Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeTalking Head Generation with Probabilistic Audio-to-Visual Diffusion Priors
In this paper, we introduce a simple and novel framework for one-shot audio-driven talking head generation. Unlike prior works that require additional driving sources for controlled synthesis in a deterministic manner, we instead probabilistically sample all the holistic lip-irrelevant facial motions (i.e. pose, expression, blink, gaze, etc.) to semantically match the input audio while still maintaining both the photo-realism of audio-lip synchronization and the overall naturalness. This is achieved by our newly proposed audio-to-visual diffusion prior trained on top of the mapping between audio and disentangled non-lip facial representations. Thanks to the probabilistic nature of the diffusion prior, one big advantage of our framework is it can synthesize diverse facial motion sequences given the same audio clip, which is quite user-friendly for many real applications. Through comprehensive evaluations on public benchmarks, we conclude that (1) our diffusion prior outperforms auto-regressive prior significantly on almost all the concerned metrics; (2) our overall system is competitive with prior works in terms of audio-lip synchronization but can effectively sample rich and natural-looking lip-irrelevant facial motions while still semantically harmonized with the audio input.
Image Generation with Multimodal Priors using Denoising Diffusion Probabilistic Models
Image synthesis under multi-modal priors is a useful and challenging task that has received increasing attention in recent years. A major challenge in using generative models to accomplish this task is the lack of paired data containing all modalities (i.e. priors) and corresponding outputs. In recent work, a variational auto-encoder (VAE) model was trained in a weakly supervised manner to address this challenge. Since the generative power of VAEs is usually limited, it is difficult for this method to synthesize images belonging to complex distributions. To this end, we propose a solution based on a denoising diffusion probabilistic models to synthesise images under multi-model priors. Based on the fact that the distribution over each time step in the diffusion model is Gaussian, in this work we show that there exists a closed-form expression to the generate the image corresponds to the given modalities. The proposed solution does not require explicit retraining for all modalities and can leverage the outputs of individual modalities to generate realistic images according to different constraints. We conduct studies on two real-world datasets to demonstrate the effectiveness of our approach
DreamTalk: When Expressive Talking Head Generation Meets Diffusion Probabilistic Models
Diffusion models have shown remarkable success in a variety of downstream generative tasks, yet remain under-explored in the important and challenging expressive talking head generation. In this work, we propose a DreamTalk framework to fulfill this gap, which employs meticulous design to unlock the potential of diffusion models in generating expressive talking heads. Specifically, DreamTalk consists of three crucial components: a denoising network, a style-aware lip expert, and a style predictor. The diffusion-based denoising network is able to consistently synthesize high-quality audio-driven face motions across diverse expressions. To enhance the expressiveness and accuracy of lip motions, we introduce a style-aware lip expert that can guide lip-sync while being mindful of the speaking styles. To eliminate the need for expression reference video or text, an extra diffusion-based style predictor is utilized to predict the target expression directly from the audio. By this means, DreamTalk can harness powerful diffusion models to generate expressive faces effectively and reduce the reliance on expensive style references. Experimental results demonstrate that DreamTalk is capable of generating photo-realistic talking faces with diverse speaking styles and achieving accurate lip motions, surpassing existing state-of-the-art counterparts.
From Word Models to World Models: Translating from Natural Language to the Probabilistic Language of Thought
How does language inform our downstream thinking? In particular, how do humans make meaning from language -- and how can we leverage a theory of linguistic meaning to build machines that think in more human-like ways? In this paper, we propose rational meaning construction, a computational framework for language-informed thinking that combines neural models of language with probabilistic models for rational inference. We frame linguistic meaning as a context-sensitive mapping from natural language into a probabilistic language of thought (PLoT) -- a general-purpose symbolic substrate for probabilistic, generative world modeling. Our architecture integrates two powerful computational tools that have not previously come together: we model thinking with probabilistic programs, an expressive representation for flexible commonsense reasoning; and we model meaning construction with large language models (LLMs), which support broad-coverage translation from natural language utterances to code expressions in a probabilistic programming language. We illustrate our framework in action through examples covering four core domains from cognitive science: probabilistic reasoning, logical and relational reasoning, visual and physical reasoning, and social reasoning about agents and their plans. In each, we show that LLMs can generate context-sensitive translations that capture pragmatically-appropriate linguistic meanings, while Bayesian inference with the generated programs supports coherent and robust commonsense reasoning. We extend our framework to integrate cognitively-motivated symbolic modules to provide a unified commonsense thinking interface from language. Finally, we explore how language can drive the construction of world models themselves.
SVP: Style-Enhanced Vivid Portrait Talking Head Diffusion Model
Talking Head Generation (THG), typically driven by audio, is an important and challenging task with broad application prospects in various fields such as digital humans, film production, and virtual reality. While diffusion model-based THG methods present high quality and stable content generation, they often overlook the intrinsic style which encompasses personalized features such as speaking habits and facial expressions of a video. As consequence, the generated video content lacks diversity and vividness, thus being limited in real life scenarios. To address these issues, we propose a novel framework named Style-Enhanced Vivid Portrait (SVP) which fully leverages style-related information in THG. Specifically, we first introduce the novel probabilistic style prior learning to model the intrinsic style as a Gaussian distribution using facial expressions and audio embedding. The distribution is learned through the 'bespoked' contrastive objective, effectively capturing the dynamic style information in each video. Then we finetune a pretrained Stable Diffusion (SD) model to inject the learned intrinsic style as a controlling signal via cross attention. Experiments show that our model generates diverse, vivid, and high-quality videos with flexible control over intrinsic styles, outperforming existing state-of-the-art methods.
What Are the Odds? Language Models Are Capable of Probabilistic Reasoning
Language models (LM) are capable of remarkably complex linguistic tasks; however, numerical reasoning is an area in which they frequently struggle. An important but rarely evaluated form of reasoning is understanding probability distributions. In this paper, we focus on evaluating the probabilistic reasoning capabilities of LMs using idealized and real-world statistical distributions. We perform a systematic evaluation of state-of-the-art LMs on three tasks: estimating percentiles, drawing samples, and calculating probabilities. We evaluate three ways to provide context to LMs 1) anchoring examples from within a distribution or family of distributions, 2) real-world context, 3) summary statistics on which to base a Normal approximation. Models can make inferences about distributions, and can be further aided by the incorporation of real-world context, example shots and simplified assumptions, even if these assumptions are incorrect or misspecified. To conduct this work, we developed a comprehensive benchmark distribution dataset with associated question-answer pairs that we will release publicly.
Compositional Semantics for Probabilistic Programs with Exact Conditioning
We define a probabilistic programming language for Gaussian random variables with a first-class exact conditioning construct. We give operational, denotational and equational semantics for this language, establishing convenient properties like exchangeability of conditions. Conditioning on equality of continuous random variables is nontrivial, as the exact observation may have probability zero; this is Borel's paradox. Using categorical formulations of conditional probability, we show that the good properties of our language are not particular to Gaussians, but can be derived from universal properties, thus generalizing to wider settings. We define the Cond construction, which internalizes conditioning as a morphism, providing general compositional semantics for probabilistic programming with exact conditioning.
Probing neural language models for understanding of words of estimative probability
Words of estimative probability (WEP) are expressions of a statement's plausibility (probably, maybe, likely, doubt, likely, unlikely, impossible...). Multiple surveys demonstrate the agreement of human evaluators when assigning numerical probability levels to WEP. For example, highly likely corresponds to a median chance of 0.90+-0.08 in Fagen-Ulmschneider (2015)'s survey. In this work, we measure the ability of neural language processing models to capture the consensual probability level associated to each WEP. Firstly, we use the UNLI dataset (Chen et al., 2020) which associates premises and hypotheses with their perceived joint probability p, to construct prompts, e.g. "[PREMISE]. [WEP], [HYPOTHESIS]." and assess whether language models can predict whether the WEP consensual probability level is close to p. Secondly, we construct a dataset of WEP-based probabilistic reasoning, to test whether language models can reason with WEP compositions. When prompted "[EVENTA] is likely. [EVENTB] is impossible.", a causal language model should not express that [EVENTA&B] is likely. We show that both tasks are unsolved by off-the-shelf English language models, but that fine-tuning leads to transferable improvement.
Language Model Cascades
Prompted models have demonstrated impressive few-shot learning abilities. Repeated interactions at test-time with a single model, or the composition of multiple models together, further expands capabilities. These compositions are probabilistic models, and may be expressed in the language of graphical models with random variables whose values are complex data types such as strings. Cases with control flow and dynamic structure require techniques from probabilistic programming, which allow implementing disparate model structures and inference strategies in a unified language. We formalize several existing techniques from this perspective, including scratchpads / chain of thought, verifiers, STaR, selection-inference, and tool use. We refer to the resulting programs as language model cascades.
Computable Stochastic Processes
The aim of this paper is to present an elementary computable theory of probability, random variables and stochastic processes. The probability theory is baed on existing approaches using valuations and lower integrals. Various approaches to random variables are discussed, including the approach based on completions in a Polish space. We apply the theory to the study of stochastic dynamical systems in discrete-time, and give a brief exposition of the Wiener process as a foundation for stochastic differential equations. The theory is based within the framework of type-two effectivity, so has an explicit direct link with Turing computation, and is expressed in a system of computable types and operations, so has a clean mathematical description.
A Probabilistic Dependent Type System based on Non-Deterministic Beta Reduction
We introduce Probabilistic Dependent Type Systems (PDTS) via a functional language based on a subsystem of intuitionistic type theory including dependent sums and products, which is expanded to include stochastic functions. We provide a sampling-based semantics for the language based on non-deterministic beta reduction. Further, we derive a probabilistic logic from the PDTS introduced as a direct result of the Curry-Howard isomorphism. The probabilistic logic derived is shown to provide a universal representation for finite discrete distributions.
A Type Theory for Probabilistic and Bayesian Reasoning
This paper introduces a novel type theory and logic for probabilistic reasoning. Its logic is quantitative, with fuzzy predicates. It includes normalisation and conditioning of states. This conditioning uses a key aspect that distinguishes our probabilistic type theory from quantum type theory, namely the bijective correspondence between predicates and side-effect free actions (called instrument, or assert, maps). The paper shows how suitable computation rules can be derived from this predicate-action correspondence, and uses these rules for calculating conditional probabilities in two well-known examples of Bayesian reasoning in (graphical) models. Our type theory may thus form the basis for a mechanisation of Bayesian inference.
Deriving Comprehensible Theories from Probabilistic Circuits
The field of Explainable AI (XAI) is seeking to shed light on the inner workings of complex AI models and uncover the rationale behind their decisions. One of the models gaining attention are probabilistic circuits (PCs), which are a general and unified framework for tractable probabilistic models that support efficient computation of various probabilistic queries. Probabilistic circuits guarantee inference that is polynomial in the size of the circuit. In this paper, we improve the explainability of probabilistic circuits by computing a comprehensible, readable logical theory that covers the high-density regions generated by a PC. To achieve this, pruning approaches based on generative significance are used in a new method called PUTPUT (Probabilistic circuit Understanding Through Pruning Underlying logical Theories). The method is applied to a real world use case where music playlists are automatically generated and expressed as readable (database) queries. Evaluation shows that this approach can effectively produce a comprehensible logical theory that describes the high-density regions of a PC and outperforms state of the art methods when exploring the performance-comprehensibility trade-off.
Denotational validation of higher-order Bayesian inference
We present a modular semantic account of Bayesian inference algorithms for probabilistic programming languages, as used in data science and machine learning. Sophisticated inference algorithms are often explained in terms of composition of smaller parts. However, neither their theoretical justification nor their implementation reflects this modularity. We show how to conceptualise and analyse such inference algorithms as manipulating intermediate representations of probabilistic programs using higher-order functions and inductive types, and their denotational semantics. Semantic accounts of continuous distributions use measurable spaces. However, our use of higher-order functions presents a substantial technical difficulty: it is impossible to define a measurable space structure over the collection of measurable functions between arbitrary measurable spaces that is compatible with standard operations on those functions, such as function application. We overcome this difficulty using quasi-Borel spaces, a recently proposed mathematical structure that supports both function spaces and continuous distributions. We define a class of semantic structures for representing probabilistic programs, and semantic validity criteria for transformations of these representations in terms of distribution preservation. We develop a collection of building blocks for composing representations. We use these building blocks to validate common inference algorithms such as Sequential Monte Carlo and Markov Chain Monte Carlo. To emphasize the connection between the semantic manipulation and its traditional measure theoretic origins, we use Kock's synthetic measure theory. We demonstrate its usefulness by proving a quasi-Borel counterpart to the Metropolis-Hastings-Green theorem.
A Convenient Category for Higher-Order Probability Theory
Higher-order probabilistic programming languages allow programmers to write sophisticated models in machine learning and statistics in a succinct and structured way, but step outside the standard measure-theoretic formalization of probability theory. Programs may use both higher-order functions and continuous distributions, or even define a probability distribution on functions. But standard probability theory does not handle higher-order functions well: the category of measurable spaces is not cartesian closed. Here we introduce quasi-Borel spaces. We show that these spaces: form a new formalization of probability theory replacing measurable spaces; form a cartesian closed category and so support higher-order functions; form a well-pointed category and so support good proof principles for equational reasoning; and support continuous probability distributions. We demonstrate the use of quasi-Borel spaces for higher-order functions and probability by: showing that a well-known construction of probability theory involving random functions gains a cleaner expression; and generalizing de Finetti's theorem, that is a crucial theorem in probability theory, to quasi-Borel spaces.
Navigating the Grey Area: Expressions of Overconfidence and Uncertainty in Language Models
Despite increasingly fluent, relevant, and coherent language generation, major gaps remain between how humans and machines use language. We argue that a key dimension that is missing from our understanding of language models (LMs) is the model's ability to interpret and generate expressions of uncertainty. Whether it be the weatherperson announcing a chance of rain or a doctor giving a diagnosis, information is often not black-and-white and expressions of uncertainty provide nuance to support human-decision making. The increasing deployment of LMs in the wild motivates us to investigate whether LMs are capable of interpreting expressions of uncertainty and how LMs' behaviors change when learning to emit their own expressions of uncertainty. When injecting expressions of uncertainty into prompts (e.g., "I think the answer is..."), we discover that GPT3's generations vary upwards of 80% in accuracy based on the expression used. We analyze the linguistic characteristics of these expressions and find a drop in accuracy when naturalistic expressions of certainty are present. We find similar effects when teaching models to emit their own expressions of uncertainty, where model calibration suffers when teaching models to emit certainty rather than uncertainty. Together, these results highlight the challenges of building LMs that interpret and generate trustworthy expressions of uncertainty.
Psychologically-informed chain-of-thought prompts for metaphor understanding in large language models
Probabilistic models of language understanding are valuable tools for investigating human language use. However, they need to be hand-designed for a particular domain. In contrast, large language models (LLMs) are trained on text that spans a wide array of domains, but they lack the structure and interpretability of probabilistic models. In this paper, we use chain-of-thought prompts to introduce structures from probabilistic models into LLMs. We explore this approach in the case of metaphor understanding. Our chain-of-thought prompts lead language models to infer latent variables and reason about their relationships in order to choose appropriate paraphrases for metaphors. The latent variables and relationships chosen are informed by theories of metaphor understanding from cognitive psychology. We apply these prompts to the two largest versions of GPT-3 and show that they can improve performance in a paraphrase selection task.
Locally Typical Sampling
Today's probabilistic language generators fall short when it comes to producing coherent and fluent text despite the fact that the underlying models perform well under standard metrics, e.g., perplexity. This discrepancy has puzzled the language generation community for the last few years. In this work, we posit that the abstraction of natural language generation as a discrete stochastic process--which allows for an information-theoretic analysis--can provide new insights into the behavior of probabilistic language generators, e.g., why high-probability texts can be dull or repetitive. Humans use language as a means of communicating information, aiming to do so in a simultaneously efficient and error-minimizing manner; in fact, psycholinguistics research suggests humans choose each word in a string with this subconscious goal in mind. We formally define the set of strings that meet this criterion: those for which each word has an information content close to the expected information content, i.e., the conditional entropy of our model. We then propose a simple and efficient procedure for enforcing this criterion when generating from probabilistic models, which we call locally typical sampling. Automatic and human evaluations show that, in comparison to nucleus and top-k sampling, locally typical sampling offers competitive performance (in both abstractive summarization and story generation) in terms of quality while consistently reducing degenerate repetitions.
Grammars of Formal Uncertainty: When to Trust LLMs in Automated Reasoning Tasks
Large language models (LLMs) show remarkable promise for democratizing automated reasoning by generating formal specifications. However, a fundamental tension exists: LLMs are probabilistic, while formal verification demands deterministic guarantees. This paper addresses this epistemological gap by comprehensively investigating failure modes and uncertainty quantification (UQ) in LLM-generated formal artifacts. Our systematic evaluation of five frontier LLMs reveals Satisfiability Modulo Theories (SMT) based autoformalization's domain-specific impact on accuracy (from +34.8% on logical tasks to -44.5% on factual ones), with known UQ techniques like the entropy of token probabilities failing to identify these errors. We introduce a probabilistic context-free grammar (PCFG) framework to model LLM outputs, yielding a refined uncertainty taxonomy. We find uncertainty signals are task-dependent (e.g., grammar entropy for logic, AUROC>0.93). Finally, a lightweight fusion of these signals enables selective verification, drastically reducing errors (14-100%) with minimal abstention, transforming LLM-driven formalization into a reliable engineering discipline.
Uncertain Evidence in Probabilistic Models and Stochastic Simulators
We consider the problem of performing Bayesian inference in probabilistic models where observations are accompanied by uncertainty, referred to as "uncertain evidence." We explore how to interpret uncertain evidence, and by extension the importance of proper interpretation as it pertains to inference about latent variables. We consider a recently-proposed method "distributional evidence" as well as revisit two older methods: Jeffrey's rule and virtual evidence. We devise guidelines on how to account for uncertain evidence and we provide new insights, particularly regarding consistency. To showcase the impact of different interpretations of the same uncertain evidence, we carry out experiments in which one interpretation is defined as "correct." We then compare inference results from each different interpretation illustrating the importance of careful consideration of uncertain evidence.
Categorical Stochastic Processes and Likelihood
In this work we take a Category Theoretic perspective on the relationship between probabilistic modeling and function approximation. We begin by defining two extensions of function composition to stochastic process subordination: one based on the co-Kleisli category under the comonad (Omega x -) and one based on the parameterization of a category with a Lawvere theory. We show how these extensions relate to the category Stoch and other Markov Categories. Next, we apply the Para construction to extend stochastic processes to parameterized statistical models and we define a way to compose the likelihood functions of these models. We conclude with a demonstration of how the Maximum Likelihood Estimation procedure defines an identity-on-objects functor from the category of statistical models to the category of Learners. Code to accompany this paper can be found at https://github.com/dshieble/Categorical_Stochastic_Processes_and_Likelihood
Inv-Entropy: A Fully Probabilistic Framework for Uncertainty Quantification in Language Models
Large language models (LLMs) have transformed natural language processing, but their reliable deployment requires effective uncertainty quantification (UQ). Existing UQ methods are often heuristic and lack a probabilistic foundation. This paper begins by providing a theoretical justification for the role of perturbations in UQ for LLMs. We then introduce a dual random walk perspective, modeling input-output pairs as two Markov chains with transition probabilities defined by semantic similarity. Building on this, we propose a fully probabilistic framework based on an inverse model, which quantifies uncertainty by evaluating the diversity of the input space conditioned on a given output through systematic perturbations. Within this framework, we define a new uncertainty measure, Inv-Entropy. A key strength of our framework is its flexibility: it supports various definitions of uncertainty measures, embeddings, perturbation strategies, and similarity metrics. We also propose GAAP, a perturbation algorithm based on genetic algorithms, which enhances the diversity of sampled inputs. In addition, we introduce a new evaluation metric, Temperature Sensitivity of Uncertainty (TSU), which directly assesses uncertainty without relying on correctness as a proxy. Extensive experiments demonstrate that Inv-Entropy outperforms existing semantic UQ methods. The code to reproduce the results can be found at https://github.com/UMDataScienceLab/Uncertainty-Quantification-for-LLMs.
Text vectorization via transformer-based language models and n-gram perplexities
As the probability (and thus perplexity) of a text is calculated based on the product of the probabilities of individual tokens, it may happen that one unlikely token significantly reduces the probability (i.e., increase the perplexity) of some otherwise highly probable input, while potentially representing a simple typographical error. Also, given that perplexity is a scalar value that refers to the entire input, information about the probability distribution within it is lost in the calculation (a relatively good text that has one unlikely token and another text in which each token is equally likely they can have the same perplexity value), especially for longer texts. As an alternative to scalar perplexity this research proposes a simple algorithm used to calculate vector values based on n-gram perplexities within the input. Such representations consider the previously mentioned aspects, and instead of a unique value, the relative perplexity of each text token is calculated, and these values are combined into a single vector representing the input.
A Channel-Based Perspective on Conjugate Priors
A desired closure property in Bayesian probability is that an updated posterior distribution be in the same class of distributions --- say Gaussians --- as the prior distribution. When the updating takes place via a statistical model, one calls the class of prior distributions the `conjugate priors' of the model. This paper gives (1) an abstract formulation of this notion of conjugate prior, using channels, in a graphical language, (2) a simple abstract proof that such conjugate priors yield Bayesian inversions, and (3) a logical description of conjugate priors that highlights the required closure of the priors under updating. The theory is illustrated with several standard examples, also covering multiple updating.
