, which we use to distinguish between in- and out-of-distribution samples. We built our experiments on the standard NYU Depth V2 and KITTI benchmarks as in-distribution data. Our post hoc method performs astonishingly well on different models and outperforms existing uncertainty estimation approaches without modifying the trained encoder-decoder depth estimation model.
GraphCleaner: Detecting Mislabelled Samples in Popular Graph Learning Benchmarks
Label errors have been found to be prevalent in popular text, vision, and audio datasets, which heavily influence the safe development and evaluation of machine learning algorithms. Despite increasing efforts towards improving the quality of generic data types, such as images and texts, the problem of mislabel detection in graph data remains underexplored. To bridge the gap, we explore mislabelling issues in popular real-world graph datasets and propose GraphCleaner, a post-hoc method to detect and correct these mislabelled nodes in graph datasets. GraphCleaner combines the novel ideas of 1) Synthetic Mislabel Dataset Generation, which seeks to generate realistic mislabels; and 2) Neighborhood-Aware Mislabel Detection, where neighborhood dependency is exploited in both labels and base classifier predictions. Empirical evaluations on 6 datasets and 6 experimental settings demonstrate that GraphCleaner outperforms the closest baseline, with an average improvement of 0.14 in F1 score, and 0.16 in MCC. On real-data case studies, GraphCleaner detects real and previously unknown mislabels in popular graph benchmarks: PubMed, Cora, CiteSeer and OGB-arxiv; we find that at least 6.91% of PubMed data is mislabelled or ambiguous, and simply removing these mislabelled data can boost evaluation performance from 86.71% to 89.11%.
Memorized Images in Diffusion Models share a Subspace that can be Located and Deleted
Large-scale text-to-image diffusion models excel in generating high-quality images from textual inputs, yet concerns arise as research indicates their tendency to memorize and replicate training data, raising We also addressed the issue of memorization in diffusion models, where models tend to replicate exact training samples raising copyright infringement and privacy issues. Efforts within the text-to-image community to address memorization explore causes such as data duplication, replicated captions, or trigger tokens, proposing per-prompt inference-time or training-time mitigation strategies. In this paper, we focus on the feed-forward layers and begin by contrasting neuron activations of a set of memorized and non-memorized prompts. Experiments reveal a surprising finding: many different sets of memorized prompts significantly activate a common subspace in the model, demonstrating, for the first time, that memorization in the diffusion models lies in a special subspace. Subsequently, we introduce a novel post-hoc method for editing pre-trained models, whereby memorization is mitigated through the straightforward pruning of weights in specialized subspaces, avoiding the need to disrupt the training or inference process as seen in prior research. Finally, we demonstrate the robustness of the pruned model against training data extraction attacks, thereby unveiling new avenues for a practical and one-for-all solution to memorization.
NECO: NEural Collapse Based Out-of-distribution detection
Detecting out-of-distribution (OOD) data is a critical challenge in machine learning due to model overconfidence, often without awareness of their epistemological limits. We hypothesize that ``neural collapse'', a phenomenon affecting in-distribution data for models trained beyond loss convergence, also influences OOD data. To benefit from this interplay, we introduce NECO, a novel post-hoc method for OOD detection, which leverages the geometric properties of ``neural collapse'' and of principal component spaces to identify OOD data. Our extensive experiments demonstrate that NECO achieves state-of-the-art results on both small and large-scale OOD detection tasks while exhibiting strong generalization capabilities across different network architectures. Furthermore, we provide a theoretical explanation for the effectiveness of our method in OOD detection. Code is available at https://gitlab.com/drti/neco
Modeling Event Plausibility with Consistent Conceptual Abstraction
Understanding natural language requires common sense, one aspect of which is the ability to discern the plausibility of events. While distributional models -- most recently pre-trained, Transformer language models -- have demonstrated improvements in modeling event plausibility, their performance still falls short of humans'. In this work, we show that Transformer-based plausibility models are markedly inconsistent across the conceptual classes of a lexical hierarchy, inferring that "a person breathing" is plausible while "a dentist breathing" is not, for example. We find this inconsistency persists even when models are softly injected with lexical knowledge, and we present a simple post-hoc method of forcing model consistency that improves correlation with human plausibility judgements.
VISION DIFFMASK: Faithful Interpretation of Vision Transformers with Differentiable Patch Masking
The lack of interpretability of the Vision Transformer may hinder its use in critical real-world applications despite its effectiveness. To overcome this issue, we propose a post-hoc interpretability method called VISION DIFFMASK, which uses the activations of the model's hidden layers to predict the relevant parts of the input that contribute to its final predictions. Our approach uses a gating mechanism to identify the minimal subset of the original input that preserves the predicted distribution over classes. We demonstrate the faithfulness of our method, by introducing a faithfulness task, and comparing it to other state-of-the-art attribution methods on CIFAR-10 and ImageNet-1K, achieving compelling results. To aid reproducibility and further extension of our work, we open source our implementation: https://github.com/AngelosNal/Vision-DiffMask
A Benchmark Study on Calibration
Deep neural networks are increasingly utilized in various machine learning tasks. However, as these models grow in complexity, they often face calibration issues, despite enhanced prediction accuracy. Many studies have endeavored to improve calibration performance through the use of specific loss functions, data preprocessing and training frameworks. Yet, investigations into calibration properties have been somewhat overlooked. Our study leverages the Neural Architecture Search (NAS) search space, offering an exhaustive model architecture space for thorough calibration properties exploration. We specifically create a model calibration dataset. This dataset evaluates 90 bin-based and 12 additional calibration measurements across 117,702 unique neural networks within the widely employed NATS-Bench search space. Our analysis aims to answer several longstanding questions in the field, using our proposed dataset: (i) Can model calibration be generalized across different datasets? (ii) Can robustness be used as a calibration measurement? (iii) How reliable are calibration metrics? (iv) Does a post-hoc calibration method affect all models uniformly? (v) How does calibration interact with accuracy? (vi) What is the impact of bin size on calibration measurement? (vii) Which architectural designs are beneficial for calibration? Additionally, our study bridges an existing gap by exploring calibration within NAS. By providing this dataset, we enable further research into NAS calibration. As far as we are aware, our research represents the first large-scale investigation into calibration properties and the premier study of calibration issues within NAS. The project page can be found at https://www.taolinwei.com/calibration-study
Online Platt Scaling with Calibeating
We present an online post-hoc calibration method, called Online Platt Scaling (OPS), which combines the Platt scaling technique with online logistic regression. We demonstrate that OPS smoothly adapts between i.i.d. and non-i.i.d. settings with distribution drift. Further, in scenarios where the best Platt scaling model is itself miscalibrated, we enhance OPS by incorporating a recently developed technique called calibeating to make it more robust. Theoretically, our resulting OPS+calibeating method is guaranteed to be calibrated for adversarial outcome sequences. Empirically, it is effective on a range of synthetic and real-world datasets, with and without distribution drifts, achieving superior performance without hyperparameter tuning. Finally, we extend all OPS ideas to the beta scaling method.
PostMark: A Robust Blackbox Watermark for Large Language Models
The most effective techniques to detect LLM-generated text rely on inserting a detectable signature -- or watermark -- during the model's decoding process. Most existing watermarking methods require access to the underlying LLM's logits, which LLM API providers are loath to share due to fears of model distillation. As such, these watermarks must be implemented independently by each LLM provider. In this paper, we develop PostMark, a modular post-hoc watermarking procedure in which an input-dependent set of words (determined via a semantic embedding) is inserted into the text after the decoding process has completed. Critically, PostMark does not require logit access, which means it can be implemented by a third party. We also show that PostMark is more robust to paraphrasing attacks than existing watermarking methods: our experiments cover eight baseline algorithms, five base LLMs, and three datasets. Finally, we evaluate the impact of PostMark on text quality using both automated and human assessments, highlighting the trade-off between quality and robustness to paraphrasing. We release our code, outputs, and annotations at https://github.com/lilakk/PostMark.
Closing the Modality Gap for Mixed Modality Search
Mixed modality search -- retrieving information across a heterogeneous corpus composed of images, texts, and multimodal documents -- is an important yet underexplored real-world application. In this work, we investigate how contrastive vision-language models, such as CLIP, perform on the mixed modality search task. Our analysis reveals a critical limitation: these models exhibit a pronounced modality gap in the embedding space, where image and text embeddings form distinct clusters, leading to intra-modal ranking bias and inter-modal fusion failure. To address this issue, we propose GR-CLIP, a lightweight post-hoc calibration method that removes the modality gap in CLIP's embedding space. Evaluated on MixBench -- the first benchmark specifically designed for mixed modality search -- GR-CLIP improves NDCG@10 by up to 26 percentage points over CLIP, surpasses recent vision-language generative embedding models by 4 percentage points, while using 75x less compute.
Scrub It Out! Erasing Sensitive Memorization in Code Language Models via Machine Unlearning
While Code Language Models (CLMs) have demonstrated superior performance in software engineering tasks such as code generation and summarization, recent empirical studies reveal a critical privacy vulnerability: these models exhibit unintended memorization of sensitive training data, enabling verbatim reproduction of confidential information when specifically prompted. To address this issue, several approaches, including training data de-duplication and differential privacy augmentation, have been proposed. However, these methods require full-model retraining for deployed CLMs, which incurs substantial computational costs. In this paper, we aim to answer the following research question: Can sensitive information memorized by CLMs be erased effectively and efficiently? We conduct a pioneering investigation into erasing sensitive memorization in CLMs through machine unlearning - a post-hoc modification method that removes specific information from trained models without requiring full retraining. Specifically, we first quantify the memorization risks of sensitive data within CLM training datasets and curate a high-risk dataset of 50,000 sensitive memorized samples as unlearning targets. We study two widely used gradient ascent-based unlearning approaches: the vanilla and constraint-based methods, and introduce CodeEraser, an advanced variant that selectively unlearns sensitive memorized segments in code while preserving the structural integrity and functional correctness of the surrounding code. Extensive experiments on three families of CLMs, i.e., CodeParrot, CodeGen-Mono, and Qwen2.5-Coder, validate the effectiveness and efficiency of CodeEraser in erasing targeted sensitive memorization while maintaining model utility.
Negative Label Guided OOD Detection with Pretrained Vision-Language Models
Out-of-distribution (OOD) detection aims at identifying samples from unknown classes, playing a crucial role in trustworthy models against errors on unexpected inputs. Extensive research has been dedicated to exploring OOD detection in the vision modality. Vision-language models (VLMs) can leverage both textual and visual information for various multi-modal applications, whereas few OOD detection methods take into account information from the text modality. In this paper, we propose a novel post hoc OOD detection method, called NegLabel, which takes a vast number of negative labels from extensive corpus databases. We design a novel scheme for the OOD score collaborated with negative labels. Theoretical analysis helps to understand the mechanism of negative labels. Extensive experiments demonstrate that our method NegLabel achieves state-of-the-art performance on various OOD detection benchmarks and generalizes well on multiple VLM architectures. Furthermore, our method NegLabel exhibits remarkable robustness against diverse domain shifts. The codes are available at https://github.com/tmlr-group/NegLabel.
Hybrid Energy Based Model in the Feature Space for Out-of-Distribution Detection
Out-of-distribution (OOD) detection is a critical requirement for the deployment of deep neural networks. This paper introduces the HEAT model, a new post-hoc OOD detection method estimating the density of in-distribution (ID) samples using hybrid energy-based models (EBM) in the feature space of a pre-trained backbone. HEAT complements prior density estimators of the ID density, e.g. parametric models like the Gaussian Mixture Model (GMM), to provide an accurate yet robust density estimation. A second contribution is to leverage the EBM framework to provide a unified density estimation and to compose several energy terms. Extensive experiments demonstrate the significance of the two contributions. HEAT sets new state-of-the-art OOD detection results on the CIFAR-10 / CIFAR-100 benchmark as well as on the large-scale Imagenet benchmark. The code is available at: https://github.com/MarcLafon/heatood.
Score-CAM: Score-Weighted Visual Explanations for Convolutional Neural Networks
Recently, increasing attention has been drawn to the internal mechanisms of convolutional neural networks, and the reason why the network makes specific decisions. In this paper, we develop a novel post-hoc visual explanation method called Score-CAM based on class activation mapping. Unlike previous class activation mapping based approaches, Score-CAM gets rid of the dependence on gradients by obtaining the weight of each activation map through its forward passing score on target class, the final result is obtained by a linear combination of weights and activation maps. We demonstrate that Score-CAM achieves better visual performance and fairness for interpreting the decision making process. Our approach outperforms previous methods on both recognition and localization tasks, it also passes the sanity check. We also indicate its application as debugging tools. Official code has been released.
Have LLMs Advanced Enough? A Challenging Problem Solving Benchmark For Large Language Models
The performance of large language models (LLMs) on existing reasoning benchmarks has significantly improved over the past years. In response, we present JEEBench, a considerably more challenging benchmark dataset for evaluating the problem solving abilities of LLMs. We curate 515 challenging pre-engineering mathematics, physics and chemistry problems from the highly competitive IIT JEE-Advanced exam. Long-horizon reasoning on top of deep in-domain knowledge is essential for solving problems in this benchmark. Our evaluation on various open-source and proprietary models reveals that the highest performance, even after using techniques like self-consistency, self-refinement and chain-of-thought prompting, is less than 40%. The typical failure modes of GPT-4, the best model, are errors in algebraic manipulation, difficulty in grounding abstract concepts into mathematical equations accurately and failure in retrieving relevant domain-specific concepts. We also observe that by mere prompting, GPT-4 is unable to assess risk introduced by negative marking for incorrect answers. For this, we develop a post-hoc confidence-thresholding method over self-consistency, which enables effective response selection. We hope that our challenging benchmark will guide future re-search in problem-solving using LLMs.
Robust Preference Alignment via Directional Neighborhood Consensus
Aligning large language models with human preferences is critical for creating reliable and controllable AI systems. A human preference can be visualized as a high-dimensional vector where different directions represent trade-offs between desired attributes (e.g., helpfulness vs. verbosity). Yet, because the training data often reflects dominant, average preferences, LLMs tend to perform well on common requests but fall short in specific, individual needs. This mismatch creates a preference coverage gap. Existing methods often address this through costly retraining, which may not be generalized to the full spectrum of diverse preferences. This brittleness means that when a user's request reflects a nuanced preference deviating from the training data's central tendency, model performance can degrade unpredictably. To address this challenge, we introduce Robust Preference Selection (RPS), a post-hoc, training-free method by leveraging directional neighborhood consensus. Instead of forcing a model to generate a response from a single, highly specific preference, RPS samples multiple responses from a local neighborhood of related preferences to create a superior candidate pool. It then selects the response that best aligns with the user's original intent. We provide a theoretical framework showing our neighborhood generation strategy is provably superior to a strong baseline that also samples multiple candidates. Comprehensive experiments across three distinct alignment paradigms (DPA, DPO, and SFT) demonstrate that RPS consistently improves robustness against this baseline, achieving win rates of up to 69% on challenging preferences from under-represented regions of the space without any model retraining. Our work presents a practical, theoretically-grounded solution for enhancing the reliability of preference-aligned models.
Post-hoc Probabilistic Vision-Language Models
Vision-language models (VLMs), such as CLIP and SigLIP, have found remarkable success in classification, retrieval, and generative tasks. For this, VLMs deterministically map images and text descriptions to a joint latent space in which their similarity is assessed using the cosine similarity. However, a deterministic mapping of inputs fails to capture uncertainties over concepts arising from domain shifts when used in downstream tasks. In this work, we propose post-hoc uncertainty estimation in VLMs that does not require additional training. Our method leverages a Bayesian posterior approximation over the last layers in VLMs and analytically quantifies uncertainties over cosine similarities. We demonstrate its effectiveness for uncertainty quantification and support set selection in active learning. Compared to baselines, we obtain improved and well-calibrated predictive uncertainties, interpretable uncertainty estimates, and sample-efficient active learning. Our results show promise for safety-critical applications of large-scale models.
Post-hoc Bias Scoring Is Optimal For Fair Classification
We consider a binary classification problem under group fairness constraints, which can be one of Demographic Parity (DP), Equalized Opportunity (EOp), or Equalized Odds (EO). We propose an explicit characterization of Bayes optimal classifier under the fairness constraints, which turns out to be a simple modification rule of the unconstrained classifier. Namely, we introduce a novel instance-level measure of bias, which we call bias score, and the modification rule is a simple linear rule on top of the finite amount of bias scores.Based on this characterization, we develop a post-hoc approach that allows us to adapt to fairness constraints while maintaining high accuracy. In the case of DP and EOp constraints, the modification rule is thresholding a single bias score, while in the case of EO constraints we are required to fit a linear modification rule with 2 parameters. The method can also be applied for composite group-fairness criteria, such as ones involving several sensitive attributes.
PHLoRA: data-free Post-hoc Low-Rank Adapter extraction from full-rank checkpoint
We introduce PHLoRA (Pronounced "flora"). (Post-hoc LoRA), a simple yet powerful method to extract low-rank adaptation adapters from full-rank fine-tuned models without requiring access to training data or gradients. By computing the low-rank decomposition of weight differences between a base model and its fine-tuned counterpart, our method reconstructs adapter modules that can be merged or dynamically routed at inference time via S-LoRA, or served in scalable, industry settings using platforms like NVIDIA NIM. This approach amortizes latency overhead across requests and yields substantial cost savings. Unlike prior work that trains each adapter explicitly, our approach decouples fine-tuning from adapter generation, allowing adapter extraction from existing full-rank models or third-party checkpoints. Experiments on text, image, and video benchmarks using the Amazon Nova model family demonstrate that extracted adapters preserve high energy from the full weight delta, can be pruned safely, and yield negligible degradation in downstream task performance when re-merged. Overall, PHLoRA provides a practical path for making all existing full-rank checkpoints adapter-ready, democratizing scalable inference for all models.
Generative causal explanations of black-box classifiers
We develop a method for generating causal post-hoc explanations of black-box classifiers based on a learned low-dimensional representation of the data. The explanation is causal in the sense that changing learned latent factors produces a change in the classifier output statistics. To construct these explanations, we design a learning framework that leverages a generative model and information-theoretic measures of causal influence. Our objective function encourages both the generative model to faithfully represent the data distribution and the latent factors to have a large causal influence on the classifier output. Our method learns both global and local explanations, is compatible with any classifier that admits class probabilities and a gradient, and does not require labeled attributes or knowledge of causal structure. Using carefully controlled test cases, we provide intuition that illuminates the function of our objective. We then demonstrate the practical utility of our method on image recognition tasks.
Training-Free Tokenizer Transplantation via Orthogonal Matching Pursuit
We present a training-free method to transplant tokenizers in pretrained large language models (LLMs) by reconstructing unseen token embeddings via Orthogonal Matching Pursuit (OMP). Specifically, we approximate each out-of-vocabulary token as a sparse linear combination of shared tokens, in two phases: first, compute each new token's representation in the donor embedding space with a small dictionary of shared anchor tokens, then transfer these same sparse coefficients back into the base model's embedding space. On two challenging cross-tokenizer tasks--LlamatoMistral NeMo (12B) and QwentoLlama (1B)--we show that OMP achieves best zero-shot preservation of the base model's performance across multiple benchmarks, while other zero-shot approaches degrade significantly. Compared to baselines (zero-init, mean-init, and existing approaches like WECHSEL, FOCUS, ZETT), OMP consistently achieves the best overall performance, effectively bridging large tokenizer discrepancies without gradient updates. Our analysis further identifies mismatched numerical tokenization schemes as a critical challenge for preserving mathematical reasoning capabilities. This technique enables direct reuse of pretrained model weights with new tokenizers, facilitating cross-tokenizer knowledge distillation, speculative decoding, ensembling, merging, and domain-specific vocabulary adaptations. We integrate our method into the open-source mergekit-tokensurgeon tool for post hoc vocabulary realignment.
Persona Vectors: Monitoring and Controlling Character Traits in Language Models
Large language models interact with users through a simulated 'Assistant' persona. While the Assistant is typically trained to be helpful, harmless, and honest, it sometimes deviates from these ideals. In this paper, we identify directions in the model's activation space-persona vectors-underlying several traits, such as evil, sycophancy, and propensity to hallucinate. We confirm that these vectors can be used to monitor fluctuations in the Assistant's personality at deployment time. We then apply persona vectors to predict and control personality shifts that occur during training. We find that both intended and unintended personality changes after finetuning are strongly correlated with shifts along the relevant persona vectors. These shifts can be mitigated through post-hoc intervention, or avoided in the first place with a new preventative steering method. Moreover, persona vectors can be used to flag training data that will produce undesirable personality changes, both at the dataset level and the individual sample level. Our method for extracting persona vectors is automated and can be applied to any personality trait of interest, given only a natural-language description.
VRA: Variational Rectified Activation for Out-of-distribution Detection
Out-of-distribution (OOD) detection is critical to building reliable machine learning systems in the open world. Researchers have proposed various strategies to reduce model overconfidence on OOD data. Among them, ReAct is a typical and effective technique to deal with model overconfidence, which truncates high activations to increase the gap between in-distribution and OOD. Despite its promising results, is this technique the best choice for widening the gap? To answer this question, we leverage the variational method to find the optimal operation and verify the necessity of suppressing abnormally low and high activations and amplifying intermediate activations in OOD detection, rather than focusing only on high activations like ReAct. This motivates us to propose a novel technique called ``Variational Rectified Activation (VRA)'', which simulates these suppression and amplification operations using piecewise functions. Experimental results on multiple benchmark datasets demonstrate that our method outperforms existing post-hoc strategies. Meanwhile, VRA is compatible with different scoring functions and network architectures. \textcolor[rgb]{0.93,0.0,0.47}{Our code can be found in Supplementary Material}.
Vision Transformers with Self-Distilled Registers
Vision Transformers (ViTs) have emerged as the dominant architecture for visual processing tasks, demonstrating excellent scalability with increased training data and model size. However, recent work has identified the emergence of artifact tokens in ViTs that are incongruous with the local semantics. These anomalous tokens degrade ViT performance in tasks that require fine-grained localization or structural coherence. An effective mitigation of this issue is to the addition of register tokens to ViTs, which implicitly "absorb" the artifact term during training. Given the availability of various large-scale pre-trained ViTs, in this paper we aim at equipping them with such register tokens without the need of re-training them from scratch, which is infeasible considering their size. Specifically, we propose Post Hoc Registers (PH-Reg), an efficient self-distillation method that integrates registers into an existing ViT without requiring additional labeled data and full retraining. PH-Reg initializes both teacher and student networks from the same pre-trained ViT. The teacher remains frozen and unmodified, while the student is augmented with randomly initialized register tokens. By applying test-time augmentation to the teacher's inputs, we generate denoised dense embeddings free of artifacts, which are then used to optimize only a small subset of unlocked student weights. We show that our approach can effectively reduce the number of artifact tokens, improving the segmentation and depth prediction of the student ViT under zero-shot and linear probing.
Image-free Classifier Injection for Zero-Shot Classification
Zero-shot learning models achieve remarkable results on image classification for samples from classes that were not seen during training. However, such models must be trained from scratch with specialised methods: therefore, access to a training dataset is required when the need for zero-shot classification arises. In this paper, we aim to equip pre-trained models with zero-shot classification capabilities without the use of image data. We achieve this with our proposed Image-free Classifier Injection with Semantics (ICIS) that injects classifiers for new, unseen classes into pre-trained classification models in a post-hoc fashion without relying on image data. Instead, the existing classifier weights and simple class-wise descriptors, such as class names or attributes, are used. ICIS has two encoder-decoder networks that learn to reconstruct classifier weights from descriptors (and vice versa), exploiting (cross-)reconstruction and cosine losses to regularise the decoding process. Notably, ICIS can be cheaply trained and applied directly on top of pre-trained classification models. Experiments on benchmark ZSL datasets show that ICIS produces unseen classifier weights that achieve strong (generalised) zero-shot classification performance. Code is available at https://github.com/ExplainableML/ImageFreeZSL .
LLM Unlearning Without an Expert Curated Dataset
Modern large language models often encode sensitive, harmful, or copyrighted knowledge, raising the need for post-hoc unlearning-the ability to remove specific domains of knowledge from a model without full retraining. A major bottleneck in current unlearning pipelines is constructing effective forget sets-datasets that approximate the target domain and guide the model to forget it. In this work, we introduce a scalable, automated approach to generate high-quality forget sets using language models themselves. Our method synthesizes textbook-style data through a structured prompting pipeline, requiring only a domain name as input. Through experiments on unlearning biosecurity, cybersecurity, and Harry Potter novels, we show that our synthetic datasets consistently outperform the baseline synthetic alternatives and are comparable to the expert-curated ones. Additionally, ablation studies reveal that the multi-step generation pipeline significantly boosts data diversity, which in turn improves unlearning utility. Overall, our findings suggest that synthetic datasets offer a promising path toward practical, scalable unlearning for a wide range of emerging domains without the need for manual intervention. We release our code and dataset at https://github.com/xyzhu123/Synthetic_Textbook.
