new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Nov 4

Grad DFT: a software library for machine learning enhanced density functional theory

Density functional theory (DFT) stands as a cornerstone method in computational quantum chemistry and materials science due to its remarkable versatility and scalability. Yet, it suffers from limitations in accuracy, particularly when dealing with strongly correlated systems. To address these shortcomings, recent work has begun to explore how machine learning can expand the capabilities of DFT; an endeavor with many open questions and technical challenges. In this work, we present Grad DFT: a fully differentiable JAX-based DFT library, enabling quick prototyping and experimentation with machine learning-enhanced exchange-correlation energy functionals. Grad DFT employs a pioneering parametrization of exchange-correlation functionals constructed using a weighted sum of energy densities, where the weights are determined using neural networks. Moreover, Grad DFT encompasses a comprehensive suite of auxiliary functions, notably featuring a just-in-time compilable and fully differentiable self-consistent iterative procedure. To support training and benchmarking efforts, we additionally compile a curated dataset of experimental dissociation energies of dimers, half of which contain transition metal atoms characterized by strong electronic correlations. The software library is tested against experimental results to study the generalization capabilities of a neural functional across potential energy surfaces and atomic species, as well as the effect of training data noise on the resulting model accuracy.

  • 5 authors
·
Sep 22, 2023

When To Solve, When To Verify: Compute-Optimal Problem Solving and Generative Verification for LLM Reasoning

Scaling test-time compute has emerged as a key strategy for enhancing the reasoning capabilities of large language models (LLMs), particularly in tasks like mathematical problem-solving. A traditional approach, Self-Consistency (SC), generates multiple solutions to a problem and selects the most common answer via majority voting. Another common method involves scoring each solution with a reward model (verifier) and choosing the best one. Recent advancements in Generative Reward Models (GenRM) reframe verification as a next-token prediction task, enabling inference-time scaling along a new axis. Specifically, GenRM generates multiple verification chains-of-thought to score each solution. Under a limited inference budget, this introduces a fundamental trade-off: should you spend the budget on scaling solutions via SC or generate fewer solutions and allocate compute to verification via GenRM? To address this, we evaluate GenRM against SC under a fixed inference budget. Interestingly, we find that SC is more compute-efficient than GenRM for most practical inference budgets across diverse models and datasets. For instance, GenRM first matches SC after consuming up to 8x the inference compute and requires significantly more compute to outperform it. Furthermore, we derive inference scaling laws for the GenRM paradigm, revealing that compute-optimal inference favors scaling solution generation more aggressively than scaling the number of verifications. Our work provides practical guidance on optimizing test-time scaling by balancing solution generation and verification. The code is available at https://github.com/nishadsinghi/sc-genrm-scaling.

A Unified Module for Accelerating STABLE-DIFFUSION: LCM-LORA

This paper presents a comprehensive study on the unified module for accelerating stable-diffusion processes, specifically focusing on the lcm-lora module. Stable-diffusion processes play a crucial role in various scientific and engineering domains, and their acceleration is of paramount importance for efficient computational performance. The standard iterative procedures for solving fixed-source discrete ordinates problems often exhibit slow convergence, particularly in optically thick scenarios. To address this challenge, unconditionally stable diffusion-acceleration methods have been developed, aiming to enhance the computational efficiency of transport equations and discrete ordinates problems. This study delves into the theoretical foundations and numerical results of unconditionally stable diffusion synthetic acceleration methods, providing insights into their stability and performance for model discrete ordinates problems. Furthermore, the paper explores recent advancements in diffusion model acceleration, including on device acceleration of large diffusion models via gpu aware optimizations, highlighting the potential for significantly improved inference latency. The results and analyses in this study provide important insights into stable diffusion processes and have important ramifications for the creation and application of acceleration methods specifically, the lcm-lora module in a variety of computing environments.

  • 2 authors
·
Mar 24, 2024

A Theoretical Study on Bridging Internal Probability and Self-Consistency for LLM Reasoning

Test-time scaling seeks to improve the reasoning performance of large language models (LLMs) by adding computational resources. A prevalent approach within the field is sampling-based test-time scaling methods, which enhance reasoning by generating multiple reasoning paths for a given input during inference. However, despite its practical success, the theoretical foundations remain underexplored. In this paper, we provide the first theoretical framework for analyzing sampling-based test-time scaling methods, grounded in the perspective of confidence estimation. Based on the framework, we analyze two dominant paradigms: self-consistency and perplexity, and reveal key limitations: self-consistency suffers from high estimation error while perplexity exhibits substantial modeling error and possible degradation of the estimation error convergence. To address these limitations, we introduce RPC, a hybrid method that leverages our theoretical insights through two key components: Perplexity Consistency and Reasoning Pruning. Perplexity Consistency combines the strengths of self-consistency and perplexity, boosting the convergence rate of estimation error from linear to exponential while preserving model error. Reasoning Pruning prevents degradation by eliminating low-probability reasoning paths. Both theoretical analysis and empirical results across seven benchmark datasets demonstrate that RPC has a strong potential for reducing reasoning error. Notably, RPC achieves reasoning performance comparable to self-consistency while not only enhancing confidence reliability but also reducing sampling costs by 50%. The code and resources are available at https://wnjxyk.github.io/RPC.

LAMDA-NeSy NJU-IRP
·
Oct 17 6

STP: Self-play LLM Theorem Provers with Iterative Conjecturing and Proving

A fundamental challenge in formal theorem proving by LLMs is the lack of high-quality training data. Although reinforcement learning or expert iteration partially mitigates this issue by alternating between LLM generating proofs and finetuning them on correctly generated ones, performance quickly plateaus due to the scarcity of correct proofs (sparse rewards). To keep improving the models with limited data, we draw inspiration from mathematicians, who continuously develop new results, partly by proposing novel conjectures or exercises (which are often variants of known results) and attempting to solve them. We design the Self-play Theorem Prover (STP) that simultaneously takes on two roles, conjecturer and prover, each providing training signals to the other. The conjecturer is trained iteratively on previously generated conjectures that are barely provable by the current prover, which incentivizes it to generate increasingly challenging conjectures over time. The prover attempts to prove the conjectures with standard expert iteration. We evaluate STP with both Lean and Isabelle formal versifiers. With 19.8 billion tokens generated during the training in Lean, STP proves 26.3% of the statements in the LeanWorkbook dataset, doubling the previous best result of 13.2% achieved through expert iteration. The final model achieves state-of-the-art performance among whole-proof generation methods on miniF2F-test (61.7%, pass@3200), Proofnet-test (23.1%, pass@3200) and PutnamBench (8/644, pass@3200).

  • 2 authors
·
Jan 31

Accelerating Distributed Stochastic Optimization via Self-Repellent Random Walks

We study a family of distributed stochastic optimization algorithms where gradients are sampled by a token traversing a network of agents in random-walk fashion. Typically, these random-walks are chosen to be Markov chains that asymptotically sample from a desired target distribution, and play a critical role in the convergence of the optimization iterates. In this paper, we take a novel approach by replacing the standard linear Markovian token by one which follows a nonlinear Markov chain - namely the Self-Repellent Radom Walk (SRRW). Defined for any given 'base' Markov chain, the SRRW, parameterized by a positive scalar {\alpha}, is less likely to transition to states that were highly visited in the past, thus the name. In the context of MCMC sampling on a graph, a recent breakthrough in Doshi et al. (2023) shows that the SRRW achieves O(1/{\alpha}) decrease in the asymptotic variance for sampling. We propose the use of a 'generalized' version of the SRRW to drive token algorithms for distributed stochastic optimization in the form of stochastic approximation, termed SA-SRRW. We prove that the optimization iterate errors of the resulting SA-SRRW converge to zero almost surely and prove a central limit theorem, deriving the explicit form of the resulting asymptotic covariance matrix corresponding to iterate errors. This asymptotic covariance is always smaller than that of an algorithm driven by the base Markov chain and decreases at rate O(1/{\alpha}^2) - the performance benefit of using SRRW thereby amplified in the stochastic optimization context. Empirical results support our theoretical findings.

  • 3 authors
·
Jan 17, 2024

Iterative Deepening Sampling for Large Language Models

The recent release of OpenAI's o1 models and other similar frameworks showcasing test-time scaling laws has demonstrated their exceptional capability to tackle complex reasoning tasks. Inspired by this, subsequent research has revealed that such test-time scaling laws hinge on the model's ability to search both within a single response (intra-response) and across multiple responses (inter-response) during training. Crucially, beyond selecting a single optimal response, the model must also develop robust self-correction capabilities within its own outputs. However, training models to achieve effective self-evaluation and self-correction remains a significant challenge, heavily dependent on the quality of self-reflection data. In this paper, we address this challenge by focusing on enhancing the quality of self-reflection data generation for complex problem-solving, which can subsequently improve the training of next-generation large language models (LLMs). Specifically, we explore how manually triggering a model's self-correction mechanisms can improve performance on challenging reasoning tasks. To this end, we propose a novel iterative deepening sampling algorithm framework designed to enhance self-correction and generate higher-quality samples. Through extensive experiments on Math500 and AIME benchmarks, we demonstrate that our method achieves a higher success rate on difficult tasks and provide detailed ablation studies to analyze its effectiveness across diverse settings.

  • 3 authors
·
Feb 7

Self-rationalization improves LLM as a fine-grained judge

LLM-as-a-judge models have been used for evaluating both human and AI generated content, specifically by providing scores and rationales. Rationales, in addition to increasing transparency, help models learn to calibrate its judgments. Enhancing a model's rationale can therefore improve its calibration abilities and ultimately the ability to score content. We introduce Self-Rationalization, an iterative process of improving the rationales for the judge models, which consequently improves the score for fine-grained customizable scoring criteria (i.e., likert-scale scoring with arbitrary evaluation criteria). Self-rationalization works by having the model generate multiple judgments with rationales for the same input, curating a preference pair dataset from its own judgements, and iteratively fine-tuning the judge via DPO. Intuitively, this approach allows the judge model to self-improve by learning from its own rationales, leading to better alignment and evaluation accuracy. After just two iterations -- while only relying on examples in the training set -- human evaluation shows that our judge model learns to produce higher quality rationales, with a win rate of 62% on average compared to models just trained via SFT on rationale . This judge model also achieves high scoring accuracy on BigGen Bench and Reward Bench, outperforming even bigger sized models trained using SFT with rationale, self-consistency or best-of-N sampling by 3% to 9%.

  • 10 authors
·
Oct 7, 2024

Even your Teacher Needs Guidance: Ground-Truth Targets Dampen Regularization Imposed by Self-Distillation

Knowledge distillation is classically a procedure where a neural network is trained on the output of another network along with the original targets in order to transfer knowledge between the architectures. The special case of self-distillation, where the network architectures are identical, has been observed to improve generalization accuracy. In this paper, we consider an iterative variant of self-distillation in a kernel regression setting, in which successive steps incorporate both model outputs and the ground-truth targets. This allows us to provide the first theoretical results on the importance of using the weighted ground-truth targets in self-distillation. Our focus is on fitting nonlinear functions to training data with a weighted mean square error objective function suitable for distillation, subject to ell_2 regularization of the model parameters. We show that any such function obtained with self-distillation can be calculated directly as a function of the initial fit, and that infinite distillation steps yields the same optimization problem as the original with amplified regularization. Furthermore, we provide a closed form solution for the optimal choice of weighting parameter at each step, and show how to efficiently estimate this weighting parameter for deep learning and significantly reduce the computational requirements compared to a grid search.

  • 2 authors
·
Feb 25, 2021

Learning to Relax: Setting Solver Parameters Across a Sequence of Linear System Instances

Solving a linear system Ax=b is a fundamental scientific computing primitive for which numerous solvers and preconditioners have been developed. These come with parameters whose optimal values depend on the system being solved and are often impossible or too expensive to identify; thus in practice sub-optimal heuristics are used. We consider the common setting in which many related linear systems need to be solved, e.g. during a single numerical simulation. In this scenario, can we sequentially choose parameters that attain a near-optimal overall number of iterations, without extra matrix computations? We answer in the affirmative for Successive Over-Relaxation (SOR), a standard solver whose parameter omega has a strong impact on its runtime. For this method, we prove that a bandit online learning algorithm--using only the number of iterations as feedback--can select parameters for a sequence of instances such that the overall cost approaches that of the best fixed omega as the sequence length increases. Furthermore, when given additional structural information, we show that a contextual bandit method asymptotically achieves the performance of the instance-optimal policy, which selects the best omega for each instance. Our work provides the first learning-theoretic treatment of high-precision linear system solvers and the first end-to-end guarantees for data-driven scientific computing, demonstrating theoretically the potential to speed up numerical methods using well-understood learning algorithms.