Transformers Can Represent n-gram Language Models
Plenty of existing work has analyzed the abilities of the transformer architecture by describing its representational capacity with formal models of computation. However, the focus so far has been on analyzing the architecture in terms of language acceptance. We contend that this is an ill-suited problem in the study of language models (LMs), which are definitionally probability distributions over strings. In this paper, we focus on the relationship between transformer LMs and n-gram LMs, a simple and historically relevant class of language models. We show that transformer LMs using the hard or sparse attention mechanisms can exactly represent any n-gram LM, giving us a concrete lower bound on their probabilistic representational capacity. This provides a first step towards understanding the mechanisms that transformer LMs can use to represent probability distributions over strings.
Enhancing Mathematical Reasoning in LLMs with Background Operators
We propose utilizing background operators for mathematical reasoning in large language models (LLMs). To achieve this, we define a set of fundamental mathematical predicates as the basic building blocks. For each mathematical problem, we develop a Prolog solution that includes problem-specific predicates and intermediate predicates derived from these background operators, ensuring that each solution adheres to the defined operator set. We introduce the MATH-Prolog corpus, which is derived from the counting and probability categories of the MATH corpus. For efficient data augmentation, we apply K-fold cross-validated self-training. This method incrementally generates new Prolog solutions for each fold, incorporating those verified as correct into the training set throughout the model training process. Our experimental results demonstrate that 5-fold crossvalidated self-training effectively identifies new, accurate Prolog solutions, achieving an accuracy of 84.6% on the cross-validated set, and 84.8% on the test set during fine-tuning the Meta-Llama-3.1-8B-Instruct model. This approach successfully uncovers new solutions with fully computable inference steps for previously unseen problems. Additionally, incorporating the background mathematical predicates into the prompt enhances solution coverage.
Bayesian machine learning via category theory
From the Bayesian perspective, the category of conditional probabilities (a variant of the Kleisli category of the Giry monad, whose objects are measurable spaces and arrows are Markov kernels) gives a nice framework for conceptualization and analysis of many aspects of machine learning. Using categorical methods, we construct models for parametric and nonparametric Bayesian reasoning on function spaces, thus providing a basis for the supervised learning problem. In particular, stochastic processes are arrows to these function spaces which serve as prior probabilities. The resulting inference maps can often be analytically constructed in this symmetric monoidal weakly closed category. We also show how to view general stochastic processes using functor categories and demonstrate the Kalman filter as an archetype for the hidden Markov model.
A Latent Variable Model Approach to PMI-based Word Embeddings
Semantic word embeddings represent the meaning of a word via a vector, and are created by diverse methods. Many use nonlinear operations on co-occurrence statistics, and have hand-tuned hyperparameters and reweighting methods. This paper proposes a new generative model, a dynamic version of the log-linear topic model of~mnih2007three. The methodological novelty is to use the prior to compute closed form expressions for word statistics. This provides a theoretical justification for nonlinear models like PMI, word2vec, and GloVe, as well as some hyperparameter choices. It also helps explain why low-dimensional semantic embeddings contain linear algebraic structure that allows solution of word analogies, as shown by~mikolov2013efficient and many subsequent papers. Experimental support is provided for the generative model assumptions, the most important of which is that latent word vectors are fairly uniformly dispersed in space.
Position: Don't use the CLT in LLM evals with fewer than a few hundred datapoints
Rigorous statistical evaluations of large language models (LLMs), including valid error bars and significance testing, are essential for meaningful and reliable performance assessment. Currently, when such statistical measures are reported, they typically rely on the Central Limit Theorem (CLT). In this position paper, we argue that while CLT-based methods for uncertainty quantification are appropriate when benchmarks consist of thousands of examples, they fail to provide adequate uncertainty estimates for LLM evaluations that rely on smaller, highly specialized benchmarks. In these small-data settings, we demonstrate that CLT-based methods perform very poorly, usually dramatically underestimating uncertainty (i.e. producing error bars that are too small). We give recommendations for alternative frequentist and Bayesian methods that are both easy to implement and more appropriate in these increasingly common scenarios. We provide a simple Python library for these Bayesian methods at https://github.com/sambowyer/bayes_evals .
Always Tell Me The Odds: Fine-grained Conditional Probability Estimation
We present a state-of-the-art model for fine-grained probability estimation of propositions conditioned on context. Recent advances in large language models (LLMs) have significantly enhanced their reasoning capabilities, particularly on well-defined tasks with complete information. However, LLMs continue to struggle with making accurate and well-calibrated probabilistic predictions under uncertainty or partial information. While incorporating uncertainty into model predictions often boosts performance, obtaining reliable estimates of that uncertainty remains understudied. In particular, LLM probability estimates tend to be coarse and biased towards more frequent numbers. Through a combination of human and synthetic data creation and assessment, scaling to larger models, and better supervision, we propose a set of strong and precise probability estimation models. We conduct systematic evaluations across tasks that rely on conditional probability estimation and show that our approach consistently outperforms existing fine-tuned and prompting-based methods by a large margin.
Learning to Reason Deductively: Math Word Problem Solving as Complex Relation Extraction
Solving math word problems requires deductive reasoning over the quantities in the text. Various recent research efforts mostly relied on sequence-to-sequence or sequence-to-tree models to generate mathematical expressions without explicitly performing relational reasoning between quantities in the given context. While empirically effective, such approaches typically do not provide explanations for the generated expressions. In this work, we view the task as a complex relation extraction problem, proposing a novel approach that presents explainable deductive reasoning steps to iteratively construct target expressions, where each step involves a primitive operation over two quantities defining their relation. Through extensive experiments on four benchmark datasets, we show that the proposed model significantly outperforms existing strong baselines. We further demonstrate that the deductive procedure not only presents more explainable steps but also enables us to make more accurate predictions on questions that require more complex reasoning.
Towards General Natural Language Understanding with Probabilistic Worldbuilding
We introduce the Probabilistic Worldbuilding Model (PWM), a new fully-symbolic Bayesian model of semantic parsing and reasoning, as a first step in a research program toward more domain- and task-general NLU and AI. Humans create internal mental models of their observations which greatly aid in their ability to understand and reason about a large variety of problems. In PWM, the meanings of sentences, acquired facts about the world, and intermediate steps in reasoning are all expressed in a human-readable formal language, with the design goal of interpretability. PWM is Bayesian, designed specifically to be able to generalize to new domains and new tasks. We derive and implement an inference algorithm that reads sentences by parsing and abducing updates to its latent world model that capture the semantics of those sentences, and evaluate it on two out-of-domain question-answering datasets: (1) ProofWriter and (2) a new dataset we call FictionalGeoQA, designed to be more representative of real language but still simple enough to focus on evaluating reasoning ability, while being robust against heuristics. Our method outperforms baselines on both, thereby demonstrating its value as a proof-of-concept.
Meaning Representations from Trajectories in Autoregressive Models
We propose to extract meaning representations from autoregressive language models by considering the distribution of all possible trajectories extending an input text. This strategy is prompt-free, does not require fine-tuning, and is applicable to any pre-trained autoregressive model. Moreover, unlike vector-based representations, distribution-based representations can also model asymmetric relations (e.g., direction of logical entailment, hypernym/hyponym relations) by using algebraic operations between likelihood functions. These ideas are grounded in distributional perspectives on semantics and are connected to standard constructions in automata theory, but to our knowledge they have not been applied to modern language models. We empirically show that the representations obtained from large models align well with human annotations, outperform other zero-shot and prompt-free methods on semantic similarity tasks, and can be used to solve more complex entailment and containment tasks that standard embeddings cannot handle. Finally, we extend our method to represent data from different modalities (e.g., image and text) using multimodal autoregressive models. Our code is available at: https://github.com/tianyu139/meaning-as-trajectories
A Reparameterized Discrete Diffusion Model for Text Generation
This work studies discrete diffusion probabilistic models with applications to natural language generation. We derive an alternative yet equivalent formulation of the sampling from discrete diffusion processes and leverage this insight to develop a family of reparameterized discrete diffusion models. The derived generic framework is highly flexible, offers a fresh perspective of the generation process in discrete diffusion models, and features more effective training and decoding techniques. We conduct extensive experiments to evaluate the text generation capability of our model, demonstrating significant improvements over existing diffusion models.
Deep Probability Estimation
Reliable probability estimation is of crucial importance in many real-world applications where there is inherent (aleatoric) uncertainty. Probability-estimation models are trained on observed outcomes (e.g. whether it has rained or not, or whether a patient has died or not), because the ground-truth probabilities of the events of interest are typically unknown. The problem is therefore analogous to binary classification, with the difference that the objective is to estimate probabilities rather than predicting the specific outcome. This work investigates probability estimation from high-dimensional data using deep neural networks. There exist several methods to improve the probabilities generated by these models but they mostly focus on model (epistemic) uncertainty. For problems with inherent uncertainty, it is challenging to evaluate performance without access to ground-truth probabilities. To address this, we build a synthetic dataset to study and compare different computable metrics. We evaluate existing methods on the synthetic data as well as on three real-world probability estimation tasks, all of which involve inherent uncertainty: precipitation forecasting from radar images, predicting cancer patient survival from histopathology images, and predicting car crashes from dashcam videos. We also give a theoretical analysis of a model for high-dimensional probability estimation which reproduces several of the phenomena evinced in our experiments. Finally, we propose a new method for probability estimation using neural networks, which modifies the training process to promote output probabilities that are consistent with empirical probabilities computed from the data. The method outperforms existing approaches on most metrics on the simulated as well as real-world data.
Beyond Probabilities: Unveiling the Misalignment in Evaluating Large Language Models
Large Language Models (LLMs) have demonstrated remarkable capabilities across various applications, fundamentally reshaping the landscape of natural language processing (NLP) research. However, recent evaluation frameworks often rely on the output probabilities of LLMs for predictions, primarily due to computational constraints, diverging from real-world LLM usage scenarios. While widely employed, the efficacy of these probability-based evaluation strategies remains an open research question. This study aims to scrutinize the validity of such probability-based evaluation methods within the context of using LLMs for Multiple Choice Questions (MCQs), highlighting their inherent limitations. Our empirical investigation reveals that the prevalent probability-based evaluation method inadequately aligns with generation-based prediction. Furthermore, current evaluation frameworks typically assess LLMs through predictive tasks based on output probabilities rather than directly generating responses, owing to computational limitations. We illustrate that these probability-based approaches do not effectively correspond with generative predictions. The outcomes of our study can enhance the understanding of LLM evaluation methodologies and provide insights for future research in this domain.
Forking Paths in Neural Text Generation
Estimating uncertainty in Large Language Models (LLMs) is important for properly evaluating LLMs, and ensuring safety for users. However, prior approaches to uncertainty estimation focus on the final answer in generated text, ignoring intermediate steps that might dramatically impact the outcome. We hypothesize that there exist key forking tokens, such that re-sampling the system at those specific tokens, but not others, leads to very different outcomes. To test this empirically, we develop a novel approach to representing uncertainty dynamics across individual tokens of text generation, and applying statistical models to test our hypothesis. Our approach is highly flexible: it can be applied to any dataset and any LLM, without fine tuning or accessing model weights. We use our method to analyze LLM responses on 7 different tasks across 4 domains, spanning a wide range of typical use cases. We find many examples of forking tokens, including surprising ones such as punctuation marks, suggesting that LLMs are often just a single token away from saying something very different.
What Do You Get When You Cross Beam Search with Nucleus Sampling?
We combine beam search with the probabilistic pruning technique of nucleus sampling to create two deterministic nucleus search algorithms for natural language generation. The first algorithm, p-exact search, locally prunes the next-token distribution and performs an exact search over the remaining space. The second algorithm, dynamic beam search, shrinks and expands the beam size according to the entropy of the candidate's probability distribution. Despite the probabilistic intuition behind nucleus search, experiments on machine translation and summarization benchmarks show that both algorithms reach the same performance levels as standard beam search.
On the Role of Unobserved Sequences on Sample-based Uncertainty Quantification for LLMs
Quantifying uncertainty in large language models (LLMs) is important for safety-critical applications because it helps spot incorrect answers, known as hallucinations. One major trend of uncertainty quantification methods is based on estimating the entropy of the distribution of the LLM's potential output sequences. This estimation is based on a set of output sequences and associated probabilities obtained by querying the LLM several times. In this paper, we advocate and experimentally show that the probability of unobserved sequences plays a crucial role, and we recommend future research to integrate it to enhance such LLM uncertainty quantification methods.
Predictable Compression Failures: Why Language Models Actually Hallucinate
Large language models perform near-Bayesian inference yet violate permutation invariance on exchangeable data. We resolve this by showing transformers minimize expected conditional description length (cross-entropy) over orderings, E_pi[ell(Y mid Gamma_pi(X))], which admits a Kolmogorov-complexity interpretation up to additive constants, rather than the permutation-invariant description length ell(Y mid X). This makes them Bayesian in expectation, not in realization. We derive (i) a Quantified Martingale Violation bound showing order-induced deviations scale as O(log n) with constants; (ii) the Expectation-level Decompression Law linking information budgets to reliability for Bernoulli predicates; and (iii) deployable planners (B2T/RoH/ISR) for answer/abstain decisions. Empirically, permutation dispersion follows a+bln n (Qwen2-7B b approx 0.377, Llama-3.1-8B b approx 0.147); permutation mixtures improve ground-truth likelihood/accuracy; and randomized dose-response shows hallucinations drop by sim 0.13 per additional nat. A pre-specified audit with a fixed ISR=1.0 achieves near-0\% hallucinations via calibrated refusal at 24\% abstention. The framework turns hallucinations into predictable compression failures and enables principled information budgeting.
An Introduction to Conditional Random Fields
Often we wish to predict a large number of variables that depend on each other as well as on other observed variables. Structured prediction methods are essentially a combination of classification and graphical modeling, combining the ability of graphical models to compactly model multivariate data with the ability of classification methods to perform prediction using large sets of input features. This tutorial describes conditional random fields, a popular probabilistic method for structured prediction. CRFs have seen wide application in natural language processing, computer vision, and bioinformatics. We describe methods for inference and parameter estimation for CRFs, including practical issues for implementing large scale CRFs. We do not assume previous knowledge of graphical modeling, so this tutorial is intended to be useful to practitioners in a wide variety of fields.
The probabilistic world
Physics is based on probabilities as fundamental entities of a mathematical description. Expectation values of observables are computed according to the classical statistical rule. The overall probability distribution for one world covers all times. The quantum formalism arises once one focuses on the evolution of the time-local probabilistic information. Wave functions or the density matrix allow the formulation of a general linear evolution law for classical statistics. The quantum formalism for classical statistics is a powerful tool which allows us to implement for generalized Ising models the momentum observable with the associated Fourier representation. The association of operators to observables permits the computation of expectation values in terms of the density matrix by the usual quantum rule. We show that probabilistic cellular automata are quantum systems in a formulation with discrete time steps and real wave functions. With a complex structure the evolution operator for automata can be expressed in terms of a Hamiltonian involving fermionic creation and annihilation operators. The time-local probabilistic information amounts to a subsystem of the overall probabilistic system which is correlated with its environment consisting of the past and future. Such subsystems typically involve probabilistic observables for which only a probability distribution for their possible measurement values is available. Incomplete statistics does not permit to compute classical correlation functions for arbitrary subsystem-observables. Bell's inequalities are not generally applicable.
Uncertainty-Based Methods for Automated Process Reward Data Construction and Output Aggregation in Mathematical Reasoning
Large language models have demonstrated remarkable capabilities in complex mathematical reasoning tasks, but they inevitably generate errors throughout multi-step solutions. Process-level Reward Models (PRMs) have shown great promise by providing supervision and evaluation at each intermediate step, thereby effectively improving the models' reasoning abilities. However, training effective PRMs requires high-quality process reward data, yet existing methods for constructing such data are often labour-intensive or inefficient. In this paper, we propose an uncertainty-driven framework for automated process reward data construction, encompassing both data generation and annotation processes for PRMs. Additionally, we identify the limitations of both majority vote and PRMs, and introduce two generic uncertainty-aware output aggregation methods: Hybrid Majority Reward Vote and Weighted Reward Frequency Vote, which combine the strengths of majority vote with PRMs. Extensive experiments on ProcessBench, MATH, and GSMPlus show the effectiveness and efficiency of the proposed PRM data construction framework, and demonstrate that the two output aggregation methods further improve the mathematical reasoning abilities across diverse PRMs. The code and data will be publicly available at https://github.com/Jiuzhouh/UnPRM.
Embers of Autoregression: Understanding Large Language Models Through the Problem They are Trained to Solve
The widespread adoption of large language models (LLMs) makes it important to recognize their strengths and limitations. We argue that in order to develop a holistic understanding of these systems we need to consider the problem that they were trained to solve: next-word prediction over Internet text. By recognizing the pressures that this task exerts we can make predictions about the strategies that LLMs will adopt, allowing us to reason about when they will succeed or fail. This approach - which we call the teleological approach - leads us to identify three factors that we hypothesize will influence LLM accuracy: the probability of the task to be performed, the probability of the target output, and the probability of the provided input. We predict that LLMs will achieve higher accuracy when these probabilities are high than when they are low - even in deterministic settings where probability should not matter. To test our predictions, we evaluate two LLMs (GPT-3.5 and GPT-4) on eleven tasks, and we find robust evidence that LLMs are influenced by probability in the ways that we have hypothesized. In many cases, the experiments reveal surprising failure modes. For instance, GPT-4's accuracy at decoding a simple cipher is 51% when the output is a high-probability word sequence but only 13% when it is low-probability. These results show that AI practitioners should be careful about using LLMs in low-probability situations. More broadly, we conclude that we should not evaluate LLMs as if they are humans but should instead treat them as a distinct type of system - one that has been shaped by its own particular set of pressures.
Prior and Posterior Networks: A Survey on Evidential Deep Learning Methods For Uncertainty Estimation
Popular approaches for quantifying predictive uncertainty in deep neural networks often involve distributions over weights or multiple models, for instance via Markov Chain sampling, ensembling, or Monte Carlo dropout. These techniques usually incur overhead by having to train multiple model instances or do not produce very diverse predictions. This comprehensive and extensive survey aims to familiarize the reader with an alternative class of models based on the concept of Evidential Deep Learning: For unfamiliar data, they aim to admit "what they don't know", and fall back onto a prior belief. Furthermore, they allow uncertainty estimation in a single model and forward pass by parameterizing distributions over distributions. This survey recapitulates existing works, focusing on the implementation in a classification setting, before surveying the application of the same paradigm to regression. We also reflect on the strengths and weaknesses compared to other existing methods and provide the most fundamental derivations using a unified notation to aid future research.
DeFine: Decision-Making with Analogical Reasoning over Factor Profiles
LLMs are ideal for decision-making thanks to their ability to reason over long contexts. However, challenges arise when processing speech transcripts that describe complex scenarios, as they are verbose and include repetition, hedging, and vagueness. E.g., during a company's earnings call, an executive might project a positive revenue outlook to reassure investors, despite uncertainty regarding future earnings. It is crucial for LLMs to incorporate this uncertainty systematically when making decisions. In this paper, we introduce DeFine, a modular framework that constructs probabilistic factor profiles from complex scenarios. It then integrates these profiles with analogical reasoning, leveraging insights from similar past experiences to guide LLMs in making critical decisions in new situations. Our framework separates the tasks of quantifying uncertainty and incorporating it into LLM decision-making. This approach is particularly useful in areas such as consulting and financial deliberation, where making decisions under uncertainty is vital.
Second-Order Uncertainty Quantification: A Distance-Based Approach
In the past couple of years, various approaches to representing and quantifying different types of predictive uncertainty in machine learning, notably in the setting of classification, have been proposed on the basis of second-order probability distributions, i.e., predictions in the form of distributions on probability distributions. A completely conclusive solution has not yet been found, however, as shown by recent criticisms of commonly used uncertainty measures associated with second-order distributions, identifying undesirable theoretical properties of these measures. In light of these criticisms, we propose a set of formal criteria that meaningful uncertainty measures for predictive uncertainty based on second-order distributions should obey. Moreover, we provide a general framework for developing uncertainty measures to account for these criteria, and offer an instantiation based on the Wasserstein distance, for which we prove that all criteria are satisfied.
Judging LLMs on a Simplex
Automated evaluation of free-form outputs from large language models (LLMs) is challenging because many distinct answers can be equally valid. A common practice is to use LLMs themselves as judges, but the theoretical properties of this approach are not yet well understood. We show that a geometric framework that represents both judges and candidates as points on a probability simplex can provide helpful insight on what is or is not identifiable using LLM judges. Our theoretical analysis uncovers a "phase transition" in ranking identifiability: for binary scoring systems, true rankings are identifiable even with weak judges under mild assumptions, while rankings become non-identifiable for three or more scoring levels even with infinite data, absent additional prior knowledge. This non-identifiability highlights how uncertainty in rankings stems from not only aleatoric uncertainty (i.e., inherent stochasticity in the data) but also epistemic uncertainty regarding which assumptions hold, an aspect that has received limited attention until now. To integrate both types of uncertainty, we use Bayesian inference to encode assumptions as priors and conduct sensitivity analysis of ranking estimates and credible intervals. Empirical evaluations across multiple benchmarks demonstrate that Bayesian inference yields more accurate rankings and substantially improves coverage rates. These results underscore the importance of taking a more holistic approach to uncertainty quantification when using LLMs as judges.