A Sea of Words: An In-Depth Analysis of Anchors for Text Data
Anchors (Ribeiro et al., 2018) is a post-hoc, rule-based interpretability method. For text data, it proposes to explain a decision by highlighting a small set of words (an anchor) such that the model to explain has similar outputs when they are present in a document. In this paper, we present the first theoretical analysis of Anchors, considering that the search for the best anchor is exhaustive. After formalizing the algorithm for text classification, we present explicit results on different classes of models when the vectorization step is TF-IDF, and words are replaced by a fixed out-of-dictionary token when removed. Our inquiry covers models such as elementary if-then rules and linear classifiers. We then leverage this analysis to gain insights on the behavior of Anchors for any differentiable classifiers. For neural networks, we empirically show that the words corresponding to the highest partial derivatives of the model with respect to the input, reweighted by the inverse document frequencies, are selected by Anchors.
Fast Model Editing at Scale
While large pre-trained models have enabled impressive results on a variety of downstream tasks, the largest existing models still make errors, and even accurate predictions may become outdated over time. Because detecting all such failures at training time is impossible, enabling both developers and end users of such models to correct inaccurate outputs while leaving the model otherwise intact is desirable. However, the distributed, black-box nature of the representations learned by large neural networks makes producing such targeted edits difficult. If presented with only a single problematic input and new desired output, fine-tuning approaches tend to overfit; other editing algorithms are either computationally infeasible or simply ineffective when applied to very large models. To enable easy post-hoc editing at scale, we propose Model Editor Networks using Gradient Decomposition (MEND), a collection of small auxiliary editing networks that use a single desired input-output pair to make fast, local edits to a pre-trained model's behavior. MEND learns to transform the gradient obtained by standard fine-tuning, using a low-rank decomposition of the gradient to make the parameterization of this transformation tractable. MEND can be trained on a single GPU in less than a day even for 10 billion+ parameter models; once trained MEND enables rapid application of new edits to the pre-trained model. Our experiments with T5, GPT, BERT, and BART models show that MEND is the only approach to model editing that effectively edits the behavior of models with more than 10 billion parameters. Code and data available at https://sites.google.com/view/mend-editing.
Analyzing and Improving the Training Dynamics of Diffusion Models
Diffusion models currently dominate the field of data-driven image synthesis with their unparalleled scaling to large datasets. In this paper, we identify and rectify several causes for uneven and ineffective training in the popular ADM diffusion model architecture, without altering its high-level structure. Observing uncontrolled magnitude changes and imbalances in both the network activations and weights over the course of training, we redesign the network layers to preserve activation, weight, and update magnitudes on expectation. We find that systematic application of this philosophy eliminates the observed drifts and imbalances, resulting in considerably better networks at equal computational complexity. Our modifications improve the previous record FID of 2.41 in ImageNet-512 synthesis to 1.81, achieved using fast deterministic sampling. As an independent contribution, we present a method for setting the exponential moving average (EMA) parameters post-hoc, i.e., after completing the training run. This allows precise tuning of EMA length without the cost of performing several training runs, and reveals its surprising interactions with network architecture, training time, and guidance.
Meta Optimal Transport
We study the use of amortized optimization to predict optimal transport (OT) maps from the input measures, which we call Meta OT. This helps repeatedly solve similar OT problems between different measures by leveraging the knowledge and information present from past problems to rapidly predict and solve new problems. Otherwise, standard methods ignore the knowledge of the past solutions and suboptimally re-solve each problem from scratch. We instantiate Meta OT models in discrete and continuous settings between grayscale images, spherical data, classification labels, and color palettes and use them to improve the computational time of standard OT solvers. Our source code is available at http://github.com/facebookresearch/meta-ot
MOOSE-Chem3: Toward Experiment-Guided Hypothesis Ranking via Simulated Experimental Feedback
Hypothesis ranking is a crucial component of automated scientific discovery, particularly in natural sciences where wet-lab experiments are costly and throughput-limited. Existing approaches focus on pre-experiment ranking, relying solely on large language model's internal reasoning without incorporating empirical outcomes from experiments. We introduce the task of experiment-guided ranking, which aims to prioritize candidate hypotheses based on the results of previously tested ones. However, developing such strategies is challenging due to the impracticality of repeatedly conducting real experiments in natural science domains. To address this, we propose a simulator grounded in three domain-informed assumptions, modeling hypothesis performance as a function of similarity to a known ground truth hypothesis, perturbed by noise. We curate a dataset of 124 chemistry hypotheses with experimentally reported outcomes to validate the simulator. Building on this simulator, we develop a pseudo experiment-guided ranking method that clusters hypotheses by shared functional characteristics and prioritizes candidates based on insights derived from simulated experimental feedback. Experiments show that our method outperforms pre-experiment baselines and strong ablations.
Feature Removal Is a Unifying Principle for Model Explanation Methods
Researchers have proposed a wide variety of model explanation approaches, but it remains unclear how most methods are related or when one method is preferable to another. We examine the literature and find that many methods are based on a shared principle of explaining by removing - essentially, measuring the impact of removing sets of features from a model. These methods vary in several respects, so we develop a framework for removal-based explanations that characterizes each method along three dimensions: 1) how the method removes features, 2) what model behavior the method explains, and 3) how the method summarizes each feature's influence. Our framework unifies 26 existing methods, including several of the most widely used approaches (SHAP, LIME, Meaningful Perturbations, permutation tests). Exposing the fundamental similarities between these methods empowers users to reason about which tools to use, and suggests promising directions for ongoing model explainability research.
Benchmarking Clinical Decision Support Search
Finding relevant literature underpins the practice of evidence-based medicine. From 2014 to 2016, TREC conducted a clinical decision support track, wherein participants were tasked with finding articles relevant to clinical questions posed by physicians. In total, 87 teams have participated over the past three years, generating 395 runs. During this period, each team has trialled a variety of methods. While there was significant overlap in the methods employed by different teams, the results were varied. Due to the diversity of the platforms used, the results arising from the different techniques are not directly comparable, reducing the ability to build on previous work. By using a stable platform, we have been able to compare different document and query processing techniques, allowing us to experiment with different search parameters. We have used our system to reproduce leading teams runs, and compare the results obtained. By benchmarking our indexing and search techniques, we can statistically test a variety of hypotheses, paving the way for further research.
Advocate for Complete Benchmarks for Formal Reasoning with Formal/Informal Statements and Formal/Informal Proofs
This position paper provides a critical but constructive discussion of current practices in benchmarking and evaluative practices in the field of formal reasoning and automated theorem proving. We take the position that open code, open data, and benchmarks that are complete and error-free will accelerate progress in this field. We identify practices that create barriers to contributing to this field and suggest ways to remove them. We also discuss some of the practices that might produce misleading evaluative information. We aim to create discussions that bring together people from various groups contributing to automated theorem proving, autoformalization, and informal reasoning.
MeSH Suggester: A Library and System for MeSH Term Suggestion for Systematic Review Boolean Query Construction
Boolean query construction is often critical for medical systematic review literature search. To create an effective Boolean query, systematic review researchers typically spend weeks coming up with effective query terms and combinations. One challenge to creating an effective systematic review Boolean query is the selection of effective MeSH Terms to include in the query. In our previous work, we created neural MeSH term suggestion methods and compared them to state-of-the-art MeSH term suggestion methods. We found neural MeSH term suggestion methods to be highly effective. In this demonstration, we build upon our previous work by creating (1) a Web-based MeSH term suggestion prototype system that allows users to obtain suggestions from a number of underlying methods and (2) a Python library that implements ours and others' MeSH term suggestion methods and that is aimed at researchers who want to further investigate, create or deploy such type of methods. We describe the architecture of the web-based system and how to use it for the MeSH term suggestion task. For the Python library, we describe how the library can be used for advancing further research and experimentation, and we validate the results of the methods contained in the library on standard datasets. Our web-based prototype system is available at http://ielab-mesh-suggest.uqcloud.net, while our Python library is at https://github.com/ielab/meshsuggestlib.
MeSH Term Suggestion for Systematic Review Literature Search
High-quality medical systematic reviews require comprehensive literature searches to ensure the recommendations and outcomes are sufficiently reliable. Indeed, searching for relevant medical literature is a key phase in constructing systematic reviews and often involves domain (medical researchers) and search (information specialists) experts in developing the search queries. Queries in this context are highly complex, based on Boolean logic, include free-text terms and index terms from standardised terminologies (e.g., MeSH), and are difficult and time-consuming to build. The use of MeSH terms, in particular, has been shown to improve the quality of the search results. However, identifying the correct MeSH terms to include in a query is difficult: information experts are often unfamiliar with the MeSH database and unsure about the appropriateness of MeSH terms for a query. Naturally, the full value of the MeSH terminology is often not fully exploited. This paper investigates methods to suggest MeSH terms based on an initial Boolean query that includes only free-text terms. These methods promise to automatically identify highly effective MeSH terms for inclusion in a systematic review query. Our study contributes an empirical evaluation of several MeSH term suggestion methods. We perform an extensive analysis of the retrieval, ranking, and refinement of MeSH term suggestions for each method and how these suggestions impact the effectiveness of Boolean queries.
Generative AI-Based Text Generation Methods Using Pre-Trained GPT-2 Model
This work delved into the realm of automatic text generation, exploring a variety of techniques ranging from traditional deterministic approaches to more modern stochastic methods. Through analysis of greedy search, beam search, top-k sampling, top-p sampling, contrastive searching, and locally typical searching, this work has provided valuable insights into the strengths, weaknesses, and potential applications of each method. Each text-generating method is evaluated using several standard metrics and a comparative study has been made on the performance of the approaches. Finally, some future directions of research in the field of automatic text generation are also identified.
PPM: Automated Generation of Diverse Programming Problems for Benchmarking Code Generation Models
In recent times, a plethora of Large Code Generation Models (LCGMs) have been proposed, showcasing significant potential in assisting developers with complex programming tasks. Benchmarking LCGMs necessitates the creation of a set of diverse programming problems, and each problem comprises the prompt (including the task description), canonical solution, and test inputs. The existing methods for constructing such a problem set can be categorized into two main types: manual methods and perturbation-based methods. However, manual methods demand high effort and lack scalability, while also risking data integrity due to LCGMs' potentially contaminated data collection, and perturbation-based approaches mainly generate semantically homogeneous problems with the same canonical solutions and introduce typos that can be easily auto-corrected by IDE, making them ineffective and unrealistic. In this work, we propose the idea of programming problem merging (PPM) and provide two implementation of this idea, we utilize our tool on two widely-used datasets and compare it against nine baseline methods using eight code generation models. The results demonstrate the effectiveness of our tool in generating more challenging, diverse, and natural programming problems, comparing to the baselines.
CLOVER: A Test Case Generation Benchmark with Coverage, Long-Context, and Verification
Software testing is a critical aspect of software development, yet generating test cases remains a routine task for engineers. This paper presents a benchmark, CLOVER, to evaluate models' capabilities in generating and completing test cases under specific conditions. Spanning from simple assertion completions to writing test cases that cover specific code blocks across multiple files, these tasks are based on 12 python repositories, analyzing 845 problems with context lengths ranging from 4k to 128k tokens. Utilizing code testing frameworks, we propose a method to construct retrieval contexts using coverage information. While models exhibit comparable performance with short contexts, notable differences emerge with 16k contexts. Notably, models like GPT-4o and Claude 3.5 can effectively leverage relevant snippets; however, all models score below 35\% on the complex Task III, even with the oracle context provided, underscoring the benchmark's significance and the potential for model improvement. The benchmark is containerized for code execution across tasks, and we will release the code, data, and construction methodologies.
Lyra: Orchestrating Dual Correction in Automated Theorem Proving
Large Language Models (LLMs) present an intriguing avenue for exploration in the field of formal theorem proving. Nevertheless, their full potential, particularly concerning the mitigation of hallucinations and refinement through prover error messages, remains an area that has yet to be thoroughly investigated. To enhance the effectiveness of LLMs in the field, we introduce the Lyra, a new framework that employs two distinct correction mechanisms: Tool Correction (TC) and Conjecture Correction (CC). To implement Tool Correction in the post-processing of formal proofs, we leverage prior knowledge to utilize predefined prover tools (e.g., Sledgehammer) for guiding the replacement of incorrect tools. Tool Correction significantly contributes to mitigating hallucinations, thereby improving the overall accuracy of the proof. In addition, we introduce Conjecture Correction, an error feedback mechanism designed to interact with prover to refine formal proof conjectures with prover error messages. Compared to the previous refinement framework, the proposed Conjecture Correction refines generation with instruction but does not collect paired (generation, error & refinement) prompts. Our method has achieved state-of-the-art (SOTA) performance on both miniF2F validation (48.0% -> 55.3%) and test (45.5% -> 51.2%). We also present 3 IMO problems solved by Lyra. We believe Tool Correction (post-process for hallucination mitigation) and Conjecture Correction (subgoal adjustment from interaction with environment) could provide a promising avenue for future research in this field.
Online Search Cost Estimation for SAT Solvers
We present two different methods for estimating the cost of solving SAT problems. The methods focus on the online behaviour of the backtracking solver, as well as the structure of the problem. Modern SAT solvers present several challenges to estimate search cost including coping with nonchronological backtracking, learning and restarts. Our first method adapt an existing algorithm for estimating the size of a search tree to deal with these challenges. We then suggest a second method that uses a linear model trained on data gathered online at the start of search. We compare the effectiveness of these two methods using random and structured problems. We also demonstrate that predictions made in early restarts can be used to improve later predictions. We conclude by showing that the cost of solving a set of problems can be reduced by selecting a solver from a portfolio based on such cost estimations.
DOLOMITES: Domain-Specific Long-Form Methodical Tasks
Experts in various fields routinely perform methodical writing tasks to plan, organize, and report their work. From a clinician writing a differential diagnosis for a patient, to a teacher writing a lesson plan for students, these tasks are pervasive, requiring to methodically generate structured long-form output for a given input. We develop a typology of methodical tasks structured in the form of a task objective, procedure, input, and output, and introduce DoLoMiTes, a novel benchmark with specifications for 519 such tasks elicited from hundreds of experts from across 25 fields. Our benchmark further contains specific instantiations of methodical tasks with concrete input and output examples (1,857 in total) which we obtain by collecting expert revisions of up to 10 model-generated examples of each task. We use these examples to evaluate contemporary language models highlighting that automating methodical tasks is a challenging long-form generation problem, as it requires performing complex inferences, while drawing upon the given context as well as domain knowledge.
The PeerRank Method for Peer Assessment
We propose the PeerRank method for peer assessment. This constructs a grade for an agent based on the grades proposed by the agents evaluating the agent. Since the grade of an agent is a measure of their ability to grade correctly, the PeerRank method weights grades by the grades of the grading agent. The PeerRank method also provides an incentive for agents to grade correctly. As the grades of an agent depend on the grades of the grading agents, and as these grades themselves depend on the grades of other agents, we define the PeerRank method by a fixed point equation similar to the PageRank method for ranking web-pages. We identify some formal properties of the PeerRank method (for example, it satisfies axioms of unanimity, no dummy, no discrimination and symmetry), discuss some examples, compare with related work and evaluate the performance on some synthetic data. Our results show considerable promise, reducing the error in grade predictions by a factor of 2 or more in many cases over the natural baseline of averaging peer grades.
MIR: Methodology Inspiration Retrieval for Scientific Research Problems
There has been a surge of interest in harnessing the reasoning capabilities of Large Language Models (LLMs) to accelerate scientific discovery. While existing approaches rely on grounding the discovery process within the relevant literature, effectiveness varies significantly with the quality and nature of the retrieved literature. We address the challenge of retrieving prior work whose concepts can inspire solutions for a given research problem, a task we define as Methodology Inspiration Retrieval (MIR). We construct a novel dataset tailored for training and evaluating retrievers on MIR, and establish baselines. To address MIR, we build the Methodology Adjacency Graph (MAG); capturing methodological lineage through citation relationships. We leverage MAG to embed an "intuitive prior" into dense retrievers for identifying patterns of methodological inspiration beyond superficial semantic similarity. This achieves significant gains of +5.4 in Recall@3 and +7.8 in Mean Average Precision (mAP) over strong baselines. Further, we adapt LLM-based re-ranking strategies to MIR, yielding additional improvements of +4.5 in Recall@3 and +4.8 in mAP. Through extensive ablation studies and qualitative analyses, we exhibit the promise of MIR in enhancing automated scientific discovery and outline avenues for advancing inspiration-driven retrieval.
Diversity Aware Relevance Learning for Argument Search
In this work, we focus on the problem of retrieving relevant arguments for a query claim covering diverse aspects. State-of-the-art methods rely on explicit mappings between claims and premises, and thus are unable to utilize large available collections of premises without laborious and costly manual annotation. Their diversity approach relies on removing duplicates via clustering which does not directly ensure that the selected premises cover all aspects. This work introduces a new multi-step approach for the argument retrieval problem. Rather than relying on ground-truth assignments, our approach employs a machine learning model to capture semantic relationships between arguments. Beyond that, it aims to cover diverse facets of the query, instead of trying to identify duplicates explicitly. Our empirical evaluation demonstrates that our approach leads to a significant improvement in the argument retrieval task even though it requires less data.
Conceptual Engineering Using Large Language Models
We describe a method, based on Jennifer Nado's proposal for classification procedures as targets of conceptual engineering, that implements such procedures by prompting a large language model. We apply this method, using data from the Wikidata knowledge graph, to evaluate stipulative definitions related to two paradigmatic conceptual engineering projects: the International Astronomical Union's redefinition of PLANET and Haslanger's ameliorative analysis of WOMAN. Our results show that classification procedures built using our approach can exhibit good classification performance and, through the generation of rationales for their classifications, can contribute to the identification of issues in either the definitions or the data against which they are being evaluated. We consider objections to this method, and discuss implications of this work for three aspects of theory and practice of conceptual engineering: the definition of its targets, empirical methods for their investigation, and their practical roles. The data and code used for our experiments, together with the experimental results, are available in a Github repository.
A Reliable Knowledge Processing Framework for Combustion Science using Foundation Models
This research explores the integration of large language models (LLMs) into scientific data assimilation, focusing on combustion science as a case study. Leveraging foundational models integrated with Retrieval-Augmented Generation (RAG) framework, the study introduces an approach to process diverse combustion research data, spanning experimental studies, simulations, and literature. The multifaceted nature of combustion research emphasizes the critical role of knowledge processing in navigating and extracting valuable information from a vast and diverse pool of sources. The developed approach minimizes computational and economic expenses while optimizing data privacy and accuracy. It incorporates prompt engineering and offline open-source LLMs, offering user autonomy in selecting base models. The study provides a thorough examination of text segmentation strategies, conducts comparative studies between LLMs, and explores various optimized prompts to demonstrate the effectiveness of the framework. By incorporating an external database, the framework outperforms a conventional LLM in generating accurate responses and constructing robust arguments. Additionally, the study delves into the investigation of optimized prompt templates for the purpose of efficient extraction of scientific literature. The research addresses concerns related to hallucinations and false research articles by introducing a custom workflow developed with a detection algorithm to filter out inaccuracies. Despite identified areas for improvement, the framework consistently delivers accurate domain-specific responses with minimal human oversight. The prompt-agnostic approach introduced holds promise for future deliberations. The study underscores the significance of integrating LLMs and knowledge processing techniques in scientific research, providing a foundation for advancements in data assimilation and utilization.
PERC: Plan-As-Query Example Retrieval for Underrepresented Code Generation
Code generation with large language models has shown significant promise, especially when employing retrieval-augmented generation (RAG) with few-shot examples. However, selecting effective examples that enhance generation quality remains a challenging task, particularly when the target programming language (PL) is underrepresented. In this study, we present two key findings: (1) retrieving examples whose presented algorithmic plans can be referenced for generating the desired behavior significantly improves generation accuracy, and (2) converting code into pseudocode effectively captures such algorithmic plans, enhancing retrieval quality even when the source and the target PLs are different. Based on these findings, we propose Plan-as-query Example Retrieval for few-shot prompting in Code generation (PERC), a novel framework that utilizes algorithmic plans to identify and retrieve effective examples. We validate the effectiveness of PERC through extensive experiments on the CodeContests, HumanEval and MultiPL-E benchmarks: PERC consistently outperforms the state-of-the-art RAG methods in code generation, both when the source and target programming languages match or differ, highlighting its adaptability and robustness in diverse coding environments.
Show Me More Details: Discovering Hierarchies of Procedures from Semi-structured Web Data
Procedures are inherently hierarchical. To "make videos", one may need to "purchase a camera", which in turn may require one to "set a budget". While such hierarchical knowledge is critical for reasoning about complex procedures, most existing work has treated procedures as shallow structures without modeling the parent-child relation. In this work, we attempt to construct an open-domain hierarchical knowledge-base (KB) of procedures based on wikiHow, a website containing more than 110k instructional articles, each documenting the steps to carry out a complex procedure. To this end, we develop a simple and efficient method that links steps (e.g., "purchase a camera") in an article to other articles with similar goals (e.g., "how to choose a camera"), recursively constructing the KB. Our method significantly outperforms several strong baselines according to automatic evaluation, human judgment, and application to downstream tasks such as instructional video retrieval. A demo with partial data can be found at https://wikihow-hierarchy.github.io. The code and the data are at https://github.com/shuyanzhou/wikihow_hierarchy.
Learning to Generate Novel Scientific Directions with Contextualized Literature-based Discovery
Literature-Based Discovery (LBD) aims to discover new scientific knowledge by mining papers and generating hypotheses. Standard LBD is limited to predicting pairwise relations between discrete concepts (e.g., drug-disease links), and ignores critical contexts like experimental settings (e.g., a specific patient population where a drug is evaluated) and background motivations (e.g., to find drugs without specific side effects). We address these limitations with a novel formulation of contextualized-LBD (C-LBD): generating scientific hypotheses in natural language, while grounding them in a context that controls the hypothesis search space. We present a modeling framework using retrieval of ``inspirations'' from past scientific papers. Our evaluations reveal that GPT-4 tends to generate ideas with overall low technical depth and novelty, while our inspiration prompting approaches partially mitigate this issue. Our work represents a first step toward building language models that generate new ideas derived from scientific literature.
Converting Epics/Stories into Pseudocode using Transformers
The conversion of user epics or stories into their appropriate representation in pseudocode or code is a time-consuming task, which can take up a large portion of the time in an industrial project. With this research paper, we aim to present a methodology to generate pseudocode from a given agile user story of small functionalities so as to reduce the overall time spent on the industrial project. Pseudocode is a programming language agnostic representation of the steps involved in a computer program, which can be easily converted into any programming language. Leveraging the potential of Natural Language Processing, we want to simplify the development process in organizations that use the Agile Model of Software Development. We present a methodology to convert a problem described in the English language into pseudocode. This methodology divides the Text to Pseudocode conversion task into two stages or subtasks, each of which is treated like an individual machine translation task. Stage 1 is Text to Code Conversion and Stage 2 is Code to Pseudocode Conversion. We find that the CodeT5 model gives the best results in terms of BLEU score when trained separately on the two subtasks mentioned above. BLEU score is a metric that is used to measure the similarity between a machine-translated text and a set of reference translations.
Online Estimation of SAT Solving Runtime
We present an online method for estimating the cost of solving SAT problems. Modern SAT solvers present several challenges to estimate search cost including non-chronological backtracking, learning and restarts. Our method uses a linear model trained on data gathered at the start of search. We show the effectiveness of this method using random and structured problems. We demonstrate that predictions made in early restarts can be used to improve later predictions. We also show that we can use such cost estimations to select a solver from a portfolio.
Model-based Asynchronous Hyperparameter and Neural Architecture Search
We introduce a model-based asynchronous multi-fidelity method for hyperparameter and neural architecture search that combines the strengths of asynchronous Hyperband and Gaussian process-based Bayesian optimization. At the heart of our method is a probabilistic model that can simultaneously reason across hyperparameters and resource levels, and supports decision-making in the presence of pending evaluations. We demonstrate the effectiveness of our method on a wide range of challenging benchmarks, for tabular data, image classification and language modelling, and report substantial speed-ups over current state-of-the-art methods. Our new methods, along with asynchronous baselines, are implemented in a distributed framework which will be open sourced along with this publication.