  • 4 authors
·
Oct 3, 2023

Lyra: Orchestrating Dual Correction in Automated Theorem Proving

Large Language Models (LLMs) present an intriguing avenue for exploration in the field of formal theorem proving. Nevertheless, their full potential, particularly concerning the mitigation of hallucinations and refinement through prover error messages, remains an area that has yet to be thoroughly investigated. To enhance the effectiveness of LLMs in the field, we introduce the Lyra, a new framework that employs two distinct correction mechanisms: Tool Correction (TC) and Conjecture Correction (CC). To implement Tool Correction in the post-processing of formal proofs, we leverage prior knowledge to utilize predefined prover tools (e.g., Sledgehammer) for guiding the replacement of incorrect tools. Tool Correction significantly contributes to mitigating hallucinations, thereby improving the overall accuracy of the proof. In addition, we introduce Conjecture Correction, an error feedback mechanism designed to interact with prover to refine formal proof conjectures with prover error messages. Compared to the previous refinement framework, the proposed Conjecture Correction refines generation with instruction but does not collect paired (generation, error & refinement) prompts. Our method has achieved state-of-the-art (SOTA) performance on both miniF2F validation (48.0% -> 55.3%) and test (45.5% -> 51.2%). We also present 3 IMO problems solved by Lyra. We believe Tool Correction (post-process for hallucination mitigation) and Conjecture Correction (subgoal adjustment from interaction with environment) could provide a promising avenue for future research in this field.

  • 9 authors
·
Sep 27, 2023

Deep Self-Evolving Reasoning

Long-form chain-of-thought reasoning has become a cornerstone of advanced reasoning in large language models. While recent verification-refinement frameworks have enabled proprietary models to solve Olympiad-level problems, their effectiveness hinges on strong, reliable verification and correction capabilities, which remain fragile in open-weight, smaller-scale models. This work demonstrates that even with weak verification and refinement capabilities on hard tasks, the reasoning limits of such models can be substantially extended through a probabilistic paradigm we call Deep Self-Evolving Reasoning (DSER). We conceptualize iterative reasoning as a Markov chain, where each step represents a stochastic transition in the solution space. The key insight is that convergence to a correct solution is guaranteed as long as the probability of improvement marginally exceeds that of degradation. By running multiple long-horizon, self-evolving processes in parallel, DSER amplifies these small positive tendencies, enabling the model to asymptotically approach correct answers. Empirically, we apply DSER to the DeepSeek-R1-0528-Qwen3-8B model. On the challenging AIME 2024-2025 benchmark, DSER solves 5 out of 9 previously unsolvable problems and boosts overall performance, enabling this compact model to surpass the single-turn accuracy of its 600B-parameter teacher through majority voting. Beyond its immediate utility for test-time scaling, the DSER framework serves to diagnose the fundamental limitations of current open-weight reasoners. By clearly delineating their shortcomings in self-verification, refinement, and stability, our findings establish a clear research agenda for developing next-generation models with powerful, intrinsic self-evolving capabilities.

microsoft Microsoft
·
Oct 20 2

Constrained Optimization via Exact Augmented Lagrangian and Randomized Iterative Sketching

We consider solving equality-constrained nonlinear, nonconvex optimization problems. This class of problems appears widely in a variety of applications in machine learning and engineering, ranging from constrained deep neural networks, to optimal control, to PDE-constrained optimization. We develop an adaptive inexact Newton method for this problem class. In each iteration, we solve the Lagrangian Newton system inexactly via a randomized iterative sketching solver, and select a suitable stepsize by performing line search on an exact augmented Lagrangian merit function. The randomized solvers have advantages over deterministic linear system solvers by significantly reducing per-iteration flops complexity and storage cost, when equipped with suitable sketching matrices. Our method adaptively controls the accuracy of the randomized solver and the penalty parameters of the exact augmented Lagrangian, to ensure that the inexact Newton direction is a descent direction of the exact augmented Lagrangian. This allows us to establish a global almost sure convergence. We also show that a unit stepsize is admissible locally, so that our method exhibits a local linear convergence. Furthermore, we prove that the linear convergence can be strengthened to superlinear convergence if we gradually sharpen the adaptive accuracy condition on the randomized solver. We demonstrate the superior performance of our method on benchmark nonlinear problems in CUTEst test set, constrained logistic regression with data from LIBSVM, and a PDE-constrained problem.

  • 4 authors
·
May 28, 2023

Iterative Self-Training for Code Generation via Reinforced Re-Ranking

Generating high-quality code that solves complex programming tasks is challenging, especially with current decoder-based models that produce highly stochastic outputs. In code generation, even minor errors can easily break the entire solution. Leveraging multiple sampled solutions can significantly improve the overall output quality. One effective way to enhance code generation is by pairing a code generation model with a reranker model, which selects the best solution from the generated samples. We propose a novel iterative self-training approach for self-training reranker models using Proximal Policy Optimization (PPO), aimed at improving both reranking accuracy and the overall code generation process. Unlike traditional PPO approaches, where the focus is on optimizing a generative model with a reward model, our approach emphasizes the development of a robust reward/reranking model. This model improves the quality of generated code through reranking and addresses problems and errors that the reward model might overlook during PPO alignment with the reranker. Our method iteratively refines the training dataset by re-evaluating outputs, identifying high-scoring negative examples, and incorporating them into the training loop, that boosting model performance. Our evaluation on the MultiPL-E dataset demonstrates that our 13.4B parameter model outperforms a 33B model in code generation quality while being three times faster. Moreover, it achieves performance comparable to GPT-4 and surpasses it in one programming language.

  • 3 authors
·
Apr 13 2

Conditional Denoising Diffusion Model-Based Robust MR Image Reconstruction from Highly Undersampled Data

Magnetic Resonance Imaging (MRI) is a critical tool in modern medical diagnostics, yet its prolonged acquisition time remains a critical limitation, especially in time-sensitive clinical scenarios. While undersampling strategies can accelerate image acquisition, they often result in image artifacts and degraded quality. Recent diffusion models have shown promise for reconstructing high-fidelity images from undersampled data by learning powerful image priors; however, most existing approaches either (i) rely on unsupervised score functions without paired supervision or (ii) apply data consistency only as a post-processing step. In this work, we introduce a conditional denoising diffusion framework with iterative data-consistency correction, which differs from prior methods by embedding the measurement model directly into every reverse diffusion step and training the model on paired undersampled-ground truth data. This hybrid design bridges generative flexibility with explicit enforcement of MRI physics. Experiments on the fastMRI dataset demonstrate that our framework consistently outperforms recent state-of-the-art deep learning and diffusion-based methods in SSIM, PSNR, and LPIPS, with LPIPS capturing perceptual improvements more faithfully. These results demonstrate that integrating conditional supervision with iterative consistency updates yields substantial improvements in both pixel-level fidelity and perceptual realism, establishing a principled and practical advance toward robust, accelerated MRI reconstruction.

  • 6 authors
·
Oct 7

Convergent Graph Solvers

We propose the convergent graph solver (CGS), a deep learning method that learns iterative mappings to predict the properties of a graph system at its stationary state (fixed point) with guaranteed convergence. CGS systematically computes the fixed points of a target graph system and decodes them to estimate the stationary properties of the system without the prior knowledge of existing solvers or intermediate solutions. The forward propagation of CGS proceeds in three steps: (1) constructing the input dependent linear contracting iterative maps, (2) computing the fixed-points of the linear maps, and (3) decoding the fixed-points to estimate the properties. The contractivity of the constructed linear maps guarantees the existence and uniqueness of the fixed points following the Banach fixed point theorem. To train CGS efficiently, we also derive a tractable analytical expression for its gradient by leveraging the implicit function theorem. We evaluate the performance of CGS by applying it to various network-analytic and graph benchmark problems. The results indicate that CGS has competitive capabilities for predicting the stationary properties of graph systems, irrespective of whether the target systems are linear or non-linear. CGS also shows high performance for graph classification problems where the existence or the meaning of a fixed point is hard to be clearly defined, which highlights the potential of CGS as a general graph neural network architecture.

  • 3 authors
·
Jun 3, 2021

Post-Hoc Split-Point Self-Consistency Verification for Efficient, Unified Quantification of Aleatoric and Epistemic Uncertainty in Deep Learning

Uncertainty quantification (UQ) is vital for trustworthy deep learning, yet existing methods are either computationally intensive, such as Bayesian or ensemble methods, or provide only partial, task-specific estimates, such as single-forward-pass techniques. In this paper, we propose a post-hoc single-forward-pass framework that jointly captures aleatoric and epistemic uncertainty without modifying or retraining pretrained models. Our method applies Split-Point Analysis (SPA) to decompose predictive residuals into upper and lower subsets, computing Mean Absolute Residuals (MARs) on each side. We prove that, under ideal conditions, the total MAR equals the harmonic mean of subset MARs; deviations define a novel Self-consistency Discrepancy Score (SDS) for fine-grained epistemic estimation across regression and classification. For regression, side-specific quantile regression yields prediction intervals with improved empirical coverage, which are further calibrated via SDS. For classification, when calibration data are available, we apply SPA-based calibration identities to adjust the softmax outputs and then compute predictive entropy on these calibrated probabilities. Extensive experiments on diverse regression and classification benchmarks demonstrate that our framework matches or exceeds several state-of-the-art UQ methods while incurring minimal overhead. Our source code is available at https://github.com/zzz0527/SPC-UQ.

  • 2 authors
·
Sep 16

Decomposed Diffusion Sampler for Accelerating Large-Scale Inverse Problems

Krylov subspace, which is generated by multiplying a given vector by the matrix of a linear transformation and its successive powers, has been extensively studied in classical optimization literature to design algorithms that converge quickly for large linear inverse problems. For example, the conjugate gradient method (CG), one of the most popular Krylov subspace methods, is based on the idea of minimizing the residual error in the Krylov subspace. However, with the recent advancement of high-performance diffusion solvers for inverse problems, it is not clear how classical wisdom can be synergistically combined with modern diffusion models. In this study, we propose a novel and efficient diffusion sampling strategy that synergistically combines the diffusion sampling and Krylov subspace methods. Specifically, we prove that if the tangent space at a denoised sample by Tweedie's formula forms a Krylov subspace, then the CG initialized with the denoised data ensures the data consistency update to remain in the tangent space. This negates the need to compute the manifold-constrained gradient (MCG), leading to a more efficient diffusion sampling method. Our method is applicable regardless of the parametrization and setting (i.e., VE, VP). Notably, we achieve state-of-the-art reconstruction quality on challenging real-world medical inverse imaging problems, including multi-coil MRI reconstruction and 3D CT reconstruction. Moreover, our proposed method achieves more than 80 times faster inference time than the previous state-of-the-art method. Code is available at https://github.com/HJ-harry/DDS

  • 3 authors
·
Mar 10, 2023

Consolidating Attention Features for Multi-view Image Editing

Large-scale text-to-image models enable a wide range of image editing techniques, using text prompts or even spatial controls. However, applying these editing methods to multi-view images depicting a single scene leads to 3D-inconsistent results. In this work, we focus on spatial control-based geometric manipulations and introduce a method to consolidate the editing process across various views. We build on two insights: (1) maintaining consistent features throughout the generative process helps attain consistency in multi-view editing, and (2) the queries in self-attention layers significantly influence the image structure. Hence, we propose to improve the geometric consistency of the edited images by enforcing the consistency of the queries. To do so, we introduce QNeRF, a neural radiance field trained on the internal query features of the edited images. Once trained, QNeRF can render 3D-consistent queries, which are then softly injected back into the self-attention layers during generation, greatly improving multi-view consistency. We refine the process through a progressive, iterative method that better consolidates queries across the diffusion timesteps. We compare our method to a range of existing techniques and demonstrate that it can achieve better multi-view consistency and higher fidelity to the input scene. These advantages allow us to train NeRFs with fewer visual artifacts, that are better aligned with the target geometry.

  • 5 authors
·
Feb 22, 2024 1

Qwen2.5-Math Technical Report: Toward Mathematical Expert Model via Self-Improvement

In this report, we present a series of math-specific large language models: Qwen2.5-Math and Qwen2.5-Math-Instruct-1.5B/7B/72B. The core innovation of the Qwen2.5 series lies in integrating the philosophy of self-improvement throughout the entire pipeline, from pre-training and post-training to inference: (1) During the pre-training phase, Qwen2-Math-Instruct is utilized to generate large-scale, high-quality mathematical data. (2) In the post-training phase, we develop a reward model (RM) by conducting massive sampling from Qwen2-Math-Instruct. This RM is then applied to the iterative evolution of data in supervised fine-tuning (SFT). With a stronger SFT model, it's possible to iteratively train and update the RM, which in turn guides the next round of SFT data iteration. On the final SFT model, we employ the ultimate RM for reinforcement learning, resulting in the Qwen2.5-Math-Instruct. (3) Furthermore, during the inference stage, the RM is used to guide sampling, optimizing the model's performance. Qwen2.5-Math-Instruct supports both Chinese and English, and possess advanced mathematical reasoning capabilities, including Chain-of-Thought (CoT) and Tool-Integrated Reasoning (TIR). We evaluate our models on 10 mathematics datasets in both English and Chinese, such as GSM8K, MATH, GaoKao, AMC23, and AIME24, covering a range of difficulties from grade school level to math competition problems.