Future Language Modeling from Temporal Document History
Predicting the future is of great interest across many aspects of human activity. Businesses are interested in future trends, traders are interested in future stock prices, and companies are highly interested in future technological breakthroughs. While there are many automated systems for predicting future numerical data, such as weather, stock prices, and demand for products, there is relatively little work in automatically predicting textual data. Humans are interested in textual data predictions because it is a natural format for our consumption, and experts routinely make predictions in a textual format (Christensen et al., 2004; Tetlock & Gardner, 2015; Frick, 2015). However, there has been relatively little formalization of this general problem in the machine learning or natural language processing communities. To address this gap, we introduce the task of future language modeling: probabilistic modeling of texts in the future based on a temporal history of texts. To our knowledge, our work is the first work to formalize the task of predicting the future in this way. We show that it is indeed possible to build future language models that improve upon strong non-temporal language model baselines, opening the door to working on this important, and widely applicable problem.
Math Word Problem Solving by Generating Linguistic Variants of Problem Statements
The art of mathematical reasoning stands as a fundamental pillar of intellectual progress and is a central catalyst in cultivating human ingenuity. Researchers have recently published a plethora of works centered around the task of solving Math Word Problems (MWP) - a crucial stride towards general AI. These existing models are susceptible to dependency on shallow heuristics and spurious correlations to derive the solution expressions. In order to ameliorate this issue, in this paper, we propose a framework for MWP solvers based on the generation of linguistic variants of the problem text. The approach involves solving each of the variant problems and electing the predicted expression with the majority of the votes. We use DeBERTa (Decoding-enhanced BERT with disentangled attention) as the encoder to leverage its rich textual representations and enhanced mask decoder to construct the solution expressions. Furthermore, we introduce a challenging dataset, Psmall{ARAMAWPS}, consisting of paraphrased, adversarial, and inverse variants of selectively sampled MWPs from the benchmark Msmall{AWPS} dataset. We extensively experiment on this dataset along with other benchmark datasets using some baseline MWP solver models. We show that training on linguistic variants of problem statements and voting on candidate predictions improve the mathematical reasoning and robustness of the model. We make our code and data publicly available.
Evaluating the Moral Beliefs Encoded in LLMs
This paper presents a case study on the design, administration, post-processing, and evaluation of surveys on large language models (LLMs). It comprises two components: (1) A statistical method for eliciting beliefs encoded in LLMs. We introduce statistical measures and evaluation metrics that quantify the probability of an LLM "making a choice", the associated uncertainty, and the consistency of that choice. (2) We apply this method to study what moral beliefs are encoded in different LLMs, especially in ambiguous cases where the right choice is not obvious. We design a large-scale survey comprising 680 high-ambiguity moral scenarios (e.g., "Should I tell a white lie?") and 687 low-ambiguity moral scenarios (e.g., "Should I stop for a pedestrian on the road?"). Each scenario includes a description, two possible actions, and auxiliary labels indicating violated rules (e.g., "do not kill"). We administer the survey to 28 open- and closed-source LLMs. We find that (a) in unambiguous scenarios, most models "choose" actions that align with commonsense. In ambiguous cases, most models express uncertainty. (b) Some models are uncertain about choosing the commonsense action because their responses are sensitive to the question-wording. (c) Some models reflect clear preferences in ambiguous scenarios. Specifically, closed-source models tend to agree with each other.
Tortured phrases: A dubious writing style emerging in science. Evidence of critical issues affecting established journals
Probabilistic text generators have been used to produce fake scientific papers for more than a decade. Such nonsensical papers are easily detected by both human and machine. Now more complex AI-powered generation techniques produce texts indistinguishable from that of humans and the generation of scientific texts from a few keywords has been documented. Our study introduces the concept of tortured phrases: unexpected weird phrases in lieu of established ones, such as 'counterfeit consciousness' instead of 'artificial intelligence.' We combed the literature for tortured phrases and study one reputable journal where these concentrated en masse. Hypothesising the use of advanced language models we ran a detector on the abstracts of recent articles of this journal and on several control sets. The pairwise comparisons reveal a concentration of abstracts flagged as 'synthetic' in the journal. We also highlight irregularities in its operation, such as abrupt changes in editorial timelines. We substantiate our call for investigation by analysing several individual dubious articles, stressing questionable features: tortured writing style, citation of non-existent literature, and unacknowledged image reuse. Surprisingly, some websites offer to rewrite texts for free, generating gobbledegook full of tortured phrases. We believe some authors used rewritten texts to pad their manuscripts. We wish to raise the awareness on publications containing such questionable AI-generated or rewritten texts that passed (poor) peer review. Deception with synthetic texts threatens the integrity of the scientific literature.
Disintegration and Bayesian Inversion via String Diagrams
The notions of disintegration and Bayesian inversion are fundamental in conditional probability theory. They produce channels, as conditional probabilities, from a joint state, or from an already given channel (in opposite direction). These notions exist in the literature, in concrete situations, but are presented here in abstract graphical formulations. The resulting abstract descriptions are used for proving basic results in conditional probability theory. The existence of disintegration and Bayesian inversion is discussed for discrete probability, and also for measure-theoretic probability --- via standard Borel spaces and via likelihoods. Finally, the usefulness of disintegration and Bayesian inversion is illustrated in several examples.
Can a Gorilla Ride a Camel? Learning Semantic Plausibility from Text
Modeling semantic plausibility requires commonsense knowledge about the world and has been used as a testbed for exploring various knowledge representations. Previous work has focused specifically on modeling physical plausibility and shown that distributional methods fail when tested in a supervised setting. At the same time, distributional models, namely large pretrained language models, have led to improved results for many natural language understanding tasks. In this work, we show that these pretrained language models are in fact effective at modeling physical plausibility in the supervised setting. We therefore present the more difficult problem of learning to model physical plausibility directly from text. We create a training set by extracting attested events from a large corpus, and we provide a baseline for training on these attested events in a self-supervised manner and testing on a physical plausibility task. We believe results could be further improved by injecting explicit commonsense knowledge into a distributional model.
Ensemble based approach to quantifying uncertainty of LLM based classifications
The output of Large Language Models (LLMs) are a function of the internal model's parameters and the input provided into the context window. The hypothesis presented here is that under a greedy sampling strategy the variance in the LLM's output is a function of the conceptual certainty embedded in the model's parametric knowledge, as well as the lexical variance in the input. Finetuning the model results in reducing the sensitivity of the model output to the lexical input variations. This is then applied to a classification problem and a probabilistic method is proposed for estimating the certainties of the predicted classes.
Language Models (Mostly) Know What They Know
We study whether language models can evaluate the validity of their own claims and predict which questions they will be able to answer correctly. We first show that larger models are well-calibrated on diverse multiple choice and true/false questions when they are provided in the right format. Thus we can approach self-evaluation on open-ended sampling tasks by asking models to first propose answers, and then to evaluate the probability "P(True)" that their answers are correct. We find encouraging performance, calibration, and scaling for P(True) on a diverse array of tasks. Performance at self-evaluation further improves when we allow models to consider many of their own samples before predicting the validity of one specific possibility. Next, we investigate whether models can be trained to predict "P(IK)", the probability that "I know" the answer to a question, without reference to any particular proposed answer. Models perform well at predicting P(IK) and partially generalize across tasks, though they struggle with calibration of P(IK) on new tasks. The predicted P(IK) probabilities also increase appropriately in the presence of relevant source materials in the context, and in the presence of hints towards the solution of mathematical word problems. We hope these observations lay the groundwork for training more honest models, and for investigating how honesty generalizes to cases where models are trained on objectives other than the imitation of human writing.
The Possible, the Plausible, and the Desirable: Event-Based Modality Detection for Language Processing
Modality is the linguistic ability to describe events with added information such as how desirable, plausible, or feasible they are. Modality is important for many NLP downstream tasks such as the detection of hedging, uncertainty, speculation, and more. Previous studies that address modality detection in NLP often restrict modal expressions to a closed syntactic class, and the modal sense labels are vastly different across different studies, lacking an accepted standard. Furthermore, these senses are often analyzed independently of the events that they modify. This work builds on the theoretical foundations of the Georgetown Gradable Modal Expressions (GME) work by Rubinstein et al. (2013) to propose an event-based modality detection task where modal expressions can be words of any syntactic class and sense labels are drawn from a comprehensive taxonomy which harmonizes the modal concepts contributed by the different studies. We present experiments on the GME corpus aiming to detect and classify fine-grained modal concepts and associate them with their modified events. We show that detecting and classifying modal expressions is not only feasible, but also improves the detection of modal events in their own right.
Assisting Mathematical Formalization with A Learning-based Premise Retriever
Premise selection is a crucial yet challenging step in mathematical formalization, especially for users with limited experience. Due to the lack of available formalization projects, existing approaches that leverage language models often suffer from data scarcity. In this work, we introduce an innovative method for training a premise retriever to support the formalization of mathematics. Our approach employs a BERT model to embed proof states and premises into a shared latent space. The retrieval model is trained within a contrastive learning framework and incorporates a domain-specific tokenizer along with a fine-grained similarity computation method. Experimental results show that our model is highly competitive compared to existing baselines, achieving strong performance while requiring fewer computational resources. Performance is further enhanced through the integration of a re-ranking module. To streamline the formalization process, we will release a search engine that enables users to query Mathlib theorems directly using proof states, significantly improving accessibility and efficiency. Codes are available at https://github.com/ruc-ai4math/Premise-Retrieval.
Belief functions induced by random fuzzy sets: A general framework for representing uncertain and fuzzy evidence
We revisit Zadeh's notion of "evidence of the second kind" and show that it provides the foundation for a general theory of epistemic random fuzzy sets, which generalizes both the Dempster-Shafer theory of belief functions and possibility theory. In this perspective, Dempster-Shafer theory deals with belief functions generated by random sets, while possibility theory deals with belief functions induced by fuzzy sets. The more general theory allows us to represent and combine evidence that is both uncertain and fuzzy. We demonstrate the application of this formalism to statistical inference, and show that it makes it possible to reconcile the possibilistic interpretation of likelihood with Bayesian inference.
Predicting Rare Events by Shrinking Towards Proportional Odds
Training classifiers is difficult with severe class imbalance, but many rare events are the culmination of a sequence with much more common intermediate outcomes. For example, in online marketing a user first sees an ad, then may click on it, and finally may make a purchase; estimating the probability of purchases is difficult because of their rarity. We show both theoretically and through data experiments that the more abundant data in earlier steps may be leveraged to improve estimation of probabilities of rare events. We present PRESTO, a relaxation of the proportional odds model for ordinal regression. Instead of estimating weights for one separating hyperplane that is shifted by separate intercepts for each of the estimated Bayes decision boundaries between adjacent pairs of categorical responses, we estimate separate weights for each of these transitions. We impose an L1 penalty on the differences between weights for the same feature in adjacent weight vectors in order to shrink towards the proportional odds model. We prove that PRESTO consistently estimates the decision boundary weights under a sparsity assumption. Synthetic and real data experiments show that our method can estimate rare probabilities in this setting better than both logistic regression on the rare category, which fails to borrow strength from more abundant categories, and the proportional odds model, which is too inflexible.
"I'm Not Sure, But...": Examining the Impact of Large Language Models' Uncertainty Expression on User Reliance and Trust
Widely deployed large language models (LLMs) can produce convincing yet incorrect outputs, potentially misleading users who may rely on them as if they were correct. To reduce such overreliance, there have been calls for LLMs to communicate their uncertainty to end users. However, there has been little empirical work examining how users perceive and act upon LLMs' expressions of uncertainty. We explore this question through a large-scale, pre-registered, human-subject experiment (N=404) in which participants answer medical questions with or without access to responses from a fictional LLM-infused search engine. Using both behavioral and self-reported measures, we examine how different natural language expressions of uncertainty impact participants' reliance, trust, and overall task performance. We find that first-person expressions (e.g., "I'm not sure, but...") decrease participants' confidence in the system and tendency to agree with the system's answers, while increasing participants' accuracy. An exploratory analysis suggests that this increase can be attributed to reduced (but not fully eliminated) overreliance on incorrect answers. While we observe similar effects for uncertainty expressed from a general perspective (e.g., "It's not clear, but..."), these effects are weaker and not statistically significant. Our findings suggest that using natural language expressions of uncertainty may be an effective approach for reducing overreliance on LLMs, but that the precise language used matters. This highlights the importance of user testing before deploying LLMs at scale.
A Deductive Verification Infrastructure for Probabilistic Programs
This paper presents a quantitative program verification infrastructure for discrete probabilistic programs. Our infrastructure can be viewed as the probabilistic analogue of Boogie: its central components are an intermediate verification language (IVL) together with a real-valued logic. Our IVL provides a programming-language-style for expressing verification conditions whose validity implies the correctness of a program under investigation. As our focus is on verifying quantitative properties such as bounds on expected outcomes, expected run-times, or termination probabilities, off-the-shelf IVLs based on Boolean first-order logic do not suffice. Instead, a paradigm shift from the standard Boolean to a real-valued domain is required. Our IVL features quantitative generalizations of standard verification constructs such as assume- and assert-statements. Verification conditions are generated by a weakest-precondition-style semantics, based on our real-valued logic. We show that our verification infrastructure supports natural encodings of numerous verification techniques from the literature. With our SMT-based implementation, we automatically verify a variety of benchmarks. To the best of our knowledge, this establishes the first deductive verification infrastructure for expectation-based reasoning about probabilistic programs.
A Compositional Atlas for Algebraic Circuits
Circuits based on sum-product structure have become a ubiquitous representation to compactly encode knowledge, from Boolean functions to probability distributions. By imposing constraints on the structure of such circuits, certain inference queries become tractable, such as model counting and most probable configuration. Recent works have explored analyzing probabilistic and causal inference queries as compositions of basic operators to derive tractability conditions. In this paper, we take an algebraic perspective for compositional inference, and show that a large class of queries - including marginal MAP, probabilistic answer set programming inference, and causal backdoor adjustment - correspond to a combination of basic operators over semirings: aggregation, product, and elementwise mapping. Using this framework, we uncover simple and general sufficient conditions for tractable composition of these operators, in terms of circuit properties (e.g., marginal determinism, compatibility) and conditions on the elementwise mappings. Applying our analysis, we derive novel tractability conditions for many such compositional queries. Our results unify tractability conditions for existing problems on circuits, while providing a blueprint for analysing novel compositional inference queries.
Deriving Language Models from Masked Language Models
Masked language models (MLM) do not explicitly define a distribution over language, i.e., they are not language models per se. However, recent work has implicitly treated them as such for the purposes of generation and scoring. This paper studies methods for deriving explicit joint distributions from MLMs, focusing on distributions over two tokens, which makes it possible to calculate exact distributional properties. We find that an approach based on identifying joints whose conditionals are closest to those of the MLM works well and outperforms existing Markov random field-based approaches. We further find that this derived model's conditionals can even occasionally outperform the original MLM's conditionals.
Probabilistic Tree-of-thought Reasoning for Answering Knowledge-intensive Complex Questions
Large language models (LLMs) are capable of answering knowledge-intensive complex questions with chain-of-thought (CoT) reasoning. However, they tend to generate factually incorrect reasoning steps when the required knowledge is not available or up-to-date in models' parameters. Recent works turn to retrieving external knowledge to augment CoT reasoning. Despite being promising, these chain-based methods suffer from: 1) Negative retrieval. Unnecessary or incorrect retrieval may mislead the reasoning; 2) Limited sight. Lacking the ability to look backward or forward, a local error in one step will propagate along the chain. In this paper, we propose a novel approach: Probabilistic Tree-of-thought Reasoning (ProbTree). First, LLMs translate a complex question into a query tree, in which each non-root node denotes a sub-question of its parent node. Then, probabilistic reasoning is conducted over the tree, by solving questions from leaf to root considering the confidence of both question decomposing and answering. During reasoning, for leaf nodes, LLMs choose a more confident answer from Closed-book QA that employs parametric knowledge and Open-book QA that employs retrieved external knowledge, thus eliminating the negative retrieval problem. For non-leaf nodes, with the hierarchical structure, LLMs have broader sights and are able to globally reason with the information from child nodes, thus recovering from local errors. The experiments on three Complex QA datasets under the open-domain setting show that our approach outperforms SOTA methods significantly, demonstrating the effect of probabilistic tree-of-thought reasoning.
To Believe or Not to Believe Your LLM
We explore uncertainty quantification in large language models (LLMs), with the goal to identify when uncertainty in responses given a query is large. We simultaneously consider both epistemic and aleatoric uncertainties, where the former comes from the lack of knowledge about the ground truth (such as about facts or the language), and the latter comes from irreducible randomness (such as multiple possible answers). In particular, we derive an information-theoretic metric that allows to reliably detect when only epistemic uncertainty is large, in which case the output of the model is unreliable. This condition can be computed based solely on the output of the model obtained simply by some special iterative prompting based on the previous responses. Such quantification, for instance, allows to detect hallucinations (cases when epistemic uncertainty is high) in both single- and multi-answer responses. This is in contrast to many standard uncertainty quantification strategies (such as thresholding the log-likelihood of a response) where hallucinations in the multi-answer case cannot be detected. We conduct a series of experiments which demonstrate the advantage of our formulation. Further, our investigations shed some light on how the probabilities assigned to a given output by an LLM can be amplified by iterative prompting, which might be of independent interest.
The Compositional Structure of Bayesian Inference
Bayes' rule tells us how to invert a causal process in order to update our beliefs in light of new evidence. If the process is believed to have a complex compositional structure, we may observe that the inversion of the whole can be computed piecewise in terms of the component processes. We study the structure of this compositional rule, noting that it relates to the lens pattern in functional programming. Working in a suitably general axiomatic presentation of a category of Markov kernels, we see how we can think of Bayesian inversion as a particular instance of a state-dependent morphism in a fibred category. We discuss the compositional nature of this, formulated as a functor on the underlying category and explore how this can used for a more type-driven approach to statistical inference.
ReliableEval: A Recipe for Stochastic LLM Evaluation via Method of Moments
LLMs are highly sensitive to prompt phrasing, yet standard benchmarks typically report performance using a single prompt, raising concerns about the reliability of such evaluations. In this work, we argue for a stochastic method of moments evaluation over the space of meaning-preserving prompt perturbations. We introduce a formal definition of reliable evaluation that accounts for prompt sensitivity, and suggest ReliableEval - a method for estimating the number of prompt resamplings needed to obtain meaningful results. Using our framework, we stochastically evaluate five frontier LLMs and find that even top-performing models like GPT-4o and Claude-3.7-Sonnet exhibit substantial prompt sensitivity. Our approach is model-, task-, and metric-agnostic, offering a recipe for meaningful and robust LLM evaluation.
Frequentism and Bayesianism: A Python-driven Primer
This paper presents a brief, semi-technical comparison of the essential features of the frequentist and Bayesian approaches to statistical inference, with several illustrative examples implemented in Python. The differences between frequentism and Bayesianism fundamentally stem from differing definitions of probability, a philosophical divide which leads to distinct approaches to the solution of statistical problems as well as contrasting ways of asking and answering questions about unknown parameters. After an example-driven discussion of these differences, we briefly compare several leading Python statistical packages which implement frequentist inference using classical methods and Bayesian inference using Markov Chain Monte Carlo.
Concrete Sentence Spaces for Compositional Distributional Models of Meaning
Coecke, Sadrzadeh, and Clark (arXiv:1003.4394v1 [cs.CL]) developed a compositional model of meaning for distributional semantics, in which each word in a sentence has a meaning vector and the distributional meaning of the sentence is a function of the tensor products of the word vectors. Abstractly speaking, this function is the morphism corresponding to the grammatical structure of the sentence in the category of finite dimensional vector spaces. In this paper, we provide a concrete method for implementing this linear meaning map, by constructing a corpus-based vector space for the type of sentence. Our construction method is based on structured vector spaces whereby meaning vectors of all sentences, regardless of their grammatical structure, live in the same vector space. Our proposed sentence space is the tensor product of two noun spaces, in which the basis vectors are pairs of words each augmented with a grammatical role. This enables us to compare meanings of sentences by simply taking the inner product of their vectors.
Causal Inference by String Diagram Surgery
Extracting causal relationships from observed correlations is a growing area in probabilistic reasoning, originating with the seminal work of Pearl and others from the early 1990s. This paper develops a new, categorically oriented view based on a clear distinction between syntax (string diagrams) and semantics (stochastic matrices), connected via interpretations as structure-preserving functors. A key notion in the identification of causal effects is that of an intervention, whereby a variable is forcefully set to a particular value independent of any prior propensities. We represent the effect of such an intervention as an endofunctor which performs `string diagram surgery' within the syntactic category of string diagrams. This diagram surgery in turn yields a new, interventional distribution via the interpretation functor. While in general there is no way to compute interventional distributions purely from observed data, we show that this is possible in certain special cases using a calculational tool called comb disintegration. We demonstrate the use of this technique on a well-known toy example, where we predict the causal effect of smoking on cancer in the presence of a confounding common cause. After developing this specific example, we show this technique provides simple sufficient conditions for computing interventions which apply to a wide variety of situations considered in the causal inference literature.