SPoC: Search-based Pseudocode to Code
We consider the task of mapping pseudocode to long programs that are functionally correct. Given test cases as a mechanism to validate programs, we search over the space of possible translations of the pseudocode to find a program that passes the validation. However, without proper credit assignment to localize the sources of program failures, it is difficult to guide search toward more promising programs. We propose to perform credit assignment based on signals from compilation errors, which constitute 88.7% of program failures. Concretely, we treat the translation of each pseudocode line as a discrete portion of the program, and whenever a synthesized program fails to compile, an error localization method tries to identify the portion of the program responsible for the failure. We then focus search over alternative translations of the pseudocode for those portions. For evaluation, we collected the SPoC dataset (Search-based Pseudocode to Code) containing 18,356 programs with human-authored pseudocode and test cases. Under a budget of 100 program compilations, performing search improves the synthesis success rate over using the top-one translation of the pseudocode from 25.6% to 44.7%.
Probabilistic Partitive Partitioning (PPP)
Clustering is a NP-hard problem. Thus, no optimal algorithm exists, heuristics are applied to cluster the data. Heuristics can be very resource-intensive, if not applied properly. For substantially large data sets computational efficiencies can be achieved by reducing the input space if a minimal loss of information can be achieved. Clustering algorithms, in general, face two common problems: 1) these converge to different settings with different initial conditions and; 2) the number of clusters has to be arbitrarily decided beforehand. This problem has become critical in the realm of big data. Recently, clustering algorithms have emerged which can speedup computations using parallel processing over the grid but face the aforementioned problems. Goals: Our goals are to find methods to cluster data which: 1) guarantee convergence to the same settings irrespective of the initial conditions; 2) eliminate the need to establish the number of clusters beforehand, and 3) can be applied to cluster large datasets. Methods: We introduce a method that combines probabilistic and combinatorial clustering methods to produce repeatable and compact clusters that are not sensitive to initial conditions. This method harnesses the power of k-means (a combinatorial clustering method) to cluster/partition very large dimensional datasets and uses the Gaussian Mixture Model (a probabilistic clustering method) to validate the k-means partitions. Results: We show that this method produces very compact clusters that are not sensitive to initial conditions. This method can be used to identify the most 'separable' set in a dataset which increases the 'clusterability' of a dataset. This method also eliminates the need to specify the number of clusters in advance.
A Preliminary Investigation of MLOps Practices in GitHub
Background. The rapid and growing popularity of machine learning (ML) applications has led to an increasing interest in MLOps, that is, the practice of continuous integration and deployment (CI/CD) of ML-enabled systems. Aims. Since changes may affect not only the code but also the ML model parameters and the data themselves, the automation of traditional CI/CD needs to be extended to manage model retraining in production. Method. In this paper, we present an initial investigation of the MLOps practices implemented in a set of ML-enabled systems retrieved from GitHub, focusing on GitHub Actions and CML, two solutions to automate the development workflow. Results. Our preliminary results suggest that the adoption of MLOps workflows in open-source GitHub projects is currently rather limited. Conclusions. Issues are also identified, which can guide future research work.
Enhancing Large Language Models for Text-to-Testcase Generation
Context: Test-driven development (TDD) is a widely employed software development practice that involves developing test cases based on requirements prior to writing the code. Although various methods for automated test case generation have been proposed, they are not specifically tailored for TDD, where requirements instead of code serve as input. Objective: In this paper, we introduce a text-to-testcase generation approach based on a large language model (GPT-3.5) that is fine-tuned on our curated dataset with an effective prompt design. Method: Our approach involves enhancing the capabilities of basic GPT-3.5 for text-to-testcase generation task that is fine-tuned on our curated dataset with an effective prompting design. We evaluated the effectiveness of our approach using a span of five large-scale open-source software projects. Results: Our approach generated 7k test cases for open source projects, achieving 78.5% syntactic correctness, 67.09% requirement alignment, and 61.7% code coverage, which substantially outperforms all other LLMs (basic GPT-3.5, Bloom, and CodeT5). In addition, our ablation study demonstrates the substantial performance improvement of the fine-tuning and prompting components of the GPT-3.5 model. Conclusions: These findings lead us to conclude that fine-tuning and prompting should be considered in the future when building a language model for the text-to-testcase generation task
SciPIP: An LLM-based Scientific Paper Idea Proposer
The exponential growth of knowledge and the increasing complexity of interdisciplinary research pose significant challenges for researchers, including information overload and difficulties in exploring novel ideas. The advancements in large language models (LLMs), such as GPT-4, have shown great potential in enhancing idea proposals, but how to effectively utilize large models for reasonable idea proposal has not been thoroughly explored. This paper proposes a scientific paper idea proposer (SciPIP). Based on a user-provided research background, SciPIP retrieves helpful papers from a literature database while leveraging the capabilities of LLMs to generate more novel and feasible ideas. To this end, 1) we construct a literature retrieval database, extracting lots of papers' multi-dimension information for fast access. Then, a literature retrieval method based on semantics, entity, and citation co-occurrences is proposed to search relevant literature from multiple aspects based on the user-provided background. 2) After literature retrieval, we introduce dual-path idea proposal strategies, where one path infers solutions from the retrieved literature and the other path generates original ideas through model brainstorming. We then combine the two to achieve a good balance between feasibility and originality. Through extensive experiments on the natural language processing (NLP) field, we demonstrate that SciPIP can retrieve citations similar to those of existing top conference papers and generate many ideas consistent with them. Additionally, we evaluate the originality of other ideas generated by SciPIP using large language models, further validating the effectiveness of our proposed method. The code and the database are released at https://github.com/cheerss/SciPIP.
Posthoc Interpretation via Quantization
In this paper, we introduce a new approach, called Posthoc Interpretation via Quantization (PIQ), for interpreting decisions made by trained classifiers. Our method utilizes vector quantization to transform the representations of a classifier into a discrete, class-specific latent space. The class-specific codebooks act as a bottleneck that forces the interpreter to focus on the parts of the input data deemed relevant by the classifier for making a prediction. Our model formulation also enables learning concepts by incorporating the supervision of pretrained annotation models such as state-of-the-art image segmentation models. We evaluated our method through quantitative and qualitative studies involving black-and-white images, color images, and audio. As a result of these studies we found that PIQ generates interpretations that are more easily understood by participants to our user studies when compared to several other interpretation methods in the literature.
HumanEval Pro and MBPP Pro: Evaluating Large Language Models on Self-invoking Code Generation
We introduce self-invoking code generation, a new task designed to evaluate the progressive reasoning and problem-solving capabilities of LLMs. In this task, models are presented with a base problem and a related, more complex problem. They must solve the base problem and then utilize its solution to address the more complex one. This work features three key contributions. First, we propose a general recipe for generating more challenging versions of existing benchmarks, resulting in three new benchmarks: HumanEval Pro, MBPP Pro, and BigCodeBench-Lite Pro, specifically designed to assess LLMs on self-invoking code generation. Second, from the analysis of experimental results over twenty LLMs on our benchmarks, we have two important observations: (i) Most LLMs excel in traditional code generation benchmarks like HumanEval and MBPP, but their performance declines on self-invoking tasks. For example, o1-mini achieves 96.2% pass@1 on HumanEval but only 76.2% on HumanEval Pro. (ii) On self-invoking code generation task, the instruction-tuned models demonstrate only marginal improvements compared to the base models. Third, we disclose the types of failure modes that exist in our evaluation results. All these results underscore the need for further advancements in self-invoking code generation tasks and provide a new direction for future research on enhancing LLMs' code reasoning capabilities.
SBI-RAG: Enhancing Math Word Problem Solving for Students through Schema-Based Instruction and Retrieval-Augmented Generation
Many students struggle with math word problems (MWPs), often finding it difficult to identify key information and select the appropriate mathematical operations.Schema-based instruction (SBI) is an evidence-based strategy that helps students categorize problems based on their structure, improving problem-solving accuracy. Building on this, we propose a Schema-Based Instruction Retrieval-Augmented Generation (SBI-RAG) framework that incorporates a large language model (LLM).Our approach emphasizes step-by-step reasoning by leveraging schemas to guide solution generation. We evaluate its performance on the GSM8K dataset, comparing it with GPT-4 and GPT-3.5 Turbo, and introduce a "reasoning score" metric to assess solution quality. Our findings suggest that SBI-RAG enhances reasoning clarity and problem-solving accuracy, potentially providing educational benefits for students
FIMO: A Challenge Formal Dataset for Automated Theorem Proving
We present FIMO, an innovative dataset comprising formal mathematical problem statements sourced from the International Mathematical Olympiad (IMO) Shortlisted Problems. Designed to facilitate advanced automated theorem proving at the IMO level, FIMO is currently tailored for the Lean formal language. It comprises 149 formal problem statements, accompanied by both informal problem descriptions and their corresponding LaTeX-based informal proofs. Through initial experiments involving GPT-4, our findings underscore the existing limitations in current methodologies, indicating a substantial journey ahead before achieving satisfactory IMO-level automated theorem proving outcomes.
AI-Driven Scholarly Peer Review via Persistent Workflow Prompting, Meta-Prompting, and Meta-Reasoning
Critical peer review of scientific manuscripts presents a significant challenge for Large Language Models (LLMs), partly due to data limitations and the complexity of expert reasoning. This report introduces Persistent Workflow Prompting (PWP), a potentially broadly applicable prompt engineering methodology designed to bridge this gap using standard LLM chat interfaces (zero-code, no APIs). We present a proof-of-concept PWP prompt for the critical analysis of experimental chemistry manuscripts, featuring a hierarchical, modular architecture (structured via Markdown) that defines detailed analysis workflows. We develop this PWP prompt through iterative application of meta-prompting techniques and meta-reasoning aimed at systematically codifying expert review workflows, including tacit knowledge. Submitted once at the start of a session, this PWP prompt equips the LLM with persistent workflows triggered by subsequent queries, guiding modern reasoning LLMs through systematic, multimodal evaluations. Demonstrations show the PWP-guided LLM identifying major methodological flaws in a test case while mitigating LLM input bias and performing complex tasks, including distinguishing claims from evidence, integrating text/photo/figure analysis to infer parameters, executing quantitative feasibility checks, comparing estimates against claims, and assessing a priori plausibility. To ensure transparency and facilitate replication, we provide full prompts, detailed demonstration analyses, and logs of interactive chats as supplementary resources. Beyond the specific application, this work offers insights into the meta-development process itself, highlighting the potential of PWP, informed by detailed workflow formalization, to enable sophisticated analysis using readily available LLMs for complex scientific tasks.
Evaluating Large Language Models Trained on Code
We introduce Codex, a GPT language model fine-tuned on publicly available code from GitHub, and study its Python code-writing capabilities. A distinct production version of Codex powers GitHub Copilot. On HumanEval, a new evaluation set we release to measure functional correctness for synthesizing programs from docstrings, our model solves 28.8% of the problems, while GPT-3 solves 0% and GPT-J solves 11.4%. Furthermore, we find that repeated sampling from the model is a surprisingly effective strategy for producing working solutions to difficult prompts. Using this method, we solve 70.2% of our problems with 100 samples per problem. Careful investigation of our model reveals its limitations, including difficulty with docstrings describing long chains of operations and with binding operations to variables. Finally, we discuss the potential broader impacts of deploying powerful code generation technologies, covering safety, security, and economics.
AI capabilities can be significantly improved without expensive retraining
State-of-the-art AI systems can be significantly improved without expensive retraining via "post-training enhancements"-techniques applied after initial training like fine-tuning the system to use a web browser. We review recent post-training enhancements, categorizing them into five types: tool-use, prompting methods, scaffolding, solution selection, and data generation. Different enhancements improve performance on different tasks, making it hard to compare their significance. So we translate improvements from different enhancements into a common currency, the compute-equivalent gain: how much additional training compute would be needed to improve performance by the same amount as the enhancement. Our non-experimental work shows that post-training enhancements have significant benefits: most surveyed enhancements improve benchmark performance by more than a 5x increase in training compute, some by more than 20x. Post-training enhancements are relatively cheap to develop: fine-tuning costs are typically <1% of the original training cost. Governing the development of capable post-training enhancements may be challenging because frontier models could be enhanced by a wide range of actors.
On the Suitability of Hugging Face Hub for Empirical Studies
Background. The development of empirical studies in software engineering mainly relies on the data available on code hosting platforms, being GitHub the most representative. Nevertheless, in the last years, the emergence of Machine Learning (ML) has led to the development of platforms specifically designed for developing ML-based projects, being Hugging Face Hub (HFH) the most popular one. With over 250k repositories, and growing fast, HFH is becoming a promising ecosystem of ML artifacts and therefore a potential source of data for empirical studies. However, so far there have been no studies evaluating the potential of HFH for such studies. Objective. In this proposal for a registered report, we aim at performing an exploratory study of the current state of HFH in order to investigate its suitability to be used as a source platform for empirical studies. Method. We conduct a qualitative and quantitative analysis of HFH for empirical studies. The former will be performed by comparing the features of HFH with those of other code hosting platforms, such as GitHub and GitLab. The latter will be performed by analyzing the data available in HFH.
Towards Reliable Testing for Multiple Information Retrieval System Comparisons
Null Hypothesis Significance Testing is the de facto tool for assessing effectiveness differences between Information Retrieval systems. Researchers use statistical tests to check whether those differences will generalise to online settings or are just due to the samples observed in the laboratory. Much work has been devoted to studying which test is the most reliable when comparing a pair of systems, but most of the IR real-world experiments involve more than two. In the multiple comparisons scenario, testing several systems simultaneously may inflate the errors committed by the tests. In this paper, we use a new approach to assess the reliability of multiple comparison procedures using simulated and real TREC data. Experiments show that Wilcoxon plus the Benjamini-Hochberg correction yields Type I error rates according to the significance level for typical sample sizes while being the best test in terms of statistical power.
Methods2Test: A dataset of focal methods mapped to test cases
Unit testing is an essential part of the software development process, which helps to identify issues with source code in early stages of development and prevent regressions. Machine learning has emerged as viable approach to help software developers generate automated unit tests. However, generating reliable unit test cases that are semantically correct and capable of catching software bugs or unintended behavior via machine learning requires large, metadata-rich, datasets. In this paper we present Methods2Test: A dataset of focal methods mapped to test cases: a large, supervised dataset of test cases mapped to corresponding methods under test (i.e., focal methods). This dataset contains 780,944 pairs of JUnit tests and focal methods, extracted from a total of 91,385 Java open source projects hosted on GitHub with licenses permitting re-distribution. The main challenge behind the creation of the Methods2Test was to establish a reliable mapping between a test case and the relevant focal method. To this aim, we designed a set of heuristics, based on developers' best practices in software testing, which identify the likely focal method for a given test case. To facilitate further analysis, we store a rich set of metadata for each method-test pair in JSON-formatted files. Additionally, we extract textual corpus from the dataset at different context levels, which we provide both in raw and tokenized forms, in order to enable researchers to train and evaluate machine learning models for Automated Test Generation. Methods2Test is publicly available at: https://github.com/microsoft/methods2test
PromptCoT: Synthesizing Olympiad-level Problems for Mathematical Reasoning in Large Language Models
The ability of large language models to solve complex mathematical problems has progressed significantly, particularly for tasks requiring advanced reasoning. However, the scarcity of sufficiently challenging problems, particularly at the Olympiad level, hinders further advancements. In this work, we introduce PromptCoT, a novel approach for automatically generating high-quality Olympiad-level math problems. The proposed method synthesizes complex problems based on mathematical concepts and the rationale behind problem construction, emulating the thought processes of experienced problem designers. We provide a theoretical analysis demonstrating that an optimal rationale should maximize both the likelihood of rationale generation given the associated concepts and the likelihood of problem generation conditioned on both the rationale and the concepts. Our method is evaluated on standard benchmarks including GSM8K, MATH-500, and AIME2024, where it consistently outperforms existing problem generation methods. Furthermore, we demonstrate that PromptCoT exhibits superior data scalability, consistently maintaining high performance as the dataset size increases, outperforming the baselines. The implementation is available at https://github.com/zhaoxlpku/PromptCoT.
Reusable Templates and Guides For Documenting Datasets and Models for Natural Language Processing and Generation: A Case Study of the HuggingFace and GEM Data and Model Cards
Developing documentation guidelines and easy-to-use templates for datasets and models is a challenging task, especially given the variety of backgrounds, skills, and incentives of the people involved in the building of natural language processing (NLP) tools. Nevertheless, the adoption of standard documentation practices across the field of NLP promotes more accessible and detailed descriptions of NLP datasets and models, while supporting researchers and developers in reflecting on their work. To help with the standardization of documentation, we present two case studies of efforts that aim to develop reusable documentation templates -- the HuggingFace data card, a general purpose card for datasets in NLP, and the GEM benchmark data and model cards with a focus on natural language generation. We describe our process for developing these templates, including the identification of relevant stakeholder groups, the definition of a set of guiding principles, the use of existing templates as our foundation, and iterative revisions based on feedback.
Science Hierarchography: Hierarchical Organization of Science Literature
Scientific knowledge is growing rapidly, making it challenging to track progress and high-level conceptual links across broad disciplines. While existing tools like citation networks and search engines make it easy to access a few related papers, they fundamentally lack the flexible abstraction needed to represent the density of activity in various scientific subfields. We motivate SCIENCE HIERARCHOGRAPHY, the goal of organizing scientific literature into a high-quality hierarchical structure that allows for the categorization of scientific work across varying levels of abstraction, from very broad fields to very specific studies. Such a representation can provide insights into which fields are well-explored and which are under-explored. To achieve the goals of SCIENCE HIERARCHOGRAPHY, we develop a range of algorithms. Our primary approach combines fast embedding-based clustering with LLM-based prompting to balance the computational efficiency of embedding methods with the semantic precision offered by LLM prompting. We demonstrate that this approach offers the best trade-off between quality and speed compared to methods that heavily rely on LLM prompting, such as iterative tree construction with LLMs. To better reflect the interdisciplinary and multifaceted nature of research papers, our hierarchy captures multiple dimensions of categorization beyond simple topic labels. We evaluate the utility of our framework by assessing how effectively an LLM-based agent can locate target papers using the hierarchy. Results show that this structured approach enhances interpretability, supports trend discovery, and offers an alternative pathway for exploring scientific literature beyond traditional search methods. Code, data and demo: https://github.com/JHU-CLSP/science-hierarchography{https://github.com/JHU-CLSP/science-hierarchography}
Beyond Chain-of-Thought: A Survey of Chain-of-X Paradigms for LLMs
Chain-of-Thought (CoT) has been a widely adopted prompting method, eliciting impressive reasoning abilities of Large Language Models (LLMs). Inspired by the sequential thought structure of CoT, a number of Chain-of-X (CoX) methods have been developed to address various challenges across diverse domains and tasks involving LLMs. In this paper, we provide a comprehensive survey of Chain-of-X methods for LLMs in different contexts. Specifically, we categorize them by taxonomies of nodes, i.e., the X in CoX, and application tasks. We also discuss the findings and implications of existing CoX methods, as well as potential future directions. Our survey aims to serve as a detailed and up-to-date resource for researchers seeking to apply the idea of CoT to broader scenarios.
Query of CC: Unearthing Large Scale Domain-Specific Knowledge from Public Corpora
Large language models have demonstrated remarkable potential in various tasks, however, there remains a significant scarcity of open-source models and data for specific domains. Previous works have primarily focused on manually specifying resources and collecting high-quality data on specific domains, which significantly consume time and effort. To address this limitation, we propose an efficient data collection method~Query of CC based on large language models. This method bootstraps seed information through a large language model and retrieves related data from public corpora. It not only collects knowledge-related data for specific domains but unearths the data with potential reasoning procedures. Through the application of this method, we have curated a high-quality dataset called~Knowledge Pile, encompassing four major domains, including stem and humanities sciences, among others. Experimental results demonstrate that~Knowledge Pile significantly improves the performance of large language models in mathematical and knowledge-related reasoning ability tests. To facilitate academic sharing, we open-source our dataset and code, providing valuable support to the academic community.
CLEVER: A Curated Benchmark for Formally Verified Code Generation
We introduce {rm C{small LEVER}}, a high-quality, curated benchmark of 161 problems for end-to-end verified code generation in Lean. Each problem consists of (1) the task of generating a specification that matches a held-out ground-truth specification, and (2) the task of generating a Lean implementation that provably satisfies this specification. Unlike prior benchmarks, {rm C{small LEVER}} avoids test-case supervision, LLM-generated annotations, and specifications that leak implementation logic or allow vacuous solutions. All outputs are verified post-hoc using Lean's type checker to ensure machine-checkable correctness. We use {rm C{small LEVER}} to evaluate several few-shot and agentic approaches based on state-of-the-art language models. These methods all struggle to achieve full verification, establishing it as a challenging frontier benchmark for program synthesis and formal reasoning. Our benchmark can be found on GitHub(https://github.com/trishullab/clever) as well as HuggingFace(https://huggingface.co/datasets/amitayusht/clever). All our evaluation code is also available online(https://github.com/trishullab/clever-prover).
Unprocessing Seven Years of Algorithmic Fairness
Seven years ago, researchers proposed a postprocessing method to equalize the error rates of a model across different demographic groups. The work launched hundreds of papers purporting to improve over the postprocessing baseline. We empirically evaluate these claims through thousands of model evaluations on several tabular datasets. We find that the fairness-accuracy Pareto frontier achieved by postprocessing contains all other methods we were feasibly able to evaluate. In doing so, we address two common methodological errors that have confounded previous observations. One relates to the comparison of methods with different unconstrained base models. The other concerns methods achieving different levels of constraint relaxation. At the heart of our study is a simple idea we call unprocessing that roughly corresponds to the inverse of postprocessing. Unprocessing allows for a direct comparison of methods using different underlying models and levels of relaxation.
MultiLingPoT: Enhancing Mathematical Reasoning with Multilingual Program Fine-tuning
Program-of-Thought (PoT), which aims to use programming language instead of natural language as an intermediate step in reasoning, is an important way for LLMs to solve mathematical problems. Since different programming languages excel in different areas, it is natural to use the most suitable language for solving specific problems. However, current PoT research only focuses on single language PoT, ignoring the differences between different programming languages. Therefore, this paper proposes an multilingual program reasoning method, MultiLingPoT. This method allows the model to answer questions using multiple programming languages by fine-tuning on multilingual data. Additionally, prior and posterior hybrid methods are used to help the model select the most suitable language for each problem. Our experimental results show that the training of MultiLingPoT improves each program's mathematical reasoning by about 2.5\%. Moreover, with proper mixing, the performance of MultiLingPoT can be further improved, achieving a 6\% increase compared to the single-language PoT with the data augmentation.Resources of this paper can be found at https://github.com/Nianqi-Li/MultiLingPoT.
Unleashing Scientific Reasoning for Bio-experimental Protocol Generation via Structured Component-based Reward Mechanism
The foundation of reproducible science lies in protocols that are precise, logically ordered, and executable. The autonomous generation of these protocols through natural language queries could greatly improve the efficiency of the reproduction process. However, current leading large language models (LLMs) often generate incomplete or inconsistent protocols, limiting their utility. To address this limitation, we first introduce SciRecipe, a large-scale dataset of over 12K structured protocols spanning 27 biological subfields and encompassing both comprehension and problem-solving tasks. To further improve protocol generation, we propose the "Sketch-and-Fill" paradigm, which separates analysis, structuring, and expression to ensure each step is explicit and verifiable. Complementing this, the structured component-based reward mechanism evaluates step granularity, action order, and semantic fidelity, aligning model optimization with experimental reliability. Building on these components, we develop Thoth, trained through a staged Knowledge-to-Action process that progresses from knowledge acquisition to operational reasoning and ultimately to robust, executable protocol generation. Across multiple benchmarks, Thoth consistently surpasses both proprietary and open-source LLMs, achieving significant improvements in step alignment, logical sequencing, and semantic accuracy. Our approach paves the way for reliable scientific assistants that bridge knowledge with experimental execution. All data, code, and models will be released publicly.
Science and engineering for what? A large-scale analysis of students' projects in science fairs
Science and Engineering fairs offer K-12 students opportunities to engage with authentic STEM practices. Particularly, students are given the chance to experience authentic and open inquiry processes, by defining which themes, questions and approaches will guide their scientific endeavors. In this study, we analyzed data from over 5,000 projects presented at a nationwide science fair in Brazil over the past 20 years using topic modeling to identify the main topics that have driven students' inquiry and design. Our analysis identified a broad range of topics being explored, with significant variations over time, region, and school setting. We argue those results and proposed methodology can not only support further research in the context of science fairs, but also inform instruction and design of contexts-specific resources to support students in open inquiry experiences in different settings.