  • 16 authors
·
Sep 18, 2024

When, Why and How Much? Adaptive Learning Rate Scheduling by Refinement

Learning rate schedules used in practice bear little resemblance to those recommended by theory. We close much of this theory/practice gap, and as a consequence are able to derive new problem-adaptive learning rate schedules. Our key technical contribution is a refined analysis of learning rate schedules for a wide class of optimization algorithms (including SGD). In contrast to most prior works that study the convergence of the average iterate, we study the last iterate, which is what most people use in practice. When considering only worst-case analysis, our theory predicts that the best choice is the linear decay schedule: a popular choice in practice that sets the stepsize proportionally to 1 - t/T, where t is the current iteration and T is the total number of steps. To go beyond this worst-case analysis, we use the observed gradient norms to derive schedules refined for any particular task. These refined schedules exhibit learning rate warm-up and rapid learning rate annealing near the end of training. Ours is the first systematic approach to automatically yield both of these properties. We perform the most comprehensive evaluation of learning rate schedules to date, evaluating across 10 diverse deep learning problems, a series of LLMs, and a suite of logistic regression problems. We validate that overall, the linear-decay schedule matches or outperforms all commonly used default schedules including cosine annealing, and that our schedule refinement method gives further improvements.

  • 4 authors
·
Oct 11, 2023

B-STaR: Monitoring and Balancing Exploration and Exploitation in Self-Taught Reasoners

In the absence of extensive human-annotated data for complex reasoning tasks, self-improvement -- where models are trained on their own outputs -- has emerged as a primary method for enhancing performance. However, the critical factors underlying the mechanism of these iterative self-improving methods remain poorly understood, such as under what conditions self-improvement is effective, and what are the bottlenecks in the current iterations. In this work, we identify and propose methods to monitor two pivotal factors in this iterative process: (1) the model's ability to generate sufficiently diverse responses (exploration); and (2) the effectiveness of external rewards in distinguishing high-quality candidates from lower-quality ones (exploitation). Using mathematical reasoning as a case study, we begin with a quantitative analysis to track the dynamics of exploration and exploitation, discovering that a model's exploratory capabilities rapidly deteriorate over iterations, and the effectiveness of exploiting external rewards diminishes as well. Motivated by these findings, we introduce B-STaR, a Self-Taught Reasoning framework that autonomously adjusts configurations across iterations to Balance exploration and exploitation, thereby optimizing the self-improving effectiveness based on the current policy model and available rewards. Our experiments on mathematical reasoning, coding, and commonsense reasoning demonstrate that B-STaR not only enhances the model's exploratory capabilities throughout training but also achieves a more effective balance between exploration and exploitation, leading to superior performance.

  • 6 authors
·
Dec 22, 2024 2

Boosting LLM Reasoning via Spontaneous Self-Correction

While large language models (LLMs) have demonstrated remarkable success on a broad range of tasks, math reasoning remains a challenging one. One of the approaches for improving math reasoning is self-correction, which designs self-improving loops to let the model correct its own mistakes. However, existing self-correction approaches treat corrections as standalone post-generation refinements, relying on extra prompt and system designs to elicit self-corrections, instead of performing real-time, spontaneous self-corrections in a single pass. To address this, we propose SPOC, a spontaneous self-correction approach that enables LLMs to generate interleaved solutions and verifications in a single inference pass, with generation dynamically terminated based on verification outcomes, thereby effectively scaling inference time compute. SPOC considers a multi-agent perspective by assigning dual roles -- solution proposer and verifier -- to the same model. We adopt a simple yet effective approach to generate synthetic data for fine-tuning, enabling the model to develop capabilities for self-verification and multi-agent collaboration. We further improve its solution proposal and verification accuracy through online reinforcement learning. Experiments on mathematical reasoning benchmarks show that SPOC significantly improves performance. Notably, SPOC boosts the accuracy of Llama-3.1-8B and 70B Instruct models, achieving gains of 8.8% and 11.6% on MATH500, 10.0% and 20.0% on AMC23, and 3.3% and 6.7% on AIME24, respectively.

  • 14 authors
·
Jun 7

MC-NEST -- Enhancing Mathematical Reasoning in Large Language Models with a Monte Carlo Nash Equilibrium Self-Refine Tree

Mathematical reasoning has proven to be a critical yet challenging task for large language models (LLMs), as they often struggle with complex multi-step problems. To address these limitations, we introduce the Monte Carlo Nash Equilibrium Self-Refine Tree (MC-NEST) algorithm, an enhancement of the Monte Carlo Tree Self-Refine (MCTSr) approach. By integrating Nash Equilibrium strategies with LLM-based self-refinement and self-evaluation processes, MC-NEST aims to improve decision-making for complex mathematical reasoning tasks. This method ensures balanced exploration and exploitation of potential solutions, leveraging Upper Confidence Bound (UCT) scores and various selection policies. Through iterative critique and refinement, MC-NEST enhances the reasoning capabilities of LLMs, particularly for problems requiring strategic decision-making. Comparative analysis reveals that GPT-4o, equipped with MC-NEST using an Importance Sampling Policy, achieved superior accuracy in domains such as Number Theory and Geometry. These results suggest that both LLMs GPT-4o and Phi-3-mini can benefit from MC-NEST, with iterative self-refinement proving especially effective in expanding the reasoning capacity and problem-solving performance of LLMs. We evaluate the effectiveness of MC-NEST on challenging Olympiad-level benchmarks, demonstrating its potential to significantly boost complex mathematical reasoning performance in LLMs.

  • 4 authors
·
Nov 23, 2024

A Hierarchical Bayesian Model for Deep Few-Shot Meta Learning

We propose a novel hierarchical Bayesian model for learning with a large (possibly infinite) number of tasks/episodes, which suits well the few-shot meta learning problem. We consider episode-wise random variables to model episode-specific target generative processes, where these local random variables are governed by a higher-level global random variate. The global variable helps memorize the important information from historic episodes while controlling how much the model needs to be adapted to new episodes in a principled Bayesian manner. Within our model framework, the prediction on a novel episode/task can be seen as a Bayesian inference problem. However, a main obstacle in learning with a large/infinite number of local random variables in online nature, is that one is not allowed to store the posterior distribution of the current local random variable for frequent future updates, typical in conventional variational inference. We need to be able to treat each local variable as a one-time iterate in the optimization. We propose a Normal-Inverse-Wishart model, for which we show that this one-time iterate optimization becomes feasible due to the approximate closed-form solutions for the local posterior distributions. The resulting algorithm is more attractive than the MAML in that it is not required to maintain computational graphs for the whole gradient optimization steps per episode. Our approach is also different from existing Bayesian meta learning methods in that unlike dealing with a single random variable for the whole episodes, our approach has a hierarchical structure that allows one-time episodic optimization, desirable for principled Bayesian learning with many/infinite tasks. The code is available at https://github.com/minyoungkim21/niwmeta.

  • 2 authors
·
Jun 16, 2023

High-order finite element method for atomic structure calculations

We introduce featom, an open source code that implements a high-order finite element solver for the radial Schr\"odinger, Dirac, and Kohn-Sham equations. The formulation accommodates various mesh types, such as uniform or exponential, and the convergence can be systematically controlled by increasing the number and/or polynomial order of the finite element basis functions. The Dirac equation is solved using a squared Hamiltonian approach to eliminate spurious states. To address the slow convergence of the kappa=pm1 states due to divergent derivatives at the origin, we incorporate known asymptotic forms into the solutions. We achieve a high level of accuracy (10^{-8} Hartree) for total energies and eigenvalues of heavy atoms such as uranium in both Schr\"odinger and Dirac Kohn-Sham solutions. We provide detailed convergence studies and computational parameters required to attain commonly required accuracies. Finally, we compare our results with known analytic results as well as the results of other methods. In particular, we calculate benchmark results for atomic numbers (Z) from 1 to 92, verifying current benchmarks. We demonstrate significant speedup compared to the state-of-the-art shooting solver dftatom. An efficient, modular Fortran 2008 implementation, is provided under an open source, permissive license, including examples and tests, wherein particular emphasis is placed on the independence (no global variables), reusability, and generality of the individual routines.

  • 8 authors
·
Jul 11, 2023

A Vector-Based Algorithm for Generating Complete Balanced Reaction Sets with Arbitrary Numbers of Reagents

We present a vector-based method to balance chemical reactions. The algorithm builds candidates in a deterministic way, removes duplicates, and always prints coefficients in the lowest whole-number form. For redox cases, electrons and protons/hydroxide are treated explicitly, so both mass and charge are balanced. We also outline the basic principles of the vector formulation of stoichiometry, interpreting reactions as integer vectors in composition space, this geometric view supports compact visualizations of reagent-product interactions and helps surface distinct reaction families. The method enumerates valid balances for arbitrary user-specified species lists without special-case balancing rules or symbolic tricks, and it provides a clean foundation for developing new algorithmic variants (e.g., alternative objectives or constraints). On representative examples (neutralization, double displacement, decomposition, classical redox, small multicomponent sets) and a negative control, the method produced correct integer balances. When multiple balances exist, we report a canonical one - minimizing the total coefficient sum with a simple tie-breaker - without claiming global optimality beyond the solutions the search enumerates. The procedure applies per reaction and extends to reaction networks via consistent per-reaction application. We do not report runtimes, broader benchmarking and code/data release are planned.

  • 3 authors
·
Oct 29

Optimization by Directional Attacks: Solving Problems with Neural Network Surrogates

This paper tackles optimization problems whose objective and constraints involve a trained Neural Network (NN), where the goal is to maximize f(Phi(x)) subject to c(Phi(x)) leq 0, with f smooth, c general and non-stringent, and Phi an already trained and possibly nonwhite-box NN. We address two challenges regarding this problem: identifying ascent directions for local search, and ensuring reliable convergence towards relevant local solutions. To this end, we re-purpose the notion of directional NN attacks as efficient optimization subroutines, since directional NN attacks use the neural structure of Phi to compute perturbations of x that steer Phi(x) in prescribed directions. Precisely, we develop an attack operator that computes attacks of Phi at any x along the direction nabla f(Phi(x)). Then, we propose a hybrid algorithm combining the attack operator with derivative-free optimization (DFO) techniques, designed for numerical reliability by remaining oblivious to the structure of the problem. We consider the cDSM algorithm, which offers asymptotic guarantees to converge to a local solution under mild assumptions on the problem. The resulting method alternates between attack-based steps for heuristic yet fast local intensification and cDSM steps for certified convergence and numerical reliability. Experiments on three problems show that this hybrid approach consistently outperforms standard DFO baselines.

  • 2 authors
·
Oct 1

RISING a new framework for few-view tomographic image reconstruction with deep learning

This paper proposes a new two-step procedure for sparse-view tomographic image reconstruction. It is called RISING, since it combines an early-stopped Rapid Iterative Solver with a subsequent Iteration Network-based Gaining step. So far, regularized iterative methods have widely been used for X-ray computed tomography image reconstruction from low-sampled data, since they converge to a sparse solution in a suitable domain, as upheld by the Compressed Sensing theory. Unfortunately, their use is practically limited by their high computational cost which imposes to perform only a few iterations in the available time for clinical exams. Data-driven methods, using neural networks to post-process a coarse and noisy image obtained from geometrical algorithms, have been recently studied and appreciated for both their computational speed and accurate reconstructions. However, there is no evidence, neither theoretically nor numerically, that neural networks based algorithms solve the mathematical inverse problem modeling the tomographic reconstruction process. In our two-step approach, the first phase executes very few iterations of a regularized model-based algorithm whereas the second step completes the missing iterations by means of a neural network. The resulting hybrid deep-variational framework preserves the convergence properties of the iterative method and, at the same time, it exploits the computational speed and flexibility of a data-driven approach. Experiments performed on a simulated and a real data set confirm the numerical and visual accuracy of the reconstructed RISING images in short computational times.

  • 3 authors
·
Jan 24, 2022

Inversion-Free Image Editing with Natural Language

Despite recent advances in inversion-based editing, text-guided image manipulation remains challenging for diffusion models. The primary bottlenecks include 1) the time-consuming nature of the inversion process; 2) the struggle to balance consistency with accuracy; 3) the lack of compatibility with efficient consistency sampling methods used in consistency models. To address the above issues, we start by asking ourselves if the inversion process can be eliminated for editing. We show that when the initial sample is known, a special variance schedule reduces the denoising step to the same form as the multi-step consistency sampling. We name this Denoising Diffusion Consistent Model (DDCM), and note that it implies a virtual inversion strategy without explicit inversion in sampling. We further unify the attention control mechanisms in a tuning-free framework for text-guided editing. Combining them, we present inversion-free editing (InfEdit), which allows for consistent and faithful editing for both rigid and non-rigid semantic changes, catering to intricate modifications without compromising on the image's integrity and explicit inversion. Through extensive experiments, InfEdit shows strong performance in various editing tasks and also maintains a seamless workflow (less than 3 seconds on one single A40), demonstrating the potential for real-time applications. Project Page: https://sled-group.github.io/InfEdit/

  • 5 authors
·
Dec 7, 2023

AutoReproduce: Automatic AI Experiment Reproduction with Paper Lineage

Efficient experiment reproduction is critical to accelerating progress in artificial intelligence. However, the inherent complexity of method design and training procedures presents substantial challenges for automation. Notably, reproducing experiments often requires implicit domain-specific knowledge not explicitly documented in the original papers. To address this, we introduce the paper lineage algorithm, which identifies and extracts implicit knowledge from the relevant references cited by the target paper. Building on this idea, we propose AutoReproduce, a multi-agent framework capable of automatically reproducing experiments described in research papers in an end-to-end manner. AutoReproduce enhances code executability by generating unit tests alongside the reproduction process. To evaluate the reproduction capability, we construct ReproduceBench, a benchmark annotated with verified implementations, and introduce novel evaluation metrics to assess both the reproduction and execution fidelity. Experimental results demonstrate that AutoReproduce outperforms the existing strong agent baselines on all five evaluation metrics by a peak margin of over 70%. In particular, compared to the official implementations, AutoReproduce achieves an average performance gap of 22.1% on 89.74% of the executable experiment runs. The code will be available at https://github.com/AI9Stars/AutoReproduce.