LLM Reasoning Engine: Specialized Training for Enhanced Mathematical Reasoning
Large Language Models (LLMs) have shown remarkable performance in various natural language processing tasks but face challenges in mathematical reasoning, where complex problem-solving requires both linguistic understanding and mathematical reasoning skills. Existing approaches to address this challenge often rely on ensemble methods and suffer from the problem of data scarcity in target domains. In this work, we present a novel method to enhance LLMs' capabilities in mathematical reasoning tasks. Motivated by the need to bridge this gap, our approach incorporates a question paraphrase strategy, which aims at diversifying the linguistic forms of mathematical questions to improve generalization. Additionally, specialized training objectives are employed to guide the model's learning process, focusing on enhancing its understanding of mathematical concepts and reasoning processes. We conduct experiments on four datasets using different LLMs, and demonstrate the effectiveness of our approach in improving LLMs' performance on mathematical reasoning tasks. Our findings underscore the significance of our methodology in the advancement of large language models and its potential implications for real-world applications that require mathematical reasoning abilities.
Calc-X: Enriching Arithmetical Chain-of-Thoughts Datasets by Interaction with Symbolic Systems
This report overviews our ongoing work in enriching chain-of-thoughts datasets requiring arithmetical reasoning with the integration of non-parametric components, such as a calculator. We conduct an analysis of prominent relevant datasets such as GSM8K, Ape210K, AQuA-RAT, and MathQA and propose a machine-processable HTML-like format specifically tailored for working with semi-structured chains. By converting the datasets into this unified format, we enable the effective integration of large language models and symbolic systems, empowering them to tackle arithmetical reasoning tasks more efficiently.
Teaching Models to Express Their Uncertainty in Words
We show that a GPT-3 model can learn to express uncertainty about its own answers in natural language -- without use of model logits. When given a question, the model generates both an answer and a level of confidence (e.g. "90% confidence" or "high confidence"). These levels map to probabilities that are well calibrated. The model also remains moderately calibrated under distribution shift, and is sensitive to uncertainty in its own answers, rather than imitating human examples. To our knowledge, this is the first time a model has been shown to express calibrated uncertainty about its own answers in natural language. For testing calibration, we introduce the CalibratedMath suite of tasks. We compare the calibration of uncertainty expressed in words ("verbalized probability") to uncertainty extracted from model logits. Both kinds of uncertainty are capable of generalizing calibration under distribution shift. We also provide evidence that GPT-3's ability to generalize calibration depends on pre-trained latent representations that correlate with epistemic uncertainty over its answers.
Shifting Attention to Relevance: Towards the Uncertainty Estimation of Large Language Models
While Large Language Models (LLMs) have demonstrated remarkable potential in natural language generation and instruction following, a persistent challenge lies in their susceptibility to "hallucinations", which erodes trust in their outputs. Although Uncertainty Quantification (UQ) presents a promising solution, its accurate implementation within the context of LLMs remains a significant hurdle. To address this critical roadblock, our research originates from a fundamental heuristic insight: tokens within auto-regressive LLM-generated text do not equally reflect the underlying meaning. Some tokens carry greater relevance and representativeness than others, owing to the phenomenon of "linguistic redundancy", wherein a select few keywords suffice to convey the essence of lengthy sentences. Regrettably, existing methodologies treat all tokens with equal importance when estimating uncertainty, disregarding these inherent generative inequalities. Our analysis reveals a significant issue with state-of-the-art: numerous tokens (and sentences) of limited semantic significance receive equal or even excessive weighting during uncertainty estimation. To rectify this bias, we propose to jointly Shifting Attention to more Relevant (SAR) components, at both the token- and the sentence-levels for accurate uncertainty estimation. We conduct extensive experiments involving a range of popular "off-the-shelf" LLMs, including instruction-tuned LLMs such as Vicuna, WizardLM, and LLaMA-2-chat, as well as pretrained LLMs like OPT and LLaMA, with model sizes extending up to 33B parameters. We carry out evaluation across various free-form question-answering tasks, encompassing domains such as reading comprehension, science Q&A, and medical Q&A. Our experimental results demonstrate the superior performance of SAR in addressing the challenges of uncertainty estimation within the realm of LLMs.
Rethinking Uncertainty Estimation in Natural Language Generation
Large Language Models (LLMs) are increasingly employed in real-world applications, driving the need to evaluate the trustworthiness of their generated text. To this end, reliable uncertainty estimation is essential. Since current LLMs generate text autoregressively through a stochastic process, the same prompt can lead to varying outputs. Consequently, leading uncertainty estimation methods generate and analyze multiple output sequences to determine the LLM's uncertainty. However, generating output sequences is computationally expensive, making these methods impractical at scale. In this work, we inspect the theoretical foundations of the leading methods and explore new directions to enhance their computational efficiency. Building on the framework of proper scoring rules, we find that the negative log-likelihood of the most likely output sequence constitutes a theoretically grounded uncertainty measure. To approximate this alternative measure, we propose G-NLL, which has the advantage of being obtained using only a single output sequence generated by greedy decoding. This makes uncertainty estimation more efficient and straightforward, while preserving theoretical rigor. Empirical results demonstrate that G-NLL achieves state-of-the-art performance across various LLMs and tasks. Our work lays the foundation for efficient and reliable uncertainty estimation in natural language generation, challenging the necessity of more computationally involved methods currently leading the field.
Analysis on Riemann Hypothesis with Cross Entropy Optimization and Reasoning
In this paper, we present a novel framework for the analysis of Riemann Hypothesis [27], which is composed of three key components: a) probabilistic modeling with cross entropy optimization and reasoning; b) the application of the law of large numbers; c) the application of mathematical inductions. The analysis is mainly conducted by virtue of probabilistic modeling of cross entropy optimization and reasoning with rare event simulation techniques. The application of the law of large numbers [2, 3, 6] and the application of mathematical inductions make the analysis of Riemann Hypothesis self-contained and complete to make sure that the whole complex plane is covered as conjectured in Riemann Hypothesis. We also discuss the method of enhanced top-p sampling with large language models (LLMs) for reasoning, where next token prediction is not just based on the estimated probabilities of each possible token in the current round but also based on accumulated path probabilities among multiple top-k chain of thoughts (CoTs) paths. The probabilistic modeling of cross entropy optimization and reasoning may suit well with the analysis of Riemann Hypothesis as Riemann Zeta functions are inherently dealing with the sums of infinite components of a complex number series. We hope that our analysis in this paper could shed some light on some of the insights of Riemann Hypothesis. The framework and techniques presented in this paper, coupled with recent developments with chain of thought (CoT) or diagram of thought (DoT) reasoning in large language models (LLMs) with reinforcement learning (RL) [1, 7, 18, 21, 24, 34, 39-41], could pave the way for eventual proof of Riemann Hypothesis [27].
Probabilistic Circuits That Know What They Don't Know
Probabilistic circuits (PCs) are models that allow exact and tractable probabilistic inference. In contrast to neural networks, they are often assumed to be well-calibrated and robust to out-of-distribution (OOD) data. In this paper, we show that PCs are in fact not robust to OOD data, i.e., they don't know what they don't know. We then show how this challenge can be overcome by model uncertainty quantification. To this end, we propose tractable dropout inference (TDI), an inference procedure to estimate uncertainty by deriving an analytical solution to Monte Carlo dropout (MCD) through variance propagation. Unlike MCD in neural networks, which comes at the cost of multiple network evaluations, TDI provides tractable sampling-free uncertainty estimates in a single forward pass. TDI improves the robustness of PCs to distribution shift and OOD data, demonstrated through a series of experiments evaluating the classification confidence and uncertainty estimates on real-world data.
Investigating Human-Aligned Large Language Model Uncertainty
Recent work has sought to quantify large language model uncertainty to facilitate model control and modulate user trust. Previous works focus on measures of uncertainty that are theoretically grounded or reflect the average overt behavior of the model. In this work, we investigate a variety of uncertainty measures, in order to identify measures that correlate with human group-level uncertainty. We find that Bayesian measures and a variation on entropy measures, top-k entropy, tend to agree with human behavior as a function of model size. We find that some strong measures decrease in human-similarity with model size, but, by multiple linear regression, we find that combining multiple uncertainty measures provide comparable human-alignment with reduced size-dependency.
Extracting Mathematical Concepts with Large Language Models
We extract mathematical concepts from mathematical text using generative large language models (LLMs) like ChatGPT, contributing to the field of automatic term extraction (ATE) and mathematical text processing, and also to the study of LLMs themselves. Our work builds on that of others in that we aim for automatic extraction of terms (keywords) in one mathematical field, category theory, using as a corpus the 755 abstracts from a snapshot of the online journal "Theory and Applications of Categories", circa 2020. Where our study diverges from previous work is in (1) providing a more thorough analysis of what makes mathematical term extraction a difficult problem to begin with; (2) paying close attention to inter-annotator disagreements; (3) providing a set of guidelines which both human and machine annotators could use to standardize the extraction process; (4) introducing a new annotation tool to help humans with ATE, applicable to any mathematical field and even beyond mathematics; (5) using prompts to ChatGPT as part of the extraction process, and proposing best practices for such prompts; and (6) raising the question of whether ChatGPT could be used as an annotator on the same level as human experts. Our overall findings are that the matter of mathematical ATE is an interesting field which can benefit from participation by LLMs, but LLMs themselves cannot at this time surpass human performance on it.
Visualizing Uncertainty in Translation Tasks: An Evaluation of LLM Performance and Confidence Metrics
Large language models (LLMs) are increasingly utilized for machine translation, yet their predictions often exhibit uncertainties that hinder interpretability and user trust. Effectively visualizing these uncertainties can enhance the usability of LLM outputs, particularly in contexts where translation accuracy is critical. This paper addresses two primary objectives: (1) providing users with token-level insights into model confidence and (2) developing a web-based visualization tool to quantify and represent translation uncertainties. To achieve these goals, we utilized the T5 model with the WMT19 dataset for translation tasks and evaluated translation quality using established metrics such as BLEU, METEOR, and ROUGE. We introduced three novel uncertainty quantification (UQ) metrics: (1) the geometric mean of token probabilities, (2) the arithmetic mean of token probabilities, and (3) the arithmetic mean of the kurtosis of token distributions. These metrics provide a simple yet effective framework for evaluating translation performance. Our analysis revealed a linear relationship between the traditional evaluation metrics and our UQ metrics, demonstrating the validity of our approach. Additionally, we developed an interactive web-based visualization that uses a color gradient to represent token confidence. This tool offers users a clear and intuitive understanding of translation quality while providing valuable insights into model performance. Overall, we show that our UQ metrics and visualization are both robust and interpretable, offering practical tools for evaluating and accessing machine translation systems.
Using Artificial Populations to Study Psychological Phenomena in Neural Models
The recent proliferation of research into transformer based natural language processing has led to a number of studies which attempt to detect the presence of human-like cognitive behavior in the models. We contend that, as is true of human psychology, the investigation of cognitive behavior in language models must be conducted in an appropriate population of an appropriate size for the results to be meaningful. We leverage work in uncertainty estimation in a novel approach to efficiently construct experimental populations. The resultant tool, PopulationLM, has been made open source. We provide theoretical grounding in the uncertainty estimation literature and motivation from current cognitive work regarding language models. We discuss the methodological lessons from other scientific communities and attempt to demonstrate their application to two artificial population studies. Through population based experimentation we find that language models exhibit behavior consistent with typicality effects among categories highly represented in training. However, we find that language models don't tend to exhibit structural priming effects. Generally, our results show that single models tend to over estimate the presence of cognitive behaviors in neural models.
Transforming Hidden States into Binary Semantic Features
Large language models follow a lineage of many NLP applications that were directly inspired by distributional semantics, but do not seem to be closely related to it anymore. In this paper, we propose to employ the distributional theory of meaning once again. Using Independent Component Analysis to overcome some of its challenging aspects, we show that large language models represent semantic features in their hidden states.
Verbalized Probabilistic Graphical Modeling
Human cognition excels at transcending sensory input and forming latent representations that structure our understanding of the world. Although Large Language Models (LLMs) can produce chain-of-thought reasoning, they lack a principled framework to capture latent structures and model uncertainty, especially in compositional reasoning tasks. We propose Verbalized Probabilistic Graphical Modeling (vPGM), a Bayesian prompting framework that guides LLMs to simulate key principles of Probabilistic Graphical Models (PGMs) in natural language. Unlike many traditional probabilistic methods requiring substantial domain expertise or specialized training, vPGM bypasses expert-driven model design, making it well-suited for scenarios with limited assumptions or scarce data. We evaluated our model on several compositional reasoning tasks, both close-ended and open-ended. Our results indicate that the model effectively enhances confidence calibration and text generation quality.
Knowledge Graph Embedding by Normalizing Flows
A key to knowledge graph embedding (KGE) is to choose a proper representation space, e.g., point-wise Euclidean space and complex vector space. In this paper, we propose a unified perspective of embedding and introduce uncertainty into KGE from the view of group theory. Our model can incorporate existing models (i.e., generality), ensure the computation is tractable (i.e., efficiency) and enjoy the expressive power of complex random variables (i.e., expressiveness). The core idea is that we embed entities/relations as elements of a symmetric group, i.e., permutations of a set. Permutations of different sets can reflect different properties of embedding. And the group operation of symmetric groups is easy to compute. In specific, we show that the embedding of many existing models, point vectors, can be seen as elements of a symmetric group. To reflect uncertainty, we first embed entities/relations as permutations of a set of random variables. A permutation can transform a simple random variable into a complex random variable for greater expressiveness, called a normalizing flow. We then define scoring functions by measuring the similarity of two normalizing flows, namely NFE. We construct several instantiating models and prove that they are able to learn logical rules. Experimental results demonstrate the effectiveness of introducing uncertainty and our model. The code is available at https://github.com/changyi7231/NFE.
Adaptive Elicitation of Latent Information Using Natural Language
Eliciting information to reduce uncertainty about a latent entity is a critical task in many application domains, e.g., assessing individual student learning outcomes, diagnosing underlying diseases, or learning user preferences. Though natural language is a powerful medium for this purpose, large language models (LLMs) and existing fine-tuning algorithms lack mechanisms for strategically gathering information to refine their own understanding of the latent entity. To harness the generalization power and world knowledge of LLMs in developing effective information-gathering strategies, we propose an adaptive elicitation framework that actively reduces uncertainty on the latent entity. Since probabilistic modeling of an abstract latent entity is difficult, our framework adopts a predictive view of uncertainty, using a meta-learned language model to simulate future observations and enable scalable uncertainty quantification over complex natural language. Through autoregressive forward simulation, our model quantifies how new questions reduce epistemic uncertainty, enabling the development of sophisticated information-gathering strategies to choose the most informative next queries. In experiments on the 20 questions game, dynamic opinion polling, and adaptive student assessment, our method consistently outperforms baselines in identifying critical unknowns and improving downstream predictions, illustrating the promise of strategic information gathering in natural language settings.
Factorized Mutual Information Maximization
We investigate the sets of joint probability distributions that maximize the average multi-information over a collection of margins. These functionals serve as proxies for maximizing the multi-information of a set of variables or the mutual information of two subsets of variables, at a lower computation and estimation complexity. We describe the maximizers and their relations to the maximizers of the multi-information and the mutual information.
A Puzzle-Based Dataset for Natural Language Inference
We provide here a dataset for tasks related to natural language understanding and natural language inference. The dataset contains logical puzzles in natural language from three domains: comparing puzzles, knighs and knaves, and zebra puzzles. Each puzzle is associated with the entire set of atomic questions that can be generated based on the relations and individuals occurring in the text. For each question we provide the correct answer: entailment, contradiction or ambiguity. The answer's correctness is verified against theorem provers. Good puzzles have two properties: (i) each piece of information is necessary and (ii) no unnecessary information is provided. These properties make puzzles interesting candidates for machine comprehension tasks.
Deep Learning for Symbolic Mathematics
Neural networks have a reputation for being better at solving statistical or approximate problems than at performing calculations or working with symbolic data. In this paper, we show that they can be surprisingly good at more elaborated tasks in mathematics, such as symbolic integration and solving differential equations. We propose a syntax for representing mathematical problems, and methods for generating large datasets that can be used to train sequence-to-sequence models. We achieve results that outperform commercial Computer Algebra Systems such as Matlab or Mathematica.
EPIE Dataset: A Corpus For Possible Idiomatic Expressions
Idiomatic expressions have always been a bottleneck for language comprehension and natural language understanding, specifically for tasks like Machine Translation(MT). MT systems predominantly produce literal translations of idiomatic expressions as they do not exhibit generic and linguistically deterministic patterns which can be exploited for comprehension of the non-compositional meaning of the expressions. These expressions occur in parallel corpora used for training, but due to the comparatively high occurrences of the constituent words of idiomatic expressions in literal context, the idiomatic meaning gets overpowered by the compositional meaning of the expression. State of the art Metaphor Detection Systems are able to detect non-compositional usage at word level but miss out on idiosyncratic phrasal idiomatic expressions. This creates a dire need for a dataset with a wider coverage and higher occurrence of commonly occurring idiomatic expressions, the spans of which can be used for Metaphor Detection. With this in mind, we present our English Possible Idiomatic Expressions(EPIE) corpus containing 25206 sentences labelled with lexical instances of 717 idiomatic expressions. These spans also cover literal usages for the given set of idiomatic expressions. We also present the utility of our dataset by using it to train a sequence labelling module and testing on three independent datasets with high accuracy, precision and recall scores.
Generating Continuations in Multilingual Idiomatic Contexts
The ability to process idiomatic or literal multiword expressions is a crucial aspect of understanding and generating any language. The task of generating contextually relevant continuations for narratives containing idiomatic (or literal) expressions can allow us to test the ability of generative language models (LMs) in understanding nuanced language containing non-compositional figurative text. We conduct a series of experiments using datasets in two distinct languages (English and Portuguese) under three different training settings (zero-shot, few-shot, and fine-tuned). Our results suggest that the models are only slightly better at generating continuations for literal contexts than idiomatic contexts, with exceedingly small margins. Furthermore, the models studied in this work perform equally well across both languages, indicating the robustness of generative models in performing this task.
MARIO: MAth Reasoning with code Interpreter Output -- A Reproducible Pipeline
Large language models (LLMs) have seen considerable advancements in natural language understanding tasks, yet there remains a gap to bridge before attaining true artificial general intelligence, especially concerning shortcomings in mathematical reasoning capabilities. We postulate that the inherent nature of LLM training, which focuses on predicting probabilities of next token, presents challenges in effectively modeling mathematical reasoning that demands exact calculations, both from data-driven and theoretical standpoints. In this paper, we address this challenge by enriching the data landscape and introducing a novel math dataset, enhanced with a capability to utilize a Python code interpreter. This dataset is derived from GSM8K and MATH and has been further refined through a combination of GPT-4 annotations, human review, and self-training processes, where the errors in the original GSM8K training set have been fixed. Additionally, we propose a tentative, easily replicable protocol for the fine-tuning of math-specific LLMs, which has led to a significant improvement in the performance of a 7B-parameter LLM on the GSM8K and MATH datasets. We are committed to advancing the field of mathematical reasoning in LLMs and, to that end, we have made the model checkpoints and will make the dataset publicly available. We hope this will facilitate further research and development within the community.
Look Before You Leap: An Exploratory Study of Uncertainty Measurement for Large Language Models
The recent performance leap of Large Language Models (LLMs) opens up new opportunities across numerous industrial applications and domains. However, erroneous generations, such as false predictions, misinformation, and hallucination made by LLMs, have also raised severe concerns for the trustworthiness of LLMs', especially in safety-, security- and reliability-sensitive scenarios, potentially hindering real-world adoptions. While uncertainty estimation has shown its potential for interpreting the prediction risks made by general machine learning (ML) models, little is known about whether and to what extent it can help explore an LLM's capabilities and counteract its undesired behavior. To bridge the gap, in this paper, we initiate an exploratory study on the risk assessment of LLMs from the lens of uncertainty. In particular, we experiment with twelve uncertainty estimation methods and four LLMs on four prominent natural language processing (NLP) tasks to investigate to what extent uncertainty estimation techniques could help characterize the prediction risks of LLMs. Our findings validate the effectiveness of uncertainty estimation for revealing LLMs' uncertain/non-factual predictions. In addition to general NLP tasks, we extensively conduct experiments with four LLMs for code generation on two datasets. We find that uncertainty estimation can potentially uncover buggy programs generated by LLMs. Insights from our study shed light on future design and development for reliable LLMs, facilitating further research toward enhancing the trustworthiness of LLMs.
A Simple and Provable Scaling Law for the Test-Time Compute of Large Language Models
We propose a general two-stage algorithm that enjoys a provable scaling law for the test-time compute of large language models (LLMs). Given an input problem, the proposed algorithm first generates N candidate solutions, and then chooses the best one via a multiple-round knockout tournament where each pair of candidates are compared for K times and only the winners move on to the next round. In a minimalistic implementation, both stages can be executed with a black-box LLM alone and nothing else (e.g., no external verifier or reward model), and a total of N times (K + 1) highly parallelizable LLM calls are needed for solving an input problem. Assuming that a generated candidate solution is correct with probability p_{gen} > 0 and a comparison between a pair of correct and incorrect solutions identifies the right winner with probability p_{comp} > 0.5 (i.e., better than a random guess), we prove theoretically that the failure probability of the proposed algorithm decays to zero exponentially with respect to N and K: $P(final output is incorrect) le (1 - p_{gen})^N + lceil log_2 N rceil e^{-2 K (p_{comp} - 0.5)^2}.$ Our empirical results with the challenging MMLU-Pro benchmark validate the technical assumptions, as well as the efficacy of the proposed algorithm and the gains from scaling up its test-time compute.