Bio-SIEVE: Exploring Instruction Tuning Large Language Models for Systematic Review Automation
Medical systematic reviews can be very costly and resource intensive. We explore how Large Language Models (LLMs) can support and be trained to perform literature screening when provided with a detailed set of selection criteria. Specifically, we instruction tune LLaMA and Guanaco models to perform abstract screening for medical systematic reviews. Our best model, Bio-SIEVE, outperforms both ChatGPT and trained traditional approaches, and generalises better across medical domains. However, there remains the challenge of adapting the model to safety-first scenarios. We also explore the impact of multi-task training with Bio-SIEVE-Multi, including tasks such as PICO extraction and exclusion reasoning, but find that it is unable to match single-task Bio-SIEVE's performance. We see Bio-SIEVE as an important step towards specialising LLMs for the biomedical systematic review process and explore its future developmental opportunities. We release our models, code and a list of DOIs to reconstruct our dataset for reproducibility.
PaperRegister: Boosting Flexible-grained Paper Search via Hierarchical Register Indexing
Paper search is an important activity for researchers, typically involving using a query with description of a topic to find relevant papers. As research deepens, paper search requirements may become more flexible, sometimes involving specific details such as module configuration rather than being limited to coarse-grained topics. However, previous paper search systems are unable to meet these flexible-grained requirements, as these systems mainly collect paper abstracts to construct index of corpus, which lack detailed information to support retrieval by finer-grained queries. In this work, we propose PaperRegister, consisted of offline hierarchical indexing and online adaptive retrieval, transforming traditional abstract-based index into hierarchical index tree for paper search, thereby supporting queries at flexible granularity. Experiments on paper search tasks across a range of granularity demonstrate that PaperRegister achieves the state-of-the-art performance, and particularly excels in fine-grained scenarios, highlighting the good potential as an effective solution for flexible-grained paper search in real-world applications. Code for this work is in https://github.com/Li-Z-Q/PaperRegister.
ParaSCI: A Large Scientific Paraphrase Dataset for Longer Paraphrase Generation
We propose ParaSCI, the first large-scale paraphrase dataset in the scientific field, including 33,981 paraphrase pairs from ACL (ParaSCI-ACL) and 316,063 pairs from arXiv (ParaSCI-arXiv). Digging into characteristics and common patterns of scientific papers, we construct this dataset though intra-paper and inter-paper methods, such as collecting citations to the same paper or aggregating definitions by scientific terms. To take advantage of sentences paraphrased partially, we put up PDBERT as a general paraphrase discovering method. The major advantages of paraphrases in ParaSCI lie in the prominent length and textual diversity, which is complementary to existing paraphrase datasets. ParaSCI obtains satisfactory results on human evaluation and downstream tasks, especially long paraphrase generation.
Knowledge Navigator: LLM-guided Browsing Framework for Exploratory Search in Scientific Literature
The exponential growth of scientific literature necessitates advanced tools for effective knowledge exploration. We present Knowledge Navigator, a system designed to enhance exploratory search abilities by organizing and structuring the retrieved documents from broad topical queries into a navigable, two-level hierarchy of named and descriptive scientific topics and subtopics. This structured organization provides an overall view of the research themes in a domain, while also enabling iterative search and deeper knowledge discovery within specific subtopics by allowing users to refine their focus and retrieve additional relevant documents. Knowledge Navigator combines LLM capabilities with cluster-based methods to enable an effective browsing method. We demonstrate our approach's effectiveness through automatic and manual evaluations on two novel benchmarks, CLUSTREC-COVID and SCITOC. Our code, prompts, and benchmarks are made publicly available.
Sampling-Based Accuracy Testing of Posterior Estimators for General Inference
Parameter inference, i.e. inferring the posterior distribution of the parameters of a statistical model given some data, is a central problem to many scientific disciplines. Generative models can be used as an alternative to Markov Chain Monte Carlo methods for conducting posterior inference, both in likelihood-based and simulation-based problems. However, assessing the accuracy of posteriors encoded in generative models is not straightforward. In this paper, we introduce `Tests of Accuracy with Random Points' (TARP) coverage testing as a method to estimate coverage probabilities of generative posterior estimators. Our method differs from previously-existing coverage-based methods, which require posterior evaluations. We prove that our approach is necessary and sufficient to show that a posterior estimator is accurate. We demonstrate the method on a variety of synthetic examples, and show that TARP can be used to test the results of posterior inference analyses in high-dimensional spaces. We also show that our method can detect inaccurate inferences in cases where existing methods fail.
SuperCoder2.0: Technical Report on Exploring the feasibility of LLMs as Autonomous Programmer
We present SuperCoder2.0, an advanced autonomous system designed to enhance software development through artificial intelligence. The system combines an AI-native development approach with intelligent agents to enable fully autonomous coding. Key focus areas include a retry mechanism with error output traceback, comprehensive code rewriting and replacement using Abstract Syntax Tree (ast) parsing to minimize linting issues, code embedding technique for retrieval-augmented generation, and a focus on localizing methods for problem-solving rather than identifying specific line numbers. The methodology employs a three-step hierarchical search space reduction approach for code base navigation and bug localization:utilizing Retrieval Augmented Generation (RAG) and a Repository File Level Map to identify candidate files, (2) narrowing down to the most relevant files using a File Level Schematic Map, and (3) extracting 'relevant locations' within these files. Code editing is performed through a two-part module comprising CodeGeneration and CodeEditing, which generates multiple solutions at different temperature values and replaces entire methods or classes to maintain code integrity. A feedback loop executes repository-level test cases to validate and refine solutions. Experiments conducted on the SWE-bench Lite dataset demonstrate SuperCoder2.0's effectiveness, achieving correct file localization in 84.33% of cases within the top 5 candidates and successfully resolving 34% of test instances. This performance places SuperCoder2.0 fourth globally on the SWE-bench leaderboard. The system's ability to handle diverse repositories and problem types highlights its potential as a versatile tool for autonomous software development. Future work will focus on refining the code editing process and exploring advanced embedding models for improved natural language to code mapping.
Tree-of-Debate: Multi-Persona Debate Trees Elicit Critical Thinking for Scientific Comparative Analysis
With the exponential growth of research facilitated by modern technology and improved accessibility, scientific discoveries have become increasingly fragmented within and across fields. This makes it challenging to assess the significance, novelty, incremental findings, and equivalent ideas between related works, particularly those from different research communities. Large language models (LLMs) have recently demonstrated strong quantitative and qualitative reasoning abilities, and multi-agent LLM debates have shown promise in handling complex reasoning tasks by exploring diverse perspectives and reasoning paths. Inspired by this, we introduce Tree-of-Debate (ToD), a framework which converts scientific papers into LLM personas that debate their respective novelties. To emphasize structured, critical reasoning rather than focusing solely on outcomes, ToD dynamically constructs a debate tree, enabling fine-grained analysis of independent novelty arguments within scholarly articles. Through experiments on scientific literature across various domains, evaluated by expert researchers, we demonstrate that ToD generates informative arguments, effectively contrasts papers, and supports researchers in their literature review.
SemRe-Rank: Improving Automatic Term Extraction By Incorporating Semantic Relatedness With Personalised PageRank
Automatic Term Extraction deals with the extraction of terminology from a domain specific corpus, and has long been an established research area in data and knowledge acquisition. ATE remains a challenging task as it is known that there is no existing ATE methods that can consistently outperform others in any domain. This work adopts a refreshed perspective to this problem: instead of searching for such a 'one-size-fit-all' solution that may never exist, we propose to develop generic methods to 'enhance' existing ATE methods. We introduce SemRe-Rank, the first method based on this principle, to incorporate semantic relatedness - an often overlooked venue - into an existing ATE method to further improve its performance. SemRe-Rank incorporates word embeddings into a personalised PageRank process to compute 'semantic importance' scores for candidate terms from a graph of semantically related words (nodes), which are then used to revise the scores of candidate terms computed by a base ATE algorithm. Extensively evaluated with 13 state-of-the-art base ATE methods on four datasets of diverse nature, it is shown to have achieved widespread improvement over all base methods and across all datasets, with up to 15 percentage points when measured by the Precision in the top ranked K candidate terms (the average for a set of K's), or up to 28 percentage points in F1 measured at a K that equals to the expected real terms in the candidates (F1 in short). Compared to an alternative approach built on the well-known TextRank algorithm, SemRe-Rank can potentially outperform by up to 8 points in Precision at top K, or up to 17 points in F1.
Rethinking the Event Coding Pipeline with Prompt Entailment
For monitoring crises, political events are extracted from the news. The large amount of unstructured full-text event descriptions makes a case-by-case analysis unmanageable, particularly for low-resource humanitarian aid organizations. This creates a demand to classify events into event types, a task referred to as event coding. Typically, domain experts craft an event type ontology, annotators label a large dataset and technical experts develop a supervised coding system. In this work, we propose PR-ENT, a new event coding approach that is more flexible and resource-efficient, while maintaining competitive accuracy: first, we extend an event description such as "Military injured two civilians'' by a template, e.g. "People were [Z]" and prompt a pre-trained (cloze) language model to fill the slot Z. Second, we select answer candidates Z* = {"injured'', "hurt"...} by treating the event description as premise and the filled templates as hypothesis in a textual entailment task. This allows domain experts to draft the codebook directly as labeled prompts and interpretable answer candidates. This human-in-the-loop process is guided by our interactive codebook design tool. We evaluate PR-ENT in several robustness checks: perturbing the event description and prompt template, restricting the vocabulary and removing contextual information.
Natural Language Processing in the Legal Domain
In this paper, we summarize the current state of the field of NLP & Law with a specific focus on recent technical and substantive developments. To support our analysis, we construct and analyze a nearly complete corpus of more than six hundred NLP & Law related papers published over the past decade. Our analysis highlights several major trends. Namely, we document an increasing number of papers written, tasks undertaken, and languages covered over the course of the past decade. We observe an increase in the sophistication of the methods which researchers deployed in this applied context. Slowly but surely, Legal NLP is beginning to match not only the methodological sophistication of general NLP but also the professional standards of data availability and code reproducibility observed within the broader scientific community. We believe all of these trends bode well for the future of the field, but many questions in both the academic and commercial sphere still remain open.
Development of an NLP-driven computer-based test guide for visually impaired students
In recent years, advancements in Natural Language Processing (NLP) techniques have revolutionized the field of accessibility and exclusivity of testing, particularly for visually impaired students (VIS). CBT has shown in years back its relevance in terms of administering exams electronically, making the test process easier, providing quicker and more accurate results, and offering greater flexibility and accessibility for candidates. Yet, its relevance was not felt by the visually impaired students as they cannot access printed documents. Hence, in this paper, we present an NLP-driven Computer-Based Test guide for visually impaired students. It employs a speech technology pre-trained methods to provide real-time assistance and support to visually impaired students. The system utilizes NLP technologies to convert the text-based questions and the associated options in a machine-readable format. Subsequently, the speech technology pre-trained model processes the converted text enabling the VIS to comprehend and analyze the content. Furthermore, we validated that this pre-trained model is not perverse by testing for accuracy using sample audio datasets labels (A, B, C, D, E, F, G) to compare with the voice recordings obtained from 20 VIS which is been predicted by the system to attain values for precision, recall, and F1-scores. These metrics are used to assess the performance of the pre-trained model and have indicated that it is proficient enough to give its better performance to the evaluated system. The methodology adopted for this system is Object Oriented Analysis and Design Methodology (OOADM) where Objects are discussed and built by modeling real-world instances.
IRIS: Interactive Research Ideation System for Accelerating Scientific Discovery
The rapid advancement in capabilities of large language models (LLMs) raises a pivotal question: How can LLMs accelerate scientific discovery? This work tackles the crucial first stage of research, generating novel hypotheses. While recent work on automated hypothesis generation focuses on multi-agent frameworks and extending test-time compute, none of the approaches effectively incorporate transparency and steerability through a synergistic Human-in-the-loop (HITL) approach. To address this gap, we introduce IRIS: Interactive Research Ideation System, an open-source platform designed for researchers to leverage LLM-assisted scientific ideation. IRIS incorporates innovative features to enhance ideation, including adaptive test-time compute expansion via Monte Carlo Tree Search (MCTS), fine-grained feedback mechanism, and query-based literature synthesis. Designed to empower researchers with greater control and insight throughout the ideation process. We additionally conduct a user study with researchers across diverse disciplines, validating the effectiveness of our system in enhancing ideation. We open-source our code at https://github.com/Anikethh/IRIS-Interactive-Research-Ideation-System
Valentine: Evaluating Matching Techniques for Dataset Discovery
Data scientists today search large data lakes to discover and integrate datasets. In order to bring together disparate data sources, dataset discovery methods rely on some form of schema matching: the process of establishing correspondences between datasets. Traditionally, schema matching has been used to find matching pairs of columns between a source and a target schema. However, the use of schema matching in dataset discovery methods differs from its original use. Nowadays schema matching serves as a building block for indicating and ranking inter-dataset relationships. Surprisingly, although a discovery method's success relies highly on the quality of the underlying matching algorithms, the latest discovery methods employ existing schema matching algorithms in an ad-hoc fashion due to the lack of openly-available datasets with ground truth, reference method implementations, and evaluation metrics. In this paper, we aim to rectify the problem of evaluating the effectiveness and efficiency of schema matching methods for the specific needs of dataset discovery. To this end, we propose Valentine, an extensible open-source experiment suite to execute and organize large-scale automated matching experiments on tabular data. Valentine includes implementations of seminal schema matching methods that we either implemented from scratch (due to absence of open source code) or imported from open repositories. The contributions of Valentine are: i) the definition of four schema matching scenarios as encountered in dataset discovery methods, ii) a principled dataset fabrication process tailored to the scope of dataset discovery methods and iii) the most comprehensive evaluation of schema matching techniques to date, offering insight on the strengths and weaknesses of existing techniques, that can serve as a guide for employing schema matching in future dataset discovery methods.
Retrieval-Augmented Generation by Evidence Retroactivity in LLMs
Retrieval-augmented generation has gained significant attention due to its ability to integrate relevant external knowledge, enhancing the accuracy and reliability of the LLMs' responses. Most of the existing methods apply a dynamic multiple retrieval-generating process, to address multi-hop complex questions by decomposing them into sub-problems. However, these methods rely on an unidirectional forward reasoning paradigm, where errors from insufficient reasoning steps or inherent flaws in current retrieval systems are irreversible, potentially derailing the entire reasoning chain. For the first time, this work introduces Retroactive Retrieval-Augmented Generation (RetroRAG), a novel framework to build a retroactive reasoning paradigm. RetroRAG revises and updates the evidence, redirecting the reasoning chain to the correct direction. RetroRAG constructs an evidence-collation-discovery framework to search, generate, and refine credible evidence. It synthesizes inferential evidence related to the key entities in the question from the existing source knowledge and formulates search queries to uncover additional information. As new evidence is found, RetroRAG continually updates and organizes this information, enhancing its ability to locate further necessary evidence. Paired with an Answerer to generate and evaluate outputs, RetroRAG is capable of refining its reasoning process iteratively until a reliable answer is obtained. Empirical evaluations show that RetroRAG significantly outperforms existing methods.
Meta Prompting for AGI Systems
This paper presents an in-depth exploration of Meta Prompting, a novel technique that revolutionizes the way large language models (LLMs), multi-modal foundation models, and AI systems approach problem-solving and data interpretation. Meta Prompting, rooted in type theory and category theory, prioritizes the structure and syntax of information, providing a unique framework that transcends traditional content-focused methods. We delve into the formal definitions of Meta Prompting, contrasting it with Few-Shot Prompting, and highlight its applicability and superiority in various AI applications. Key to this exploration is the expansion of Meta Prompting into the realm of complex reasoning. Here, we demonstrate how this technique adeptly breaks down intricate problems into manageable sub-problems, facilitating a step-by-step, detailed approach to problem-solving. This method proves especially advantageous in terms of token efficiency and offering a fair comparison in problem-solving scenarios, standing out against few-shot example approaches. Furthermore, the paper breaks new ground by extending Meta Prompting into multi-modal foundation model settings. This extension addresses the integration of diverse data types, such as images, audio, and video, within the structured framework of Meta Prompting, highlighting both the challenges and the vast potential of this approach in handling complex, multi-faceted data (The code is available at https://github.com/meta-prompting/meta-prompting).
Diffusion Models for Molecules: A Survey of Methods and Tasks
Generative tasks about molecules, including but not limited to molecule generation, are crucial for drug discovery and material design, and have consistently attracted significant attention. In recent years, diffusion models have emerged as an impressive class of deep generative models, sparking extensive research and leading to numerous studies on their application to molecular generative tasks. Despite the proliferation of related work, there remains a notable lack of up-to-date and systematic surveys in this area. Particularly, due to the diversity of diffusion model formulations, molecular data modalities, and generative task types, the research landscape is challenging to navigate, hindering understanding and limiting the area's growth. To address this, this paper conducts a comprehensive survey of diffusion model-based molecular generative methods. We systematically review the research from the perspectives of methodological formulations, data modalities, and task types, offering a novel taxonomy. This survey aims to facilitate understanding and further flourishing development in this area. The relevant papers are summarized at: https://github.com/AzureLeon1/awesome-molecular-diffusion-models.
Seven Failure Points When Engineering a Retrieval Augmented Generation System
Software engineers are increasingly adding semantic search capabilities to applications using a strategy known as Retrieval Augmented Generation (RAG). A RAG system involves finding documents that semantically match a query and then passing the documents to a large language model (LLM) such as ChatGPT to extract the right answer using an LLM. RAG systems aim to: a) reduce the problem of hallucinated responses from LLMs, b) link sources/references to generated responses, and c) remove the need for annotating documents with meta-data. However, RAG systems suffer from limitations inherent to information retrieval systems and from reliance on LLMs. In this paper, we present an experience report on the failure points of RAG systems from three case studies from separate domains: research, education, and biomedical. We share the lessons learned and present 7 failure points to consider when designing a RAG system. The two key takeaways arising from our work are: 1) validation of a RAG system is only feasible during operation, and 2) the robustness of a RAG system evolves rather than designed in at the start. We conclude with a list of potential research directions on RAG systems for the software engineering community.
What Matters in Hierarchical Search for Combinatorial Reasoning Problems?
Efficiently tackling combinatorial reasoning problems, particularly the notorious NP-hard tasks, remains a significant challenge for AI research. Recent efforts have sought to enhance planning by incorporating hierarchical high-level search strategies, known as subgoal methods. While promising, their performance against traditional low-level planners is inconsistent, raising questions about their application contexts. In this study, we conduct an in-depth exploration of subgoal-planning methods for combinatorial reasoning. We identify the attributes pivotal for leveraging the advantages of high-level search: hard-to-learn value functions, complex action spaces, presence of dead ends in the environment, or using data collected from diverse experts. We propose a consistent evaluation methodology to achieve meaningful comparisons between methods and reevaluate the state-of-the-art algorithms.
A Large-Scale Evolvable Dataset for Model Context Protocol Ecosystem and Security Analysis
The Model Context Protocol (MCP) has recently emerged as a standardized interface for connecting language models with external tools and data. As the ecosystem rapidly expands, the lack of a structured, comprehensive view of existing MCP artifacts presents challenges for research. To bridge this gap, we introduce MCPCorpus, a large-scale dataset containing around 14K MCP servers and 300 MCP clients. Each artifact is annotated with 20+ normalized attributes capturing its identity, interface configuration, GitHub activity, and metadata. MCPCorpus provides a reproducible snapshot of the real-world MCP ecosystem, enabling studies of adoption trends, ecosystem health, and implementation diversity. To keep pace with the rapid evolution of the MCP ecosystem, we provide utility tools for automated data synchronization, normalization, and inspection. Furthermore, to support efficient exploration and exploitation, we release a lightweight web-based search interface. MCPCorpus is publicly available at: https://github.com/Snakinya/MCPCorpus.
Hermes 4 Technical Report
We present Hermes 4, a family of hybrid reasoning models that combine structured, multi-turn reasoning with broad instruction-following ability. We describe the challenges encountered during data curation, synthesis, training, and evaluation, and outline the solutions employed to address these challenges at scale. We comprehensively evaluate across mathematical reasoning, coding, knowledge, comprehension, and alignment benchmarks, and we report both quantitative performance and qualitative behavioral analysis. To support open research, all model weights are published publicly at https://huggingface.co/collections/NousResearch/hermes-4-collection-68a731bfd452e20816725728
Knowledge Graph Induction enabling Recommending and Trend Analysis: A Corporate Research Community Use Case
A research division plays an important role of driving innovation in an organization. Drawing insights, following trends, keeping abreast of new research, and formulating strategies are increasingly becoming more challenging for both researchers and executives as the amount of information grows in both velocity and volume. In this paper we present a use case of how a corporate research community, IBM Research, utilizes Semantic Web technologies to induce a unified Knowledge Graph from both structured and textual data obtained by integrating various applications used by the community related to research projects, academic papers, datasets, achievements and recognition. In order to make the Knowledge Graph more accessible to application developers, we identified a set of common patterns for exploiting the induced knowledge and exposed them as APIs. Those patterns were born out of user research which identified the most valuable use cases or user pain points to be alleviated. We outline two distinct scenarios: recommendation and analytics for business use. We will discuss these scenarios in detail and provide an empirical evaluation on entity recommendation specifically. The methodology used and the lessons learned from this work can be applied to other organizations facing similar challenges.
A Methodology for Evaluating RAG Systems: A Case Study On Configuration Dependency Validation
Retrieval-augmented generation (RAG) is an umbrella of different components, design decisions, and domain-specific adaptations to enhance the capabilities of large language models and counter their limitations regarding hallucination and outdated and missing knowledge. Since it is unclear which design decisions lead to a satisfactory performance, developing RAG systems is often experimental and needs to follow a systematic and sound methodology to gain sound and reliable results. However, there is currently no generally accepted methodology for RAG evaluation despite a growing interest in this technology. In this paper, we propose a first blueprint of a methodology for a sound and reliable evaluation of RAG systems and demonstrate its applicability on a real-world software engineering research task: the validation of configuration dependencies across software technologies. In summary, we make two novel contributions: (i) A novel, reusable methodological design for evaluating RAG systems, including a demonstration that represents a guideline, and (ii) a RAG system, which has been developed following this methodology, that achieves the highest accuracy in the field of dependency validation. For the blueprint's demonstration, the key insights are the crucial role of choosing appropriate baselines and metrics, the necessity for systematic RAG refinements derived from qualitative failure analysis, as well as the reporting practices of key design decision to foster replication and evaluation.
Consecutive Batch Model Editing with HooK Layers
As the typical retraining paradigm is unacceptably time- and resource-consuming, researchers are turning to model editing to find an effective way that supports both consecutive and batch scenarios to edit the model behavior directly. Despite all these practical expectations, existing model editing methods fail to realize all of them. Furthermore, the memory demands for such sequential model editing approaches tend to be prohibitive, frequently necessitating an external memory that grows incrementally over time. To cope with these challenges, we propose CoachHooK, a model editing method that simultaneously supports sequential and batch editing. CoachHooK is memory-friendly as it only needs a small amount of it to store several hook layers whose size remains unchanged over time. Experimental results demonstrate the superiority of our method over other batch-supportive model editing methods under both single-round and consecutive batch editing scenarios. Extensive analyses of CoachHooK have been conducted to verify the stability of our method over a number of consecutive steps.