  • 9 authors
·
May 26

Goedel-Prover-V2: Scaling Formal Theorem Proving with Scaffolded Data Synthesis and Self-Correction

We introduce Goedel-Prover-V2, a series of open-source language models that set a new state-of-the-art in automated theorem proving. Built on the standard expert iteration and reinforcement learning pipeline, our approach incorporates three key innovations: (1) Scaffolded data synthesis: We generate synthetic tasks of increasing difficulty to train the model to master increasingly complex theorems; (2) Verifier-guided self-correction: We enable the model to iteratively revise its proofs by leveraging feedback from the Lean compiler; (3) Model averaging: We merge model checkpoints to mitigate the decrease in model output diversity in later stages of training. Our small model, Goedel-Prover-V2-8B, reaches 84.6% pass@32 on MiniF2F and outperforms DeepSeek-Prover-V2-671B under the same metric, despite being 80X smaller. Our flagship model, Goedel-Prover-V2-32B, achieves 88.1% on MiniF2F at pass@32 in standard mode and 90.4% in self-correction mode, outperforming prior SOTA by a large margin. Additionally, our flagship model solves 86 problems on PutnamBench at pass@184, securing the first place among open-source models on the leaderboard, surpassing DeepSeek-Prover-V2-671B's record of solving 47 problems by pass@1024 with a significantly smaller model size and compute budget. At the time of its release (July-August 2025), Goedel-Prover-V2 achieves the strongest overall performance among all open-source theorem provers. It also ranks among the top-performing models--including closed-source systems with publicly reported performance--under a constrained test-time compute budget. Our models, code, and data are released at https://github.com/Goedel-LM/Goedel-Prover-V2.

Multi-marginal Schrödinger Bridges with Iterative Reference Refinement

Practitioners frequently aim to infer an unobserved population trajectory using sample snapshots at multiple time points. For instance, in single-cell sequencing, scientists would like to learn how gene expression evolves over time. But sequencing any cell destroys that cell. So we cannot access any cell's full trajectory, but we can access snapshot samples from many cells. Stochastic differential equations are commonly used to analyze systems with full individual-trajectory access; since here we have only sample snapshots, these methods are inapplicable. The deep learning community has recently explored using Schr\"odinger bridges (SBs) and their extensions to estimate these dynamics. However, these methods either (1) interpolate between just two time points or (2) require a single fixed reference dynamic within the SB, which is often just set to be Brownian motion. But learning piecewise from adjacent time points can fail to capture long-term dependencies. And practitioners are typically able to specify a model class for the reference dynamic but not the exact values of the parameters within it. So we propose a new method that (1) learns the unobserved trajectories from sample snapshots across multiple time points and (2) requires specification only of a class of reference dynamics, not a single fixed one. In particular, we suggest an iterative projection method inspired by Schr\"odinger bridges; we alternate between learning a piecewise SB on the unobserved trajectories and using the learned SB to refine our best guess for the dynamics within the reference class. We demonstrate the advantages of our method via a well-known simulated parametric model from ecology, simulated and real data from systems biology, and real motion-capture data.

  • 3 authors
·
Aug 12, 2024

Efficient Massive Black Hole Binary parameter estimation for LISA using Sequential Neural Likelihood

The inspiral, merger, and ringdown of Massive Black Hole Binaries (MBHBs) is one the main sources of Gravitational Waves (GWs) for the future Laser Interferometer Space Antenna (LISA), an ESA-led mission in the implementation phase. It is expected that LISA will detect these systems throughout the entire observable universe. Robust and efficient data analysis algorithms are necessary to detect and estimate physical parameters for these systems. In this work, we explore the application of Sequential Neural Likelihood, a simulation-based inference algorithm, to detect and characterize MBHB GW signals in synthetic LISA data. We describe in detail the different elements of the method, their performance and possible alternatives that can be used to enhance the performance. Instead of sampling from the conventional likelihood function, which requires a forward simulation for each evaluation, this method constructs a surrogate likelihood that is ultimately described by a neural network trained from a dataset of simulations of the MBHB signals and noise. One important advantage of this method is that, given that the likelihood is independent of the priors, we can iteratively train models that target specific observations in a fraction of the time and computational cost that other traditional and machine learning-based strategies would require. Because of the iterative nature of the method, we are able to train models to obtain qualitatively similar posteriors with less than 2\% of the simulator calls that Markov Chain Monte Carlo methods would require. We compare these posteriors with those obtained from Markov Chain Monte Carlo techniques and discuss the differences that appear, in particular in relation with the important role that data compression has in the modular implementation of the method that we present. We also discuss different strategies to improve the performance of the algorithms.

  • 2 authors
·
Jun 1, 2024

Consistent3D: Towards Consistent High-Fidelity Text-to-3D Generation with Deterministic Sampling Prior

Score distillation sampling (SDS) and its variants have greatly boosted the development of text-to-3D generation, but are vulnerable to geometry collapse and poor textures yet. To solve this issue, we first deeply analyze the SDS and find that its distillation sampling process indeed corresponds to the trajectory sampling of a stochastic differential equation (SDE): SDS samples along an SDE trajectory to yield a less noisy sample which then serves as a guidance to optimize a 3D model. However, the randomness in SDE sampling often leads to a diverse and unpredictable sample which is not always less noisy, and thus is not a consistently correct guidance, explaining the vulnerability of SDS. Since for any SDE, there always exists an ordinary differential equation (ODE) whose trajectory sampling can deterministically and consistently converge to the desired target point as the SDE, we propose a novel and effective "Consistent3D" method that explores the ODE deterministic sampling prior for text-to-3D generation. Specifically, at each training iteration, given a rendered image by a 3D model, we first estimate its desired 3D score function by a pre-trained 2D diffusion model, and build an ODE for trajectory sampling. Next, we design a consistency distillation sampling loss which samples along the ODE trajectory to generate two adjacent samples and uses the less noisy sample to guide another more noisy one for distilling the deterministic prior into the 3D model. Experimental results show the efficacy of our Consistent3D in generating high-fidelity and diverse 3D objects and large-scale scenes, as shown in Fig. 1. The codes are available at https://github.com/sail-sg/Consistent3D.

  • 5 authors
·
Jan 17, 2024

Scalable Best-of-N Selection for Large Language Models via Self-Certainty

Best-of-N selection is a key technique for improving the reasoning performance of Large Language Models (LLMs) through increased test-time computation. Current state-of-the-art methods often employ computationally intensive reward models for response evaluation and selection. Reward-free alternatives, like self-consistency and universal self-consistency, are limited in their ability to handle open-ended generation tasks or scale effectively. To address these limitations, we propose self-certainty, a novel and efficient metric that leverages the inherent probability distribution of LLM outputs to estimate response quality without requiring external reward models. We hypothesize that higher distributional self-certainty, aggregated across multiple samples, correlates with improved response accuracy, as it reflects greater confidence in the generated output. Through extensive experiments on various reasoning tasks, we demonstrate that self-certainty (1) scales effectively with increasing sample size N, akin to reward models but without the computational overhead; (2) complements chain-of-thought, improving reasoning performance beyond greedy decoding; and (3) generalizes to open-ended tasks where traditional self-consistency methods fall short. Our findings establish self-certainty as a practical and efficient way for improving LLM reasoning capabilities. The code is available at https://github.com/backprop07/Self-Certainty

  • 3 authors
·
Feb 25

Self-Calibration and Bilinear Inverse Problems via Linear Least Squares

Whenever we use devices to take measurements, calibration is indispensable. While the purpose of calibration is to reduce bias and uncertainty in the measurements, it can be quite difficult, expensive, and sometimes even impossible to implement. We study a challenging problem called self-calibration, i.e., the task of designing an algorithm for devices so that the algorithm is able to perform calibration automatically. More precisely, we consider the setup y = A(d) x + epsilon where only partial information about the sensing matrix A(d) is known and where A(d) linearly depends on d. The goal is to estimate the calibration parameter d (resolve the uncertainty in the sensing process) and the signal/object of interests x simultaneously. For three different models of practical relevance, we show how such a bilinear inverse problem, including blind deconvolution as an important example, can be solved via a simple linear least squares approach. As a consequence, the proposed algorithms are numerically extremely efficient, thus potentially allowing for real-time deployment. We also present a variation of the least squares approach, which leads to a~spectral method, where the solution to the bilinear inverse problem can be found by computing the singular vector associated with the smallest singular value of a certain matrix derived from the bilinear system. Explicit theoretical guarantees and stability theory are derived for both techniques; and the number of sampling complexity is nearly optimal (up to a poly-log factor). Applications in imaging sciences and signal processing are discussed and numerical simulations are presented to demonstrate the effectiveness and efficiency of our approach.

  • 2 authors
·
Nov 13, 2016

SCott: Accelerating Diffusion Models with Stochastic Consistency Distillation

The iterative sampling procedure employed by diffusion models (DMs) often leads to significant inference latency. To address this, we propose Stochastic Consistency Distillation (SCott) to enable accelerated text-to-image generation, where high-quality generations can be achieved with just 1-2 sampling steps, and further improvements can be obtained by adding additional steps. In contrast to vanilla consistency distillation (CD) which distills the ordinary differential equation solvers-based sampling process of a pretrained teacher model into a student, SCott explores the possibility and validates the efficacy of integrating stochastic differential equation (SDE) solvers into CD to fully unleash the potential of the teacher. SCott is augmented with elaborate strategies to control the noise strength and sampling process of the SDE solver. An adversarial loss is further incorporated to strengthen the sample quality with rare sampling steps. Empirically, on the MSCOCO-2017 5K dataset with a Stable Diffusion-V1.5 teacher, SCott achieves an FID (Frechet Inceptio Distance) of 22.1, surpassing that (23.4) of the 1-step InstaFlow (Liu et al., 2023) and matching that of 4-step UFOGen (Xue et al., 2023b). Moreover, SCott can yield more diverse samples than other consistency models for high-resolution image generation (Luo et al., 2023a), with up to 16% improvement in a qualified metric. The code and checkpoints are coming soon.

  • 8 authors
·
Mar 3, 2024

Stochastic Policy Gradient Methods: Improved Sample Complexity for Fisher-non-degenerate Policies

Recently, the impressive empirical success of policy gradient (PG) methods has catalyzed the development of their theoretical foundations. Despite the huge efforts directed at the design of efficient stochastic PG-type algorithms, the understanding of their convergence to a globally optimal policy is still limited. In this work, we develop improved global convergence guarantees for a general class of Fisher-non-degenerate parameterized policies which allows to address the case of continuous state action spaces. First, we propose a Normalized Policy Gradient method with Implicit Gradient Transport (N-PG-IGT) and derive a mathcal{O}(varepsilon^{-2.5}) sample complexity of this method for finding a global varepsilon-optimal policy. Improving over the previously known mathcal{O}(varepsilon^{-3}) complexity, this algorithm does not require the use of importance sampling or second-order information and samples only one trajectory per iteration. Second, we further improve this complexity to mathcal{mathcal{O} }(varepsilon^{-2}) by considering a Hessian-Aided Recursive Policy Gradient ((N)-HARPG) algorithm enhanced with a correction based on a Hessian-vector product. Interestingly, both algorithms are (i) simple and easy to implement: single-loop, do not require large batches of trajectories and sample at most two trajectories per iteration; (ii) computationally and memory efficient: they do not require expensive subroutines at each iteration and can be implemented with memory linear in the dimension of parameters.

  • 4 authors
·
Feb 3, 2023

Variance Reduced Halpern Iteration for Finite-Sum Monotone Inclusions

Machine learning approaches relying on such criteria as adversarial robustness or multi-agent settings have raised the need for solving game-theoretic equilibrium problems. Of particular relevance to these applications are methods targeting finite-sum structure, which generically arises in empirical variants of learning problems in these contexts. Further, methods with computable approximation errors are highly desirable, as they provide verifiable exit criteria. Motivated by these applications, we study finite-sum monotone inclusion problems, which model broad classes of equilibrium problems. Our main contributions are variants of the classical Halpern iteration that employ variance reduction to obtain improved complexity guarantees in which n component operators in the finite sum are ``on average'' either cocoercive or Lipschitz continuous and monotone, with parameter L. The resulting oracle complexity of our methods, which provide guarantees for the last iterate and for a (computable) operator norm residual, is mathcal{O}( n + nLvarepsilon^{-1}), which improves upon existing methods by a factor up to n. This constitutes the first variance reduction-type result for general finite-sum monotone inclusions and for more specific problems such as convex-concave optimization when operator norm residual is the optimality measure. We further argue that, up to poly-logarithmic factors, this complexity is unimprovable in the monotone Lipschitz setting; i.e., the provided result is near-optimal.