Machine Learning meets Algebraic Combinatorics: A Suite of Datasets Capturing Research-level Conjecturing Ability in Pure Mathematics
With recent dramatic increases in AI system capabilities, there has been growing interest in utilizing machine learning for reasoning-heavy, quantitative tasks, particularly mathematics. While there are many resources capturing mathematics at the high-school, undergraduate, and graduate level, there are far fewer resources available that align with the level of difficulty and open endedness encountered by professional mathematicians working on open problems. To address this, we introduce a new collection of datasets, the Algebraic Combinatorics Dataset Repository (ACD Repo), representing either foundational results or open problems in algebraic combinatorics, a subfield of mathematics that studies discrete structures arising from abstract algebra. Further differentiating our dataset collection is the fact that it aims at the conjecturing process. Each dataset includes an open-ended research-level question and a large collection of examples (up to 10M in some cases) from which conjectures should be generated. We describe all nine datasets, the different ways machine learning models can be applied to them (e.g., training with narrow models followed by interpretability analysis or program synthesis with LLMs), and discuss some of the challenges involved in designing datasets like these.
Large Language Model Prediction Capabilities: Evidence from a Real-World Forecasting Tournament
Accurately predicting the future would be an important milestone in the capabilities of artificial intelligence. However, research on the ability of large language models to provide probabilistic predictions about future events remains nascent. To empirically test this ability, we enrolled OpenAI's state-of-the-art large language model, GPT-4, in a three-month forecasting tournament hosted on the Metaculus platform. The tournament, running from July to October 2023, attracted 843 participants and covered diverse topics including Big Tech, U.S. politics, viral outbreaks, and the Ukraine conflict. Focusing on binary forecasts, we show that GPT-4's probabilistic forecasts are significantly less accurate than the median human-crowd forecasts. We find that GPT-4's forecasts did not significantly differ from the no-information forecasting strategy of assigning a 50% probability to every question. We explore a potential explanation, that GPT-4 might be predisposed to predict probabilities close to the midpoint of the scale, but our data do not support this hypothesis. Overall, we find that GPT-4 significantly underperforms in real-world predictive tasks compared to median human-crowd forecasts. A potential explanation for this underperformance is that in real-world forecasting tournaments, the true answers are genuinely unknown at the time of prediction; unlike in other benchmark tasks like professional exams or time series forecasting, where strong performance may at least partly be due to the answers being memorized from the training data. This makes real-world forecasting tournaments an ideal environment for testing the generalized reasoning and prediction capabilities of artificial intelligence going forward.
Experimenting with Transitive Verbs in a DisCoCat
Formal and distributional semantic models offer complementary benefits in modeling meaning. The categorical compositional distributional (DisCoCat) model of meaning of Coecke et al. (arXiv:1003.4394v1 [cs.CL]) combines aspected of both to provide a general framework in which meanings of words, obtained distributionally, are composed using methods from the logical setting to form sentence meaning. Concrete consequences of this general abstract setting and applications to empirical data are under active study (Grefenstette et al., arxiv:1101.0309; Grefenstette and Sadrzadeh, arXiv:1106.4058v1 [cs.CL]). . In this paper, we extend this study by examining transitive verbs, represented as matrices in a DisCoCat. We discuss three ways of constructing such matrices, and evaluate each method in a disambiguation task developed by Grefenstette and Sadrzadeh (arXiv:1106.4058v1 [cs.CL]).
Mathematical Capabilities of ChatGPT
We investigate the mathematical capabilities of ChatGPT by testing it on publicly available datasets, as well as hand-crafted ones, and measuring its performance against other models trained on a mathematical corpus, such as Minerva. We also test whether ChatGPT can be a useful assistant to professional mathematicians by emulating various use cases that come up in the daily professional activities of mathematicians (question answering, theorem searching). In contrast to formal mathematics, where large databases of formal proofs are available (e.g., the Lean Mathematical Library), current datasets of natural-language mathematics, used to benchmark language models, only cover elementary mathematics. We address this issue by introducing a new dataset: GHOSTS. It is the first natural-language dataset made and curated by working researchers in mathematics that (1) aims to cover graduate-level mathematics and (2) provides a holistic overview of the mathematical capabilities of language models. We benchmark ChatGPT on GHOSTS and evaluate performance against fine-grained criteria. We make this new dataset publicly available to assist a community-driven comparison of ChatGPT with (future) large language models in terms of advanced mathematical comprehension. We conclude that contrary to many positive reports in the media (a potential case of selection bias), ChatGPT's mathematical abilities are significantly below those of an average mathematics graduate student. Our results show that ChatGPT often understands the question but fails to provide correct solutions. Hence, if your goal is to use it to pass a university exam, you would be better off copying from your average peer!
MAQA: Evaluating Uncertainty Quantification in LLMs Regarding Data Uncertainty
Although large language models (LLMs) are capable of performing various tasks, they still suffer from producing plausible but incorrect responses. To improve the reliability of LLMs, recent research has focused on uncertainty quantification to predict whether a response is correct or not. However, most uncertainty quantification methods have been evaluated on questions requiring a single clear answer, ignoring the existence of data uncertainty that arises from irreducible randomness. Instead, these methods only consider model uncertainty, which arises from a lack of knowledge. In this paper, we investigate previous uncertainty quantification methods under the presence of data uncertainty. Our contributions are two-fold: 1) proposing a new Multi-Answer Question Answering dataset, MAQA, consisting of world knowledge, mathematical reasoning, and commonsense reasoning tasks to evaluate uncertainty quantification regarding data uncertainty, and 2) assessing 5 uncertainty quantification methods of diverse white- and black-box LLMs. Our findings show that entropy and consistency-based methods estimate the model uncertainty well even under data uncertainty, while other methods for white- and black-box LLMs struggle depending on the tasks. Additionally, methods designed for white-box LLMs suffer from overconfidence in reasoning tasks compared to simple knowledge queries. We believe our observations will pave the way for future work on uncertainty quantification in realistic setting.
Towards Human Understanding of Paraphrase Types in ChatGPT
Paraphrases represent a human's intuitive ability to understand expressions presented in various different ways. Current paraphrase evaluations of language models primarily use binary approaches, offering limited interpretability of specific text changes. Atomic paraphrase types (APT) decompose paraphrases into different linguistic changes and offer a granular view of the flexibility in linguistic expression (e.g., a shift in syntax or vocabulary used). In this study, we assess the human preferences towards ChatGPT in generating English paraphrases with ten APTs and five prompting techniques. We introduce APTY (Atomic Paraphrase TYpes), a dataset of 500 sentence-level and word-level annotations by 15 annotators. The dataset also provides a human preference ranking of paraphrases with different types that can be used to fine-tune models with RLHF and DPO methods. Our results reveal that ChatGPT can generate simple APTs, such as additions and deletions, but struggle with complex structures (e.g., subordination changes). This study contributes to understanding which aspects of paraphrasing language models have already succeeded at understanding and what remains elusive. In addition, our curated datasets can be used to develop language models with specific linguistic capabilities.
Uncertainty-Aware Natural Language Inference with Stochastic Weight Averaging
This paper introduces Bayesian uncertainty modeling using Stochastic Weight Averaging-Gaussian (SWAG) in Natural Language Understanding (NLU) tasks. We apply the approach to standard tasks in natural language inference (NLI) and demonstrate the effectiveness of the method in terms of prediction accuracy and correlation with human annotation disagreements. We argue that the uncertainty representations in SWAG better reflect subjective interpretation and the natural variation that is also present in human language understanding. The results reveal the importance of uncertainty modeling, an often neglected aspect of neural language modeling, in NLU tasks.
Evidential Turing Processes
A probabilistic classifier with reliable predictive uncertainties i) fits successfully to the target domain data, ii) provides calibrated class probabilities in difficult regions of the target domain (e.g.\ class overlap), and iii) accurately identifies queries coming out of the target domain and rejects them. We introduce an original combination of Evidential Deep Learning, Neural Processes, and Neural Turing Machines capable of providing all three essential properties mentioned above for total uncertainty quantification. We observe our method on five classification tasks to be the only one that can excel all three aspects of total calibration with a single standalone predictor. Our unified solution delivers an implementation-friendly and compute efficient recipe for safety clearance and provides intellectual economy to an investigation of algorithmic roots of epistemic awareness in deep neural nets.
ComputeGPT: A computational chat model for numerical problems
Language models are not accurate in numerical problems. Their architecture does not allow for anything less than a probabilistic next word. This paper introduces ComputeGPT: an approach of creating a chat model able to answer computational problems through running on-demand code. ComputeGPT converts each question to relevant code, runs the code, and returns the computed answer as part of the chat. We combine this approach with a local browser-based Python interpretation and fine-tuned prompts in order to achieve state-of-the-art efficiency on numerical problems and provide a suitable front-end and safe environment for the code to be executed in.
On Meta-Prompting
Certain statistical models are capable of interpreting input strings as instructions, or prompts, and carry out tasks based on them. Many approaches to prompting and pre-training these models involve the automated generation of these prompts. We call these approaches meta-prompting, or prompting to obtain prompts. We propose a theoretical framework based on category theory to generalize and describe them. This framework is flexible enough to account for LLM stochasticity; and allows us to obtain formal results around task agnosticity and equivalence of various meta-prompting approaches. We experiment with meta-prompting in two active areas of model research: creativity and ideation. We find that user preference favors (p < 0.01) the prompts generated under meta-prompting, as well as their corresponding outputs, over a series of hardcoded baseline prompts that include the original task prompt. Using our framework, we argue that meta-prompting is more effective than basic prompting at generating desirable outputs.
Uncertainty Quantification of Large Language Models using Approximate Bayesian Computation
Despite their widespread applications, Large Language Models (LLMs) often struggle to express uncertainty, posing a challenge for reliable deployment in high stakes and safety critical domains like clinical diagnostics. Existing standard baseline methods such as model logits and elicited probabilities produce overconfident and poorly calibrated estimates. In this work, we propose Approximate Bayesian Computation (ABC), a likelihood-free Bayesian inference, based approach that treats LLMs as a stochastic simulator to infer posterior distributions over predictive probabilities. We evaluate our ABC approach on two clinically relevant benchmarks: a synthetic oral lesion diagnosis dataset and the publicly available GretelAI symptom-to-diagnosis dataset. Compared to standard baselines, our approach improves accuracy by up to 46.9\%, reduces Brier scores by 74.4\%, and enhances calibration as measured by Expected Calibration Error (ECE) and predictive entropy.
Open Subtitles Paraphrase Corpus for Six Languages
This paper accompanies the release of Opusparcus, a new paraphrase corpus for six European languages: German, English, Finnish, French, Russian, and Swedish. The corpus consists of paraphrases, that is, pairs of sentences in the same language that mean approximately the same thing. The paraphrases are extracted from the OpenSubtitles2016 corpus, which contains subtitles from movies and TV shows. The informal and colloquial genre that occurs in subtitles makes such data a very interesting language resource, for instance, from the perspective of computer assisted language learning. For each target language, the Opusparcus data have been partitioned into three types of data sets: training, development and test sets. The training sets are large, consisting of millions of sentence pairs, and have been compiled automatically, with the help of probabilistic ranking functions. The development and test sets consist of sentence pairs that have been checked manually; each set contains approximately 1000 sentence pairs that have been verified to be acceptable paraphrases by two annotators.
Large Language Models for Mathematical Reasoning: Progresses and Challenges
Mathematical reasoning serves as a cornerstone for assessing the fundamental cognitive capabilities of human intelligence. In recent times, there has been a notable surge in the development of Large Language Models (LLMs) geared towards the automated resolution of mathematical problems. However, the landscape of mathematical problem types is vast and varied, with LLM-oriented techniques undergoing evaluation across diverse datasets and settings. This diversity makes it challenging to discern the true advancements and obstacles within this burgeoning field. This survey endeavors to address four pivotal dimensions: i) a comprehensive exploration of the various mathematical problems and their corresponding datasets that have been investigated; ii) an examination of the spectrum of LLM-oriented techniques that have been proposed for mathematical problem-solving; iii) an overview of factors and concerns affecting LLMs in solving math; and iv) an elucidation of the persisting challenges within this domain. To the best of our knowledge, this survey stands as one of the first extensive examinations of the landscape of LLMs in the realm of mathematics, providing a holistic perspective on the current state, accomplishments, and future challenges in this rapidly evolving field.
Generating Pragmatic Examples to Train Neural Program Synthesizers
Programming-by-example is the task of synthesizing a program that is consistent with a set of user-provided input-output examples. As examples are often an under-specification of one's intent, a good synthesizer must choose the intended program from the many that are consistent with the given set of examples. Prior work frames program synthesis as a cooperative game between a listener (that synthesizes programs) and a speaker (a user choosing examples), and shows that models of computational pragmatic inference are effective in choosing the user intended programs. However, these models require counterfactual reasoning over a large set of programs and examples, which is infeasible in realistic program spaces. In this paper, we propose a novel way to amortize this search with neural networks. We sample pairs of programs and examples via self-play between listener and speaker models, and use pragmatic inference to choose informative training examples from this sample.We then use the informative dataset to train models to improve the synthesizer's ability to disambiguate user-provided examples without human supervision. We validate our method on the challenging task of synthesizing regular expressions from example strings, and find that our method (1) outperforms models trained without choosing pragmatic examples by 23% (a 51% relative increase) (2) matches the performance of supervised learning on a dataset of pragmatic examples provided by humans, despite using no human data in training.
PiCSAR: Probabilistic Confidence Selection And Ranking
Best-of-n sampling improves the accuracy of large language models (LLMs) and large reasoning models (LRMs) by generating multiple candidate solutions and selecting the one with the highest reward. The key challenge for reasoning tasks is designing a scoring function that can identify correct reasoning chains without access to ground-truth answers. We propose Probabilistic Confidence Selection And Ranking (PiCSAR): a simple, training-free method that scores each candidate generation using the joint log-likelihood of the reasoning and final answer. The joint log-likelihood of the reasoning and final answer naturally decomposes into reasoning confidence and answer confidence. PiCSAR achieves substantial gains across diverse benchmarks (+10.18 on MATH500, +9.81 on AIME2025), outperforming baselines with at least 2x fewer samples in 16 out of 20 comparisons. Our analysis reveals that correct reasoning chains exhibit significantly higher reasoning and answer confidence, justifying the effectiveness of PiCSAR.
LoGU: Long-form Generation with Uncertainty Expressions
While Large Language Models (LLMs) demonstrate impressive capabilities, they still struggle with generating factually incorrect content (i.e., hallucinations). A promising approach to mitigate this issue is enabling models to express uncertainty when unsure. Previous research on uncertainty modeling has primarily focused on short-form QA, but realworld applications often require much longer responses. In this work, we introduce the task of Long-form Generation with Uncertainty(LoGU). We identify two key challenges: Uncertainty Suppression, where models hesitate to express uncertainty, and Uncertainty Misalignment, where models convey uncertainty inaccurately. To tackle these challenges, we propose a refinement-based data collection framework and a two-stage training pipeline. Our framework adopts a divide-and-conquer strategy, refining uncertainty based on atomic claims. The collected data are then used in training through supervised fine-tuning (SFT) and direct preference optimization (DPO) to enhance uncertainty expression. Extensive experiments on three long-form instruction following datasets show that our method significantly improves accuracy, reduces hallucinations, and maintains the comprehensiveness of responses.
Can Language Models Rival Mathematics Students? Evaluating Mathematical Reasoning through Textual Manipulation and Human Experiments
In this paper we look at the ability of recent large language models (LLMs) at solving mathematical problems in combinatorics. We compare models LLaMA-2, LLaMA-3.1, GPT-4, and Mixtral against each other and against human pupils and undergraduates with prior experience in mathematical olympiads. To facilitate these comparisons we introduce the Combi-Puzzles dataset, which contains 125 problem variants based on 25 combinatorial reasoning problems. Each problem is presented in one of five distinct forms, created by systematically manipulating the problem statements through adversarial additions, numeric parameter changes, and linguistic obfuscation. Our variations preserve the mathematical core and are designed to measure the generalisability of LLM problem-solving abilities, while also increasing confidence that problems are submitted to LLMs in forms that have not been seen as training instances. We found that a model based on GPT-4 outperformed all other models in producing correct responses, and performed significantly better in the mathematical variation of the problems than humans. We also found that modifications to problem statements significantly impact the LLM's performance, while human performance remains unaffected.
Boolformer: Symbolic Regression of Logic Functions with Transformers
In this work, we introduce Boolformer, the first Transformer architecture trained to perform end-to-end symbolic regression of Boolean functions. First, we show that it can predict compact formulas for complex functions which were not seen during training, when provided a clean truth table. Then, we demonstrate its ability to find approximate expressions when provided incomplete and noisy observations. We evaluate the Boolformer on a broad set of real-world binary classification datasets, demonstrating its potential as an interpretable alternative to classic machine learning methods. Finally, we apply it to the widespread task of modelling the dynamics of gene regulatory networks. Using a recent benchmark, we show that Boolformer is competitive with state-of-the art genetic algorithms with a speedup of several orders of magnitude. Our code and models are available publicly.
On Second-Order Scoring Rules for Epistemic Uncertainty Quantification
It is well known that accurate probabilistic predictors can be trained through empirical risk minimisation with proper scoring rules as loss functions. While such learners capture so-called aleatoric uncertainty of predictions, various machine learning methods have recently been developed with the goal to let the learner also represent its epistemic uncertainty, i.e., the uncertainty caused by a lack of knowledge and data. An emerging branch of the literature proposes the use of a second-order learner that provides predictions in terms of distributions on probability distributions. However, recent work has revealed serious theoretical shortcomings for second-order predictors based on loss minimisation. In this paper, we generalise these findings and prove a more fundamental result: There seems to be no loss function that provides an incentive for a second-order learner to faithfully represent its epistemic uncertainty in the same manner as proper scoring rules do for standard (first-order) learners. As a main mathematical tool to prove this result, we introduce the generalised notion of second-order scoring rules.
SymbolicGPT: A Generative Transformer Model for Symbolic Regression
Symbolic regression is the task of identifying a mathematical expression that best fits a provided dataset of input and output values. Due to the richness of the space of mathematical expressions, symbolic regression is generally a challenging problem. While conventional approaches based on genetic evolution algorithms have been used for decades, deep learning-based methods are relatively new and an active research area. In this work, we present SymbolicGPT, a novel transformer-based language model for symbolic regression. This model exploits the advantages of probabilistic language models like GPT, including strength in performance and flexibility. Through comprehensive experiments, we show that our model performs strongly compared to competing models with respect to the accuracy, running time, and data efficiency.
Statistical Methods in Generative AI
Generative Artificial Intelligence is emerging as an important technology, promising to be transformative in many areas. At the same time, generative AI techniques are based on sampling from probabilistic models, and by default, they come with no guarantees about correctness, safety, fairness, or other properties. Statistical methods offer a promising potential approach to improve the reliability of generative AI techniques. In addition, statistical methods are also promising for improving the quality and efficiency of AI evaluation, as well as for designing interventions and experiments in AI. In this paper, we review some of the existing work on these topics, explaining both the general statistical techniques used, as well as their applications to generative AI. We also discuss limitations and potential future directions.
Some Questions of Uniformity in Algorithmic Randomness
The Omega numbers-the halting probabilities of universal prefix-free machines-are known to be exactly the Martin-L{\"o}f random left-c.e. reals. We show that one cannot uniformly produce, from a Martin-L{\"o}f random left-c.e. real alpha, a universal prefix-free machine U whose halting probability is alpha. We also answer a question of Barmpalias and Lewis-Pye by showing that given a left-c.e. real alpha, one cannot uniformly produce a left-c.e. real beta such that alpha -- beta is neither left-c.e. nor right-c.e.
Evaluating Language Models for Mathematics through Interactions
The standard methodology of evaluating large language models (LLMs) based on static pairs of inputs and outputs is insufficient for developing assistants: this kind of assessments fails to take into account the essential interactive element in their deployment, and therefore limits how we understand language model capabilities. We introduce CheckMate, an adaptable prototype platform for humans to interact with and evaluate LLMs. We conduct a study with CheckMate to evaluate three language models~(InstructGPT, ChatGPT, and GPT-4) as assistants in proving undergraduate-level mathematics, with a mixed cohort of participants from undergraduate students to professors of mathematics. We release the resulting interaction and rating dataset, MathConverse. By analysing MathConverse, we derive a preliminary taxonomy of human behaviours and uncover that despite a generally positive correlation, there are notable instances of divergence between correctness and perceived helpfulness in LLM generations, amongst other findings. Further, we identify useful scenarios and existing issues of GPT-4 in mathematical reasoning through a series of case studies contributed by expert mathematicians. We conclude with actionable takeaways for ML practitioners and mathematicians: models which communicate uncertainty, respond well to user corrections, are more interpretable and concise may constitute better assistants; interactive evaluation is a promising way to continually navigate the capability of these models; humans should be aware of language models' algebraic fallibility, and for that reason discern where they should be used.