How to Evaluate Entity Resolution Systems: An Entity-Centric Framework with Application to Inventor Name Disambiguation
Entity resolution (record linkage, microclustering) systems are notoriously difficult to evaluate. Looking for a needle in a haystack, traditional evaluation methods use sophisticated, application-specific sampling schemes to find matching pairs of records among an immense number of non-matches. We propose an alternative that facilitates the creation of representative, reusable benchmark data sets without necessitating complex sampling schemes. These benchmark data sets can then be used for model training and a variety of evaluation tasks. Specifically, we propose an entity-centric data labeling methodology that integrates with a unified framework for monitoring summary statistics, estimating key performance metrics such as cluster and pairwise precision and recall, and analyzing root causes for errors. We validate the framework in an application to inventor name disambiguation and through simulation studies. Software: https://github.com/OlivierBinette/er-evaluation/
SCP-116K: A High-Quality Problem-Solution Dataset and a Generalized Pipeline for Automated Extraction in the Higher Education Science Domain
Recent breakthroughs in large language models (LLMs) exemplified by the impressive mathematical and scientific reasoning capabilities of the o1 model have spotlighted the critical importance of high-quality training data in advancing LLM performance across STEM disciplines. While the mathematics community has benefited from a growing body of curated datasets, the scientific domain at the higher education level has long suffered from a scarcity of comparable resources. To address this gap, we present SCP-116K, a new large-scale dataset of 116,756 high-quality problem-solution pairs, automatically extracted from heterogeneous sources using a streamlined and highly generalizable pipeline. Our approach involves stringent filtering to ensure the scientific rigor and educational level of the extracted materials, while maintaining adaptability for future expansions or domain transfers. By openly releasing both the dataset and the extraction pipeline, we seek to foster research on scientific reasoning, enable comprehensive performance evaluations of new LLMs, and lower the barrier to replicating the successes of advanced models like o1 in the broader science community. We believe SCP-116K will serve as a critical resource, catalyzing progress in high-level scientific reasoning tasks and promoting further innovations in LLM development. The dataset and code are publicly available at https://github.com/AQA6666/SCP-116K-open.
Roll the dice & look before you leap: Going beyond the creative limits of next-token prediction
We design a suite of minimal algorithmic tasks that are a loose abstraction of open-ended real-world tasks. This allows us to cleanly and controllably quantify the creative limits of the present-day language model. Much like real-world tasks that require a creative, far-sighted leap of thought, our tasks require an implicit, open-ended stochastic planning step that either (a) discovers new connections in an abstract knowledge graph (like in wordplay, drawing analogies, or research) or (b) constructs new patterns (like in designing math problems or new proteins). In these tasks, we empirically and conceptually argue how next-token learning is myopic and memorizes excessively; comparatively, multi-token approaches, namely teacherless training and diffusion models, excel in producing diverse and original output. Secondly, in our tasks, we find that to elicit randomness from the Transformer without hurting coherence, it is better to inject noise right at the input layer (via a method we dub hash-conditioning) rather than defer to temperature sampling from the output layer. Thus, our work offers a principled, minimal test-bed for analyzing open-ended creative skills, and offers new arguments for going beyond next-token learning and softmax-based sampling. We make part of the code available under https://github.com/chenwu98/algorithmic-creativity
Argument Mining Driven Analysis of Peer-Reviews
Peer reviewing is a central process in modern research and essential for ensuring high quality and reliability of published work. At the same time, it is a time-consuming process and increasing interest in emerging fields often results in a high review workload, especially for senior researchers in this area. How to cope with this problem is an open question and it is vividly discussed across all major conferences. In this work, we propose an Argument Mining based approach for the assistance of editors, meta-reviewers, and reviewers. We demonstrate that the decision process in the field of scientific publications is driven by arguments and automatic argument identification is helpful in various use-cases. One of our findings is that arguments used in the peer-review process differ from arguments in other domains making the transfer of pre-trained models difficult. Therefore, we provide the community with a new peer-review dataset from different computer science conferences with annotated arguments. In our extensive empirical evaluation, we show that Argument Mining can be used to efficiently extract the most relevant parts from reviews, which are paramount for the publication decision. The process remains interpretable since the extracted arguments can be highlighted in a review without detaching them from their context.
Crafting the Path: Robust Query Rewriting for Information Retrieval
Query rewriting aims to generate a new query that can complement the original query to improve the information retrieval system. Recent studies on query rewriting, such as query2doc (Q2D), query2expand (Q2E) and querey2cot (Q2C), rely on the internal knowledge of Large Language Models (LLMs) to generate a relevant passage to add information to the query. Nevertheless, the efficacy of these methodologies may markedly decline in instances where the requisite knowledge is not encapsulated within the model's intrinsic parameters. In this paper, we propose a novel structured query rewriting method called Crafting the Path tailored for retrieval systems. Crafting the Path involves a three-step process that crafts query-related information necessary for finding the passages to be searched in each step. Specifically, the Crafting the Path begins with Query Concept Comprehension, proceeds to Query Type Identification, and finally conducts Expected Answer Extraction. Experimental results show that our method outperforms previous rewriting methods, especially in less familiar domains for LLMs. We demonstrate that our method is less dependent on the internal parameter knowledge of the model and generates queries with fewer factual inaccuracies. Furthermore, we observe that Crafting the Path has less latency compared to the baselines.
Unified Software Design Patterns for Simulated Annealing
Any optimization algorithm programming interface can be seen as a black-box function with additional free parameters. In this spirit, simulated annealing (SA) can be implemented in pseudo-code within the dimensions of a single slide with free parameters relating to the annealing schedule. Such an implementation, however, necessarily neglects much of the structure necessary to take advantage of advances in computing resources and algorithmic breakthroughs. Simulated annealing is often introduced in myriad disciplines, from discrete examples like the Traveling Salesman Problem (TSP) to molecular cluster potential energy exploration or even explorations of a protein's configurational space. Theoretical guarantees also demand a stricter structure in terms of statistical quantities, which cannot simply be left to the user. We will introduce several standard paradigms and demonstrate how these can be "lifted" into a unified framework using object-oriented programming in Python. We demonstrate how clean, interoperable, reproducible programming libraries can be used to access and rapidly iterate on variants of Simulated Annealing in a manner which can be extended to serve as a best practices blueprint or design pattern for a data-driven optimization library.
Best-First Beam Search
Decoding for many NLP tasks requires an effective heuristic algorithm for approximating exact search since the problem of searching the full output space is often intractable, or impractical in many settings. The default algorithm for this job is beam search -- a pruned version of breadth-first search. Quite surprisingly, beam search often returns better results than exact inference due to beneficial search bias for NLP tasks. In this work, we show that the standard implementation of beam search can be made up to 10x faster in practice. Our method assumes that the scoring function is monotonic in the sequence length, which allows us to safely prune hypotheses that cannot be in the final set of hypotheses early on. We devise effective monotonic approximations to popular nonmonontic scoring functions, including length normalization and mutual information decoding. Lastly, we propose a memory-reduced variant of Best-First Beam Search, which has a similar beneficial search bias in terms of downstream performance, but runs in a fraction of the time.
ToolHop: A Query-Driven Benchmark for Evaluating Large Language Models in Multi-Hop Tool Use
Effective evaluation of multi-hop tool use is critical for analyzing the understanding, reasoning, and function-calling capabilities of large language models (LLMs). However, progress has been hindered by a lack of reliable evaluation datasets. To address this, we present ToolHop, a dataset comprising 995 user queries and 3,912 associated tools, specifically designed for rigorous evaluation of multi-hop tool use. ToolHop ensures diverse queries, meaningful interdependencies, locally executable tools, detailed feedback, and verifiable answers through a novel query-driven data construction approach that includes tool creation, document refinement, and code generation. We evaluate 14 LLMs across five model families (i.e., LLaMA3.1, Qwen2.5, Gemini1.5, Claude3.5, and GPT), uncovering significant challenges in handling multi-hop tool-use scenarios. The leading model, GPT-4o, achieves an accuracy of 49.04%, underscoring substantial room for improvement. Further analysis reveals variations in tool-use strategies for various families, offering actionable insights to guide the development of more effective approaches. Code and data can be found in https://huggingface.co/bytedance-research/ToolHop.
Which Prompting Technique Should I Use? An Empirical Investigation of Prompting Techniques for Software Engineering Tasks
A growing variety of prompt engineering techniques has been proposed for Large Language Models (LLMs), yet systematic evaluation of each technique on individual software engineering (SE) tasks remains underexplored. In this study, we present a systematic evaluation of 14 established prompt techniques across 10 SE tasks using four LLM models. As identified in the prior literature, the selected prompting techniques span six core dimensions (Zero-Shot, Few-Shot, Thought Generation, Ensembling, Self-Criticism, and Decomposition). They are evaluated on tasks such as code generation, bug fixing, and code-oriented question answering, to name a few. Our results show which prompting techniques are most effective for SE tasks requiring complex logic and intensive reasoning versus those that rely more on contextual understanding and example-driven scenarios. We also analyze correlations between the linguistic characteristics of prompts and the factors that contribute to the effectiveness of prompting techniques in enhancing performance on SE tasks. Additionally, we report the time and token consumption for each prompting technique when applied to a specific task and model, offering guidance for practitioners in selecting the optimal prompting technique for their use cases.
Scattered Forest Search: Smarter Code Space Exploration with LLMs
We propose a novel approach to scaling LLM inference for code generation. We frame code generation as a black box optimization problem within the code space, and employ optimization-inspired techniques to enhance exploration. Specifically, we introduce Scattered Forest Search to enhance solution diversity while searching for solutions. Our theoretical analysis illustrates how these methods avoid local optima during optimization. Extensive experiments on HumanEval, MBPP, APPS, CodeContests, and Leetcode reveal significant performance improvements. For instance, our method achieves a pass@1 rate of 67.1% on HumanEval+ and 87.2% on HumanEval with GPT-3.5, marking improvements of 8.6% and 4.3% over the state-of-the-art, while also halving the iterations needed to find the correct solution. Furthermore, our method scales more efficiently than existing search techniques, including tree search, line search, and repeated sampling.
Building A Proof-Oriented Programmer That Is 64% Better Than GPT-4o Under Data Scarsity
Existing LMs struggle with proof-oriented programming due to data scarcity, which manifest in two key ways: (1) a lack of sufficient corpora for proof-oriented programming languages such as F*, and (2) the absence of large-scale, project-level proof-oriented implementations that can teach the model the intricate reasoning process when performing proof-oriented programming. We present the first on synthetic data augmentation for project level proof oriented programming for both generation and repair. Our method addresses data scarcity by synthesizing basic proof-oriented programming problems for proficiency in that language; incorporating diverse coding data for reasoning capability elicitation and creating new proofs and repair data within existing repositories. This approach enables language models to both synthesize and repair proofs for function- and repository-level code. We show that our fine-tuned 14B parameter model, PoPilot, can exceed the performance of the models that outperforms GPT-4o in project-level proof-oriented programming by 64% relative margin, and can improve GPT-4o's performance by 54% by repairing its outputs over GPT-4o's self-repair.
Unit Test Case Generation with Transformers and Focal Context
Automated unit test case generation tools facilitate test-driven development and support developers by suggesting tests intended to identify flaws in their code. Existing approaches are usually guided by the test coverage criteria, generating synthetic test cases that are often difficult for developers to read or understand. In this paper we propose AthenaTest, an approach that aims to generate unit test cases by learning from real-world focal methods and developer-written testcases. We formulate unit test case generation as a sequence-to-sequence learning task, adopting a two-step training procedure consisting of denoising pretraining on a large unsupervised Java corpus, and supervised finetuning for a downstream translation task of generating unit tests. We investigate the impact of natural language and source code pretraining, as well as the focal context information surrounding the focal method. Both techniques provide improvements in terms of validation loss, with pretraining yielding 25% relative improvement and focal context providing additional 11.1% improvement. We also introduce Methods2Test, the largest publicly available supervised parallel corpus of unit test case methods and corresponding focal methods in Java, which comprises 780K test cases mined from 91K open-source repositories from GitHub. We evaluate AthenaTest on five defects4j projects, generating 25K passing test cases covering 43.7% of the focal methods with only 30 attempts. We execute the test cases, collect test coverage information, and compare them with test cases generated by EvoSuite and GPT-3, finding that our approach outperforms GPT-3 and has comparable coverage w.r.t. EvoSuite. Finally, we survey professional developers on their preference in terms of readability, understandability, and testing effectiveness of the generated tests, showing overwhelmingly preference towards AthenaTest.
Learning to Actively Learn: A Robust Approach
This work proposes a procedure for designing algorithms for specific adaptive data collection tasks like active learning and pure-exploration multi-armed bandits. Unlike the design of traditional adaptive algorithms that rely on concentration of measure and careful analysis to justify the correctness and sample complexity of the procedure, our adaptive algorithm is learned via adversarial training over equivalence classes of problems derived from information theoretic lower bounds. In particular, a single adaptive learning algorithm is learned that competes with the best adaptive algorithm learned for each equivalence class. Our procedure takes as input just the available queries, set of hypotheses, loss function, and total query budget. This is in contrast to existing meta-learning work that learns an adaptive algorithm relative to an explicit, user-defined subset or prior distribution over problems which can be challenging to define and be mismatched to the instance encountered at test time. This work is particularly focused on the regime when the total query budget is very small, such as a few dozen, which is much smaller than those budgets typically considered by theoretically derived algorithms. We perform synthetic experiments to justify the stability and effectiveness of the training procedure, and then evaluate the method on tasks derived from real data including a noisy 20 Questions game and a joke recommendation task.
Draft, Sketch, and Prove: Guiding Formal Theorem Provers with Informal Proofs
The formalization of existing mathematical proofs is a notoriously difficult process. Despite decades of research on automation and proof assistants, writing formal proofs remains arduous and only accessible to a few experts. While previous studies to automate formalization focused on powerful search algorithms, no attempts were made to take advantage of available informal proofs. In this work, we introduce Draft, Sketch, and Prove (DSP), a method that maps informal proofs to formal proof sketches, and uses the sketches to guide an automated prover by directing its search to easier sub-problems. We investigate two relevant setups where informal proofs are either written by humans or generated by a language model. Our experiments and ablation studies show that large language models are able to produce well-structured formal sketches that follow the same reasoning steps as the informal proofs. Guiding an automated prover with these sketches enhances its performance from 20.9% to 39.3% on a collection of mathematical competition problems.
From Theory to Practice: Plug and Play with Succinct Data Structures
Engineering efficient implementations of compact and succinct structures is a time-consuming and challenging task, since there is no standard library of easy-to- use, highly optimized, and composable components. One consequence is that measuring the practical impact of new theoretical proposals is a difficult task, since older base- line implementations may not rely on the same basic components, and reimplementing from scratch can be very time-consuming. In this paper we present a framework for experimentation with succinct data structures, providing a large set of configurable components, together with tests, benchmarks, and tools to analyze resource requirements. We demonstrate the functionality of the framework by recomposing succinct solutions for document retrieval.
Can Language Models Falsify? Evaluating Algorithmic Reasoning with Counterexample Creation
There is growing excitement about the potential of Language Models (LMs) to accelerate scientific discovery. Falsifying hypotheses is key to scientific progress, as it allows claims to be iteratively refined over time. This process requires significant researcher effort, reasoning, and ingenuity. Yet current benchmarks for LMs predominantly assess their ability to generate solutions rather than challenge them. We advocate for developing benchmarks that evaluate this inverse capability - creating counterexamples for subtly incorrect solutions. To demonstrate this approach, we start with the domain of algorithmic problem solving, where counterexamples can be evaluated automatically using code execution. Specifically, we introduce REFUTE, a dynamically updating benchmark that includes recent problems and incorrect submissions from programming competitions, where human experts successfully identified counterexamples. Our analysis finds that the best reasoning agents, even OpenAI o3-mini (high) with code execution feedback, can create counterexamples for only <9% of incorrect solutions in REFUTE, even though ratings indicate its ability to solve up to 48% of these problems from scratch. We hope our work spurs progress in evaluating and enhancing LMs' ability to falsify incorrect solutions - a capability that is crucial for both accelerating research and making models self-improve through reliable reflective reasoning.
B4: Towards Optimal Assessment of Plausible Code Solutions with Plausible Tests
Selecting the best code solution from multiple generated ones is an essential task in code generation, which can be achieved by using some reliable validators (e.g., developer-written test cases) for assistance. Since reliable test cases are not always available and can be expensive to build in practice, researchers propose to automatically generate test cases to assess code solutions. However, when both code solutions and test cases are plausible and not reliable, selecting the best solution becomes challenging. Although some heuristic strategies have been proposed to tackle this problem, they lack a strong theoretical guarantee and it is still an open question whether an optimal selection strategy exists. Our work contributes in two ways. First, we show that within a Bayesian framework, the optimal selection strategy can be defined based on the posterior probability of the observed passing states between solutions and tests. The problem of identifying the best solution is then framed as an integer programming problem. Second, we propose an efficient approach for approximating this optimal (yet uncomputable) strategy, where the approximation error is bounded by the correctness of prior knowledge. We then incorporate effective prior knowledge to tailor code generation tasks. Both theoretical and empirical studies confirm that existing heuristics are limited in selecting the best solutions with plausible test cases. Our proposed approximated optimal strategy B4 significantly surpasses existing heuristics in selecting code solutions generated by large language models (LLMs) with LLM-generated tests, achieving a relative performance improvement by up to 50% over the strongest heuristic and 246% over the random selection in the most challenging scenarios. Our code is publicly available at https://github.com/ZJU-CTAG/B4.
Can Language Models Solve Olympiad Programming?
Computing olympiads contain some of the most challenging problems for humans, requiring complex algorithmic reasoning, puzzle solving, in addition to generating efficient code. However, it has been understudied as a domain to evaluate language models (LMs). In this paper, we introduce the USACO benchmark with 307 problems from the USA Computing Olympiad, along with high-quality unit tests, reference code, and official analyses for each problem. These resources enable us to construct and test a range of LM inference methods for competitive programming for the first time. We find GPT-4 only achieves a 8.7% pass@1 accuracy with zero-shot chain-of-thought prompting, and our best inference method improves it to 20.2% using a combination of self-reflection and retrieval over episodic knowledge. However, this is far from solving the benchmark. To better understand the remaining challenges, we design a novel human-in-the-loop study and surprisingly find that a small number of targeted hints enable GPT-4 to solve 13 out of 15 problems previously unsolvable by any model and method. Our benchmark, baseline methods, quantitative results, and qualitative analysis serve as an initial step toward LMs with grounded, creative, and algorithmic reasoning.
Finding Increasingly Large Extremal Graphs with AlphaZero and Tabu Search
This work studies a central extremal graph theory problem inspired by a 1975 conjecture of Erdos, which aims to find graphs with a given size (number of nodes) that maximize the number of edges without having 3- or 4-cycles. We formulate this problem as a sequential decision-making problem and compare AlphaZero, a neural network-guided tree search, with tabu search, a heuristic local search method. Using either method, by introducing a curriculum -- jump-starting the search for larger graphs using good graphs found at smaller sizes -- we improve the state-of-the-art lower bounds for several sizes. We also propose a flexible graph-generation environment and a permutation-invariant network architecture for learning to search in the space of graphs.
Documenting Geographically and Contextually Diverse Data Sources: The BigScience Catalogue of Language Data and Resources
In recent years, large-scale data collection efforts have prioritized the amount of data collected in order to improve the modeling capabilities of large language models. This prioritization, however, has resulted in concerns with respect to the rights of data subjects represented in data collections, particularly when considering the difficulty in interrogating these collections due to insufficient documentation and tools for analysis. Mindful of these pitfalls, we present our methodology for a documentation-first, human-centered data collection project as part of the BigScience initiative. We identified a geographically diverse set of target language groups (Arabic, Basque, Chinese, Catalan, English, French, Indic languages, Indonesian, Niger-Congo languages, Portuguese, Spanish, and Vietnamese, as well as programming languages) for which to collect metadata on potential data sources. To structure this effort, we developed our online catalogue as a supporting tool for gathering metadata through organized public hackathons. We present our development process; analyses of the resulting resource metadata, including distributions over languages, regions, and resource types; and our lessons learned in this endeavor.
How does Feedback Signal Quality Impact Effectiveness of Pseudo Relevance Feedback for Passage Retrieval?
Pseudo-Relevance Feedback (PRF) assumes that the top results retrieved by a first-stage ranker are relevant to the original query and uses them to improve the query representation for a second round of retrieval. This assumption however is often not correct: some or even all of the feedback documents may be irrelevant. Indeed, the effectiveness of PRF methods may well depend on the quality of the feedback signal and thus on the effectiveness of the first-stage ranker. This aspect however has received little attention before. In this paper we control the quality of the feedback signal and measure its impact on a range of PRF methods, including traditional bag-of-words methods (Rocchio), and dense vector-based methods (learnt and not learnt). Our results show the important role the quality of the feedback signal plays on the effectiveness of PRF methods. Importantly, and surprisingly, our analysis reveals that not all PRF methods are the same when dealing with feedback signals of varying quality. These findings are critical to gain a better understanding of the PRF methods and of which and when they should be used, depending on the feedback signal quality, and set the basis for future research in this area.
Learning to Mine Aligned Code and Natural Language Pairs from Stack Overflow
For tasks like code synthesis from natural language, code retrieval, and code summarization, data-driven models have shown great promise. However, creating these models require parallel data between natural language (NL) and code with fine-grained alignments. Stack Overflow (SO) is a promising source to create such a data set: the questions are diverse and most of them have corresponding answers with high-quality code snippets. However, existing heuristic methods (e.g., pairing the title of a post with the code in the accepted answer) are limited both in their coverage and the correctness of the NL-code pairs obtained. In this paper, we propose a novel method to mine high-quality aligned data from SO using two sets of features: hand-crafted features considering the structure of the extracted snippets, and correspondence features obtained by training a probabilistic model to capture the correlation between NL and code using neural networks. These features are fed into a classifier that determines the quality of mined NL-code pairs. Experiments using Python and Java as test beds show that the proposed method greatly expands coverage and accuracy over existing mining methods, even when using only a small number of labeled examples. Further, we find that reasonable results are achieved even when training the classifier on one language and testing on another, showing promise for scaling NL-code mining to a wide variety of programming languages beyond those for which we are able to annotate data.
Composable Interventions for Language Models
Test-time interventions for language models can enhance factual accuracy, mitigate harmful outputs, and improve model efficiency without costly retraining. But despite a flood of new methods, different types of interventions are largely developing independently. In practice, multiple interventions must be applied sequentially to the same model, yet we lack standardized ways to study how interventions interact. We fill this gap by introducing composable interventions, a framework to study the effects of using multiple interventions on the same language models, featuring new metrics and a unified codebase. Using our framework, we conduct extensive experiments and compose popular methods from three emerging intervention categories -- Knowledge Editing, Model Compression, and Machine Unlearning. Our results from 310 different compositions uncover meaningful interactions: compression hinders editing and unlearning, composing interventions hinges on their order of application, and popular general-purpose metrics are inadequate for assessing composability. Taken together, our findings showcase clear gaps in composability, suggesting a need for new multi-objective interventions. All of our code is public: https://github.com/hartvigsen-group/composable-interventions.
Teaching Algorithmic Reasoning via In-context Learning
Large language models (LLMs) have shown increasing in-context learning capabilities through scaling up model and data size. Despite this progress, LLMs are still unable to solve algorithmic reasoning problems. While providing a rationale with the final answer has led to further improvements in multi-step reasoning problems, Anil et al. 2022 showed that even simple algorithmic reasoning tasks such as parity are far from solved. In this work, we identify and study four key stages for successfully teaching algorithmic reasoning to LLMs: (1) formulating algorithms as skills, (2) teaching multiple skills simultaneously (skill accumulation), (3) teaching how to combine skills (skill composition) and (4) teaching how to use skills as tools. We show that it is possible to teach algorithmic reasoning to LLMs via in-context learning, which we refer to as algorithmic prompting. We evaluate our approach on a variety of arithmetic and quantitative reasoning tasks, and demonstrate significant boosts in performance over existing prompting techniques. In particular, for long parity, addition, multiplication and subtraction, we achieve an error reduction of approximately 10x, 9x, 5x and 2x respectively compared to the best available baselines.
MuSiQue: Multihop Questions via Single-hop Question Composition
Multihop reasoning remains an elusive goal as existing multihop benchmarks are known to be largely solvable via shortcuts. Can we create a question answering (QA) dataset that, by construction, requires proper multihop reasoning? To this end, we introduce a bottom-up approach that systematically selects composable pairs of single-hop questions that are connected, i.e., where one reasoning step critically relies on information from another. This bottom-up methodology lets us explore a vast space of questions and add stringent filters as well as other mechanisms targeting connected reasoning. It provides fine-grained control over the construction process and the properties of the resulting k-hop questions. We use this methodology to create MuSiQue-Ans, a new multihop QA dataset with 25K 2-4 hop questions. Relative to existing datasets, MuSiQue-Ans is more difficult overall (3x increase in human-machine gap), and harder to cheat via disconnected reasoning (e.g., a single-hop model has a 30 point drop in F1). We further add unanswerable contrast questions to produce a more stringent dataset, MuSiQue-Full. We hope our datasets will help the NLP community develop models that perform genuine multihop reasoning.