  • 3 authors
·
Oct 4, 2023

Can Language Models Falsify? Evaluating Algorithmic Reasoning with Counterexample Creation

There is growing excitement about the potential of Language Models (LMs) to accelerate scientific discovery. Falsifying hypotheses is key to scientific progress, as it allows claims to be iteratively refined over time. This process requires significant researcher effort, reasoning, and ingenuity. Yet current benchmarks for LMs predominantly assess their ability to generate solutions rather than challenge them. We advocate for developing benchmarks that evaluate this inverse capability - creating counterexamples for subtly incorrect solutions. To demonstrate this approach, we start with the domain of algorithmic problem solving, where counterexamples can be evaluated automatically using code execution. Specifically, we introduce REFUTE, a dynamically updating benchmark that includes recent problems and incorrect submissions from programming competitions, where human experts successfully identified counterexamples. Our analysis finds that the best reasoning agents, even OpenAI o3-mini (high) with code execution feedback, can create counterexamples for only <9% of incorrect solutions in REFUTE, even though ratings indicate its ability to solve up to 48% of these problems from scratch. We hope our work spurs progress in evaluating and enhancing LMs' ability to falsify incorrect solutions - a capability that is crucial for both accelerating research and making models self-improve through reliable reflective reasoning.

  • 6 authors
·
Feb 26 2

An error indicator-based adaptive reduced order model for nonlinear structural mechanics -- application to high-pressure turbine blades

The industrial application motivating this work is the fatigue computation of aircraft engines' high-pressure turbine blades. The material model involves nonlinear elastoviscoplastic behavior laws, for which the parameters depend on the temperature. For this application, the temperature loading is not accurately known and can reach values relatively close to the creep temperature: important nonlinear effects occur and the solution strongly depends on the used thermal loading. We consider a nonlinear reduced order model able to compute, in the exploitation phase, the behavior of the blade for a new temperature field loading. The sensitivity of the solution to the temperature makes {the classical unenriched proper orthogonal decomposition method} fail. In this work, we propose a new error indicator, quantifying the error made by the reduced order model in computational complexity independent of the size of the high-fidelity reference model. In our framework, when the {error indicator} becomes larger than a given tolerance, the reduced order model is updated using one time step solution of the high-fidelity reference model. The approach is illustrated on a series of academic test cases and applied on a setting of industrial complexity involving 5 million degrees of freedom, where the whole procedure is computed in parallel with distributed memory.

  • 2 authors
·
Apr 19, 2019

Self-Reflective Generation at Test Time

Large language models (LLMs) increasingly solve complex reasoning tasks via long chain-of-thought, but their forward-only autoregressive generation process is fragile; early token errors can cascade, which creates a clear need for self-reflection mechanisms. However, existing self-reflection either performs revisions over full drafts or learns self-correction via expensive training, both fundamentally reactive and inefficient. To address this, we propose Self-Reflective Generation at Test Time (SRGen), a lightweight test-time framework that reflects before generating at uncertain points. During token generation, SRGen utilizes dynamic entropy thresholding to identify high-uncertainty tokens. For each identified token, it trains a specific corrective vector, which fully exploits the already generated context for a self-reflective generation to correct the token probability distribution. By retrospectively analyzing the partial output, this self-reflection enables more trustworthy decisions, thereby significantly reducing the probability of errors at highly uncertain points. Evaluated on challenging mathematical reasoning benchmarks and a diverse set of LLMs, SRGen can consistently strengthen model reasoning: improvements in single-pass quality also translate into stronger self-consistency voting. Especially, on AIME2024 with DeepSeek-R1-Distill-Qwen-7B, SRGen yields absolute improvements of +12.0% on Pass@1 and +13.3% on Cons@5. Moreover, our findings position SRGen as a plug-and-play method that integrates reflection into the generation process for reliable LLM reasoning, achieving consistent gains with bounded overhead and broad composability with other training-time (e.g., RLHF) and test-time (e.g., SLOT) techniques.

  • 8 authors
·
Oct 3 2

Unifying Self-Supervised Clustering and Energy-Based Models

Self-supervised learning excels at learning representations from large amounts of data. At the same time, generative models offer the complementary property of learning information about the underlying data generation process. In this study, we aim at establishing a principled connection between these two paradigms and highlight the benefits of their complementarity. In particular, we perform an analysis of self-supervised learning objectives, elucidating the underlying probabilistic graphical models and presenting a standardized methodology for their derivation from first principles. The analysis suggests a natural means of integrating self-supervised learning with likelihood-based generative models. We instantiate this concept within the realm of cluster-based self-supervised learning and energy models, introducing a lower bound proven to reliably penalize the most important failure modes and unlocking full unification. Our theoretical findings are substantiated through experiments on synthetic and real-world data, including SVHN, CIFAR10, and CIFAR100, demonstrating that our objective function allows to jointly train a backbone network in a discriminative and generative fashion, consequently outperforming existing self-supervised learning strategies in terms of clustering, generation and out-of-distribution detection performance by a wide margin. We also demonstrate that the solution can be integrated into a neuro-symbolic framework to tackle a simple yet non-trivial instantiation of the symbol grounding problem. The code is publicly available at https://github.com/emsansone/GEDI.

  • 2 authors
·
Dec 29, 2023

Fast Full-frame Video Stabilization with Iterative Optimization

Video stabilization refers to the problem of transforming a shaky video into a visually pleasing one. The question of how to strike a good trade-off between visual quality and computational speed has remained one of the open challenges in video stabilization. Inspired by the analogy between wobbly frames and jigsaw puzzles, we propose an iterative optimization-based learning approach using synthetic datasets for video stabilization, which consists of two interacting submodules: motion trajectory smoothing and full-frame outpainting. First, we develop a two-level (coarse-to-fine) stabilizing algorithm based on the probabilistic flow field. The confidence map associated with the estimated optical flow is exploited to guide the search for shared regions through backpropagation. Second, we take a divide-and-conquer approach and propose a novel multiframe fusion strategy to render full-frame stabilized views. An important new insight brought about by our iterative optimization approach is that the target video can be interpreted as the fixed point of nonlinear mapping for video stabilization. We formulate video stabilization as a problem of minimizing the amount of jerkiness in motion trajectories, which guarantees convergence with the help of fixed-point theory. Extensive experimental results are reported to demonstrate the superiority of the proposed approach in terms of computational speed and visual quality. The code will be available on GitHub.

  • 7 authors
·
Jul 24, 2023

SelfPiCo: Self-Guided Partial Code Execution with LLMs

Code executability plays a vital role in software debugging and testing (e.g., detecting runtime exceptions or assertion violations). However, code execution, especially partial or arbitrary code execution, is a non-trivial task due to missing definitions and complex third-party dependencies. To make partial code (such as code snippets posted on the web or code fragments deep inside complex software projects) executable, the existing study has proposed a machine learning model to predict the undefined element types and inject the pre-defined dummy values into execution. However, the performance of their tool is limited due to its simply designed dummy values and the inability to continue learning. In this paper, we design and implement a novel framework, named SelfPiCo (Self Guided Partial Code Executor), to dynamically guide partial code execution by incorporating the open-source LLM (i.e., Code Llama) within an interactive loop. Particularly, SelfPiCo leverages few-shot in-context learning and chain-of-thought reasoning to elicit human knowledge and logical reasoning based on fine-tuning the Code Llama model. SelfPiCo continuously learns from code execution results and refines its predictions step after step. Our evaluations demonstrate that SelfPiCo can execute 72.7% and 83.3% of all lines in the open-source code and Stack Overflow snippets, outperforming the most recent state-of-the-art Lexecutor by 37.9% and 33.5%, respectively. Moreover, SelfPiCo successfully detected 18 and 33 runtime type error issues by executing the partial code from eight GitHub software projects and 43 Stack Overflow posts, demonstrating the practical usage and potential application of our framework in practice.

  • 6 authors
·
Jul 23, 2024

Rethinking Thinking Tokens: LLMs as Improvement Operators

Reasoning training incentivizes LLMs to produce long chains of thought (long CoT), which among other things, allows them to explore solution strategies with self-checking. This results in higher accuracy, but inflates context length, token/compute cost, and answer latency. We ask: Can current models leverage their metacognition to provide other combinations on this Pareto frontier, e.g., better accuracy with lower context length and/or latency? Abstractly, we view the model as an improvement operator on its own "thoughts" with a continuum of possible strategies. We identify an interesting inference family Parallel-Distill-Refine (PDR), which performs the following: (i) generate diverse drafts in parallel; (ii) distill them into a bounded, textual workspace; and (iii) refine conditioned on this workspace, producing an output that seeds the next round. Importantly, context length (hence compute cost) is controllable via degree of parallelism, and is no longer conflated with the total number of generated tokens. We report PDR instantiations of current models that give better accuracy than long CoT while incurring lower latency. Setting degree of parallelism to 1 yields an interesting subcase, Sequential Refinement (SR) (iteratively improve a single candidate answer) which provides performance superior to long CoT. Success of such model orchestrations raises the question whether further training could shift the Pareto frontier. To this end, we train an 8B thinking model with Reinforcement Learning (RL) to make it consistent with PDR as the inference method. On math tasks with verifiable answers, iterative pipelines surpass single-pass baselines at matched sequential budgets, with PDR delivering the largest gains (e.g., +11% on AIME 2024 and +9% on AIME 2025).

Efficient and Modular Implicit Differentiation

Automatic differentiation (autodiff) has revolutionized machine learning. It allows to express complex computations by composing elementary ones in creative ways and removes the burden of computing their derivatives by hand. More recently, differentiation of optimization problem solutions has attracted widespread attention with applications such as optimization layers, and in bi-level problems such as hyper-parameter optimization and meta-learning. However, so far, implicit differentiation remained difficult to use for practitioners, as it often required case-by-case tedious mathematical derivations and implementations. In this paper, we propose automatic implicit differentiation, an efficient and modular approach for implicit differentiation of optimization problems. In our approach, the user defines directly in Python a function F capturing the optimality conditions of the problem to be differentiated. Once this is done, we leverage autodiff of F and the implicit function theorem to automatically differentiate the optimization problem. Our approach thus combines the benefits of implicit differentiation and autodiff. It is efficient as it can be added on top of any state-of-the-art solver and modular as the optimality condition specification is decoupled from the implicit differentiation mechanism. We show that seemingly simple principles allow to recover many existing implicit differentiation methods and create new ones easily. We demonstrate the ease of formulating and solving bi-level optimization problems using our framework. We also showcase an application to the sensitivity analysis of molecular dynamics.

  • 8 authors
·
May 31, 2021

A Unified Sampling Framework for Solver Searching of Diffusion Probabilistic Models

Recent years have witnessed the rapid progress and broad application of diffusion probabilistic models (DPMs). Sampling from DPMs can be viewed as solving an ordinary differential equation (ODE). Despite the promising performance, the generation of DPMs usually consumes much time due to the large number of function evaluations (NFE). Though recent works have accelerated the sampling to around 20 steps with high-order solvers, the sample quality with less than 10 NFE can still be improved. In this paper, we propose a unified sampling framework (USF) to study the optional strategies for solver. Under this framework, we further reveal that taking different solving strategies at different timesteps may help further decrease the truncation error, and a carefully designed solver schedule has the potential to improve the sample quality by a large margin. Therefore, we propose a new sampling framework based on the exponential integral formulation that allows free choices of solver strategy at each step and design specific decisions for the framework. Moreover, we propose S^3, a predictor-based search method that automatically optimizes the solver schedule to get a better time-quality trade-off of sampling. We demonstrate that S^3 can find outstanding solver schedules which outperform the state-of-the-art sampling methods on CIFAR-10, CelebA, ImageNet, and LSUN-Bedroom datasets. Specifically, we achieve 2.69 FID with 10 NFE and 6.86 FID with 5 NFE on CIFAR-10 dataset, outperforming the SOTA method significantly. We further apply S^3 to Stable-Diffusion model and get an acceleration ratio of 2times, showing the feasibility of sampling in very few steps without retraining the neural network.