Experimental Support for a Categorical Compositional Distributional Model of Meaning
Modelling compositional meaning for sentences using empirical distributional methods has been a challenge for computational linguists. We implement the abstract categorical model of Coecke et al. (arXiv:1003.4394v1 [cs.CL]) using data from the BNC and evaluate it. The implementation is based on unsupervised learning of matrices for relational words and applying them to the vectors of their arguments. The evaluation is based on the word disambiguation task developed by Mitchell and Lapata (2008) for intransitive sentences, and on a similar new experiment designed for transitive sentences. Our model matches the results of its competitors in the first experiment, and betters them in the second. The general improvement in results with increase in syntactic complexity showcases the compositional power of our model.
Teaching Probabilistic Logical Reasoning to Transformers
In this paper, we evaluate the capability of transformer-based language models in making inferences over uncertain text that includes uncertain rules of reasoning. We cover both Pre-trained Language Models (PLMs) and generative Large Language Models (LLMs). Our evaluation results show that both generations of language models struggle with reasoning over uncertain text. We propose a novel end-to-end fine-tuning approach, Probabilistic Constraint Training (PCT), that utilizes probabilistic logical rules as constraints in the fine-tuning phase without relying on these rules in the inference stage. To assess the effectiveness of PCT, we utilize the related corpora and, additionally, create a new and more challenging benchmark that, unlike the previous ones, uses instance-specific rules. Our study demonstrates that PCT improves the transformer-based language model's intrinsic reasoning and makes their probabilistic logical reasoning process more explicit and explainable. Furthermore, PCT equips these models to effectively handle novel situations, including higher reasoning depth, new domains, and complex probabilistic structures.
Pair Programming with Large Language Models for Sampling and Estimation of Copulas
Without writing a single line of code by a human, an example Monte Carlo simulation based application for stochastic dependence modeling with copulas is developed using a state-of-the-art large language model (LLM) fine-tuned for conversations. This includes interaction with ChatGPT in natural language and using mathematical formalism, which, under careful supervision by a human-expert, led to producing a working code in MATLAB, Python and R for sampling from a given copula model, evaluation of the model's density, performing maximum likelihood estimation, optimizing the code for parallel computing for CPUs as well as for GPUs, and visualization of the computed results. In contrast to other emerging studies that assess the accuracy of LLMs like ChatGPT on tasks from a selected area, this work rather investigates ways how to achieve a successful solution of a standard statistical task in a collaboration of a human-expert and artificial intelligence (AI). Particularly, through careful prompt engineering, we separate successful solutions generated by ChatGPT from unsuccessful ones, resulting in a comprehensive list of related pros and cons. It is demonstrated that if the typical pitfalls are avoided, we can substantially benefit from collaborating with an AI partner. For example, we show that if ChatGPT is not able to provide a correct solution due to a lack of or incorrect knowledge, the human-expert can feed it with the correct knowledge, e.g., in the form of mathematical theorems and formulas, and make it to apply the gained knowledge in order to provide a solution that is correct. Such ability presents an attractive opportunity to achieve a programmed solution even for users with rather limited knowledge of programming techniques.
A Baseline for Detecting Misclassified and Out-of-Distribution Examples in Neural Networks
We consider the two related problems of detecting if an example is misclassified or out-of-distribution. We present a simple baseline that utilizes probabilities from softmax distributions. Correctly classified examples tend to have greater maximum softmax probabilities than erroneously classified and out-of-distribution examples, allowing for their detection. We assess performance by defining several tasks in computer vision, natural language processing, and automatic speech recognition, showing the effectiveness of this baseline across all. We then show the baseline can sometimes be surpassed, demonstrating the room for future research on these underexplored detection tasks.
Modeling Inter-Dependence Between Time and Mark in Multivariate Temporal Point Processes
Temporal Point Processes (TPP) are probabilistic generative frameworks. They model discrete event sequences localized in continuous time. Generally, real-life events reveal descriptive information, known as marks. Marked TPPs model time and marks of the event together for practical relevance. Conditioned on past events, marked TPPs aim to learn the joint distribution of the time and the mark of the next event. For simplicity, conditionally independent TPP models assume time and marks are independent given event history. They factorize the conditional joint distribution of time and mark into the product of individual conditional distributions. This structural limitation in the design of TPP models hurt the predictive performance on entangled time and mark interactions. In this work, we model the conditional inter-dependence of time and mark to overcome the limitations of conditionally independent models. We construct a multivariate TPP conditioning the time distribution on the current event mark in addition to past events. Besides the conventional intensity-based models for conditional joint distribution, we also draw on flexible intensity-free TPP models from the literature. The proposed TPP models outperform conditionally independent and dependent models in standard prediction tasks. Our experimentation on various datasets with multiple evaluation metrics highlights the merit of the proposed approach.
Measuring Reasoning Utility in LLMs via Conditional Entropy Reduction
Recent advancements in large language models (LLMs) often rely on generating intermediate reasoning steps to enhance accuracy. However, little work has examined how reasoning utility contributes to the final answer's correctness. Due to the stochastic nature of autoregressive generation, generating more context does not guarantee increased confidence in the answer. If we could predict, during generation, whether a reasoning step will be useful, we could stop early or prune ineffective steps, avoiding distractions in the final decision. We present an oracle study on MATH dataset, using Qwen2.5-32B and GPT-4o to generate reasoning chains, and then employing a separate model (Qwen3-8B) to quantify the utility of these chains for final accuracy. Specifically, we measure the model's uncertainty on the answer span Y at each reasoning step using conditional entropy (expected negative log-likelihood over the vocabulary) with context expanding step by step. Our results show a clear pattern: conditional entropy that decreases over steps is strongly associated with correct answers, whereas flat or increasing entropy often results in wrong answers. We also corroborate that incorrect reasoning paths tend to be longer than correct ones, suggesting that longer reasoning does not necessarily yield better outcomes. These findings serve as a foundation to inspire future work on designing efficient reasoning pipelines that detect and avoid unproductive reasoning early.
Why think step by step? Reasoning emerges from the locality of experience
Humans have a powerful and mysterious capacity to reason. By working through a series of purely mental steps, we can make inferences we would not be capable of making directly -- despite the fact that we get no additional data from the world. Similarly, when large language models generate a series of intermediate steps (a chain of thought) before answering a question, they often produce better answers than they otherwise would. We investigate why and how chain-of-thought reasoning is useful in language models, testing the hypothesis that reasoning is effective when training data consists of local clusters of variables that influence each other strongly. These training conditions enable the chaining of accurate local inferences in order to estimate relationships between variables that were not seen together in training. We prove that there will exist a "reasoning gap", where reasoning through intermediate variables improves inference, for the simple case of an autoregressive density estimator trained on local samples from a chain-structured probabilistic model. We then test our hypothesis empirically in more complex models, training an autoregressive language model on samples from Bayes nets but only including a subset of variables in each sample. We test language models' ability to match conditional probabilities with and without intermediate reasoning steps, finding that intermediate steps are only helpful when the training data is locally structured with respect to dependencies between variables and that the combination of locally-structured observations and reasoning is much more data-efficient than training on all variables. Our results illustrate how the effectiveness of reasoning step by step is rooted in the local statistical structure of the training data.
Lines of Thought in Large Language Models
Large Language Models achieve next-token prediction by transporting a vectorized piece of text (prompt) across an accompanying embedding space under the action of successive transformer layers. The resulting high-dimensional trajectories realize different contextualization, or 'thinking', steps, and fully determine the output probability distribution. We aim to characterize the statistical properties of ensembles of these 'lines of thought.' We observe that independent trajectories cluster along a low-dimensional, non-Euclidean manifold, and that their path can be well approximated by a stochastic equation with few parameters extracted from data. We find it remarkable that the vast complexity of such large models can be reduced to a much simpler form, and we reflect on implications.
A Latent Space Theory for Emergent Abilities in Large Language Models
Languages are not created randomly but rather to communicate information. There is a strong association between languages and their underlying meanings, resulting in a sparse joint distribution that is heavily peaked according to their correlations. Moreover, these peak values happen to match with the marginal distribution of languages due to the sparsity. With the advent of LLMs trained on big data and large models, we can now precisely assess the marginal distribution of languages, providing a convenient means of exploring the sparse structures in the joint distribution for effective inferences. In this paper, we categorize languages as either unambiguous or {\epsilon}-ambiguous and present quantitative results to demonstrate that the emergent abilities of LLMs, such as language understanding, in-context learning, chain-of-thought prompting, and effective instruction fine-tuning, can all be attributed to Bayesian inference on the sparse joint distribution of languages.
Regions of Reliability in the Evaluation of Multivariate Probabilistic Forecasts
Multivariate probabilistic time series forecasts are commonly evaluated via proper scoring rules, i.e., functions that are minimal in expectation for the ground-truth distribution. However, this property is not sufficient to guarantee good discrimination in the non-asymptotic regime. In this paper, we provide the first systematic finite-sample study of proper scoring rules for time-series forecasting evaluation. Through a power analysis, we identify the "region of reliability" of a scoring rule, i.e., the set of practical conditions where it can be relied on to identify forecasting errors. We carry out our analysis on a comprehensive synthetic benchmark, specifically designed to test several key discrepancies between ground-truth and forecast distributions, and we gauge the generalizability of our findings to real-world tasks with an application to an electricity production problem. Our results reveal critical shortcomings in the evaluation of multivariate probabilistic forecasts as commonly performed in the literature.
Analysing Mathematical Reasoning Abilities of Neural Models
Mathematical reasoning---a core ability within human intelligence---presents some unique challenges as a domain: we do not come to understand and solve mathematical problems primarily on the back of experience and evidence, but on the basis of inferring, learning, and exploiting laws, axioms, and symbol manipulation rules. In this paper, we present a new challenge for the evaluation (and eventually the design) of neural architectures and similar system, developing a task suite of mathematics problems involving sequential questions and answers in a free-form textual input/output format. The structured nature of the mathematics domain, covering arithmetic, algebra, probability and calculus, enables the construction of training and test splits designed to clearly illuminate the capabilities and failure-modes of different architectures, as well as evaluate their ability to compose and relate knowledge and learned processes. Having described the data generation process and its potential future expansions, we conduct a comprehensive analysis of models from two broad classes of the most powerful sequence-to-sequence architectures and find notable differences in their ability to resolve mathematical problems and generalize their knowledge.
From Aleatoric to Epistemic: Exploring Uncertainty Quantification Techniques in Artificial Intelligence
Uncertainty quantification (UQ) is a critical aspect of artificial intelligence (AI) systems, particularly in high-risk domains such as healthcare, autonomous systems, and financial technology, where decision-making processes must account for uncertainty. This review explores the evolution of uncertainty quantification techniques in AI, distinguishing between aleatoric and epistemic uncertainties, and discusses the mathematical foundations and methods used to quantify these uncertainties. We provide an overview of advanced techniques, including probabilistic methods, ensemble learning, sampling-based approaches, and generative models, while also highlighting hybrid approaches that integrate domain-specific knowledge. Furthermore, we examine the diverse applications of UQ across various fields, emphasizing its impact on decision-making, predictive accuracy, and system robustness. The review also addresses key challenges such as scalability, efficiency, and integration with explainable AI, and outlines future directions for research in this rapidly developing area. Through this comprehensive survey, we aim to provide a deeper understanding of UQ's role in enhancing the reliability, safety, and trustworthiness of AI systems.
Physics of Language Models: Part 2.1, Grade-School Math and the Hidden Reasoning Process
Recent advances in language models have demonstrated their capability to solve mathematical reasoning problems, achieving near-perfect accuracy on grade-school level math benchmarks like GSM8K. In this paper, we formally study how language models solve these problems. We design a series of controlled experiments to address several fundamental questions: (1) Can language models truly develop reasoning skills, or do they simply memorize templates? (2) What is the model's hidden (mental) reasoning process? (3) Do models solve math questions using skills similar to or different from humans? (4) Do models trained on GSM8K-like datasets develop reasoning skills beyond those necessary for solving GSM8K problems? (5) What mental process causes models to make reasoning mistakes? (6) How large or deep must a model be to effectively solve GSM8K-level math questions? Our study uncovers many hidden mechanisms by which language models solve mathematical questions, providing insights that extend beyond current understandings of LLMs.
Uncertainty is Fragile: Manipulating Uncertainty in Large Language Models
Large Language Models (LLMs) are employed across various high-stakes domains, where the reliability of their outputs is crucial. One commonly used method to assess the reliability of LLMs' responses is uncertainty estimation, which gauges the likelihood of their answers being correct. While many studies focus on improving the accuracy of uncertainty estimations for LLMs, our research investigates the fragility of uncertainty estimation and explores potential attacks. We demonstrate that an attacker can embed a backdoor in LLMs, which, when activated by a specific trigger in the input, manipulates the model's uncertainty without affecting the final output. Specifically, the proposed backdoor attack method can alter an LLM's output probability distribution, causing the probability distribution to converge towards an attacker-predefined distribution while ensuring that the top-1 prediction remains unchanged. Our experimental results demonstrate that this attack effectively undermines the model's self-evaluation reliability in multiple-choice questions. For instance, we achieved a 100 attack success rate (ASR) across three different triggering strategies in four models. Further, we investigate whether this manipulation generalizes across different prompts and domains. This work highlights a significant threat to the reliability of LLMs and underscores the need for future defenses against such attacks. The code is available at https://github.com/qcznlp/uncertainty_attack.
BoxingGym: Benchmarking Progress in Automated Experimental Design and Model Discovery
Understanding the world and explaining it with scientific theories is a central aspiration of artificial intelligence research. Proposing theories, designing experiments to test them, and then revising them based on data are fundamental to scientific discovery. Despite the significant promise of LLM-based scientific agents, no benchmarks systematically test LLM's ability to propose scientific models, collect experimental data, and revise them in light of new data. We introduce BoxingGym, a benchmark with 10 environments for systematically evaluating both experimental design (e.g. collecting data to test a scientific theory) and model discovery (e.g. proposing and revising scientific theories). To enable tractable and quantitative evaluation, we implement each environment as a generative probabilistic model with which a scientific agent can run interactive experiments. These probabilistic models are drawn from various real-world scientific domains ranging from psychology to ecology. To quantitatively evaluate a scientific agent's ability to collect informative experimental data, we compute the expected information gain (EIG), an information-theoretic quantity which measures how much an experiment reduces uncertainty about the parameters of a generative model. A good scientific theory is a concise and predictive explanation. Therefore, to quantitatively evaluate model discovery, we ask a scientific agent to explain their model and then assess whether this explanation enables another scientific agent to make reliable predictions about this environment. In addition to this explanation-based evaluation, we compute standard model evaluation metrics such as prediction errors. We find that current LLMs, such as GPT-4o, struggle with both experimental design and model discovery. We find that augmenting the LLM-based agent with an explicit statistical model does not reliably improve these results.
Language Model Decoding as Likelihood-Utility Alignment
A critical component of a successful language generation pipeline is the decoding algorithm. However, the general principles that should guide the choice of decoding algorithm remain unclear. Previous works only compare decoding algorithms in narrow scenarios and their findings do not generalize across tasks. To better structure the discussion, we introduce a taxonomy that groups decoding strategies based on their implicit assumptions about how well the model's likelihood is aligned with the task-specific notion of utility. We argue that this taxonomy allows a broader view of the decoding problem and can lead to generalizable statements because it is grounded on the interplay between the decoding algorithms and the likelihood-utility misalignment. Specifically, by analyzing the correlation between the likelihood and the utility of predictions across a diverse set of tasks, we provide the first empirical evidence supporting the proposed taxonomy, and a set of principles to structure reasoning when choosing a decoding algorithm. Crucially, our analysis is the first one to relate likelihood-based decoding strategies with strategies that rely on external information such as value-guided methods and prompting, and covers the most diverse set of tasks up-to-date.
Large Language Model-Powered Smart Contract Vulnerability Detection: New Perspectives
This paper provides a systematic analysis of the opportunities, challenges, and potential solutions of harnessing Large Language Models (LLMs) such as GPT-4 to dig out vulnerabilities within smart contracts based on our ongoing research. For the task of smart contract vulnerability detection, achieving practical usability hinges on identifying as many true vulnerabilities as possible while minimizing the number of false positives. Nonetheless, our empirical study reveals contradictory yet interesting findings: generating more answers with higher randomness largely boosts the likelihood of producing a correct answer but inevitably leads to a higher number of false positives. To mitigate this tension, we propose an adversarial framework dubbed GPTLens that breaks the conventional one-stage detection into two synergistic stages - generation and discrimination, for progressive detection and refinement, wherein the LLM plays dual roles, i.e., auditor and critic, respectively. The goal of auditor is to yield a broad spectrum of vulnerabilities with the hope of encompassing the correct answer, whereas the goal of critic that evaluates the validity of identified vulnerabilities is to minimize the number of false positives. Experimental results and illustrative examples demonstrate that auditor and critic work together harmoniously to yield pronounced improvements over the conventional one-stage detection. GPTLens is intuitive, strategic, and entirely LLM-driven without relying on specialist expertise in smart contracts, showcasing its methodical generality and potential to detect a broad spectrum of vulnerabilities. Our code is available at: https://github.com/git-disl/GPTLens.
MathPrompter: Mathematical Reasoning using Large Language Models
Large Language Models (LLMs) have limited performance when solving arithmetic reasoning tasks and often provide incorrect answers. Unlike natural language understanding, math problems typically have a single correct answer, making the task of generating accurate solutions more challenging for LLMs. To the best of our knowledge, we are not aware of any LLMs that indicate their level of confidence in their responses which fuels a trust deficit in these models impeding their adoption. To address this deficiency, we propose `MathPrompter', a technique that improves performance of LLMs on arithmetic problems along with increased reliance in the predictions. MathPrompter uses the Zero-shot chain-of-thought prompting technique to generate multiple Algebraic expressions or Python functions to solve the same math problem in different ways and thereby raise the confidence level in the output results. This is in contrast to other prompt based CoT methods, where there is no check on the validity of the intermediate steps followed. Our technique improves over state-of-the-art on the MultiArith dataset (78.7%rightarrow92.5%) evaluated using 175B parameter GPT-based LLM.
A synthetic approach to Markov kernels, conditional independence and theorems on sufficient statistics
We develop Markov categories as a framework for synthetic probability and statistics, following work of Golubtsov as well as Cho and Jacobs. This means that we treat the following concepts in purely abstract categorical terms: conditioning and disintegration; various versions of conditional independence and its standard properties; conditional products; almost surely; sufficient statistics; versions of theorems on sufficient statistics due to Fisher--Neyman, Basu, and Bahadur. Besides the conceptual clarity offered by our categorical setup, its main advantage is that it provides a uniform treatment of various types of probability theory, including discrete probability theory, measure-theoretic probability with general measurable spaces, Gaussian probability, stochastic processes of either of these kinds, and many others.
HellaSwag-Pro: A Large-Scale Bilingual Benchmark for Evaluating the Robustness of LLMs in Commonsense Reasoning
Large language models (LLMs) have shown remarkable capabilities in commonsense reasoning; however, some variations in questions can trigger incorrect responses. Do these models truly understand commonsense knowledge, or just memorize expression patterns? To investigate this question, we present the first extensive robustness evaluation of LLMs in commonsense reasoning. We introduce HellaSwag-Pro, a large-scale bilingual benchmark consisting of 11,200 cases, by designing and compiling seven types of question variants. To construct this benchmark, we propose a two-stage method to develop Chinese HellaSwag, a finely annotated dataset comprising 12,000 instances across 56 categories. We conduct extensive experiments on 41 representative LLMs, revealing that these LLMs are far from robust in commonsense reasoning. Furthermore, this robustness varies depending on the language in which the LLM is tested. This work establishes a high-quality evaluation benchmark, with extensive experiments offering valuable insights to the community in commonsense reasoning for LLMs.
Delving into the Utilisation of ChatGPT in Scientific Publications in Astronomy
Rapid progress in the capabilities of machine learning approaches in natural language processing has culminated in the rise of large language models over the last two years. Recent works have shown unprecedented adoption of these for academic writing, especially in some fields, but their pervasiveness in astronomy has not been studied sufficiently. To remedy this, we extract words that ChatGPT uses more often than humans when generating academic text and search a total of 1 million articles for them. This way, we assess the frequency of word occurrence in published works in astronomy tracked by the NASA Astrophysics Data System since 2000. We then perform a statistical analysis of the occurrences. We identify a list of words favoured by ChatGPT and find a statistically significant increase for these words against a control group in 2024, which matches the trend in other disciplines. These results suggest a widespread adoption of these models in the writing of astronomy papers. We encourage organisations, publishers, and researchers to work together to identify ethical and pragmatic guidelines to maximise the benefits of these systems while maintaining scientific rigour.