Eliciting Instruction-tuned Code Language Models' Capabilities to Utilize Auxiliary Function for Code Generation
We study the code generation behavior of instruction-tuned models built on top of code pre-trained language models when they could access an auxiliary function to implement a function. We design several ways to provide auxiliary functions to the models by adding them to the query or providing a response prefix to incorporate the ability to utilize auxiliary functions with the instruction-following capability. Our experimental results show the effectiveness of combining the base models' auxiliary function utilization ability with the instruction following ability. In particular, the performance of adopting our approaches with the open-sourced language models surpasses that of the recent powerful proprietary language models, i.e., gpt-4o.
Large Language Models for Combinatorial Optimization: A Systematic Review
This systematic review explores the application of Large Language Models (LLMs) in Combinatorial Optimization (CO). We report our findings using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. We conduct a literature search via Scopus and Google Scholar, examining over 2,000 publications. We assess publications against four inclusion and four exclusion criteria related to their language, research focus, publication year, and type. Eventually, we select 103 studies. We classify these studies into semantic categories and topics to provide a comprehensive overview of the field, including the tasks performed by LLMs, the architectures of LLMs, the existing datasets specifically designed for evaluating LLMs in CO, and the field of application. Finally, we identify future directions for leveraging LLMs in this field.
pyMethods2Test: A Dataset of Python Tests Mapped to Focal Methods
Python is one of the fastest-growing programming languages and currently ranks as the top language in many lists, even recently overtaking JavaScript as the top language on GitHub. Given its importance in data science and machine learning, it is imperative to be able to effectively train LLMs to generate good unit test cases for Python code. This motivates the need for a large dataset to provide training and testing data. To date, while other large datasets exist for languages like Java, none publicly exist for Python. Python poses difficult challenges in generating such a dataset, due to its less rigid naming requirements. In this work, we consider two commonly used Python unit testing frameworks: Pytest and unittest. We analyze a large corpus of over 88K open-source GitHub projects utilizing these testing frameworks. Using a carefully designed set of heuristics, we are able to locate over 22 million test methods. We then analyze the test and non-test code and map individual unit tests to the focal method being tested. This provides an explicit traceability link from the test to the tested method. Our pyMethods2Test dataset contains over 2 million of these focal method mappings, as well as the ability to generate useful context for input to LLMs. The pyMethods2Test dataset is publicly available on Zenodo at: https://doi.org/10.5281/zenodo.14264518
EAIRA: Establishing a Methodology for Evaluating AI Models as Scientific Research Assistants
Recent advancements have positioned AI, and particularly Large Language Models (LLMs), as transformative tools for scientific research, capable of addressing complex tasks that require reasoning, problem-solving, and decision-making. Their exceptional capabilities suggest their potential as scientific research assistants but also highlight the need for holistic, rigorous, and domain-specific evaluation to assess effectiveness in real-world scientific applications. This paper describes a multifaceted methodology for Evaluating AI models as scientific Research Assistants (EAIRA) developed at Argonne National Laboratory. This methodology incorporates four primary classes of evaluations. 1) Multiple Choice Questions to assess factual recall; 2) Open Response to evaluate advanced reasoning and problem-solving skills; 3) Lab-Style Experiments involving detailed analysis of capabilities as research assistants in controlled environments; and 4) Field-Style Experiments to capture researcher-LLM interactions at scale in a wide range of scientific domains and applications. These complementary methods enable a comprehensive analysis of LLM strengths and weaknesses with respect to their scientific knowledge, reasoning abilities, and adaptability. Recognizing the rapid pace of LLM advancements, we designed the methodology to evolve and adapt so as to ensure its continued relevance and applicability. This paper describes the methodology state at the end of February 2025. Although developed within a subset of scientific domains, the methodology is designed to be generalizable to a wide range of scientific domains.
The Science of Evaluating Foundation Models
The emergent phenomena of large foundation models have revolutionized natural language processing. However, evaluating these models presents significant challenges due to their size, capabilities, and deployment across diverse applications. Existing literature often focuses on individual aspects, such as benchmark performance or specific tasks, but fails to provide a cohesive process that integrates the nuances of diverse use cases with broader ethical and operational considerations. This work focuses on three key aspects: (1) Formalizing the Evaluation Process by providing a structured framework tailored to specific use-case contexts, (2) Offering Actionable Tools and Frameworks such as checklists and templates to ensure thorough, reproducible, and practical evaluations, and (3) Surveying Recent Work with a targeted review of advancements in LLM evaluation, emphasizing real-world applications.
Confidence-Weighted Token Set Cover for Early Hypothesis Pruning in Self-Consistency
Despite its simplicity and efficacy, the high token expenditure of self-consistency can limit its practical utility. Here we investigate if self-consistency can be made more token-efficient for long chain-of-thought reasoning tasks, while preserving its parallelism, through early hypothesis pruning. Concretely, we generate all solutions in parallel, but periodically prune intermediate hypotheses that are deemed unnecessary based on two lightweight indicators: (a) the model's own confidence in individual hypotheses, and (b) lexical coverage of all current hypotheses by candidate subsets that are under consideration for continued retention. We design a fast weighted set cover algorithm that utilizes the two indicators; our evaluation of five LLMs on three math benchmarks shows that this method can improve token efficiency for all models, by 10-35% in many cases.
Searching by Code: a New SearchBySnippet Dataset and SnippeR Retrieval Model for Searching by Code Snippets
Code search is an important task that has seen many developments in recent years. However, previous attempts have mostly considered the problem of searching for code by a text query. We argue that using a code snippet (and possibly an associated traceback) as a query and looking for answers with bugfixing instructions and code samples is a natural use case that is not covered by existing approaches. Moreover, existing datasets use comments extracted from code rather than full-text descriptions as text, making them unsuitable for this use case. We present a new SearchBySnippet dataset implementing the search-by-code use case based on StackOverflow data; it turns out that in this setting, existing architectures fall short of the simplest BM25 baseline even after fine-tuning. We present a new single encoder model SnippeR that outperforms several strong baselines on the SearchBySnippet dataset with a result of 0.451 Recall@10; we propose the SearchBySnippet dataset and SnippeR as a new important benchmark for code search evaluation.
Machine Learning Operations (MLOps): Overview, Definition, and Architecture
The final goal of all industrial machine learning (ML) projects is to develop ML products and rapidly bring them into production. However, it is highly challenging to automate and operationalize ML products and thus many ML endeavors fail to deliver on their expectations. The paradigm of Machine Learning Operations (MLOps) addresses this issue. MLOps includes several aspects, such as best practices, sets of concepts, and development culture. However, MLOps is still a vague term and its consequences for researchers and professionals are ambiguous. To address this gap, we conduct mixed-method research, including a literature review, a tool review, and expert interviews. As a result of these investigations, we provide an aggregated overview of the necessary principles, components, and roles, as well as the associated architecture and workflows. Furthermore, we furnish a definition of MLOps and highlight open challenges in the field. Finally, this work provides guidance for ML researchers and practitioners who want to automate and operate their ML products with a designated set of technologies.
Self-Taught Optimizer (STOP): Recursively Self-Improving Code Generation
Several recent advances in AI systems (e.g., Tree-of-Thoughts and Program-Aided Language Models) solve problems by providing a "scaffolding" program that structures multiple calls to language models to generate better outputs. A scaffolding program is written in a programming language such as Python. In this work, we use a language-model-infused scaffolding program to improve itself. We start with a seed "improver" that improves an input program according to a given utility function by querying a language model several times and returning the best solution. We then run this seed improver to improve itself. Across a small set of downstream tasks, the resulting improved improver generates programs with significantly better performance than its seed improver. Afterward, we analyze the variety of self-improvement strategies proposed by the language model, including beam search, genetic algorithms, and simulated annealing. Since the language models themselves are not altered, this is not full recursive self-improvement. Nonetheless, it demonstrates that a modern language model, GPT-4 in our proof-of-concept experiments, is capable of writing code that can call itself to improve itself. We critically consider concerns around the development of self-improving technologies and evaluate the frequency with which the generated code bypasses a sandbox.
SAAS: Solving Ability Amplification Strategy for Enhanced Mathematical Reasoning in Large Language Models
This study presents a novel learning approach designed to enhance both mathematical reasoning and problem-solving abilities of Large Language Models (LLMs). We focus on integrating the Chain-of-Thought (CoT) and the Program-of-Thought (PoT) learning, hypothesizing that prioritizing the learning of mathematical reasoning ability is helpful for the amplification of problem-solving ability. Thus, the initial learning with CoT is essential for solving challenging mathematical problems. To this end, we propose a sequential learning approach, named SAAS (Solving Ability Amplification Strategy), which strategically transitions from CoT learning to PoT learning. Our empirical study, involving an extensive performance comparison using several benchmarks, demonstrates that our SAAS achieves state-of-the-art (SOTA) performance. The results underscore the effectiveness of our sequential learning approach, marking a significant advancement in the field of mathematical reasoning in LLMs.
ExecRepoBench: Multi-level Executable Code Completion Evaluation
Code completion has become an essential tool for daily software development. Existing evaluation benchmarks often employ static methods that do not fully capture the dynamic nature of real-world coding environments and face significant challenges, including limited context length, reliance on superficial evaluation metrics, and potential overfitting to training datasets. In this work, we introduce a novel framework for enhancing code completion in software development through the creation of a repository-level benchmark ExecRepoBench and the instruction corpora Repo-Instruct, aim at improving the functionality of open-source large language models (LLMs) in real-world coding scenarios that involve complex interdependencies across multiple files. ExecRepoBench includes 1.2K samples from active Python repositories. Plus, we present a multi-level grammar-based completion methodology conditioned on the abstract syntax tree to mask code fragments at various logical units (e.g. statements, expressions, and functions). Then, we fine-tune the open-source LLM with 7B parameters on Repo-Instruct to produce a strong code completion baseline model Qwen2.5-Coder-Instruct-C based on the open-source model. Qwen2.5-Coder-Instruct-C is rigorously evaluated against existing benchmarks, including MultiPL-E and ExecRepoBench, which consistently outperforms prior baselines across all programming languages. The deployment of can be used as a high-performance, local service for programming development\url{https://execrepobench.github.io/}.
Using clarification questions to improve software developers' Web search
Context: Recent research indicates that Web queries written by software developers are not very successful in retrieving relevant results, performing measurably worse compared to general purpose Web queries. Most approaches up to this point have addressed this problem with software engineering-specific automated query reformulation techniques, which work without developer involvement but are limited by the content of the original query. In other words, these techniques automatically improve the existing query but can not contribute new, previously unmentioned, concepts. Objective: In this paper, we propose a technique to guide software developers in manually improving their own Web search queries. We examine a conversational approach that follows unsuccessful queries with a clarification question aimed at eliciting additional query terms, thus providing to the developer a clear dimension along which the query could be improved. Methods: We describe a set of clarification questions derived from a corpus of software developer queries and a neural approach to recommending them for a newly issued query. Results: Our evaluation indicates that the recommendation technique is accurate, predicting a valid clarification question 80% of the time and outperforms simple baselines, as well as, state-of-the-art Learning To Rank (LTR) baselines. Conclusion: As shown in the experimental results, the described approach is capable at recommending appropriate clarification questions to software developers and considered useful by a sample of developers ranging from novices to experienced professionals.
Real-Time Community Detection in Large Social Networks on a Laptop
For a broad range of research, governmental and commercial applications it is important to understand the allegiances, communities and structure of key players in society. One promising direction towards extracting this information is to exploit the rich relational data in digital social networks (the social graph). As social media data sets are very large, most approaches make use of distributed computing systems for this purpose. Distributing graph processing requires solving many difficult engineering problems, which has lead some researchers to look at single-machine solutions that are faster and easier to maintain. In this article, we present a single-machine real-time system for large-scale graph processing that allows analysts to interactively explore graph structures. The key idea is that the aggregate actions of large numbers of users can be compressed into a data structure that encapsulates user similarities while being robust to noise and queryable in real-time. We achieve single machine real-time performance by compressing the neighbourhood of each vertex using minhash signatures and facilitate rapid queries through Locality Sensitive Hashing. These techniques reduce query times from hours using industrial desktop machines operating on the full graph to milliseconds on standard laptops. Our method allows exploration of strongly associated regions (i.e. communities) of large graphs in real-time on a laptop. It has been deployed in software that is actively used by social network analysts and offers another channel for media owners to monetise their data, helping them to continue to provide free services that are valued by billions of people globally.
Proving Olympiad Algebraic Inequalities without Human Demonstrations
Solving Olympiad-level mathematical problems represents a significant advancement in machine intelligence and automated reasoning. Current machine learning methods, however, struggle to solve Olympiad-level problems beyond Euclidean plane geometry due to a lack of large-scale, high-quality datasets. The challenge is even greater in algebraic systems, which involve infinite reasoning spaces within finite conditions. To address these issues, we propose AIPS, an Algebraic Inequality Proving System capable of autonomously generating complex inequality theorems and effectively solving Olympiad-level inequality problems without requiring human demonstrations. During proof search in a mixed reasoning manner, a value curriculum learning strategy on generated datasets is implemented to improve proving performance, demonstrating strong mathematical intuitions. On a test set of 20 International Mathematical Olympiad-level inequality problems, AIPS successfully solved 10, outperforming state-of-the-art methods. Furthermore, AIPS automatically generated a vast array of non-trivial theorems without human intervention, some of which have been evaluated by professional contestants and deemed to reach the level of the International Mathematical Olympiad. Notably, one theorem was selected as a competition problem in a major city 2024 Mathematical Olympiad.
FLARE: Faithful Logic-Aided Reasoning and Exploration
Modern Question Answering (QA) and Reasoning approaches based on Large Language Models (LLMs) commonly use prompting techniques, such as Chain-of-Thought (CoT), assuming the resulting generation will have a more granular exploration and reasoning over the question space and scope. However, such methods struggle with generating outputs that are faithful to the intermediate chain of reasoning produced by the model. On the other end of the spectrum, neuro-symbolic methods such as Faithful CoT (F-CoT) propose to combine LLMs with external symbolic solvers. While such approaches boast a high degree of faithfulness, they usually require a model trained for code generation and struggle with tasks that are ambiguous or hard to formalise strictly. We introduce Faithful Logic-Aided Reasoning and Exploration (\ours), a novel interpretable approach for traversing the problem space using task decompositions. We use the LLM to plan a solution, soft-formalise the query into facts and predicates using a logic programming code and simulate that code execution using an exhaustive multi-hop search over the defined space. Our method allows us to compute the faithfulness of the reasoning process w.r.t. the generated code and analyse the steps of the multi-hop search without relying on external solvers. Our methods achieve SOTA results on 7 out of 9 diverse reasoning benchmarks. We also show that model faithfulness positively correlates with overall performance and further demonstrate that {\ours} allows pinpointing the decisive factors sufficient for and leading to the correct answer with optimal reasoning during the multi-hop search.
Modified LAB Algorithm with Clustering-based Search Space Reduction Method for solving Engineering Design Problems
A modified LAB algorithm is introduced in this paper. It builds upon the original LAB algorithm (Reddy et al. 2023), which is a socio-inspired algorithm that models competitive and learning behaviours within a group, establishing hierarchical roles. The proposed algorithm incorporates the roulette wheel approach and a reduction factor introducing inter-group competition and iteratively narrowing down the sample space. The algorithm is validated by solving the benchmark test problems from CEC 2005 and CEC 2017. The solutions are validated using standard statistical tests such as two-sided and pairwise signed rank Wilcoxon test and Friedman rank test. The algorithm exhibited improved and superior robustness as well as search space exploration capabilities. Furthermore, a Clustering-Based Search Space Reduction (C-SSR) method is proposed, making the algorithm capable to solve constrained problems. The C-SSR method enables the algorithm to identify clusters of feasible regions, satisfying the constraints and contributing to achieve the optimal solution. This method demonstrates its effectiveness as a potential alternative to traditional constraint handling techniques. The results obtained using the Modified LAB algorithm are then compared with those achieved by other recent metaheuristic algorithms.
Bayesian Hierarchical Models for Quantitative Estimates for Performance metrics applied to Saddle Search Algorithms
Rigorous performance evaluation is essential for developing robust algorithms for high-throughput computational chemistry. Traditional benchmarking, however, often struggles to account for system-specific variability, making it difficult to form actionable conclusions. We present a Bayesian hierarchical modeling framework that rigorously quantifies performance metrics and their uncertainty, enabling a nuanced comparison of algorithmic strategies. We apply this framework to analyze the Dimer method, comparing Conjugate Gradient (CG) and L-BFGS rotation optimizers, with and without the removal of external rotations, across a benchmark of 500 molecular systems. Our analysis confirms that CG offers higher overall robustness than L-BFGS in this context. While the theoretically-motivated removal of external rotations led to higher computational cost (>40% more energy and force calls) for most systems in this set, our models also reveal a subtle interplay, hinting that this feature may improve the reliability of the L-BFGS optimizer. Rather than identifying a single superior method, our findings support the design of adaptive "chain of methods" workflows. This work showcases how a robust statistical paradigm can move beyond simple performance rankings to inform the intelligent, context-dependent application of computational chemistry methods.
Natural Language-Guided Programming
In today's software world with its cornucopia of reusable software libraries, when a programmer is faced with a programming task that they suspect can be completed through the use of a library, they often look for code examples using a search engine and then manually adapt found examples to their specific context of use. We put forward a vision based on a new breed of developer tools that have the potential to largely automate this process. The key idea is to adapt code autocompletion tools such that they take into account not only the developer's already-written code but also the intent of the task the developer is trying to achieve next, formulated in plain natural language. We call this practice of enriching the code with natural language intent to facilitate its completion natural language-guided programming. To show that this idea is feasible we design, implement and benchmark a tool that solves this problem in the context of a specific domain (data science) and a specific programming language (Python). Central to the tool is the use of language models trained on a large corpus of documented code. Our initial experiments confirm the feasibility of the idea but also make it clear that we have only scratched the surface of what may become possible in the future. We end the paper with a comprehensive research agenda to stimulate additional research in the budding area of natural language-guided programming.
Assessing Project-Level Fine-Tuning of ML4SE Models
Machine Learning for Software Engineering (ML4SE) is an actively growing research area that focuses on methods that help programmers in their work. In order to apply the developed methods in practice, they need to achieve reasonable quality in order to help rather than distract developers. While the development of new approaches to code representation and data collection improves the overall quality of the models, it does not take into account the information that we can get from the project at hand. In this work, we investigate how the model's quality can be improved if we target a specific project. We develop a framework to assess quality improvements that models can get after fine-tuning for the method name prediction task on a particular project. We evaluate three models of different complexity and compare their quality in three settings: trained on a large dataset of Java projects, further fine-tuned on the data from a particular project, and trained from scratch on this data. We show that per-project fine-tuning can greatly improve the models' quality as they capture the project's domain and naming conventions. We open-source the tool we used for data collection, as well as the code to run the experiments: https://zenodo.org/record/6040745.
Leveraging Print Debugging to Improve Code Generation in Large Language Models
Large language models (LLMs) have made significant progress in code generation tasks, but their performance in tackling programming problems with complex data structures and algorithms remains suboptimal. To address this issue, we propose an in-context learning approach that guides LLMs to debug by using a "print debugging" method, which involves inserting print statements to trace and analysing logs for fixing the bug. We collect a Leetcode problem dataset and evaluate our method using the Leetcode online judging system. Experiments with GPT-4 demonstrate the effectiveness of our approach, outperforming rubber duck debugging in easy and medium-level Leetcode problems by 1.5% and 17.9%.
A Survey of Chain of Thought Reasoning: Advances, Frontiers and Future
Chain-of-thought reasoning, a cognitive process fundamental to human intelligence, has garnered significant attention in the realm of artificial intelligence and natural language processing. However, there still remains a lack of a comprehensive survey for this arena. To this end, we take the first step and present a thorough survey of this research field carefully and widely. We use X-of-Thought to refer to Chain-of-Thought in a broad sense. In detail, we systematically organize the current research according to the taxonomies of methods, including XoT construction, XoT structure variants, and enhanced XoT. Additionally, we describe XoT with frontier applications, covering planning, tool use, and distillation. Furthermore, we address challenges and discuss some future directions, including faithfulness, multi-modal, and theory. We hope this survey serves as a valuable resource for researchers seeking to innovate within the domain of chain-of-thought reasoning.
CodeRAG-Bench: Can Retrieval Augment Code Generation?
While language models (LMs) have proven remarkably adept at generating code, many programs are challenging for LMs to generate using their parametric knowledge alone. Providing external contexts such as library documentation can facilitate generating accurate and functional code. Despite the success of retrieval-augmented generation (RAG) in various text-oriented tasks, its potential for improving code generation remains under-explored. In this work, we conduct a systematic, large-scale analysis by asking: in what scenarios can retrieval benefit code generation models? and what challenges remain? We first curate a comprehensive evaluation benchmark, CodeRAG-Bench, encompassing three categories of code generation tasks, including basic programming, open-domain, and repository-level problems. We aggregate documents from five sources for models to retrieve contexts: competition solutions, online tutorials, library documentation, StackOverflow posts, and GitHub repositories. We examine top-performing models on CodeRAG-Bench by providing contexts retrieved from one or multiple sources. While notable gains are made in final code generation by retrieving high-quality contexts across various settings, our analysis reveals room for improvement -- current retrievers still struggle to fetch useful contexts especially with limited lexical overlap, and generators fail to improve with limited context lengths or abilities to integrate additional contexts. We hope CodeRAG-Bench serves as an effective testbed to encourage further development of advanced code-oriented RAG methods.
Meta-Prompting: Enhancing Language Models with Task-Agnostic Scaffolding
We introduce meta-prompting, an effective scaffolding technique designed to enhance the functionality of language models (LMs). This approach transforms a single LM into a multi-faceted conductor, adept at managing and integrating multiple independent LM queries. By employing high-level instructions, meta-prompting guides the LM to break down complex tasks into smaller, more manageable subtasks. These subtasks are then handled by distinct "expert" instances of the same LM, each operating under specific, tailored instructions. Central to this process is the LM itself, in its role as the conductor, which ensures seamless communication and effective integration of the outputs from these expert models. It additionally employs its inherent critical thinking and robust verification processes to refine and authenticate the end result. This collaborative prompting approach empowers a single LM to simultaneously act as a comprehensive orchestrator and a panel of diverse experts, significantly enhancing its performance across a wide array of tasks. The zero-shot, task-agnostic nature of meta-prompting greatly simplifies user interaction by obviating the need for detailed, task-specific instructions. Furthermore, our research demonstrates the seamless integration of external tools, such as a Python interpreter, into the meta-prompting framework, thereby broadening its applicability and utility. Through rigorous experimentation with GPT-4, we establish the superiority of meta-prompting over conventional scaffolding methods: When averaged across all tasks, including the Game of 24, Checkmate-in-One, and Python Programming Puzzles, meta-prompting, augmented with a Python interpreter functionality, surpasses standard prompting by 17.1%, expert (dynamic) prompting by 17.3%, and multipersona prompting by 15.2%.
Are NLP Models really able to Solve Simple Math Word Problems?
The problem of designing NLP solvers for math word problems (MWP) has seen sustained research activity and steady gains in the test accuracy. Since existing solvers achieve high performance on the benchmark datasets for elementary level MWPs containing one-unknown arithmetic word problems, such problems are often considered "solved" with the bulk of research attention moving to more complex MWPs. In this paper, we restrict our attention to English MWPs taught in grades four and lower. We provide strong evidence that the existing MWP solvers rely on shallow heuristics to achieve high performance on the benchmark datasets. To this end, we show that MWP solvers that do not have access to the question asked in the MWP can still solve a large fraction of MWPs. Similarly, models that treat MWPs as bag-of-words can also achieve surprisingly high accuracy. Further, we introduce a challenge dataset, SVAMP, created by applying carefully chosen variations over examples sampled from existing datasets. The best accuracy achieved by state-of-the-art models is substantially lower on SVAMP, thus showing that much remains to be done even for the simplest of the MWPs.
