1 MSPM: A Multi-Site Physiological Monitoring Dataset for Remote Pulse, Respiration, and Blood Pressure Estimation Visible-light cameras can capture subtle physiological biomarkers without physical contact with the subject. We present the Multi-Site Physiological Monitoring (MSPM) dataset, which is the first dataset collected to support the study of simultaneous camera-based vital signs estimation from multiple locations on the body. MSPM enables research on remote photoplethysmography (rPPG), respiration rate, and pulse transit time (PTT); it contains ground-truth measurements of pulse oximetry (at multiple body locations) and blood pressure using contacting sensors. We provide thorough experiments demonstrating the suitability of MSPM to support research on rPPG, respiration rate, and PTT. Cross-dataset rPPG experiments reveal that MSPM is a challenging yet high quality dataset, with intra-dataset pulse rate mean absolute error (MAE) below 4 beats per minute (BPM), and cross-dataset pulse rate MAE below 2 BPM in certain cases. Respiration experiments find a MAE of 1.09 breaths per minute by extracting motion features from the chest. PTT experiments find that across the pairs of different body sites, there is high correlation between remote PTT and contact-measured PTT, which facilitates the possibility for future camera-based PTT research. 6 authors · Feb 3, 2024
- Real-time accident detection and physiological signal monitoring to enhance motorbike safety and emergency response Rapid urbanization and improved living standards have led to a substantial increase in the number of vehicles on the road, consequently resulting in a rise in the frequency of accidents. Among these accidents, motorbike accidents pose a particularly high risk, often resulting in serious injuries or deaths. A significant number of these fatalities occur due to delayed or inadequate medical attention. To this end, we propose a novel automatic detection and notification system specifically designed for motorbike accidents. The proposed system comprises two key components: a detection system and a physiological signal monitoring system. The detection system is integrated into the helmet and consists of a microcontroller, accelerometer, GPS, GSM, and Wi-Fi modules. The physio-monitoring system incorporates a sensor for monitoring pulse rate and SpO_{2} saturation. All collected data are presented on an LCD display and wirelessly transmitted to the detection system through the microcontroller of the physiological signal monitoring system. If the accelerometer readings consistently deviate from the specified threshold decided through extensive experimentation, the system identifies the event as an accident and transmits the victim's information -- including the GPS location, pulse rate, and SpO_{2} saturation rate -- to the designated emergency contacts. Preliminary results demonstrate the efficacy of the proposed system in accurately detecting motorbike accidents and promptly alerting emergency contacts. We firmly believe that the proposed system has the potential to significantly mitigate the risks associated with motorbike accidents and save lives. 7 authors · Mar 27, 2024
- Multi-Head Cross-Attentional PPG and Motion Signal Fusion for Heart Rate Estimation Nowadays, Hearth Rate (HR) monitoring is a key feature of almost all wrist-worn devices exploiting photoplethysmography (PPG) sensors. However, arm movements affect the performance of PPG-based HR tracking. This issue is usually addressed by fusing the PPG signal with data produced by inertial measurement units. Thus, deep learning algorithms have been proposed, but they are considered too complex to deploy on wearable devices and lack the explainability of results. In this work, we present a new deep learning model, PULSE, which exploits temporal convolutions and multi-head cross-attention to improve sensor fusion's effectiveness and achieve a step towards explainability. We evaluate the performance of PULSE on three publicly available datasets, reducing the mean absolute error by 7.56% on the most extensive available dataset, PPG-DaLiA. Finally, we demonstrate the explainability of PULSE and the benefits of applying attention modules to PPG and motion data. 5 authors · Oct 14, 2022
- Robust and Generalizable Heart Rate Estimation via Deep Learning for Remote Photoplethysmography in Complex Scenarios Non-contact remote photoplethysmography (rPPG) technology enables heart rate measurement from facial videos. However, existing network models still face challenges in accu racy, robustness, and generalization capability under complex scenarios. This paper proposes an end-to-end rPPG extraction network that employs 3D convolutional neural networks to reconstruct accurate rPPG signals from raw facial videos. We introduce a differential frame fusion module that integrates differential frames with original frames, enabling frame-level representations to capture blood volume pulse (BVP) variations. Additionally, we incorporate Temporal Shift Module (TSM) with self-attention mechanisms, which effectively enhance rPPG features with minimal computational overhead. Furthermore, we propose a novel dynamic hybrid loss function that provides stronger supervision for the network, effectively mitigating over fitting. Comprehensive experiments were conducted on not only the PURE and UBFC-rPPG datasets but also the challenging MMPD dataset under complex scenarios, involving both intra dataset and cross-dataset evaluations, which demonstrate the superior robustness and generalization capability of our network. Specifically, after training on PURE, our model achieved a mean absolute error (MAE) of 7.58 on the MMPD test set, outperforming the state-of-the-art models. 3 authors · Jul 10