Martingale Posterior Neural Processes
A Neural Process (NP) estimates a stochastic process implicitly defined with neural networks given a stream of data, rather than pre-specifying priors already known, such as Gaussian processes. An ideal NP would learn everything from data without any inductive biases, but in practice, we often restrict the class of stochastic processes for the ease of estimation. One such restriction is the use of a finite-dimensional latent variable accounting for the uncertainty in the functions drawn from NPs. Some recent works show that this can be improved with more "data-driven" source of uncertainty such as bootstrapping. In this work, we take a different approach based on the martingale posterior, a recently developed alternative to Bayesian inference. For the martingale posterior, instead of specifying prior-likelihood pairs, a predictive distribution for future data is specified. Under specific conditions on the predictive distribution, it can be shown that the uncertainty in the generated future data actually corresponds to the uncertainty of the implicitly defined Bayesian posteriors. Based on this result, instead of assuming any form of the latent variables, we equip a NP with a predictive distribution implicitly defined with neural networks and use the corresponding martingale posteriors as the source of uncertainty. The resulting model, which we name as Martingale Posterior Neural Process (MPNP), is demonstrated to outperform baselines on various tasks.
Accelerating LLM Reasoning via Early Rejection with Partial Reward Modeling
Large Language Models (LLMs) are increasingly relied upon for solving complex reasoning tasks in domains such as mathematics, logic, and multi-step question answering. A growing line of work seeks to improve reasoning quality by scaling inference time compute particularly through Process Reward Models (PRMs), used to reward the reasoning at intermediate steps. While effective, these methods introduce substantial computational overhead, especially when generating large numbers of solutions in parallel. In this paper, we investigate whether PRMs can be used mid-generation to provide early signals that enable the rejection of suboptimal candidates before full generation of step is complete. We introduce the hypothesis that PRMs are also Partial Reward Models, meaning that the scores they assign to partially completed reasoning step are predictive of final output quality. This allows for principled early rejection based on intermediate token-level signals. We support this hypothesis both theoretically, by proving that the risk of discarding optimal beams decreases exponentially with generation length and empirically, by demonstrating a strong correlation between partial and final rewards across multiple reward models. On math reasoning benchmarks, our method achieves up to 1.4times-9times reduction in inference FLOPs without degrading final performance. These results suggest that early rejection is a powerful mechanism for improving the compute-efficiency of reasoning in LLMs.
Deterministic or probabilistic? The psychology of LLMs as random number generators
Large Language Models (LLMs) have transformed text generation through inherently probabilistic context-aware mechanisms, mimicking human natural language. In this paper, we systematically investigate the performance of various LLMs when generating random numbers, considering diverse configurations such as different model architectures, numerical ranges, temperature, and prompt languages. Our results reveal that, despite their stochastic transformers-based architecture, these models often exhibit deterministic responses when prompted for random numerical outputs. In particular, we find significant differences when changing the model, as well as the prompt language, attributing this phenomenon to biases deeply embedded within the training data. Models such as DeepSeek-R1 can shed some light on the internal reasoning process of LLMs, despite arriving to similar results. These biases induce predictable patterns that undermine genuine randomness, as LLMs are nothing but reproducing our own human cognitive biases.
Token-Supervised Value Models for Enhancing Mathematical Reasoning Capabilities of Large Language Models
Large Language Models (LLMs) have demonstrated impressive problem-solving capabilities in mathematics through step-by-step reasoning chains. However, they are susceptible to reasoning errors that impact the quality of subsequent reasoning chains and the final answer due to language models' autoregressive token-by-token generating nature. Recent works have proposed adopting external verifiers to guide the generation of reasoning paths, but existing works utilize models that have been trained with step-by-step labels to assess the correctness of token-by-token reasoning chains. Consequently, they struggle to recognize discriminative details of tokens within a reasoning path and lack the ability to evaluate whether an intermediate reasoning path is on a promising track toward the correct final answer. To amend the lack of sound and token-grained math-verification signals, we devise a novel training scheme for verifiers that apply token-level supervision with the expected cumulative reward (i.e., value). Furthermore, we propose a practical formulation of the cumulative reward by reducing it to finding the probability of future correctness of the final answer and thereby enabling the empirical estimation of the value. Experimental results on mathematical reasoning benchmarks show that Token-Supervised Value Model (TVM) can outperform step-by-step verifiers on GSM8K and MATH with Mistral and Llama.
The Goldilocks of Pragmatic Understanding: Fine-Tuning Strategy Matters for Implicature Resolution by LLMs
Despite widespread use of LLMs as conversational agents, evaluations of performance fail to capture a crucial aspect of communication: interpreting language in context -- incorporating its pragmatics. Humans interpret language using beliefs and prior knowledge about the world. For example, we intuitively understand the response "I wore gloves" to the question "Did you leave fingerprints?" as meaning "No". To investigate whether LLMs have the ability to make this type of inference, known as an implicature, we design a simple task and evaluate four categories of widely used state-of-the-art models. We find that, despite only evaluating on utterances that require a binary inference (yes or no), models in three of these categories perform close to random. However, LLMs instruction-tuned at the example-level perform significantly better. These results suggest that certain fine-tuning strategies are far better at inducing pragmatic understanding in models. We present our findings as the starting point for further research into evaluating how LLMs interpret language in context and to drive the development of more pragmatic and useful models of human discourse.
Mapping 'when'-clauses in Latin American and Caribbean languages: an experiment in subtoken-based typology
Languages can encode temporal subordination lexically, via subordinating conjunctions, and morphologically, by marking the relation on the predicate. Systematic cross-linguistic variation among the former can be studied using well-established token-based typological approaches to token-aligned parallel corpora. Variation among different morphological means is instead much harder to tackle and therefore more poorly understood, despite being predominant in several language groups. This paper explores variation in the expression of generic temporal subordination ('when'-clauses) among the languages of Latin America and the Caribbean, where morphological marking is particularly common. It presents probabilistic semantic maps computed on the basis of the languages of the region, thus avoiding bias towards the many world's languages that exclusively use lexified connectors, incorporating associations between character n-grams and English when. The approach allows capturing morphological clause-linkage devices in addition to lexified connectors, paving the way for larger-scale, strategy-agnostic analyses of typological variation in temporal subordination.
Syllabification of the Divine Comedy
We provide a syllabification algorithm for the Divine Comedy using techniques from probabilistic and constraint programming. We particularly focus on the synalephe, addressed in terms of the "propensity" of a word to take part in a synalephe with adjacent words. We jointly provide an online vocabulary containing, for each word, information about its syllabification, the location of the tonic accent, and the aforementioned synalephe propensity, on the left and right sides. The algorithm is intrinsically nondeterministic, producing different possible syllabifications for each verse, with different likelihoods; metric constraints relative to accents on the 10th, 4th and 6th syllables are used to further reduce the solution space. The most likely syllabification is hence returned as output. We believe that this work could be a major milestone for a lot of different investigations. From the point of view of digital humanities it opens new perspectives on computer assisted analysis of digital sources, comprising automated detection of anomalous and problematic cases, metric clustering of verses and their categorization, or more foundational investigations addressing e.g. the phonetic roles of consonants and vowels. From the point of view of text processing and deep learning, information about syllabification and the location of accents opens a wide range of exciting perspectives, from the possibility of automatic learning syllabification of words and verses, to the improvement of generative models, aware of metric issues, and more respectful of the expected musicality.
Automatically Marginalized MCMC in Probabilistic Programming
Hamiltonian Monte Carlo (HMC) is a powerful algorithm to sample latent variables from Bayesian models. The advent of probabilistic programming languages (PPLs) frees users from writing inference algorithms and lets users focus on modeling. However, many models are difficult for HMC to solve directly, and often require tricks like model reparameterization. We are motivated by the fact that many of those models could be simplified by marginalization. We propose to use automatic marginalization as part of the sampling process using HMC in a graphical model extracted from a PPL, which substantially improves sampling from real-world hierarchical models.
On The Truthfulness of 'Surprisingly Likely' Responses of Large Language Models
The surprisingly likely criterion in the seminal work of Prelec (the Bayesian Truth Serum) guarantees truthfulness in a game-theoretic multi-agent setting, by rewarding rational agents to maximise the expected information gain with their answers w.r.t. their probabilistic beliefs. We investigate the relevance of a similar criterion for responses of LLMs. We hypothesize that if the surprisingly likely criterion works in LLMs, under certain conditions, the responses that maximize the reward under this criterion should be more accurate than the responses that only maximize the posterior probability. Using benchmarks including the TruthfulQA benchmark and using openly available LLMs: GPT-2 and LLaMA-2, we show that the method indeed improves the accuracy significantly (for example, upto 24 percentage points aggregate improvement on TruthfulQA and upto 70 percentage points improvement on individual categories of questions).
Borch: A Deep Universal Probabilistic Programming Language
Ever since the Multilayered Perceptron was first introduced the connectionist community has struggled with the concept of uncertainty and how this could be represented in these types of models. This past decade has seen a lot of effort in trying to join the principled approach of probabilistic modeling with the scalable nature of deep neural networks. While the theoretical benefits of this consolidation are clear, there are also several important practical aspects of these endeavors; namely to force the models we create to represent, learn, and report uncertainty in every prediction that is made. Many of these efforts have been based on extending existing frameworks with additional structures. We present Borch, a scalable deep universal probabilistic programming language, built on top of PyTorch. The code is available for download and use in our repository https://gitlab.com/desupervised/borch.
Arithmetic Reasoning with LLM: Prolog Generation & Permutation
Instructing large language models (LLMs) to solve elementary school math problems has shown great success using Chain of Thought (CoT). However, the CoT approach relies on an LLM to generate a sequence of arithmetic calculations which can be prone to cascaded calculation errors. We hypothesize that an LLM should focus on extracting predicates and generating symbolic formulas from the math problem description so that the underlying calculation can be done via an external code interpreter. We investigate using LLM to generate Prolog programs to solve mathematical questions. Experimental results show that our Prolog-based arithmetic problem-solving outperforms CoT generation in the GSM8K benchmark across three distinct LLMs. In addition, given the insensitive ordering of predicates and symbolic formulas in Prolog, we propose to permute the ground truth predicates for more robust LLM training via data augmentation.
Universal Online Learning with Unbounded Losses: Memory Is All You Need
We resolve an open problem of Hanneke on the subject of universally consistent online learning with non-i.i.d. processes and unbounded losses. The notion of an optimistically universal learning rule was defined by Hanneke in an effort to study learning theory under minimal assumptions. A given learning rule is said to be optimistically universal if it achieves a low long-run average loss whenever the data generating process makes this goal achievable by some learning rule. Hanneke posed as an open problem whether, for every unbounded loss, the family of processes admitting universal learning are precisely those having a finite number of distinct values almost surely. In this paper, we completely resolve this problem, showing that this is indeed the case. As a consequence, this also offers a dramatically simpler formulation of an optimistically universal learning rule for any unbounded loss: namely, the simple memorization rule already suffices. Our proof relies on constructing random measurable partitions of the instance space and could be of independent interest for solving other open questions. We extend the results to the non-realizable setting thereby providing an optimistically universal Bayes consistent learning rule.
Blackbox Model Provenance via Palimpsestic Membership Inference
Suppose Alice trains an open-weight language model and Bob uses a blackbox derivative of Alice's model to produce text. Can Alice prove that Bob is using her model, either by querying Bob's derivative model (query setting) or from the text alone (observational setting)? We formulate this question as an independence testing problem--in which the null hypothesis is that Bob's model or text is independent of Alice's randomized training run--and investigate it through the lens of palimpsestic memorization in language models: models are more likely to memorize data seen later in training, so we can test whether Bob is using Alice's model using test statistics that capture correlation between Bob's model or text and the ordering of training examples in Alice's training run. If Alice has randomly shuffled her training data, then any significant correlation amounts to exactly quantifiable statistical evidence against the null hypothesis, regardless of the composition of Alice's training data. In the query setting, we directly estimate (via prompting) the likelihood Bob's model gives to Alice's training examples and order; we correlate the likelihoods of over 40 fine-tunes of various Pythia and OLMo base models ranging from 1B to 12B parameters with the base model's training data order, achieving a p-value on the order of at most 1e-8 in all but six cases. In the observational setting, we try two approaches based on estimating 1) the likelihood of Bob's text overlapping with spans of Alice's training examples and 2) the likelihood of Bob's text with respect to different versions of Alice's model we obtain by repeating the last phase (e.g., 1%) of her training run on reshuffled data. The second approach can reliably distinguish Bob's text from as little as a few hundred tokens; the first does not involve any retraining but requires many more tokens (several hundred thousand) to achieve high power.
Counterfactual Generation from Language Models
Understanding and manipulating the causal generation mechanisms in language models is essential for controlling their behavior. Previous work has primarily relied on techniques such as representation surgery -- e.g., model ablations or manipulation of linear subspaces tied to specific concepts -- to intervene on these models. To understand the impact of interventions precisely, it is useful to examine counterfactuals -- e.g., how a given sentence would have appeared had it been generated by the model following a specific intervention. We highlight that counterfactual reasoning is conceptually distinct from interventions, as articulated in Pearl's causal hierarchy. Based on this observation, we propose a framework for generating true string counterfactuals by reformulating language models as Generalized Structural-equation. Models using the Gumbel-max trick. This allows us to model the joint distribution over original strings and their counterfactuals resulting from the same instantiation of the sampling noise. We develop an algorithm based on hindsight Gumbel sampling that allows us to infer the latent noise variables and generate counterfactuals of observed strings. Our experiments demonstrate that the approach produces meaningful counterfactuals while at the same time showing that commonly used intervention techniques have considerable undesired side effects.
Rolling the DICE on Idiomaticity: How LLMs Fail to Grasp Context
Human processing of idioms relies on understanding the contextual sentences in which idioms occur, as well as language-intrinsic features such as frequency and speaker-intrinsic factors like familiarity. While LLMs have shown high performance on idiomaticity detection tasks, this success may be attributed to reasoning shortcuts in existing datasets. To this end, we construct a novel, controlled contrastive dataset designed to test whether LLMs can effectively use context to disambiguate idiomatic meaning. Additionally, we explore how collocational frequency and sentence probability influence model performance. Our findings reveal that LLMs often fail to resolve idiomaticity when it is required to attend to the surrounding context, and that models perform better on sentences that have higher likelihood. The collocational frequency of expressions also impacts performance. We make our code and dataset publicly available.
A Dataset for Statutory Reasoning in Tax Law Entailment and Question Answering
Legislation can be viewed as a body of prescriptive rules expressed in natural language. The application of legislation to facts of a case we refer to as statutory reasoning, where those facts are also expressed in natural language. Computational statutory reasoning is distinct from most existing work in machine reading, in that much of the information needed for deciding a case is declared exactly once (a law), while the information needed in much of machine reading tends to be learned through distributional language statistics. To investigate the performance of natural language understanding approaches on statutory reasoning, we introduce a dataset, together with a legal-domain text corpus. Straightforward application of machine reading models exhibits low out-of-the-box performance on our questions, whether or not they have been fine-tuned to the legal domain. We contrast this with a hand-constructed Prolog-based system, designed to fully solve the task. These experiments support a discussion of the challenges facing statutory reasoning moving forward, which we argue is an interesting real-world task that can motivate the development of models able to utilize prescriptive rules specified in natural language.
LogicPro: Improving Complex Logical Reasoning via Program-Guided Learning
In this paper, we present a novel approach, called LogicPro, to enhance Large Language Models (LLMs) complex Logical reasoning through Program Examples. We do this effectively by simply utilizing widely available algorithmic problems and their code solutions. First, we constructed diverse test samples input based on algorithmic questions and code solutions. Then, we designed different complex reasoning questions based on algorithmic problems and test samples. Finally, combining the intermediate variable outputs of the code solutions and the complex reasoning questions, we derived the reasoning process and the final answer. With this approach, we can construct a dataset that is sufficiently difficult (all models are ineffective), diverse (synthesized from 2,360 different algorithmic questions), and scalable (building different test samples and collecting more algorithmic questions). In addition, we obtain a high-quality reasoning process guided by the values of intermediate variables. As a result, our approach achieves significant improvements in multiple models for the BBH^{27}, GSM8K, HellSwag, Logicqa, Reclor, and RTE datasets, outperforming a wide range of existing reasoning datasets.
DetermiNet: A Large-Scale Diagnostic Dataset for Complex Visually-Grounded Referencing using Determiners
State-of-the-art visual grounding models can achieve high detection accuracy, but they are not designed to distinguish between all objects versus only certain objects of interest. In natural language, in order to specify a particular object or set of objects of interest, humans use determiners such as "my", "either" and "those". Determiners, as an important word class, are a type of schema in natural language about the reference or quantity of the noun. Existing grounded referencing datasets place much less emphasis on determiners, compared to other word classes such as nouns, verbs and adjectives. This makes it difficult to develop models that understand the full variety and complexity of object referencing. Thus, we have developed and released the DetermiNet dataset , which comprises 250,000 synthetically generated images and captions based on 25 determiners. The task is to predict bounding boxes to identify objects of interest, constrained by the semantics of the given determiner. We find that current state-of-the-art visual grounding models do not perform well on the dataset, highlighting the limitations of existing models on reference and quantification tasks.
UNCLE: Uncertainty Expressions in Long-Form Generation
Large Language Models (LLMs) are prone to hallucination, particularly in long-form generations. A promising direction to mitigate hallucination is to teach LLMs to express uncertainty explicitly when they lack sufficient knowledge. However, existing work lacks direct and fair evaluation of LLMs' ability to express uncertainty effectively in long-form generation. To address this gap, we first introduce UNCLE, a benchmark designed to evaluate uncertainty expression in both long- and short-form question answering (QA). UNCLE spans five domains and comprises 4k long-form QA instances and over 20k short-form QA pairs. Our dataset is the first to directly bridge short- and long-form QA with paired questions and gold-standard answers. Along with the benchmark, we propose a suite of new metrics to assess the models' capabilities to selectively express uncertainty. Using UNCLE, we then demonstrate that current models fail to convey uncertainty appropriately in long-form generation. We further explore both prompt-based and training-based methods to improve models' performance, with the training-based methods yielding greater gains. Further analysis of alignment gaps between short- and long-form uncertainty expression highlights promising directions for future research using UNCLE.
Pragmatic Reasoning Unlocks Quantifier Semantics for Foundation Models
Generalized quantifiers (e.g., few, most) are used to indicate the proportions predicates are satisfied (for example, some apples are red). One way to interpret quantifier semantics is to explicitly bind these satisfactions with percentage scopes (e.g., 30%-40% of apples are red). This approach can be helpful for tasks like logic formalization and surface-form quantitative reasoning (Gordon and Schubert, 2010; Roy et al., 2015). However, it remains unclear if recent foundation models possess this ability, as they lack direct training signals. To explore this, we introduce QuRe, a crowd-sourced dataset of human-annotated generalized quantifiers in Wikipedia sentences featuring percentage-equipped predicates. We explore quantifier comprehension in language models using PRESQUE, a framework that combines natural language inference and the Rational Speech Acts framework. Experimental results on the HVD dataset and QuRe illustrate that PRESQUE, employing pragmatic reasoning, performs 20% better than a literal reasoning baseline when predicting quantifier percentage scopes, with no additional training required.
Experts Don't Cheat: Learning What You Don't Know By Predicting Pairs
Identifying how much a model {p}_{theta}(Y|X) knows about the stochastic real-world process p(Y|X) it was trained on is important to ensure it avoids producing incorrect or "hallucinated" answers or taking unsafe actions. But this is difficult for generative models because probabilistic predictions do not distinguish between per-response noise (aleatoric uncertainty) and lack of knowledge about the process (epistemic uncertainty), and existing epistemic uncertainty quantification techniques tend to be overconfident when the model underfits. We propose a general strategy for teaching a model to both approximate p(Y|X) and also estimate the remaining gaps between {p}_{theta}(Y|X) and p(Y|X): train it to predict pairs of independent responses drawn from the true conditional distribution, allow it to "cheat" by observing one response while predicting the other, then measure how much it cheats. Remarkably, we prove that being good at cheating (i.e. cheating whenever it improves your prediction) is equivalent to being second-order calibrated, a principled extension of ordinary calibration that allows us to construct provably-correct frequentist confidence intervals for p(Y|X) and detect incorrect responses with high probability. We demonstrate empirically that our approach accurately estimates how much models don't know across ambiguous image classification, (synthetic) language modeling, and partially-observable navigation tasks, outperforming existing techniques.
Attentiveness to Answer Choices Doesn't Always Entail High QA Accuracy
When large language models (LMs) are applied in zero- or few-shot settings to discriminative tasks such as multiple-choice questions, their attentiveness (i.e., probability mass) is spread across many vocabulary tokens that are not valid choices. Such a spread across multiple surface forms with identical meaning is thought to cause an underestimation of a model's true performance, referred to as the "surface form competition" (SFC) hypothesis. This has motivated the introduction of various probability normalization methods. However, many core questions remain unanswered. How do we measure SFC or attentiveness? Are there direct ways of increasing attentiveness on valid choices? Does increasing attentiveness always improve task accuracy? We propose a mathematical formalism for studying this phenomenon, provide a metric for quantifying attentiveness, and identify a simple method for increasing it -- namely, in-context learning with even just one example containing answer choices. The formalism allows us to quantify SFC and bound its impact. Our experiments on three diverse datasets and six LMs reveal several surprising findings. For example, encouraging models to generate a valid answer choice can, in fact, be detrimental to task performance for some LMs, and prior probability normalization methods are less effective (sometimes even detrimental) to instruction-tuned LMs. We conclude with practical insights for effectively using prompted LMs for multiple-choice tasks.