  • 4 authors
·
Dec 12, 2023

Universal Checkpointing: Efficient and Flexible Checkpointing for Large Scale Distributed Training

Existing checkpointing approaches seem ill-suited for distributed training even though hardware limitations make model parallelism, i.e., sharding model state across multiple accelerators, a requirement for model scaling. Consolidating distributed model state into a single checkpoint unacceptably slows down training, and is impractical at extreme scales. Distributed checkpoints, in contrast, are tightly coupled to the model parallelism and hardware configurations of the training run, and thus unusable on different configurations. To address this problem, we propose Universal Checkpointing, a technique that enables efficient checkpoint creation while providing the flexibility of resuming on arbitrary parallelism strategy and hardware configurations. Universal Checkpointing unlocks unprecedented capabilities for large-scale training such as improved resilience to hardware failures through continued training on remaining healthy hardware, and reduced training time through opportunistic exploitation of elastic capacity. The key insight of Universal Checkpointing is the selection of the optimal representation in each phase of the checkpointing life cycle: distributed representation for saving, and consolidated representation for loading. This is achieved using two key mechanisms. First, the universal checkpoint format, which consists of a consolidated representation of each model parameter and metadata for mapping parameter fragments into training ranks of arbitrary model-parallelism configuration. Second, the universal checkpoint language, a simple but powerful specification language for converting distributed checkpoints into the universal checkpoint format. Our evaluation demonstrates the effectiveness and generality of Universal Checkpointing on state-of-the-art model architectures and a wide range of parallelism techniques.

  • 7 authors
·
Jun 26, 2024

On Penalty Methods for Nonconvex Bilevel Optimization and First-Order Stochastic Approximation

In this work, we study first-order algorithms for solving Bilevel Optimization (BO) where the objective functions are smooth but possibly nonconvex in both levels and the variables are restricted to closed convex sets. As a first step, we study the landscape of BO through the lens of penalty methods, in which the upper- and lower-level objectives are combined in a weighted sum with penalty parameter sigma > 0. In particular, we establish a strong connection between the penalty function and the hyper-objective by explicitly characterizing the conditions under which the values and derivatives of the two must be O(sigma)-close. A by-product of our analysis is the explicit formula for the gradient of hyper-objective when the lower-level problem has multiple solutions under minimal conditions, which could be of independent interest. Next, viewing the penalty formulation as O(sigma)-approximation of the original BO, we propose first-order algorithms that find an epsilon-stationary solution by optimizing the penalty formulation with sigma = O(epsilon). When the perturbed lower-level problem uniformly satisfies the small-error proximal error-bound (EB) condition, we propose a first-order algorithm that converges to an epsilon-stationary point of the penalty function, using in total O(epsilon^{-3}) and O(epsilon^{-7}) accesses to first-order (stochastic) gradient oracles when the oracle is deterministic and oracles are noisy, respectively. Under an additional assumption on stochastic oracles, we show that the algorithm can be implemented in a fully {\it single-loop} manner, i.e., with O(1) samples per iteration, and achieves the improved oracle-complexity of O(epsilon^{-3}) and O(epsilon^{-5}), respectively.

  • 4 authors
·
Sep 4, 2023

Improving equilibrium propagation without weight symmetry through Jacobian homeostasis

Equilibrium propagation (EP) is a compelling alternative to the backpropagation of error algorithm (BP) for computing gradients of neural networks on biological or analog neuromorphic substrates. Still, the algorithm requires weight symmetry and infinitesimal equilibrium perturbations, i.e., nudges, to estimate unbiased gradients efficiently. Both requirements are challenging to implement in physical systems. Yet, whether and how weight asymmetry affects its applicability is unknown because, in practice, it may be masked by biases introduced through the finite nudge. To address this question, we study generalized EP, which can be formulated without weight symmetry, and analytically isolate the two sources of bias. For complex-differentiable non-symmetric networks, we show that the finite nudge does not pose a problem, as exact derivatives can still be estimated via a Cauchy integral. In contrast, weight asymmetry introduces bias resulting in low task performance due to poor alignment of EP's neuronal error vectors compared to BP. To mitigate this issue, we present a new homeostatic objective that directly penalizes functional asymmetries of the Jacobian at the network's fixed point. This homeostatic objective dramatically improves the network's ability to solve complex tasks such as ImageNet 32x32. Our results lay the theoretical groundwork for studying and mitigating the adverse effects of imperfections of physical networks on learning algorithms that rely on the substrate's relaxation dynamics.

  • 2 authors
·
Sep 5, 2023

PlanGEN: A Multi-Agent Framework for Generating Planning and Reasoning Trajectories for Complex Problem Solving

Recent agent frameworks and inference-time algorithms often struggle with complex planning problems due to limitations in verifying generated plans or reasoning and varying complexity of instances within a single task. Many existing methods for these tasks either perform task-level verification without considering constraints or apply inference-time algorithms without adapting to instance-level complexity. To address these limitations, we propose PlanGEN, a model-agnostic and easily scalable agent framework with three key components: constraint, verification, and selection agents. Specifically, our approach proposes constraint-guided iterative verification to enhance performance of inference-time algorithms--Best of N, Tree-of-Thought, and REBASE. In PlanGEN framework, the selection agent optimizes algorithm choice based on instance complexity, ensuring better adaptability to complex planning problems. Experimental results demonstrate significant improvements over the strongest baseline across multiple benchmarks, achieving state-of-the-art results on NATURAL PLAN (sim8%uparrow), OlympiadBench (sim4%uparrow), DocFinQA (sim7%uparrow), and GPQA (sim1%uparrow). Our key finding highlights that constraint-guided iterative verification improves inference-time algorithms, and adaptive selection further boosts performance on complex planning and reasoning problems.

Eigen-1: Adaptive Multi-Agent Refinement with Monitor-Based RAG for Scientific Reasoning

Large language models (LLMs) have recently shown strong progress on scientific reasoning, yet two major bottlenecks remain. First, explicit retrieval fragments reasoning, imposing a hidden "tool tax" of extra tokens and steps. Second, multi-agent pipelines often dilute strong solutions by averaging across all candidates. We address these challenges with a unified framework that combines implicit retrieval and structured collaboration. At its foundation, a Monitor-based retrieval module operates at the token level, integrating external knowledge with minimal disruption to reasoning. On top of this substrate, Hierarchical Solution Refinement (HSR) iteratively designates each candidate as an anchor to be repaired by its peers, while Quality-Aware Iterative Reasoning (QAIR) adapts refinement to solution quality. On Humanity's Last Exam (HLE) Bio/Chem Gold, our framework achieves 48.3\% accuracy -- the highest reported to date, surpassing the strongest agent baseline by 13.4 points and leading frontier LLMs by up to 18.1 points, while simultaneously reducing token usage by 53.5\% and agent steps by 43.7\%. Results on SuperGPQA and TRQA confirm robustness across domains. Error analysis shows that reasoning failures and knowledge gaps co-occur in over 85\% of cases, while diversity analysis reveals a clear dichotomy: retrieval tasks benefit from solution variety, whereas reasoning tasks favor consensus. Together, these findings demonstrate how implicit augmentation and structured refinement overcome the inefficiencies of explicit tool use and uniform aggregation. Code is available at: https://github.com/tangxiangru/Eigen-1.

  • 16 authors
·
Sep 25

Alchemy: Amplifying Theorem-Proving Capability through Symbolic Mutation

Formal proofs are challenging to write even for experienced experts. Recent progress in Neural Theorem Proving (NTP) shows promise in expediting this process. However, the formal corpora available on the Internet are limited compared to the general text, posing a significant data scarcity challenge for NTP. To address this issue, this work proposes Alchemy, a general framework for data synthesis that constructs formal theorems through symbolic mutation. Specifically, for each candidate theorem in Mathlib, we identify all invocable theorems that can be used to rewrite or apply to it. Subsequently, we mutate the candidate theorem by replacing the corresponding term in the statement with its equivalent form or antecedent. As a result, our method increases the number of theorems in Mathlib by an order of magnitude, from 110k to 6M. Furthermore, we perform continual pretraining and supervised finetuning on this augmented corpus for large language models. Experimental results demonstrate the effectiveness of our approach, achieving a 5% absolute performance improvement on Leandojo benchmark. Additionally, our synthetic data achieve a 2.5% absolute performance gain on the out-of-distribution miniF2F benchmark. To provide further insights, we conduct a comprehensive analysis of synthetic data composition and the training paradigm, offering valuable guidance for developing a strong theorem prover.

  • 5 authors
·
Oct 21, 2024 3

Self-Improvement in Language Models: The Sharpening Mechanism

Recent work in language modeling has raised the possibility of self-improvement, where a language models evaluates and refines its own generations to achieve higher performance without external feedback. It is impossible for this self-improvement to create information that is not already in the model, so why should we expect that this will lead to improved capabilities? We offer a new perspective on the capabilities of self-improvement through a lens we refer to as sharpening. Motivated by the observation that language models are often better at verifying response quality than they are at generating correct responses, we formalize self-improvement as using the model itself as a verifier during post-training in order to ``sharpen'' the model to one placing large mass on high-quality sequences, thereby amortizing the expensive inference-time computation of generating good sequences. We begin by introducing a new statistical framework for sharpening in which the learner aims to sharpen a pre-trained base policy via sample access, and establish fundamental limits. Then we analyze two natural families of self-improvement algorithms based on SFT and RLHF. We find that (i) the SFT-based approach is minimax optimal whenever the initial model has sufficient coverage, but (ii) the RLHF-based approach can improve over SFT-based self-improvement by leveraging online exploration, bypassing the need for coverage. Finally, we empirically validate the sharpening mechanism via inference-time and amortization experiments. We view these findings as a starting point toward a foundational understanding that can guide the design and evaluation of self-improvement algorithms.

  • 8 authors
·
Dec 2, 2024

Autoformalizer with Tool Feedback

Autoformalization addresses the scarcity of data for Automated Theorem Proving (ATP) by translating mathematical problems from natural language into formal statements. Efforts in recent work shift from directly prompting large language models to training an end-to-end formalizer model from scratch, achieving remarkable advancements. However, existing formalizer still struggles to consistently generate valid statements that meet syntactic validity and semantic consistency. To address this issue, we propose the Autoformalizer with Tool Feedback (ATF), a novel approach that incorporates syntactic and consistency information as tools into the formalization process. By integrating Lean 4 compilers for syntax corrections and employing a multi-LLMs-as-judge approach for consistency validation, the model is able to adaptively refine generated statements according to the tool feedback, enhancing both syntactic validity and semantic consistency. The training of ATF involves a cold-start phase on synthetic tool-calling data, an expert iteration phase to improve formalization capabilities, and Direct Preference Optimization to alleviate ineffective revisions. Experimental results show that ATF markedly outperforms a range of baseline formalizer models, with its superior performance further validated by human evaluations. Subsequent analysis reveals that ATF demonstrates excellent inference scaling properties. Moreover, we open-source Numina-ATF, a dataset containing 750K synthetic formal statements to facilitate advancements in autoformalization and ATP research.

  • 11 authors
·
Oct 8

Scaling physics-informed hard constraints with mixture-of-experts

Imposing known physical constraints, such as conservation laws, during neural network training introduces an inductive bias that can improve accuracy, reliability, convergence, and data efficiency for modeling physical dynamics. While such constraints can be softly imposed via loss function penalties, recent advancements in differentiable physics and optimization improve performance by incorporating PDE-constrained optimization as individual layers in neural networks. This enables a stricter adherence to physical constraints. However, imposing hard constraints significantly increases computational and memory costs, especially for complex dynamical systems. This is because it requires solving an optimization problem over a large number of points in a mesh, representing spatial and temporal discretizations, which greatly increases the complexity of the constraint. To address this challenge, we develop a scalable approach to enforce hard physical constraints using Mixture-of-Experts (MoE), which can be used with any neural network architecture. Our approach imposes the constraint over smaller decomposed domains, each of which is solved by an "expert" through differentiable optimization. During training, each expert independently performs a localized backpropagation step by leveraging the implicit function theorem; the independence of each expert allows for parallelization across multiple GPUs. Compared to standard differentiable optimization, our scalable approach achieves greater accuracy in the neural PDE solver setting for predicting the dynamics of challenging non-linear systems. We also improve training stability and require significantly less computation time during both training and inference stages.

  • 3 authors
·
Feb 20, 2024

Hyperparameters in Continual Learning: a Reality Check

Various algorithms for continual learning (CL) have been designed with the goal of effectively alleviating the trade-off between stability and plasticity during the CL process. To achieve this goal, tuning appropriate hyperparameters for each algorithm is essential. As an evaluation protocol, it has been common practice to train a CL algorithm using diverse hyperparameter values on a CL scenario constructed with a benchmark dataset. Subsequently, the best performance attained with the optimal hyperparameter value serves as the criterion for evaluating the CL algorithm. In this paper, we contend that this evaluation protocol is not only impractical but also incapable of effectively assessing the CL capability of a CL algorithm. Returning to the fundamental principles of model evaluation in machine learning, we propose an evaluation protocol that involves Hyperparameter Tuning and Evaluation phases. Those phases consist of different datasets but share the same CL scenario. In the Hyperparameter Tuning phase, each algorithm is iteratively trained with different hyperparameter values to find the optimal hyperparameter values. Subsequently, in the Evaluation phase, the optimal hyperparameter values is directly applied for training each algorithm, and their performance in the Evaluation phase serves as the criterion for evaluating them. Through experiments on CIFAR-100 and ImageNet-100 based on the proposed protocol in class-incremental learning, we not only observed that the existing evaluation method fail to properly assess the CL capability of each algorithm but also observe that some recently proposed state-of-the-art algorithms, which reported superior performance, actually exhibit inferior performance compared to the previous algorithm.