To Backtrack or Not to Backtrack: When Sequential Search Limits Model Reasoning
Recent advancements in large language models have significantly improved their reasoning abilities, particularly through techniques involving search and backtracking. Backtracking naturally scales test-time compute by enabling sequential, linearized exploration via long chain-of-thought (CoT) generation. However, this is not the only strategy for scaling test-time compute: parallel sampling with best-of-n selection provides an alternative that generates diverse solutions simultaneously. Despite the growing adoption of sequential search, its advantages over parallel sampling--especially under a fixed compute budget remain poorly understood. In this paper, we systematically compare these two approaches on two challenging reasoning tasks: CountDown and Sudoku. Surprisingly, we find that sequential search underperforms parallel sampling on CountDown but outperforms it on Sudoku, suggesting that backtracking is not universally beneficial. We identify two factors that can cause backtracking to degrade performance: (1) training on fixed search traces can lock models into suboptimal strategies, and (2) explicit CoT supervision can discourage "implicit" (non-verbalized) reasoning. Extending our analysis to reinforcement learning (RL), we show that models with backtracking capabilities benefit significantly from RL fine-tuning, while models without backtracking see limited, mixed gains. Together, these findings challenge the assumption that backtracking universally enhances LLM reasoning, instead revealing a complex interaction between task structure, training data, model scale, and learning paradigm.
Language Models Surface the Unwritten Code of Science and Society
This paper calls on the research community not only to investigate how human biases are inherited by large language models (LLMs) but also to explore how these biases in LLMs can be leveraged to make society's "unwritten code" - such as implicit stereotypes and heuristics - visible and accessible for critique. We introduce a conceptual framework through a case study in science: uncovering hidden rules in peer review - the factors that reviewers care about but rarely state explicitly due to normative scientific expectations. The idea of the framework is to push LLMs to speak out their heuristics through generating self-consistent hypotheses - why one paper appeared stronger in reviewer scoring - among paired papers submitted to 45 computer science conferences, while iteratively searching deeper hypotheses from remaining pairs where existing hypotheses cannot explain. We observed that LLMs' normative priors about the internal characteristics of good science extracted from their self-talk, e.g. theoretical rigor, were systematically updated toward posteriors that emphasize storytelling about external connections, such as how the work is positioned and connected within and across literatures. This shift reveals the primacy of scientific myths about intrinsic properties driving scientific excellence rather than extrinsic contextualization and storytelling that influence conceptions of relevance and significance. Human reviewers tend to explicitly reward aspects that moderately align with LLMs' normative priors (correlation = 0.49) but avoid articulating contextualization and storytelling posteriors in their review comments (correlation = -0.14), despite giving implicit reward to them with positive scores. We discuss the broad applicability of the framework, leveraging LLMs as diagnostic tools to surface the tacit codes underlying human society, enabling more precisely targeted responsible AI.
AlphaMath Almost Zero: process Supervision without process
Recent advancements in large language models (LLMs) have substantially enhanced their mathematical reasoning abilities. However, these models still struggle with complex problems that require multiple reasoning steps, frequently leading to logical or numerical errors. While numerical mistakes can be largely addressed by integrating a code interpreter, identifying logical errors within intermediate steps is more challenging. Moreover, manually annotating these steps for training is not only expensive but also labor-intensive, requiring the expertise of professional annotators. In our study, we introduce an innovative approach that bypasses the need for process annotations (from human or GPTs) by utilizing the Monte Carlo Tree Search (MCTS) framework. This technique automatically generates both the process supervision and the step-level evaluation signals. Our method iteratively trains the policy and value models, leveraging the capabilities of a well-pretrained LLM to progressively enhance its mathematical reasoning skills. Furthermore, we propose an efficient inference strategy-step-level beam search, where the value model is crafted to assist the policy model (i.e., LLM) in navigating more effective reasoning paths, rather than solely relying on prior probabilities. The experimental results on both in-domain and out-of-domain datasets demonstrate that even without GPT-4 or human-annotated process supervision, our AlphaMath framework achieves comparable or superior results to previous state-of-the-art methods.
Sparse Pairwise Re-ranking with Pre-trained Transformers
Pairwise re-ranking models predict which of two documents is more relevant to a query and then aggregate a final ranking from such preferences. This is often more effective than pointwise re-ranking models that directly predict a relevance value for each document. However, the high inference overhead of pairwise models limits their practical application: usually, for a set of k documents to be re-ranked, preferences for all k^2-k comparison pairs excluding self-comparisons are aggregated. We investigate whether the efficiency of pairwise re-ranking can be improved by sampling from all pairs. In an exploratory study, we evaluate three sampling methods and five preference aggregation methods. The best combination allows for an order of magnitude fewer comparisons at an acceptable loss of retrieval effectiveness, while competitive effectiveness is already achieved with about one third of the comparisons.
The Code2Text Challenge: Text Generation in Source Code Libraries
We propose a new shared task for tactical data-to-text generation in the domain of source code libraries. Specifically, we focus on text generation of function descriptions from example software projects. Data is drawn from existing resources used for studying the related problem of semantic parser induction (Richardson and Kuhn, 2017b; Richardson and Kuhn, 2017a), and spans a wide variety of both natural languages and programming languages. In this paper, we describe these existing resources, which will serve as training and development data for the task, and discuss plans for building new independent test sets.
A Categorical Framework for Learning Generalised Tree Automata
Automata learning is a popular technique used to automatically construct an automaton model from queries. Much research went into devising ad hoc adaptations of algorithms for different types of automata. The CALF project seeks to unify these using category theory in order to ease correctness proofs and guide the design of new algorithms. In this paper, we extend CALF to cover learning of algebraic structures that may not have a coalgebraic presentation. Furthermore, we provide a detailed algorithmic account of an abstract version of the popular L* algorithm, which was missing from CALF. We instantiate the abstract theory to a large class of Set functors, by which we recover for the first time practical tree automata learning algorithms from an abstract framework and at the same time obtain new algorithms to learn algebras of quotiented polynomial functors.
Exploring Direct Instruction and Summary-Mediated Prompting in LLM-Assisted Code Modification
This paper presents a study of using large language models (LLMs) in modifying existing code. While LLMs for generating code have been widely studied, their role in code modification remains less understood. Although "prompting" serves as the primary interface for developers to communicate intents to LLMs, constructing effective prompts for code modification introduces challenges different from generation. Prior work suggests that natural language summaries may help scaffold this process, yet such approaches have been validated primarily in narrow domains like SQL rewriting. This study investigates two prompting strategies for LLM-assisted code modification: Direct Instruction Prompting, where developers describe changes explicitly in free-form language, and Summary-Mediated Prompting, where changes are made by editing the generated summaries of the code. We conducted an exploratory study with 15 developers who completed modification tasks using both techniques across multiple scenarios. Our findings suggest that developers followed an iterative workflow: understanding the code, localizing the edit, and validating outputs through execution or semantic reasoning. Each prompting strategy presented trade-offs: direct instruction prompting was more flexible and easier to specify, while summary-mediated prompting supported comprehension, prompt scaffolding, and control. Developers' choice of strategy was shaped by task goals and context, including urgency, maintainability, learning intent, and code familiarity. These findings highlight the need for more usable prompt interactions, including adjustable summary granularity, reliable summary-code traceability, and consistency in generated summaries.
CHIME: LLM-Assisted Hierarchical Organization of Scientific Studies for Literature Review Support
Literature review requires researchers to synthesize a large amount of information and is increasingly challenging as the scientific literature expands. In this work, we investigate the potential of LLMs for producing hierarchical organizations of scientific studies to assist researchers with literature review. We define hierarchical organizations as tree structures where nodes refer to topical categories and every node is linked to the studies assigned to that category. Our naive LLM-based pipeline for hierarchy generation from a set of studies produces promising yet imperfect hierarchies, motivating us to collect CHIME, an expert-curated dataset for this task focused on biomedicine. Given the challenging and time-consuming nature of building hierarchies from scratch, we use a human-in-the-loop process in which experts correct errors (both links between categories and study assignment) in LLM-generated hierarchies. CHIME contains 2,174 LLM-generated hierarchies covering 472 topics, and expert-corrected hierarchies for a subset of 100 topics. Expert corrections allow us to quantify LLM performance, and we find that while they are quite good at generating and organizing categories, their assignment of studies to categories could be improved. We attempt to train a corrector model with human feedback which improves study assignment by 12.6 F1 points. We release our dataset and models to encourage research on developing better assistive tools for literature review.
Experiences with Model Context Protocol Servers for Science and High Performance Computing
Large language model (LLM)-powered agents are increasingly used to plan and execute scientific workflows, yet most research cyberinfrastructure (CI) exposes heterogeneous APIs and implements security models that present barriers for use by agents. We report on our experience using the Model Context Protocol (MCP) as a unifying interface that makes research capabilities discoverable, invokable, and composable. Our approach is pragmatic: we implement thin MCP servers over mature services, including Globus Transfer, Compute, and Search; status APIs exposed by computing facilities; Octopus event fabric; and domain-specific tools such as Garden and Galaxy. We use case studies in computational chemistry, bioinformatics, quantum chemistry, and filesystem monitoring to illustrate how this MCP-oriented architecture can be used in practice. We distill lessons learned and outline open challenges in evaluation and trust for agent-led science.
Toward Open Earth Science as Fast and Accessible as Natural Language
Is natural-language-driven earth observation data analysis now feasible with the assistance of Large Language Models (LLMs)? For open science in service of public interest, feasibility requires reliably high accuracy, interactive latencies, low (sustainable) costs, open LLMs, and openly maintainable software -- hence, the challenge. What are the techniques and programming system requirements necessary for satisfying these constraints, and what is the corresponding development and maintenance burden in practice? This study lays the groundwork for exploring these questions, introducing an impactful earth science use-case, and providing a software framework with evaluation data and metrics, along with initial results from employing model scaling, prompt-optimization, and inference-time scaling optimization techniques. While we attain high accuracy (near 100%) across 10 of 11 metrics, the analysis further considers cost (token-spend), latency, and maintainability across this space of techniques. Finally, we enumerate opportunities for further research, general programming and evaluation framework development, and ongoing work for a comprehensive, deployable solution. This is a call for collaboration and contribution.
A Functional Taxonomy of Music Generation Systems
Digital advances have transformed the face of automatic music generation since its beginnings at the dawn of computing. Despite the many breakthroughs, issues such as the musical tasks targeted by different machines and the degree to which they succeed remain open questions. We present a functional taxonomy for music generation systems with reference to existing systems. The taxonomy organizes systems according to the purposes for which they were designed. It also reveals the inter-relatedness amongst the systems. This design-centered approach contrasts with predominant methods-based surveys and facilitates the identification of grand challenges to set the stage for new breakthroughs.
SwissNYF: Tool Grounded LLM Agents for Black Box Setting
While Large Language Models (LLMs) have demonstrated enhanced capabilities in function-calling, these advancements primarily rely on accessing the functions' responses. This methodology is practical for simpler APIs but faces scalability issues with irreversible APIs that significantly impact the system, such as a database deletion API. Similarly, processes requiring extensive time for each API call and those necessitating forward planning, like automated action pipelines, present complex challenges. Furthermore, scenarios often arise where a generalized approach is needed because algorithms lack direct access to the specific implementations of these functions or secrets to use them. Traditional tool planning methods are inadequate in these cases, compelling the need to operate within black-box environments. Unlike their performance in tool manipulation, LLMs excel in black-box tasks, such as program synthesis. Therefore, we harness the program synthesis capabilities of LLMs to strategize tool usage in black-box settings, ensuring solutions are verified prior to implementation. We introduce TOPGUN, an ingeniously crafted approach leveraging program synthesis for black box tool planning. Accompanied by SwissNYF, a comprehensive suite that integrates black-box algorithms for planning and verification tasks, addressing the aforementioned challenges and enhancing the versatility and effectiveness of LLMs in complex API interactions. The public code for SwissNYF is available at https://github.com/iclr-dummy-user/SwissNYF.
Training with Pseudo-Code for Instruction Following
Despite the rapid progress in the capabilities of Large Language Models (LLMs), they continue to have difficulty following relatively simple, unambiguous instructions, especially when compositions are involved. In this paper, we take inspiration from recent work that suggests that models may follow instructions better when they are expressed in pseudo-code. However, writing pseudo-code programs can be tedious and using few-shot demonstrations to craft code representations for use in inference can be unnatural for non-expert users of LLMs. To overcome these limitations, we propose fine-tuning LLMs with instruction-tuning data that additionally includes instructions re-expressed in pseudo-code along with the final response. We evaluate models trained using our method on 11 publicly available benchmarks comprising of tasks related to instruction-following, mathematics, and common-sense reasoning. We conduct rigorous experiments with 5 different models and find that not only do models follow instructions better when trained with pseudo-code, they also retain their capabilities on the other tasks related to mathematical and common sense reasoning. Specifically, we observe a relative gain of 3--19% on instruction-following benchmark, and an average gain of upto 14% across all tasks.
ReTAG: Retrieval-Enhanced, Topic-Augmented Graph-Based Global Sensemaking
Recent advances in question answering have led to substantial progress in tasks such as multi-hop reasoning. However, global sensemaking-answering questions by synthesizing information from an entire corpus remains a significant challenge. A prior graph-based approach to global sensemaking lacks retrieval mechanisms, topic specificity, and incurs high inference costs. To address these limitations, we propose ReTAG, a Retrieval-Enhanced, Topic-Augmented Graph framework that constructs topic-specific subgraphs and retrieves the relevant summaries for response generation. Experiments show that ReTAG improves response quality while significantly reducing inference time compared to the baseline. Our code is available at https://github.com/bykimby/retag.
Learning to Reason via Program Generation, Emulation, and Search
Program synthesis with language models (LMs) has unlocked a large set of reasoning abilities; code-tuned LMs have proven adept at generating programs that solve a wide variety of algorithmic symbolic manipulation tasks (e.g. word concatenation). However, not all reasoning tasks are easily expressible as code, e.g. tasks involving commonsense reasoning, moral decision-making, and sarcasm understanding. Our goal is to extend an LM's program synthesis skills to such tasks and evaluate the results via pseudo-programs, namely Python programs where some leaf function calls are left undefined. To that end, we propose, Code Generation and Emulated EXecution (CoGEX). CoGEX works by (1) training LMs to generate their own pseudo-programs, (2) teaching them to emulate their generated program's execution, including those leaf functions, allowing the LM's knowledge to fill in the execution gaps; and (3) using them to search over many programs to find an optimal one. To adapt the CoGEX model to a new task, we introduce a method for performing program search to find a single program whose pseudo-execution yields optimal performance when applied to all the instances of a given dataset. We show that our approach yields large improvements compared to standard in-context learning approaches on a battery of tasks, both algorithmic and soft reasoning. This result thus demonstrates that code synthesis can be applied to a much broader class of problems than previously considered. Our released dataset, fine-tuned models, and implementation can be found at https://github.com/nweir127/CoGEX.
On Measuring Faithfulness or Self-consistency of Natural Language Explanations
Large language models (LLMs) can explain their predictions through post-hoc or Chain-of-Thought (CoT) explanations. But an LLM could make up reasonably sounding explanations that are unfaithful to its underlying reasoning. Recent work has designed tests that aim to judge the faithfulness of post-hoc or CoT explanations. In this work we argue that these faithfulness tests do not measure faithfulness to the models' inner workings -- but rather their self-consistency at output level. Our contributions are three-fold: i) We clarify the status of faithfulness tests in view of model explainability, characterising them as self-consistency tests instead. This assessment we underline by ii) constructing a Comparative Consistency Bank for self-consistency tests that for the first time compares existing tests on a common suite of 11 open LLMs and 5 tasks -- including iii) our new self-consistency measure CC-SHAP. CC-SHAP is a fine-grained measure (not a test) of LLM self-consistency. It compares how a model's input contributes to the predicted answer and to generating the explanation. Our fine-grained CC-SHAP metric allows us iii) to compare LLM behaviour when making predictions and to analyse the effect of other consistency tests at a deeper level, which takes us one step further towards measuring faithfulness by bringing us closer to the internals of the model than strictly surface output-oriented tests. Our code is available at https://github.com/Heidelberg-NLP/CC-SHAP
PEER: A Collaborative Language Model
Textual content is often the output of a collaborative writing process: We start with an initial draft, ask for suggestions, and repeatedly make changes. Agnostic of this process, today's language models are trained to generate only the final result. As a consequence, they lack several abilities crucial for collaborative writing: They are unable to update existing texts, difficult to control and incapable of verbally planning or explaining their actions. To address these shortcomings, we introduce PEER, a collaborative language model that is trained to imitate the entire writing process itself: PEER can write drafts, add suggestions, propose edits and provide explanations for its actions. Crucially, we train multiple instances of PEER able to infill various parts of the writing process, enabling the use of self-training techniques for increasing the quality, amount and diversity of training data. This unlocks PEER's full potential by making it applicable in domains for which no edit histories are available and improving its ability to follow instructions, to write useful comments, and to explain its actions. We show that PEER achieves strong performance across various domains and editing tasks.
Intersectoral Knowledge in AI and Urban Studies: A Framework for Transdisciplinary Research
Transdisciplinary approaches are increasingly essential for addressing grand societal challenges, particularly in complex domains such as Artificial Intelligence (AI), urban planning, and social sciences. However, effectively validating and integrating knowledge across distinct epistemic and ontological perspectives poses significant difficulties. This article proposes a six-dimensional framework for assessing and strengthening transdisciplinary knowledge validity in AI and city studies, based on an extensive analysis of the most cited research (2014--2024). Specifically, the framework classifies research orientations according to ontological, epistemological, methodological, teleological, axiological, and valorization dimensions. Our findings show a predominance of perspectives aligned with critical realism (ontological), positivism (epistemological), analytical methods (methodological), consequentialism (teleological), epistemic values (axiological), and social/economic valorization. Less common stances, such as idealism, mixed methods, and cultural valorization, are also examined for their potential to enrich knowledge production. We highlight how early career researchers and transdisciplinary teams can leverage this framework to reconcile divergent disciplinary viewpoints and promote socially accountable outcomes.
Exploring Data Augmentation for Code Generation Tasks
Advances in natural language processing, such as transfer learning from pre-trained language models, have impacted how models are trained for programming language tasks too. Previous research primarily explored code pre-training and expanded it through multi-modality and multi-tasking, yet the data for downstream tasks remain modest in size. Focusing on data utilization for downstream tasks, we propose and adapt augmentation methods that yield consistent improvements in code translation and summarization by up to 6.9% and 7.5% respectively. Further analysis suggests that our methods work orthogonally and show benefits in output code style and numeric consistency. We also discuss test data imperfections.
Preference Optimization for Reasoning with Pseudo Feedback
Preference optimization techniques, such as Direct Preference Optimization (DPO), are frequently employed to enhance the reasoning capabilities of large language models (LLMs) in domains like mathematical reasoning and coding, typically following supervised fine-tuning. These methods rely on high-quality labels for reasoning tasks to generate preference pairs; however, the availability of reasoning datasets with human-verified labels is limited. In this study, we introduce a novel approach to generate pseudo feedback for reasoning tasks by framing the labeling of solutions to reason problems as an evaluation against associated test cases. We explore two forms of pseudo feedback based on test cases: one generated by frontier LLMs and the other by extending self-consistency to multi-test-case. We conduct experiments on both mathematical reasoning and coding tasks using pseudo feedback for preference optimization, and observe improvements across both tasks. Specifically, using Mathstral-7B as our base model, we improve MATH results from 58.3 to 68.6, surpassing both NuminaMath-72B and GPT-4-Turbo-1106-preview. In GSM8K and College Math, our scores increase from 85.6 to 90.3 and from 34.3 to 42.3, respectively. Building on Deepseek-coder-7B-v1.5, we achieve a score of 24.6 on LiveCodeBench (from 21.1), surpassing Claude-3-Haiku.
How Discriminative Are Your Qrels? How To Study the Statistical Significance of Document Adjudication Methods
Creating test collections for offline retrieval evaluation requires human effort to judge documents' relevance. This expensive activity motivated much work in developing methods for constructing benchmarks with fewer assessment costs. In this respect, adjudication methods actively decide both which documents and the order in which experts review them, in order to better exploit the assessment budget or to lower it. Researchers evaluate the quality of those methods by measuring the correlation between the known gold ranking of systems under the full collection and the observed ranking of systems under the lower-cost one. This traditional analysis ignores whether and how the low-cost judgements impact on the statistically significant differences among systems with respect to the full collection. We fill this void by proposing a novel methodology to evaluate how the low-cost adjudication methods preserve the pairwise significant differences between systems as the full collection. In other terms, while traditional approaches look for stability in answering the question "is system A better than system B?", our proposed approach looks for stability in answering the question "is system A significantly better than system B?", which is the ultimate questions researchers need to answer to guarantee the generalisability of their results. Among other results, we found that the best methods in terms of ranking of systems correlation do not always match those preserving statistical significance.
Can Multi-turn Self-refined Single Agent LMs with Retrieval Solve Hard Coding Problems?
Among the hardest tasks for humans are those found in competitive programming where problems require sophisticated algorithmic thinking, puzzle solving, and the creation of effective code. As a domain to assess language models (LMs), it has not received enough attention, though. This study presents the ICPC benchmark, which consists of 254 international collegiate programming contest (ICPC) tasks. Each problem includes official analysis, reference code, and sample, high-quality unit, and hidden tests. We are able to develop and evaluate a variety of LM inference techniques for competitive programming with these resources. With zero-shot chain-of-thought prompting, we find that o1 only achieves a 19.1\% pass@1 solve rate. With our best inference technique, which combines multi-turn self-judge with reflection and retrieval over episodic information, raises this to 42.2\%. Furthermore, we conduct a new human-in-the-loop investigation to gain a deeper understanding of the remaining difficulties. Surprisingly, we discover that o1 can solve 17 out of 18 problems that were previously unsolvable by any model or technique with just a few specific instructions. A footstep toward LMs with grounded, imaginative, and algorithmic thinking is provided by our quantitative findings and qualitative research. We open-source our code and data at https://github.com/kraritt/zolve.
BM25S: Orders of magnitude faster lexical search via eager sparse scoring
We introduce BM25S, an efficient Python-based implementation of BM25 that only depends on Numpy and Scipy. BM25S achieves up to a 500x speedup compared to the most popular Python-based framework by eagerly computing BM25 scores during indexing and storing them into sparse matrices. It also achieves considerable speedups compared to highly optimized Java-based implementations, which are used by popular commercial products. Finally, BM25S reproduces the exact implementation of five BM25 variants based on Kamphuis et al. (2020) by extending eager scoring to non-sparse variants using a novel score shifting method. The code can be found at https://github.com/xhluca/bm25s
Talking like Piping and Instrumentation Diagrams (P&IDs)
We propose a methodology that allows communication with Piping and Instrumentation Diagrams (P&IDs) using natural language. In particular, we represent P&IDs through the DEXPI data model as labeled property graphs and integrate them with Large Language Models (LLMs). The approach consists of three main parts: 1) P&IDs are cast into a graph representation from the DEXPI format using our pyDEXPI Python package. 2) A tool for generating P&ID knowledge graphs from pyDEXPI. 3) Integration of the P&ID knowledge graph to LLMs using graph-based retrieval augmented generation (graph-RAG). This approach allows users to communicate with P&IDs using natural language. It extends LLM's ability to retrieve contextual data from P&IDs and mitigate hallucinations. Leveraging the LLM's large corpus, the model is also able to interpret process information in PIDs, which could help engineers in their daily tasks. In the future, this work will also open up opportunities in the context of other generative Artificial Intelligence (genAI) solutions on P&IDs, and AI-assisted HAZOP studies.
GRITHopper: Decomposition-Free Multi-Hop Dense Retrieval
Decomposition-based multi-hop retrieval methods rely on many autoregressive steps to break down complex queries, which breaks end-to-end differentiability and is computationally expensive. Decomposition-free methods tackle this, but current decomposition-free approaches struggle with longer multi-hop problems and generalization to out-of-distribution data. To address these challenges, we introduce GRITHopper-7B, a novel multi-hop dense retrieval model that achieves state-of-the-art performance on both in-distribution and out-of-distribution benchmarks. GRITHopper combines generative and representational instruction tuning by integrating causal language modeling with dense retrieval training. Through controlled studies, we find that incorporating additional context after the retrieval process, referred to as post-retrieval language modeling, enhances dense retrieval performance. By including elements such as final answers during training, the model learns to better contextualize and retrieve relevant information. GRITHopper-7B offers a robust, scalable, and generalizable solution for multi-hop dense retrieval, and we release it to the community for future research and applications requiring multi-hop reasoning and retrieval capabilities.