Foundations for Near-Term Quantum Natural Language Processing
We provide conceptual and mathematical foundations for near-term quantum natural language processing (QNLP), and do so in quantum computer scientist friendly terms. We opted for an expository presentation style, and provide references for supporting empirical evidence and formal statements concerning mathematical generality. We recall how the quantum model for natural language that we employ canonically combines linguistic meanings with rich linguistic structure, most notably grammar. In particular, the fact that it takes a quantum-like model to combine meaning and structure, establishes QNLP as quantum-native, on par with simulation of quantum systems. Moreover, the now leading Noisy Intermediate-Scale Quantum (NISQ) paradigm for encoding classical data on quantum hardware, variational quantum circuits, makes NISQ exceptionally QNLP-friendly: linguistic structure can be encoded as a free lunch, in contrast to the apparently exponentially expensive classical encoding of grammar. Quantum speed-up for QNLP tasks has already been established in previous work with Will Zeng. Here we provide a broader range of tasks which all enjoy the same advantage. Diagrammatic reasoning is at the heart of QNLP. Firstly, the quantum model interprets language as quantum processes via the diagrammatic formalism of categorical quantum mechanics. Secondly, these diagrams are via ZX-calculus translated into quantum circuits. Parameterisations of meanings then become the circuit variables to be learned. Our encoding of linguistic structure within quantum circuits also embodies a novel approach for establishing word-meanings that goes beyond the current standards in mainstream AI, by placing linguistic structure at the heart of Wittgenstein's meaning-is-context.
Pitfalls of Epistemic Uncertainty Quantification through Loss Minimisation
Uncertainty quantification has received increasing attention in machine learning in the recent past. In particular, a distinction between aleatoric and epistemic uncertainty has been found useful in this regard. The latter refers to the learner's (lack of) knowledge and appears to be especially difficult to measure and quantify. In this paper, we analyse a recent proposal based on the idea of a second-order learner, which yields predictions in the form of distributions over probability distributions. While standard (first-order) learners can be trained to predict accurate probabilities, namely by minimising suitable loss functions on sample data, we show that loss minimisation does not work for second-order predictors: The loss functions proposed for inducing such predictors do not incentivise the learner to represent its epistemic uncertainty in a faithful way.
Language Model Uncertainty Quantification with Attention Chain
Accurately quantifying a large language model's (LLM) predictive uncertainty is crucial for judging the reliability of its answers. While most existing research focuses on short, directly answerable questions with closed-form outputs (e.g., multiple-choice), involving intermediate reasoning steps in LLM responses is increasingly important. This added complexity complicates uncertainty quantification (UQ) because the probabilities assigned to answer tokens are conditioned on a vast space of preceding reasoning tokens. Direct marginalization is infeasible, and the dependency inflates probability estimates, causing overconfidence in UQ. To address this, we propose UQAC, an efficient method that narrows the reasoning space to a tractable size for marginalization. UQAC iteratively constructs an "attention chain" of tokens deemed "semantically crucial" to the final answer via a backtracking procedure. Starting from the answer tokens, it uses attention weights to identify the most influential predecessors, then iterates this process until reaching the input tokens. Similarity filtering and probability thresholding further refine the resulting chain, allowing us to approximate the marginal probabilities of the answer tokens, which serve as the LLM's confidence. We validate UQAC on multiple reasoning benchmarks with advanced open-source LLMs, demonstrating that it consistently delivers reliable UQ estimates with high computational efficiency.
On the impossibility of discovering a formula for primes using AI
The present work explores the theoretical limits of Machine Learning (ML) within the framework of Kolmogorov's theory of Algorithmic Probability, which clarifies the notion of entropy as Expected Kolmogorov Complexity and formalizes other fundamental concepts such as Occam's razor via Levin's Universal Distribution. As a fundamental application, we develop Maximum Entropy methods that allow us to derive the Erdos--Kac Law in Probabilistic Number Theory, and establish the impossibility of discovering a formula for primes using Machine Learning via the Prime Coding Theorem.
Are distributional representations ready for the real world? Evaluating word vectors for grounded perceptual meaning
Distributional word representation methods exploit word co-occurrences to build compact vector encodings of words. While these representations enjoy widespread use in modern natural language processing, it is unclear whether they accurately encode all necessary facets of conceptual meaning. In this paper, we evaluate how well these representations can predict perceptual and conceptual features of concrete concepts, drawing on two semantic norm datasets sourced from human participants. We find that several standard word representations fail to encode many salient perceptual features of concepts, and show that these deficits correlate with word-word similarity prediction errors. Our analyses provide motivation for grounded and embodied language learning approaches, which may help to remedy these deficits.
Representable Markov Categories and Comparison of Statistical Experiments in Categorical Probability
Markov categories are a recent categorical approach to the mathematical foundations of probability and statistics. Here, this approach is advanced by stating and proving equivalent conditions for second-order stochastic dominance, a widely used way of comparing probability distributions by their spread. Furthermore, we lay foundation for the theory of comparing statistical experiments within Markov categories by stating and proving the classical Blackwell-Sherman-Stein Theorem. Our version not only offers new insight into the proof, but its abstract nature also makes the result more general, automatically specializing to the standard Blackwell-Sherman-Stein Theorem in measure-theoretic probability as well as a Bayesian version that involves prior-dependent garbling. Along the way, we define and characterize representable Markov categories, within which one can talk about Markov kernels to or from spaces of distributions. We do so by exploring the relation between Markov categories and Kleisli categories of probability monads.
Shapley Uncertainty in Natural Language Generation
In question-answering tasks, determining when to trust the outputs is crucial to the alignment of large language models (LLMs). Kuhn et al. (2023) introduces semantic entropy as a measure of uncertainty, by incorporating linguistic invariances from the same meaning. It primarily relies on setting threshold to measure the level of semantic equivalence relation. We propose a more nuanced framework that extends beyond such thresholding by developing a Shapley-based uncertainty metric that captures the continuous nature of semantic relationships. We establish three fundamental properties that characterize valid uncertainty metrics and prove that our Shapley uncertainty satisfies these criteria. Through extensive experiments, we demonstrate that our Shapley uncertainty more accurately predicts LLM performance in question-answering and other datasets, compared to similar baseline measures.
A category theory framework for Bayesian learning
Inspired by the foundational works by Spivak and Fong and Cruttwell et al., we introduce a categorical framework to formalize Bayesian inference and learning. The two key ideas at play here are the notions of Bayesian inversions and the functor GL as constructed by Cruttwell et al.. In this context, we find that Bayesian learning is the simplest case of the learning paradigm. We then obtain categorical formulations of batch and sequential Bayes updates while also verifying that the two coincide in a specific example.
Controllable Neural Symbolic Regression
In symbolic regression, the goal is to find an analytical expression that accurately fits experimental data with the minimal use of mathematical symbols such as operators, variables, and constants. However, the combinatorial space of possible expressions can make it challenging for traditional evolutionary algorithms to find the correct expression in a reasonable amount of time. To address this issue, Neural Symbolic Regression (NSR) algorithms have been developed that can quickly identify patterns in the data and generate analytical expressions. However, these methods, in their current form, lack the capability to incorporate user-defined prior knowledge, which is often required in natural sciences and engineering fields. To overcome this limitation, we propose a novel neural symbolic regression method, named Neural Symbolic Regression with Hypothesis (NSRwH) that enables the explicit incorporation of assumptions about the expected structure of the ground-truth expression into the prediction process. Our experiments demonstrate that the proposed conditioned deep learning model outperforms its unconditioned counterparts in terms of accuracy while also providing control over the predicted expression structure.
Fractal Patterns May Unravel the Intelligence in Next-Token Prediction
We study the fractal structure of language, aiming to provide a precise formalism for quantifying properties that may have been previously suspected but not formally shown. We establish that language is: (1) self-similar, exhibiting complexities at all levels of granularity, with no particular characteristic context length, and (2) long-range dependent (LRD), with a Hurst parameter of approximately H=0.70. Based on these findings, we argue that short-term patterns/dependencies in language, such as in paragraphs, mirror the patterns/dependencies over larger scopes, like entire documents. This may shed some light on how next-token prediction can lead to a comprehension of the structure of text at multiple levels of granularity, from words and clauses to broader contexts and intents. We also demonstrate that fractal parameters improve upon perplexity-based bits-per-byte (BPB) in predicting downstream performance. We hope these findings offer a fresh perspective on language and the mechanisms underlying the success of LLMs.
textTOvec: Deep Contextualized Neural Autoregressive Topic Models of Language with Distributed Compositional Prior
We address two challenges of probabilistic topic modelling in order to better estimate the probability of a word in a given context, i.e., P(word|context): (1) No Language Structure in Context: Probabilistic topic models ignore word order by summarizing a given context as a "bag-of-word" and consequently the semantics of words in the context is lost. The LSTM-LM learns a vector-space representation of each word by accounting for word order in local collocation patterns and models complex characteristics of language (e.g., syntax and semantics), while the TM simultaneously learns a latent representation from the entire document and discovers the underlying thematic structure. We unite two complementary paradigms of learning the meaning of word occurrences by combining a TM (e.g., DocNADE) and a LM in a unified probabilistic framework, named as ctx-DocNADE. (2) Limited Context and/or Smaller training corpus of documents: In settings with a small number of word occurrences (i.e., lack of context) in short text or data sparsity in a corpus of few documents, the application of TMs is challenging. We address this challenge by incorporating external knowledge into neural autoregressive topic models via a language modelling approach: we use word embeddings as input of a LSTM-LM with the aim to improve the word-topic mapping on a smaller and/or short-text corpus. The proposed DocNADE extension is named as ctx-DocNADEe. We present novel neural autoregressive topic model variants coupled with neural LMs and embeddings priors that consistently outperform state-of-the-art generative TMs in terms of generalization (perplexity), interpretability (topic coherence) and applicability (retrieval and classification) over 6 long-text and 8 short-text datasets from diverse domains.
Large Language Models and Mathematical Reasoning Failures
This paper investigates the mathematical reasoning capabilities of large language models (LLMs) using 50 newly constructed high-school-level word problems. Unlike prior studies that focus solely on answer correctness, we rigorously analyze both final answers and solution steps to identify reasoning failures. Evaluating eight state-of-the-art models - including Mixtral, Llama, Gemini, GPT-4o, and OpenAI's o1 variants - we find that while newer models (e.g., o3-mini, deepseek-r1) achieve higher accuracy, all models exhibit errors in spatial reasoning, strategic planning, and arithmetic, sometimes producing correct answers through flawed logic. Common failure modes include unwarranted assumptions, over-reliance on numerical patterns, and difficulty translating physical intuition into mathematical steps. Manual analysis reveals that models struggle with problems requiring multi-step deduction or real-world knowledge, despite possessing broad mathematical knowledge. Our results underscore the importance of evaluating reasoning processes, not just answers, and caution against overestimating LLMs' problem-solving proficiency. The study highlights persistent gaps in LLMs' generalization abilities, emphasizing the need for targeted improvements in structured reasoning and constraint handling.
I am a Strange Dataset: Metalinguistic Tests for Language Models
Statements involving metalinguistic self-reference ("This paper has six sections.") are prevalent in many domains. Can large language models (LLMs) handle such language? In this paper, we present "I am a Strange Dataset", a new dataset for addressing this question. There are two subtasks: generation and verification. In generation, models continue statements like "The penultimate word in this sentence is" (where a correct continuation is "is"). In verification, models judge the truth of statements like "The penultimate word in this sentence is sentence." (false). We also provide minimally different metalinguistic non-self-reference examples to complement the main dataset by probing for whether models can handle metalinguistic language at all. The dataset is hand-crafted by experts and validated by non-expert annotators. We test a variety of open-source LLMs (7B to 70B parameters) as well as closed-source LLMs through APIs. All models perform close to chance across both subtasks and even on the non-self-referential metalinguistic control data, though we find some steady improvement with model scale. GPT 4 is the only model to consistently do significantly better than chance, and it is still only in the 60% range, while our untrained human annotators score well in the 89-93% range. The dataset and evaluation toolkit are available at https://github.com/TristanThrush/i-am-a-strange-dataset.
Pre-train, Prompt, and Predict: A Systematic Survey of Prompting Methods in Natural Language Processing
This paper surveys and organizes research works in a new paradigm in natural language processing, which we dub "prompt-based learning". Unlike traditional supervised learning, which trains a model to take in an input x and predict an output y as P(y|x), prompt-based learning is based on language models that model the probability of text directly. To use these models to perform prediction tasks, the original input x is modified using a template into a textual string prompt x' that has some unfilled slots, and then the language model is used to probabilistically fill the unfilled information to obtain a final string x, from which the final output y can be derived. This framework is powerful and attractive for a number of reasons: it allows the language model to be pre-trained on massive amounts of raw text, and by defining a new prompting function the model is able to perform few-shot or even zero-shot learning, adapting to new scenarios with few or no labeled data. In this paper we introduce the basics of this promising paradigm, describe a unified set of mathematical notations that can cover a wide variety of existing work, and organize existing work along several dimensions, e.g.the choice of pre-trained models, prompts, and tuning strategies. To make the field more accessible to interested beginners, we not only make a systematic review of existing works and a highly structured typology of prompt-based concepts, but also release other resources, e.g., a website http://pretrain.nlpedia.ai/ including constantly-updated survey, and paperlist.
Can We Find Strong Lottery Tickets in Generative Models?
Yes. In this paper, we investigate strong lottery tickets in generative models, the subnetworks that achieve good generative performance without any weight update. Neural network pruning is considered the main cornerstone of model compression for reducing the costs of computation and memory. Unfortunately, pruning a generative model has not been extensively explored, and all existing pruning algorithms suffer from excessive weight-training costs, performance degradation, limited generalizability, or complicated training. To address these problems, we propose to find a strong lottery ticket via moment-matching scores. Our experimental results show that the discovered subnetwork can perform similarly or better than the trained dense model even when only 10% of the weights remain. To the best of our knowledge, we are the first to show the existence of strong lottery tickets in generative models and provide an algorithm to find it stably. Our code and supplementary materials are publicly available.
ProcessBench: Identifying Process Errors in Mathematical Reasoning
As language models regularly make mistakes when solving math problems, automated identification of errors in the reasoning process becomes increasingly significant for their scalable oversight. In this paper, we introduce ProcessBench for measuring the ability to identify erroneous steps in mathematical reasoning. It consists of 3,400 test cases, primarily focused on competition- and Olympiad-level math problems. Each test case contains a step-by-step solution with error location annotated by human experts. Models are required to identify the earliest step that contains an error, or conclude that all steps are correct. We conduct extensive evaluation on ProcessBench, involving two types of models: process reward models (PRMs) and critic models, where for the latter we prompt general language models to critique each solution step by step. We draw two main observations: (1) Existing PRMs typically fail to generalize to more challenging math problems beyond GSM8K and MATH. They underperform both critic models (i.e., prompted general language models) and our own trained PRM that is straightforwardly fine-tuned on the PRM800K dataset. (2) The best open-source model, QwQ-32B-Preview, has demonstrated the critique capability competitive with the proprietary model GPT-4o, despite that it still lags behind the reasoning-specialized o1-mini. We hope ProcessBench can foster future research in reasoning process assessment, paving the way toward scalable oversight of language models.
Reasoning or Memorization? Unreliable Results of Reinforcement Learning Due to Data Contamination
The reasoning capabilities of large language models (LLMs) have been a longstanding focus of research. Recent works have further enhanced these capabilities using reinforcement learning (RL), with many new methods claiming significant improvements with minimal or no external supervision. Surprisingly, some studies even suggest that random or incorrect reward signals can enhance reasoning performance. However, these breakthroughs are mostly reported on the Qwen2.5 model family and evaluated on well-known benchmarks such as MATH-500, AMC, and AIME, while failing to achieve similar gains on other models like Llama, which warrants further investigation. Our analysis shows that although Qwen2.5 achieves strong mathematical reasoning performance, its pretraining on large-scale web corpora makes it vulnerable to data contamination in popular benchmarks. As a result, results derived from these benchmarks may be unreliable. To address this, we introduce a generator that produces fully synthetic arithmetic problems of arbitrary length and difficulty, yielding a clean dataset we call RandomCalculation. Using these leakage-free datasets, we show that only accurate reward signals consistently improve performance, while noisy or incorrect signals do not. We advocate for evaluating RL methods on uncontaminated benchmarks and across diverse model families to ensure trustworthy conclusions.
A quantum teleportation inspired algorithm produces sentence meaning from word meaning and grammatical structure
We discuss an algorithm which produces the meaning of a sentence given meanings of its words, and its resemblance to quantum teleportation. In fact, this protocol was the main source of inspiration for this algorithm which has many applications in the area of Natural Language Processing.
PROST: Physical Reasoning of Objects through Space and Time
We present a new probing dataset named PROST: Physical Reasoning about Objects Through Space and Time. This dataset contains 18,736 multiple-choice questions made from 14 manually curated templates, covering 10 physical reasoning concepts. All questions are designed to probe both causal and masked language models in a zero-shot setting. We conduct an extensive analysis which demonstrates that state-of-the-art pretrained models are inadequate at physical reasoning: they are influenced by the order in which answer options are presented to them, they struggle when the superlative in a question is inverted (e.g., most <-> least), and increasing the amount of pretraining data and parameters only yields minimal improvements. These results provide support for the hypothesis that current pretrained models' ability to reason about physical interactions is inherently limited by a lack of real world experience. By highlighting these limitations, we hope to motivate the development of models with a human-like understanding of the physical world.
Empirical analysis of Binding Precedent efficiency in the Brazilian Supreme Court via Similar Case Retrieval
Binding precedents (S\'umulas Vinculantes) constitute a juridical instrument unique to the Brazilian legal system and whose objectives include the protection of the Federal Supreme Court against repetitive demands. Studies of the effectiveness of these instruments in decreasing the Court's exposure to similar cases, however, indicate that they tend to fail in such a direction, with some of the binding precedents seemingly creating new demands. We empirically assess the legal impact of five binding precedents, 11, 14, 17, 26 and 37, at the highest court level through their effects on the legal subjects they address. This analysis is only possible through the comparison of the Court's ruling about the precedents' themes before they are created, which means that these decisions should be detected through techniques of Similar Case Retrieval. The contributions of this article are therefore twofold: on the mathematical side, we compare the uses of different methods of Natural Language Processing -- TF-IDF, LSTM, BERT, and regex -- for Similar Case Retrieval, whereas on the legal side, we contrast the inefficiency of these binding precedents with a set of hypotheses that may justify their repeated usage. We observe that the deep learning models performed significantly worse in the specific Similar Case Retrieval task and that the reasons for binding precedents to fail in responding to repetitive demand are heterogeneous and case-dependent, making it impossible to single out a specific cause.
Improve Mathematical Reasoning in Language Models by Automated Process Supervision
Complex multi-step reasoning tasks, such as solving mathematical problems or generating code, remain a significant hurdle for even the most advanced large language models (LLMs). Verifying LLM outputs with an Outcome Reward Model (ORM) is a standard inference-time technique aimed at enhancing the reasoning performance of LLMs. However, this still proves insufficient for reasoning tasks with a lengthy or multi-hop reasoning chain, where the intermediate outcomes are neither properly rewarded nor penalized. Process supervision addresses this limitation by assigning intermediate rewards during the reasoning process. To date, the methods used to collect process supervision data have relied on either human annotation or per-step Monte Carlo estimation, both prohibitively expensive to scale, thus hindering the broad application of this technique. In response to this challenge, we propose a novel divide-and-conquer style Monte Carlo Tree Search (MCTS) algorithm named OmegaPRM for the efficient collection of high-quality process supervision data. This algorithm swiftly identifies the first error in the Chain of Thought (CoT) with binary search and balances the positive and negative examples, thereby ensuring both efficiency and quality. As a result, we are able to collect over 1.5 million process supervision annotations to train a Process Reward Model (PRM). Utilizing this fully automated process supervision alongside the weighted self-consistency algorithm, we have enhanced the instruction tuned Gemini Pro model's math reasoning performance, achieving a 69.4\% success rate on the MATH benchmark, a 36\% relative improvement from the 51\% base model performance. Additionally, the entire process operates without any human intervention, making our method both financially and computationally cost-effective compared to existing methods.
Finite random iterated function systems do not always satisfy Bowen's formula
In this paper, we provide a finite random iterated function system satisfying the open set condition, for which the random version of Bowen's formula fails to hold. This counterexample shows that analogous results established for random recursive constructions are not always obtained for random iterated function systems.
CoAM: Corpus of All-Type Multiword Expressions
Multiword expressions (MWEs) refer to idiomatic sequences of multiple words. MWE identification, i.e., detecting MWEs in text, can play a key role in downstream tasks such as machine translation. Existing datasets for MWE identification are inconsistently annotated, limited to a single type of MWE, or limited in size. To enable reliable and comprehensive evaluation, we created CoAM: Corpus of All-Type Multiword Expressions, a dataset of 1.3K sentences constructed through a multi-step process to enhance data quality consisting of human annotation, human review, and automated consistency checking. MWEs in CoAM are tagged with MWE types, such as Noun and Verb, to enable fine-grained error analysis. Annotations for CoAM were collected using a new interface created with our interface generator, which allows easy and flexible annotation of MWEs in any form, including discontinuous ones. Through experiments using CoAM, we find that a fine-tuned large language model outperforms the current state-of-the-art approach for MWE identification. Furthermore, analysis using our MWE type tagged data reveals that Verb MWEs are easier than Noun MWEs to identify across approaches.