  • 2 authors
·
Mar 13, 2024

C2-Evo: Co-Evolving Multimodal Data and Model for Self-Improving Reasoning

Recent advances in multimodal large language models (MLLMs) have shown impressive reasoning capabilities. However, further enhancing existing MLLMs necessitates high-quality vision-language datasets with carefully curated task complexities, which are both costly and challenging to scale. Although recent self-improving models that iteratively refine themselves offer a feasible solution, they still suffer from two core challenges: (i) most existing methods augment visual or textual data separately, resulting in discrepancies in data complexity (e.g., over-simplified diagrams paired with redundant textual descriptions); and (ii) the evolution of data and models is also separated, leading to scenarios where models are exposed to tasks with mismatched difficulty levels. To address these issues, we propose C2-Evo, an automatic, closed-loop self-improving framework that jointly evolves both training data and model capabilities. Specifically, given a base dataset and a base model, C2-Evo enhances them by a cross-modal data evolution loop and a data-model evolution loop. The former loop expands the base dataset by generating complex multimodal problems that combine structured textual sub-problems with iteratively specified geometric diagrams, while the latter loop adaptively selects the generated problems based on the performance of the base model, to conduct supervised fine-tuning and reinforcement learning alternately. Consequently, our method continuously refines its model and training data, and consistently obtains considerable performance gains across multiple mathematical reasoning benchmarks. Our code, models, and datasets will be released.

  • 12 authors
·
Jul 22

Assessment of Data Consistency through Cascades of Independently Recurrent Inference Machines for fast and robust accelerated MRI reconstruction

Machine Learning methods can learn how to reconstruct Magnetic Resonance Images and thereby accelerate acquisition, which is of paramount importance to the clinical workflow. Physics-informed networks incorporate the forward model of accelerated MRI reconstruction in the learning process. With increasing network complexity, robustness is not ensured when reconstructing data unseen during training. We aim to embed data consistency (DC) in deep networks while balancing the degree of network complexity. While doing so, we will assess whether either explicit or implicit enforcement of DC in varying network architectures is preferred to optimize performance. We propose a scheme called Cascades of Independently Recurrent Inference Machines (CIRIM) to assess DC through unrolled optimization. Herein we assess DC both implicitly by gradient descent and explicitly by a designed term. Extensive comparison of the CIRIM to CS as well as to other methods is performed: the E2EVN, CascadeNet, KIKINet, LPDNet, RIM, IRIM, and UNet. Models were trained and evaluated on T1-weighted and FLAIR contrast brain data, and T2-weighted knee data. Both 1D and 2D undersampling patterns were evaluated. Robustness was tested by reconstructing 7.5x prospectively undersampled 3D FLAIR MRI data of Multiple Sclerosis (MS) patients with white matter lesions. The CIRIM performed best when implicitly enforcing DC, while the E2EVN required an explicit DC formulation. In reconstructing MS patient data, prospectively acquired with a sampling pattern unseen during model training, the CIRIM maintained lesion contrast while efficiently denoising the images. The CIRIM showed highly promising generalization capabilities maintaining a very fair trade-off between reconstructed image quality and fast reconstruction times, which is crucial in the clinical workflow.

  • 5 authors
·
Nov 30, 2021

Improving the Training of Rectified Flows

Diffusion models have shown great promise for image and video generation, but sampling from state-of-the-art models requires expensive numerical integration of a generative ODE. One approach for tackling this problem is rectified flows, which iteratively learn smooth ODE paths that are less susceptible to truncation error. However, rectified flows still require a relatively large number of function evaluations (NFEs). In this work, we propose improved techniques for training rectified flows, allowing them to compete with knowledge distillation methods even in the low NFE setting. Our main insight is that under realistic settings, a single iteration of the Reflow algorithm for training rectified flows is sufficient to learn nearly straight trajectories; hence, the current practice of using multiple Reflow iterations is unnecessary. We thus propose techniques to improve one-round training of rectified flows, including a U-shaped timestep distribution and LPIPS-Huber premetric. With these techniques, we improve the FID of the previous 2-rectified flow by up to 72% in the 1 NFE setting on CIFAR-10. On ImageNet 64times64, our improved rectified flow outperforms the state-of-the-art distillation methods such as consistency distillation and progressive distillation in both one-step and two-step settings and rivals the performance of improved consistency training (iCT) in FID. Code is available at https://github.com/sangyun884/rfpp.

  • 3 authors
·
May 30, 2024

Solving Inverse Problems via Diffusion-Based Priors: An Approximation-Free Ensemble Sampling Approach

Diffusion models (DMs) have proven to be effective in modeling high-dimensional distributions, leading to their widespread adoption for representing complex priors in Bayesian inverse problems (BIPs). However, current DM-based posterior sampling methods proposed for solving common BIPs rely on heuristic approximations to the generative process. To exploit the generative capability of DMs and avoid the usage of such approximations, we propose an ensemble-based algorithm that performs posterior sampling without the use of heuristic approximations. Our algorithm is motivated by existing works that combine DM-based methods with the sequential Monte Carlo (SMC) method. By examining how the prior evolves through the diffusion process encoded by the pre-trained score function, we derive a modified partial differential equation (PDE) governing the evolution of the corresponding posterior distribution. This PDE includes a modified diffusion term and a reweighting term, which can be simulated via stochastic weighted particle methods. Theoretically, we prove that the error between the true posterior distribution can be bounded in terms of the training error of the pre-trained score function and the number of particles in the ensemble. Empirically, we validate our algorithm on several inverse problems in imaging to show that our method gives more accurate reconstructions compared to existing DM-based methods.

  • 5 authors
·
Jun 4

Do Your Best and Get Enough Rest for Continual Learning

According to the forgetting curve theory, we can enhance memory retention by learning extensive data and taking adequate rest. This means that in order to effectively retain new knowledge, it is essential to learn it thoroughly and ensure sufficient rest so that our brain can memorize without forgetting. The main takeaway from this theory is that learning extensive data at once necessitates sufficient rest before learning the same data again. This aspect of human long-term memory retention can be effectively utilized to address the continual learning of neural networks. Retaining new knowledge for a long period of time without catastrophic forgetting is the critical problem of continual learning. Therefore, based on Ebbinghaus' theory, we introduce the view-batch model that adjusts the learning schedules to optimize the recall interval between retraining the same samples. The proposed view-batch model allows the network to get enough rest to learn extensive knowledge from the same samples with a recall interval of sufficient length. To this end, we specifically present two approaches: 1) a replay method that guarantees the optimal recall interval, and 2) a self-supervised learning that acquires extensive knowledge from a single training sample at a time. We empirically show that these approaches of our method are aligned with the forgetting curve theory, which can enhance long-term memory. In our experiments, we also demonstrate that our method significantly improves many state-of-the-art continual learning methods in various protocols and scenarios. We open-source this project at https://github.com/hankyul2/ViewBatchModel.

  • 4 authors
·
Mar 24

Democratizing LLMs: An Exploration of Cost-Performance Trade-offs in Self-Refined Open-Source Models

The dominance of proprietary LLMs has led to restricted access and raised information privacy concerns. High-performing open-source alternatives are crucial for information-sensitive and high-volume applications but often lag behind in performance. To address this gap, we propose (1) A untargeted variant of iterative self-critique and self-refinement devoid of external influence. (2) A novel ranking metric - Performance, Refinement, and Inference Cost Score (PeRFICS) - to find the optimal model for a given task considering refined performance and cost. Our experiments show that SoTA open source models of varying sizes from 7B - 65B, on average, improve 8.2% from their baseline performance. Strikingly, even models with extremely small memory footprints, such as Vicuna-7B, show a 11.74% improvement overall and up to a 25.39% improvement in high-creativity, open ended tasks on the Vicuna benchmark. Vicuna-13B takes it a step further and outperforms ChatGPT post-refinement. This work has profound implications for resource-constrained and information-sensitive environments seeking to leverage LLMs without incurring prohibitive costs, compromising on performance and privacy. The domain-agnostic self-refinement process coupled with our novel ranking metric facilitates informed decision-making in model selection, thereby reducing costs and democratizing access to high-performing language models, as evidenced by case studies.

  • 5 authors
·
Oct 11, 2023

Solving 3D Inverse Problems using Pre-trained 2D Diffusion Models

Diffusion models have emerged as the new state-of-the-art generative model with high quality samples, with intriguing properties such as mode coverage and high flexibility. They have also been shown to be effective inverse problem solvers, acting as the prior of the distribution, while the information of the forward model can be granted at the sampling stage. Nonetheless, as the generative process remains in the same high dimensional (i.e. identical to data dimension) space, the models have not been extended to 3D inverse problems due to the extremely high memory and computational cost. In this paper, we combine the ideas from the conventional model-based iterative reconstruction with the modern diffusion models, which leads to a highly effective method for solving 3D medical image reconstruction tasks such as sparse-view tomography, limited angle tomography, compressed sensing MRI from pre-trained 2D diffusion models. In essence, we propose to augment the 2D diffusion prior with a model-based prior in the remaining direction at test time, such that one can achieve coherent reconstructions across all dimensions. Our method can be run in a single commodity GPU, and establishes the new state-of-the-art, showing that the proposed method can perform reconstructions of high fidelity and accuracy even in the most extreme cases (e.g. 2-view 3D tomography). We further reveal that the generalization capacity of the proposed method is surprisingly high, and can be used to reconstruct volumes that are entirely different from the training dataset.

  • 5 authors
·
Nov 19, 2022

Derivative-Free Guidance in Continuous and Discrete Diffusion Models with Soft Value-Based Decoding

Diffusion models excel at capturing the natural design spaces of images, molecules, DNA, RNA, and protein sequences. However, rather than merely generating designs that are natural, we often aim to optimize downstream reward functions while preserving the naturalness of these design spaces. Existing methods for achieving this goal often require ``differentiable'' proxy models (e.g., classifier guidance or DPS) or involve computationally expensive fine-tuning of diffusion models (e.g., classifier-free guidance, RL-based fine-tuning). In our work, we propose a new method to address these challenges. Our algorithm is an iterative sampling method that integrates soft value functions, which looks ahead to how intermediate noisy states lead to high rewards in the future, into the standard inference procedure of pre-trained diffusion models. Notably, our approach avoids fine-tuning generative models and eliminates the need to construct differentiable models. This enables us to (1) directly utilize non-differentiable features/reward feedback, commonly used in many scientific domains, and (2) apply our method to recent discrete diffusion models in a principled way. Finally, we demonstrate the effectiveness of our algorithm across several domains, including image generation, molecule generation, and DNA/RNA sequence generation. The code is available at https://github.com/masa-ue/SVDD{https://github.com/masa-ue/SVDD}.

  • 10 authors
·
Aug 15, 2024

Self-Improving LLM Agents at Test-Time

One paradigm of language model (LM) fine-tuning relies on creating large training datasets, under the assumption that high quantity and diversity will enable models to generalize to novel tasks after post-training. In practice, gathering large sets of data is inefficient, and training on them is prohibitively expensive; worse, there is no guarantee that the resulting model will handle complex scenarios or generalize better. Moreover, existing techniques rarely assess whether a training sample provides novel information or is redundant with the knowledge already acquired by the model, resulting in unnecessary costs. In this work, we explore a new test-time self-improvement method to create more effective and generalizable agentic LMs on-the-fly. The proposed algorithm can be summarized in three steps: (i) first it identifies the samples that model struggles with (self-awareness), (ii) then generates similar examples from detected uncertain samples (self-data augmentation), and (iii) uses these newly generated samples at test-time fine-tuning (self-improvement). We study two variants of this approach: Test-Time Self-Improvement (TT-SI), where the same model generates additional training examples from its own uncertain cases and then learns from them, and contrast this approach with Test-Time Distillation (TT-D), where a stronger model generates similar examples for uncertain cases, enabling student to adapt using distilled supervision. Empirical evaluations across different agent benchmarks demonstrate that TT-SI improves the performance with +5.48% absolute accuracy gain on average across all benchmarks and surpasses other standard learning methods, yet using 68x less training samples. Our findings highlight the promise of TT-SI, demonstrating the potential of self-improvement algorithms at test-time as a new paradigm for building more capable agents toward self-evolution.

  • 5 authors
·
Oct 9 2

HumanEval Pro and MBPP Pro: Evaluating Large Language Models on Self-invoking Code Generation

We introduce self-invoking code generation, a new task designed to evaluate the progressive reasoning and problem-solving capabilities of LLMs. In this task, models are presented with a base problem and a related, more complex problem. They must solve the base problem and then utilize its solution to address the more complex one. This work features three key contributions. First, we propose a general recipe for generating more challenging versions of existing benchmarks, resulting in three new benchmarks: HumanEval Pro, MBPP Pro, and BigCodeBench-Lite Pro, specifically designed to assess LLMs on self-invoking code generation. Second, from the analysis of experimental results over twenty LLMs on our benchmarks, we have two important observations: (i) Most LLMs excel in traditional code generation benchmarks like HumanEval and MBPP, but their performance declines on self-invoking tasks. For example, o1-mini achieves 96.2% pass@1 on HumanEval but only 76.2% on HumanEval Pro. (ii) On self-invoking code generation task, the instruction-tuned models demonstrate only marginal improvements compared to the base models. Third, we disclose the types of failure modes that exist in our evaluation results. All these results underscore the need for further advancements in self-invoking code generation tasks and provide a new direction for future research on enhancing LLMs' code reasoning capabilities.