Gap-Filling Prompting Enhances Code-Assisted Mathematical Reasoning
Despite the strong performance of large language models (LLMs) in tasks like mathematical reasoning, their practical use is limited by high computational demands and proprietary restrictions. Chain-of-thought (CoT) and program-of-thought (PoT) fine-tuning are common methods to transfer LLM knowledge to small language models (SLMs). However, CoT often leads to calculation errors in SLMs, while PoT has shown more promise. While most PoT-based approaches focus on direct problem-to-code conversion or extracting only the key information from questions and then providing code solution for it, this work emphasizes filling the gaps in the question to clearly illustrate the solution path, which can be challenging for an SLM to understand when such information is not explicitly provided. Therefore, this paper introduces Gap-Filling Prompting (GFP), a novel two-step prompting strategy designed to enhance the problem-solving process for SLMs. The first step identifies these gaps and provides hints for filling them, while the second step adds the hints to the question to generate a final code solution. Experimental results on two benchmark datasets demonstrate that GFP significantly improves the mathematical reasoning abilities of SLMs.
ECtHR-PCR: A Dataset for Precedent Understanding and Prior Case Retrieval in the European Court of Human Rights
In common law jurisdictions, legal practitioners rely on precedents to construct arguments, in line with the doctrine of stare decisis. As the number of cases grow over the years, prior case retrieval (PCR) has garnered significant attention. Besides lacking real-world scale, existing PCR datasets do not simulate a realistic setting, because their queries use complete case documents while only masking references to prior cases. The query is thereby exposed to legal reasoning not yet available when constructing an argument for an undecided case as well as spurious patterns left behind by citation masks, potentially short-circuiting a comprehensive understanding of case facts and legal principles. To address these limitations, we introduce a PCR dataset based on judgements from the European Court of Human Rights (ECtHR), which explicitly separate facts from arguments and exhibit precedential practices, aiding us to develop this PCR dataset to foster systems' comprehensive understanding. We benchmark different lexical and dense retrieval approaches with various negative sampling strategies, adapting them to deal with long text sequences using hierarchical variants. We found that difficulty-based negative sampling strategies were not effective for the PCR task, highlighting the need for investigation into domain-specific difficulty criteria. Furthermore, we observe performance of the dense models degrade with time and calls for further research into temporal adaptation of retrieval models. Additionally, we assess the influence of different views , Halsbury's and Goodhart's, in practice in ECtHR jurisdiction using PCR task.
Exploring the Landscape of Natural Language Processing Research
As an efficient approach to understand, generate, and process natural language texts, research in natural language processing (NLP) has exhibited a rapid spread and wide adoption in recent years. Given the increasing research work in this area, several NLP-related approaches have been surveyed in the research community. However, a comprehensive study that categorizes established topics, identifies trends, and outlines areas for future research remains absent. Contributing to closing this gap, we have systematically classified and analyzed research papers in the ACL Anthology. As a result, we present a structured overview of the research landscape, provide a taxonomy of fields of study in NLP, analyze recent developments in NLP, summarize our findings, and highlight directions for future work.
VC Search: Bridging the Gap Between Well-Defined and Ill-Defined Problems in Mathematical Reasoning
Large language models (LLMs) have demonstrated impressive performance on reasoning tasks, including mathematical reasoning. However, the current evaluation mostly focuses on carefully constructed benchmarks and neglects the consideration of real-world reasoning problems that present missing or contradictory conditions, known as ill-defined problems. To further study this problem, we develop a largescale benchmark called Problems with Missing and Contradictory conditions ( PMC) containing over 5,000 validated ill-defined mathematical problems. Our preliminary experiments through PMC reveal two challenges about existing methods: (1) traditional methods exhibit a trade-off between solving accuracy and rejection capabilities, and (2) formal methods struggle with modeling complex problems. To address these challenges, We develop Variable-Constraint Search (VCSEARCH), a trainingfree framework that leverages formal language to detect ill-defined problems, where a variableconstraint pair search strategy is incorporated to improve the modeling capability of formal language. Extensive experiments demonstrate that VCSEARCH improves the accuracy of identifying unsolvable problems by at least 12% across different LLMs, thus achieving stronger robust mathematical reasoning ability.
End-to-end Task-oriented Dialogue: A Survey of Tasks, Methods, and Future Directions
End-to-end task-oriented dialogue (EToD) can directly generate responses in an end-to-end fashion without modular training, which attracts escalating popularity. The advancement of deep neural networks, especially the successful use of large pre-trained models, has further led to significant progress in EToD research in recent years. In this paper, we present a thorough review and provide a unified perspective to summarize existing approaches as well as recent trends to advance the development of EToD research. The contributions of this paper can be summarized: (1) \textit{First survey}: to our knowledge, we take the first step to present a thorough survey of this research field; (2) \textit{New taxonomy}: we first introduce a unified perspective for EToD, including (i) Modularly EToD and (ii) Fully EToD; (3) \textit{New Frontiers}: we discuss some potential frontier areas as well as the corresponding challenges, hoping to spur breakthrough research in EToD field; (4) \textit{Abundant resources}: we build a public websiteWe collect the related papers, baseline projects, and leaderboards for the community at \url{https://etods.net/.}, where EToD researchers could directly access the recent progress. We hope this work can serve as a thorough reference for the EToD research community.
Model Evaluation, Model Selection, and Algorithm Selection in Machine Learning
The correct use of model evaluation, model selection, and algorithm selection techniques is vital in academic machine learning research as well as in many industrial settings. This article reviews different techniques that can be used for each of these three subtasks and discusses the main advantages and disadvantages of each technique with references to theoretical and empirical studies. Further, recommendations are given to encourage best yet feasible practices in research and applications of machine learning. Common methods such as the holdout method for model evaluation and selection are covered, which are not recommended when working with small datasets. Different flavors of the bootstrap technique are introduced for estimating the uncertainty of performance estimates, as an alternative to confidence intervals via normal approximation if bootstrapping is computationally feasible. Common cross-validation techniques such as leave-one-out cross-validation and k-fold cross-validation are reviewed, the bias-variance trade-off for choosing k is discussed, and practical tips for the optimal choice of k are given based on empirical evidence. Different statistical tests for algorithm comparisons are presented, and strategies for dealing with multiple comparisons such as omnibus tests and multiple-comparison corrections are discussed. Finally, alternative methods for algorithm selection, such as the combined F-test 5x2 cross-validation and nested cross-validation, are recommended for comparing machine learning algorithms when datasets are small.
Experimental Standards for Deep Learning in Natural Language Processing Research
The field of Deep Learning (DL) has undergone explosive growth during the last decade, with a substantial impact on Natural Language Processing (NLP) as well. Yet, compared to more established disciplines, a lack of common experimental standards remains an open challenge to the field at large. Starting from fundamental scientific principles, we distill ongoing discussions on experimental standards in NLP into a single, widely-applicable methodology. Following these best practices is crucial to strengthen experimental evidence, improve reproducibility and support scientific progress. These standards are further collected in a public repository to help them transparently adapt to future needs.
Similarità per la ricerca del dominio di una frase
English. This document aims to study the best algorithms to verify the belonging of a specific document to a related domain by comparing different methods for calculating the distance between two vectors. This study has been made possible with the help of the structures made available by the Apache Spark framework. Starting from the study illustrated in the publication "New frontier of textual classification: Big data and distributed calculus" by Massimiliano Morrelli et al., We wanted to carry out a study on the possible implementation of a solution capable of calculating the Similarity of a sentence using the distributed environment. Italiano. Il presente documento persegue l'obiettivo di studiare gli algoritmi migliori per verificare l'appartenenza di un determinato documento a un relativo dominio tramite un confronto di diversi metodi per il calcolo della distanza fra due vettori. Tale studio \`e stato condotto con l'ausilio delle strutture messe a disposizione dal framework Apache Spark. Partendo dallo studio illustrato nella pubblicazione "Nuova frontiera della classificazione testuale: Big data e calcolo distribuito" di Massimiliano Morrelli et al., si \`e voluto realizzare uno studio sulla possibile implementazione di una soluzione in grado di calcolare la Similarit\`a di una frase sfruttando l'ambiente distribuito.
Advancing Spatial Reasoning in Large Language Models: An In-Depth Evaluation and Enhancement Using the StepGame Benchmark
Artificial intelligence (AI) has made remarkable progress across various domains, with large language models like ChatGPT gaining substantial attention for their human-like text-generation capabilities. Despite these achievements, spatial reasoning remains a significant challenge for these models. Benchmarks like StepGame evaluate AI spatial reasoning, where ChatGPT has shown unsatisfactory performance. However, the presence of template errors in the benchmark has an impact on the evaluation results. Thus there is potential for ChatGPT to perform better if these template errors are addressed, leading to more accurate assessments of its spatial reasoning capabilities. In this study, we refine the StepGame benchmark, providing a more accurate dataset for model evaluation. We analyze GPT's spatial reasoning performance on the rectified benchmark, identifying proficiency in mapping natural language text to spatial relations but limitations in multi-hop reasoning. We provide a flawless solution to the benchmark by combining template-to-relation mapping with logic-based reasoning. This combination demonstrates proficiency in performing qualitative reasoning on StepGame without encountering any errors. We then address the limitations of GPT models in spatial reasoning. We deploy Chain-of-thought and Tree-of-thoughts prompting strategies, offering insights into GPT's ``cognitive process", and achieving remarkable improvements in accuracy. Our investigation not only sheds light on model deficiencies but also proposes enhancements, contributing to the advancement of AI with more robust spatial reasoning capabilities.
An Empirical Study on Challenging Math Problem Solving with GPT-4
Employing Large Language Models (LLMs) to address mathematical problems is an intriguing research endeavor, considering the abundance of math problems expressed in natural language across numerous science and engineering fields. While several prior works have investigated solving elementary mathematics using LLMs, this work explores the frontier of using GPT-4 for solving more complex and challenging math problems. We evaluate various ways of using GPT-4. Some of them are adapted from existing work, and one is \MathChat, a conversational problem-solving framework newly proposed in this work. We perform the evaluation on difficult high school competition problems from the MATH dataset, which shows the advantage of the proposed conversational approach.
Preserving Statistical Validity in Adaptive Data Analysis
A great deal of effort has been devoted to reducing the risk of spurious scientific discoveries, from the use of sophisticated validation techniques, to deep statistical methods for controlling the false discovery rate in multiple hypothesis testing. However, there is a fundamental disconnect between the theoretical results and the practice of data analysis: the theory of statistical inference assumes a fixed collection of hypotheses to be tested, or learning algorithms to be applied, selected non-adaptively before the data are gathered, whereas in practice data is shared and reused with hypotheses and new analyses being generated on the basis of data exploration and the outcomes of previous analyses. In this work we initiate a principled study of how to guarantee the validity of statistical inference in adaptive data analysis. As an instance of this problem, we propose and investigate the question of estimating the expectations of m adaptively chosen functions on an unknown distribution given n random samples. We show that, surprisingly, there is a way to estimate an exponential in n number of expectations accurately even if the functions are chosen adaptively. This gives an exponential improvement over standard empirical estimators that are limited to a linear number of estimates. Our result follows from a general technique that counter-intuitively involves actively perturbing and coordinating the estimates, using techniques developed for privacy preservation. We give additional applications of this technique to our question.
Citegeist: Automated Generation of Related Work Analysis on the arXiv Corpus
Large Language Models provide significant new opportunities for the generation of high-quality written works. However, their employment in the research community is inhibited by their tendency to hallucinate invalid sources and lack of direct access to a knowledge base of relevant scientific articles. In this work, we present Citegeist: An application pipeline using dynamic Retrieval Augmented Generation (RAG) on the arXiv Corpus to generate a related work section and other citation-backed outputs. For this purpose, we employ a mixture of embedding-based similarity matching, summarization, and multi-stage filtering. To adapt to the continuous growth of the document base, we also present an optimized way of incorporating new and modified papers. To enable easy utilization in the scientific community, we release both, a website (https://citegeist.org), as well as an implementation harness that works with several different LLM implementations.
Automating Thought of Search: A Journey Towards Soundness and Completeness
Planning remains one of the last standing bastions for large language models (LLMs), which now turn their attention to search. Most of the literature uses the language models as world models to define the search space, forgoing soundness for the sake of flexibility. A recent work, Thought of Search (ToS), proposed defining the search space with code, having the language models produce that code. ToS requires a human in the loop, collaboratively producing a sound successor function and goal test. The result, however, is worth the effort: all the tested datasets were solved with 100% accuracy. At the same time LLMs have demonstrated significant progress in code generation and refinement for complex reasoning tasks. In this work, we automate ToS (AutoToS), completely taking the human out of the loop of solving planning problems. AutoToS guides the language model step by step towards the generation of sound and complete search components, through feedback from both generic and domain specific unit tests. We achieve 100% accuracy, with minimal feedback iterations, using LLMs of various sizes on all evaluated domains.
One Example Shown, Many Concepts Known! Counterexample-Driven Conceptual Reasoning in Mathematical LLMs
Leveraging mathematical Large Language Models (LLMs) for proof generation is a fundamental topic in LLMs research. We argue that the ability of current LLMs to prove statements largely depends on whether they have encountered the relevant proof process during training. This reliance limits their deeper understanding of mathematical theorems and related concepts. Inspired by the pedagogical method of "proof by counterexamples" commonly used in human mathematics education, our work aims to enhance LLMs' ability to conduct mathematical reasoning and proof through counterexamples. Specifically, we manually create a high-quality, university-level mathematical benchmark, CounterMATH, which requires LLMs to prove mathematical statements by providing counterexamples, thereby assessing their grasp of mathematical concepts. Additionally, we develop a data engineering framework to automatically obtain training data for further model improvement. Extensive experiments and detailed analyses demonstrate that CounterMATH is challenging, indicating that LLMs, such as OpenAI o1, have insufficient counterexample-driven proof capabilities. Moreover, our exploration into model training reveals that strengthening LLMs' counterexample-driven conceptual reasoning abilities is crucial for improving their overall mathematical capabilities. We believe that our work offers new perspectives on the community of mathematical LLMs.
Illuminating search spaces by mapping elites
Many fields use search algorithms, which automatically explore a search space to find high-performing solutions: chemists search through the space of molecules to discover new drugs; engineers search for stronger, cheaper, safer designs, scientists search for models that best explain data, etc. The goal of search algorithms has traditionally been to return the single highest-performing solution in a search space. Here we describe a new, fundamentally different type of algorithm that is more useful because it provides a holistic view of how high-performing solutions are distributed throughout a search space. It creates a map of high-performing solutions at each point in a space defined by dimensions of variation that a user gets to choose. This Multi-dimensional Archive of Phenotypic Elites (MAP-Elites) algorithm illuminates search spaces, allowing researchers to understand how interesting attributes of solutions combine to affect performance, either positively or, equally of interest, negatively. For example, a drug company may wish to understand how performance changes as the size of molecules and their cost-to-produce vary. MAP-Elites produces a large diversity of high-performing, yet qualitatively different solutions, which can be more helpful than a single, high-performing solution. Interestingly, because MAP-Elites explores more of the search space, it also tends to find a better overall solution than state-of-the-art search algorithms. We demonstrate the benefits of this new algorithm in three different problem domains ranging from producing modular neural networks to designing simulated and real soft robots. Because MAP- Elites (1) illuminates the relationship between performance and dimensions of interest in solutions, (2) returns a set of high-performing, yet diverse solutions, and (3) improves finding a single, best solution, it will advance science and engineering.
DocPrompting: Generating Code by Retrieving the Docs
Publicly available source-code libraries are continuously growing and changing. This makes it impossible for models of code to keep current with all available APIs by simply training these models on existing code repositories. Thus, existing models inherently cannot generalize to using unseen functions and libraries, because these would never appear in the training data. In contrast, when human programmers use functions and libraries for the first time, they frequently refer to textual resources such as code manuals and documentation, to explore and understand the available functionality. Inspired by this observation, we introduce DocPrompting: a natural-language-to-code generation approach that explicitly leverages documentation by (1) retrieving the relevant documentation pieces given an NL intent, and (2) generating code based on the NL intent and the retrieved documentation. DocPrompting is general: it can be applied to any programming language and is agnostic to the underlying neural model. We demonstrate that DocPrompting consistently improves NL-to-code models: DocPrompting improves strong base models such as CodeT5 by 2.85% in pass@1 (52% relative gain) and 4.39% in pass@10 (30% relative gain) in execution-based evaluation on the popular Python CoNaLa benchmark; on a new Bash dataset tldr, DocPrompting improves CodeT5 and GPT-Neo1.3B by up to absolute 6.9% exact match.
Harnessing Retrieval-Augmented Generation (RAG) for Uncovering Knowledge Gaps
The paper presents a methodology for uncovering knowledge gaps on the internet using the Retrieval Augmented Generation (RAG) model. By simulating user search behaviour, the RAG system identifies and addresses gaps in information retrieval systems. The study demonstrates the effectiveness of the RAG system in generating relevant suggestions with a consistent accuracy of 93%. The methodology can be applied in various fields such as scientific discovery, educational enhancement, research development, market analysis, search engine optimisation, and content development. The results highlight the value of identifying and understanding knowledge gaps to guide future endeavours.
Efficient computation of rankings from pairwise comparisons
We study the ranking of individuals, teams, or objects, based on pairwise comparisons between them, using the Bradley-Terry model. Estimates of rankings within this model are commonly made using a simple iterative algorithm first introduced by Zermelo almost a century ago. Here we describe an alternative and similarly simple iteration that provably returns identical results but does so much faster -- over a hundred times faster in some cases. We demonstrate this algorithm with applications to a range of example data sets and derive a number of results regarding its convergence.
BigScience: A Case Study in the Social Construction of a Multilingual Large Language Model
The BigScience Workshop was a value-driven initiative that spanned one and half years of interdisciplinary research and culminated in the creation of ROOTS, a 1.6TB multilingual dataset that was used to train BLOOM, one of the largest multilingual language models to date. In addition to the technical outcomes and artifacts, the workshop fostered multidisciplinary collaborations around large models, datasets, and their analysis. This in turn led to a wide range of research publications spanning topics from ethics to law, data governance, modeling choices and distributed training. This paper focuses on the collaborative research aspects of BigScience and takes a step back to look at the challenges of large-scale participatory research, with respect to participant diversity and the tasks required to successfully carry out such a project. Our main goal is to share the lessons we learned from this experience, what we could have done better and what we did well. We show how the impact of such a social approach to scientific research goes well beyond the technical artifacts that were the basis of its inception.
LLM Context Conditioning and PWP Prompting for Multimodal Validation of Chemical Formulas
Identifying subtle technical errors within complex scientific and technical documents, especially those requiring multimodal interpretation (e.g., formulas in images), presents a significant hurdle for Large Language Models (LLMs) whose inherent error-correction tendencies can mask inaccuracies. This exploratory proof-of-concept (PoC) study investigates structured LLM context conditioning, informed by Persistent Workflow Prompting (PWP) principles, as a methodological strategy to modulate this LLM behavior at inference time. The approach is designed to enhance the reliability of readily available, general-purpose LLMs (specifically Gemini 2.5 Pro and ChatGPT Plus o3) for precise validation tasks, crucially relying only on their standard chat interfaces without API access or model modifications. To explore this methodology, we focused on validating chemical formulas within a single, complex test paper with known textual and image-based errors. Several prompting strategies were evaluated: while basic prompts proved unreliable, an approach adapting PWP structures to rigorously condition the LLM's analytical mindset appeared to improve textual error identification with both models. Notably, this method also guided Gemini 2.5 Pro to repeatedly identify a subtle image-based formula error previously overlooked during manual review, a task where ChatGPT Plus o3 failed in our tests. These preliminary findings highlight specific LLM operational modes that impede detail-oriented validation and suggest that PWP-informed context conditioning offers a promising and highly accessible technique for developing more robust LLM-driven analytical workflows, particularly for tasks requiring meticulous error detection in scientific and technical documents. Extensive validation beyond this limited PoC is necessary to ascertain broader applicability.
Agnostics: Learning to Code in Any Programming Language via Reinforcement with a Universal Learning Environment
Large language models (LLMs) already excel at writing code in high-resource languages such as Python and JavaScript, yet stumble on low-resource languages that remain essential to science and engineering. Besides the obvious shortage of pre-training data, post-training itself is a bottleneck: every new language seems to require new datasets, test harnesses, and reinforcement-learning (RL) infrastructure. We introduce Agnostics, a language-agnostic post-training pipeline that eliminates this per-language engineering. The key idea is to judge code solely by its externally observable behavior, so a single verifier can test solutions written in any language. Concretely, we (i) use an LLM to rewrite existing unit-test datasets into an I/O format, (ii) supply a short configuration that tells the verifier how to compile and run a target language, and (iii) apply reinforcement learning with verifiable rewards (RLVR) in a robust code execution environment. Applied to five low-resource languages--Lua, Julia, R, OCaml, and Fortran--Agnostics (1) improves Qwen-3 4B to performance that rivals other 16B-70B open-weight models; (2) scales cleanly to larger and diverse model families (Qwen-3 8B, DeepSeek Coder 6.7B Instruct, Phi 4 Mini); and (3) for {le} 16B parameter models, sets new state-of-the-art pass@1 results on MultiPL-E and a new multi-language version LiveCodeBench that we introduce. We will release the language-agnostic training datasets (Ag-MBPP-X, Ag-Codeforces-X, Ag-LiveCodeBench-X), training code, and ready-to-use configurations, making RL post-training in any programming language as simple as editing a short YAML file.
Modeling of learning curves with applications to pos tagging
An algorithm to estimate the evolution of learning curves on the whole of a training data base, based on the results obtained from a portion and using a functional strategy, is introduced. We approximate iteratively the sought value at the desired time, independently of the learning technique used and once a point in the process, called prediction level, has been passed. The proposal proves to be formally correct with respect to our working hypotheses and includes a reliable proximity condition. This allows the user to fix a convergence threshold with respect to the accuracy finally achievable, which extends the concept of stopping criterion and seems to be effective even in the presence of distorting observations. Our aim is to evaluate the training effort, supporting decision making in order to reduce the need for both human and computational resources during the learning process. The proposal is of interest in at least three operational procedures. The first is the anticipation of accuracy gain, with the purpose of measuring how much work is needed to achieve a certain degree of performance. The second relates the comparison of efficiency between systems at training time, with the objective of completing this task only for the one that best suits our requirements. The prediction of accuracy is also a valuable item of information for customizing systems, since we can estimate in advance the impact of settings on both the performance and the development costs. Using the generation of part-of-speech taggers as an example application, the experimental results are consistent with our expectations.
Spinning the Golden Thread: Benchmarking Long-Form Generation in Language Models
The abilities of long-context language models (LMs) are often evaluated using the "Needle-in-a-Haystack" (NIAH) test, which comprises tasks designed to assess a model's ability to identify specific information ("needle") within large text sequences ("haystack"). While these benchmarks measure how well models understand long-context input sequences, they do not effectively gauge the quality of long-form text generation--a critical aspect for applications such as design proposals and creative writing. To address this gap, we have introduced a new long-form text evaluation benchmark, Spinning the Golden Thread (SGT), which tests models' ability to identify specific events within generated long text sequences. In this benchmark, we prompt long-context LMs to create long-form text that must include particular events or constraints and evaluate their ability to incorporate these elements. We evaluated ten long-context LMs across four distinct scenarios, three types of prompt instructions, and two different generation-length settings (16K and 32K). Although these models perform well on NIAH benchmarks, none demonstrated satisfactory performance on the Spinning the Golden Thread, raising concerns about their ability to generate coherent long-form text that follows instructions. Additionally, as the length of the generated text increases, all models exhibit a significant drop in performance.
OMPGPT: A Generative Pre-trained Transformer Model for OpenMP
Large language models (LLMs), as epitomized by models like ChatGPT, have revolutionized the field of natural language processing (NLP). Along with this trend, code-based large language models such as StarCoder, WizardCoder, and CodeLlama have emerged, trained extensively on vast repositories of code data. Yet, inherent in their design, these models primarily focus on generative tasks like code generation, code completion, and comment generation, and general support for multiple programming languages. While the generic abilities of code LLMs are useful for many programmers, the area of high-performance computing (HPC) has a narrower set of requirements that make a smaller and more domain-specific LM a smarter choice. This paper introduces OMPGPT, a novel model meticulously designed to harness the inherent strengths of language models for OpenMP pragma generation. Furthermore, we adopt and adapt prompt engineering techniques from the NLP domain to create chain-of-OMP, an innovative strategy designed to enhance OMPGPT's effectiveness. Our extensive evaluations demonstrate that OMPGPT outperforms existing large language models specialized in OpenMP tasks and maintains a notably smaller size, aligning it more closely with the typical hardware constraints of HPC environments. We consider our contribution as a pivotal bridge, connecting the advantage of language models with the specific demands of HPC tasks. The success of OMPGPT lays a solid foundation, suggesting its potential applicability and adaptability to a wider range of HPC tasks, thereby opening new avenues in the field of computational efficiency and effectiveness.