  • 4 authors
·
Dec 30, 2024 3

Real-Time Iteration Scheme for Diffusion Policy

Diffusion Policies have demonstrated impressive performance in robotic manipulation tasks. However, their long inference time, resulting from an extensive iterative denoising process, and the need to execute an action chunk before the next prediction to maintain consistent actions limit their applicability to latency-critical tasks or simple tasks with a short cycle time. While recent methods explored distillation or alternative policy structures to accelerate inference, these often demand additional training, which can be resource-intensive for large robotic models. In this paper, we introduce a novel approach inspired by the Real-Time Iteration (RTI) Scheme, a method from optimal control that accelerates optimization by leveraging solutions from previous time steps as initial guesses for subsequent iterations. We explore the application of this scheme in diffusion inference and propose a scaling-based method to effectively handle discrete actions, such as grasping, in robotic manipulation. The proposed scheme significantly reduces runtime computational costs without the need for distillation or policy redesign. This enables a seamless integration into many pre-trained diffusion-based models, in particular, to resource-demanding large models. We also provide theoretical conditions for the contractivity which could be useful for estimating the initial denoising step. Quantitative results from extensive simulation experiments show a substantial reduction in inference time, with comparable overall performance compared with Diffusion Policy using full-step denoising. Our project page with additional resources is available at: https://rti-dp.github.io/.

  • 3 authors
·
Aug 7

AlphaEvolve: A coding agent for scientific and algorithmic discovery

In this white paper, we present AlphaEvolve, an evolutionary coding agent that substantially enhances capabilities of state-of-the-art LLMs on highly challenging tasks such as tackling open scientific problems or optimizing critical pieces of computational infrastructure. AlphaEvolve orchestrates an autonomous pipeline of LLMs, whose task is to improve an algorithm by making direct changes to the code. Using an evolutionary approach, continuously receiving feedback from one or more evaluators, AlphaEvolve iteratively improves the algorithm, potentially leading to new scientific and practical discoveries. We demonstrate the broad applicability of this approach by applying it to a number of important computational problems. When applied to optimizing critical components of large-scale computational stacks at Google, AlphaEvolve developed a more efficient scheduling algorithm for data centers, found a functionally equivalent simplification in the circuit design of hardware accelerators, and accelerated the training of the LLM underpinning AlphaEvolve itself. Furthermore, AlphaEvolve discovered novel, provably correct algorithms that surpass state-of-the-art solutions on a spectrum of problems in mathematics and computer science, significantly expanding the scope of prior automated discovery methods (Romera-Paredes et al., 2023). Notably, AlphaEvolve developed a search algorithm that found a procedure to multiply two 4 times 4 complex-valued matrices using 48 scalar multiplications; offering the first improvement, after 56 years, over Strassen's algorithm in this setting. We believe AlphaEvolve and coding agents like it can have a significant impact in improving solutions of problems across many areas of science and computation.

  • 18 authors
·
Jun 16

A Deep Conjugate Direction Method for Iteratively Solving Linear Systems

We present a novel deep learning approach to approximate the solution of large, sparse, symmetric, positive-definite linear systems of equations. These systems arise from many problems in applied science, e.g., in numerical methods for partial differential equations. Algorithms for approximating the solution to these systems are often the bottleneck in problems that require their solution, particularly for modern applications that require many millions of unknowns. Indeed, numerical linear algebra techniques have been investigated for many decades to alleviate this computational burden. Recently, data-driven techniques have also shown promise for these problems. Motivated by the conjugate gradients algorithm that iteratively selects search directions for minimizing the matrix norm of the approximation error, we design an approach that utilizes a deep neural network to accelerate convergence via data-driven improvement of the search directions. Our method leverages a carefully chosen convolutional network to approximate the action of the inverse of the linear operator up to an arbitrary constant. We train the network using unsupervised learning with a loss function equal to the L^2 difference between an input and the system matrix times the network evaluation, where the unspecified constant in the approximate inverse is accounted for. We demonstrate the efficacy of our approach on spatially discretized Poisson equations with millions of degrees of freedom arising in computational fluid dynamics applications. Unlike state-of-the-art learning approaches, our algorithm is capable of reducing the linear system residual to a given tolerance in a small number of iterations, independent of the problem size. Moreover, our method generalizes effectively to various systems beyond those encountered during training.

  • 6 authors
·
May 22, 2022

REG4Rec: Reasoning-Enhanced Generative Model for Large-Scale Recommendation Systems

Sequential recommendation aims to predict a user's next action in large-scale recommender systems. While traditional methods often suffer from insufficient information interaction, recent generative recommendation models partially address this issue by directly generating item predictions. To better capture user intents, recent studies have introduced a reasoning process into generative recommendation, significantly improving recommendation performance. However, these approaches are constrained by the singularity of item semantic representations, facing challenges such as limited diversity in reasoning pathways and insufficient reliability in the reasoning process. To tackle these issues, we introduce REG4Rec, a reasoning-enhanced generative model that constructs multiple dynamic semantic reasoning paths alongside a self-reflection process, ensuring high-confidence recommendations. Specifically, REG4Rec utilizes an MoE-based parallel quantization codebook (MPQ) to generate multiple unordered semantic tokens for each item, thereby constructing a larger-scale diverse reasoning space. Furthermore, to enhance the reliability of reasoning, we propose a training reasoning enhancement stage, which includes Preference Alignment for Reasoning (PARS) and a Multi-Step Reward Augmentation (MSRA) strategy. PARS uses reward functions tailored for recommendation to enhance reasoning and reflection, while MSRA introduces future multi-step actions to improve overall generalization. During inference, Consistency-Oriented Self-Reflection for Pruning (CORP) is proposed to discard inconsistent reasoning paths, preventing the propagation of erroneous reasoning. Lastly, we develop an efficient offline training strategy for large-scale recommendation. Experiments on real-world datasets and online evaluations show that REG4Rec delivers outstanding performance and substantial practical value.

  • 11 authors
·
Aug 21

Gradient is All You Need?

In this paper we provide a novel analytical perspective on the theoretical understanding of gradient-based learning algorithms by interpreting consensus-based optimization (CBO), a recently proposed multi-particle derivative-free optimization method, as a stochastic relaxation of gradient descent. Remarkably, we observe that through communication of the particles, CBO exhibits a stochastic gradient descent (SGD)-like behavior despite solely relying on evaluations of the objective function. The fundamental value of such link between CBO and SGD lies in the fact that CBO is provably globally convergent to global minimizers for ample classes of nonsmooth and nonconvex objective functions, hence, on the one side, offering a novel explanation for the success of stochastic relaxations of gradient descent. On the other side, contrary to the conventional wisdom for which zero-order methods ought to be inefficient or not to possess generalization abilities, our results unveil an intrinsic gradient descent nature of such heuristics. This viewpoint furthermore complements previous insights into the working principles of CBO, which describe the dynamics in the mean-field limit through a nonlinear nonlocal partial differential equation that allows to alleviate complexities of the nonconvex function landscape. Our proofs leverage a completely nonsmooth analysis, which combines a novel quantitative version of the Laplace principle (log-sum-exp trick) and the minimizing movement scheme (proximal iteration). In doing so, we furnish useful and precise insights that explain how stochastic perturbations of gradient descent overcome energy barriers and reach deep levels of nonconvex functions. Instructive numerical illustrations support the provided theoretical insights.

  • 4 authors
·
Jun 16, 2023

Consistency Trajectory Models: Learning Probability Flow ODE Trajectory of Diffusion

Consistency Models (CM) (Song et al., 2023) accelerate score-based diffusion model sampling at the cost of sample quality but lack a natural way to trade-off quality for speed. To address this limitation, we propose Consistency Trajectory Model (CTM), a generalization encompassing CM and score-based models as special cases. CTM trains a single neural network that can -- in a single forward pass -- output scores (i.e., gradients of log-density) and enables unrestricted traversal between any initial and final time along the Probability Flow Ordinary Differential Equation (ODE) in a diffusion process. CTM enables the efficient combination of adversarial training and denoising score matching loss to enhance performance and achieves new state-of-the-art FIDs for single-step diffusion model sampling on CIFAR-10 (FID 1.73) and ImageNet at 64x64 resolution (FID 1.92). CTM also enables a new family of sampling schemes, both deterministic and stochastic, involving long jumps along the ODE solution trajectories. It consistently improves sample quality as computational budgets increase, avoiding the degradation seen in CM. Furthermore, unlike CM, CTM's access to the score function can streamline the adoption of established controllable/conditional generation methods from the diffusion community. This access also enables the computation of likelihood. The code is available at https://github.com/sony/ctm.

  • 9 authors
·
Oct 1, 2023

Use Property-Based Testing to Bridge LLM Code Generation and Validation

Large Language Models (LLMs) excel at code generation, but ensuring their outputs to be functionally correct, especially in complex programming tasks, is a persistent challenge. While traditional Test-Driven Development (TDD) offers a path for code refinement, its efficacy with LLMs is often undermined by the scarcity of high-quality test cases or the pitfalls of automated test generation, including biased tests or inaccurate output predictions that can misdirect the correction process. This paper introduces Property-Generated Solver, a novel framework that leverages Property-Based Testing (PBT) to validate high-level program properties or invariants, instead of relying on specific input-output examples. These properties are often simpler to define and verify than directly predicting exhaustive test oracles, breaking the "cycle of self-deception" where tests might share flaws with the code they are meant to validate. Property-Generated Solver employs two collaborative LLM-based agents: a Generator dedicated to code generation and iterative refinement, and a Tester that manages the PBT life-cycle and formulate semantically rich feedback from property violations. The resulting comprehensive and actionable feedback then guides the Generator in its refinement efforts. By establishing PBT as the core validation engine within this iterative, closed-loop paradigm, Property-Generated Solver provides a robust mechanism for steering LLMs towards more correct and generalizable code. Extensive experimental results on multiple code generation benchmarks demonstrate that Property-Generated Solver achieves substantial pass@1 improvements, ranging from 23.1% to 37.3% relative gains over established TDD methods.

  • 6 authors
·
Jun 23 1

Training LLMs to Better Self-Debug and Explain Code

In the domain of code generation, self-debugging is crucial. It allows LLMs to refine their generated code based on execution feedback. This is particularly important because generating correct solutions in one attempt proves challenging for complex tasks. Prior works on self-debugging mostly focus on prompting methods by providing LLMs with few-shot examples, which work poorly on small open-sourced LLMs. In this work, we propose a training framework that significantly improves self-debugging capability of LLMs. Intuitively, we observe that a chain of explanations on the wrong code followed by code refinement helps LLMs better analyze the wrong code and do refinement. We thus propose an automated pipeline to collect a high-quality dataset for code explanation and refinement by generating a number of explanations and refinement trajectories and filtering via execution verification. We perform supervised fine-tuning (SFT) and further reinforcement learning (RL) on both success and failure trajectories with a novel reward design considering code explanation and refinement quality. SFT improves the pass@1 by up to 15.92% and pass@10 by 9.30% over four benchmarks. RL training brings additional up to 3.54% improvement on pass@1 and 2.55% improvement on pass@10. The trained LLMs show iterative refinement ability, and can keep refining code continuously. Lastly, our human evaluation shows that the LLMs trained with our framework generate more useful code explanations and help developers better understand bugs in source code.

  • 9 authors
·
May 28, 2024

EpiGRAF: Rethinking training of 3D GANs

A very recent trend in generative modeling is building 3D-aware generators from 2D image collections. To induce the 3D bias, such models typically rely on volumetric rendering, which is expensive to employ at high resolutions. During the past months, there appeared more than 10 works that address this scaling issue by training a separate 2D decoder to upsample a low-resolution image (or a feature tensor) produced from a pure 3D generator. But this solution comes at a cost: not only does it break multi-view consistency (i.e. shape and texture change when the camera moves), but it also learns the geometry in a low fidelity. In this work, we show that it is possible to obtain a high-resolution 3D generator with SotA image quality by following a completely different route of simply training the model patch-wise. We revisit and improve this optimization scheme in two ways. First, we design a location- and scale-aware discriminator to work on patches of different proportions and spatial positions. Second, we modify the patch sampling strategy based on an annealed beta distribution to stabilize training and accelerate the convergence. The resulted model, named EpiGRAF, is an efficient, high-resolution, pure 3D generator, and we test it on four datasets (two introduced in this work) at 256^2 and 512^2 resolutions. It obtains state-of-the-art image quality, high-fidelity geometry and trains {approx} 2.5 times faster than the upsampler-based counterparts. Project website: https://universome.github.io/epigraf.

  • 4 authors
·
Jun 21, 2022