Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeI2CR: Intra- and Inter-modal Collaborative Reflections for Multimodal Entity Linking
Multimodal entity linking plays a crucial role in a wide range of applications. Recent advances in large language model-based methods have become the dominant paradigm for this task, effectively leveraging both textual and visual modalities to enhance performance. Despite their success, these methods still face two challenges, including unnecessary incorporation of image data in certain scenarios and the reliance only on a one-time extraction of visual features, which can undermine their effectiveness and accuracy. To address these challenges, we propose a novel LLM-based framework for the multimodal entity linking task, called Intra- and Inter-modal Collaborative Reflections. This framework prioritizes leveraging text information to address the task. When text alone is insufficient to link the correct entity through intra- and inter-modality evaluations, it employs a multi-round iterative strategy that integrates key visual clues from various aspects of the image to support reasoning and enhance matching accuracy. Extensive experiments on three widely used public datasets demonstrate that our framework consistently outperforms current state-of-the-art methods in the task, achieving improvements of 3.2%, 5.1%, and 1.6%, respectively. Our code is available at https://github.com/ziyan-xiaoyu/I2CR/.
Reverse Region-to-Entity Annotation for Pixel-Level Visual Entity Linking
Visual Entity Linking (VEL) is a crucial task for achieving fine-grained visual understanding, matching objects within images (visual mentions) to entities in a knowledge base. Previous VEL tasks rely on textual inputs, but writing queries for complex scenes can be challenging. Visual inputs like clicks or bounding boxes offer a more convenient alternative. Therefore, we propose a new task, Pixel-Level Visual Entity Linking (PL-VEL), which uses pixel masks from visual inputs to refer to objects, supplementing reference methods for VEL. To facilitate research on this task, we have constructed the MaskOVEN-Wiki dataset through an entirely automatic reverse region-entity annotation framework. This dataset contains over 5 million annotations aligning pixel-level regions with entity-level labels, which will advance visual understanding towards fine-grained. Moreover, as pixel masks correspond to semantic regions in an image, we enhance previous patch-interacted attention with region-interacted attention by a visual semantic tokenization approach. Manual evaluation results indicate that the reverse annotation framework achieved a 94.8% annotation success rate. Experimental results show that models trained on this dataset improved accuracy by 18 points compared to zero-shot models. Additionally, the semantic tokenization method achieved a 5-point accuracy improvement over the trained baseline.
KGMEL: Knowledge Graph-Enhanced Multimodal Entity Linking
Entity linking (EL) aligns textual mentions with their corresponding entities in a knowledge base, facilitating various applications such as semantic search and question answering. Recent advances in multimodal entity linking (MEL) have shown that combining text and images can reduce ambiguity and improve alignment accuracy. However, most existing MEL methods overlook the rich structural information available in the form of knowledge-graph (KG) triples. In this paper, we propose KGMEL, a novel framework that leverages KG triples to enhance MEL. Specifically, it operates in three stages: (1) Generation: Produces high-quality triples for each mention by employing vision-language models based on its text and images. (2) Retrieval: Learns joint mention-entity representations, via contrastive learning, that integrate text, images, and (generated or KG) triples to retrieve candidate entities for each mention. (3) Reranking: Refines the KG triples of the candidate entities and employs large language models to identify the best-matching entity for the mention. Extensive experiments on benchmark datasets demonstrate that KGMEL outperforms existing methods. Our code and datasets are available at: https://github.com/juyeonnn/KGMEL.
Vision-Language Models Struggle to Align Entities across Modalities
Cross-modal entity linking refers to the ability to align entities and their attributes across different modalities. While cross-modal entity linking is a fundamental skill needed for real-world applications such as multimodal code generation, fake news detection, or scene understanding, it has not been thoroughly studied in the literature. In this paper, we introduce a new task and benchmark to address this gap. Our benchmark, MATE, consists of 5.5k evaluation instances featuring visual scenes aligned with their textual representations. To evaluate cross-modal entity linking performance, we design a question-answering task that involves retrieving one attribute of an object in one modality based on a unique attribute of that object in another modality. We evaluate state-of-the-art Vision-Language Models (VLMs) and humans on this task, and find that VLMs struggle significantly compared to humans, particularly as the number of objects in the scene increases. Our analysis also shows that, while chain-of-thought prompting can improve VLM performance, models remain far from achieving human-level proficiency. These findings highlight the need for further research in cross-modal entity linking and show that MATE is a strong benchmark to support that progress.
DocTr: Document Transformer for Structured Information Extraction in Documents
We present a new formulation for structured information extraction (SIE) from visually rich documents. It aims to address the limitations of existing IOB tagging or graph-based formulations, which are either overly reliant on the correct ordering of input text or struggle with decoding a complex graph. Instead, motivated by anchor-based object detectors in vision, we represent an entity as an anchor word and a bounding box, and represent entity linking as the association between anchor words. This is more robust to text ordering, and maintains a compact graph for entity linking. The formulation motivates us to introduce 1) a DOCument TRansformer (DocTr) that aims at detecting and associating entity bounding boxes in visually rich documents, and 2) a simple pre-training strategy that helps learn entity detection in the context of language. Evaluations on three SIE benchmarks show the effectiveness of the proposed formulation, and the overall approach outperforms existing solutions.
ChatEL: Entity Linking with Chatbots
Entity Linking (EL) is an essential and challenging task in natural language processing that seeks to link some text representing an entity within a document or sentence with its corresponding entry in a dictionary or knowledge base. Most existing approaches focus on creating elaborate contextual models that look for clues the words surrounding the entity-text to help solve the linking problem. Although these fine-tuned language models tend to work, they can be unwieldy, difficult to train, and do not transfer well to other domains. Fortunately, Large Language Models (LLMs) like GPT provide a highly-advanced solution to the problems inherent in EL models, but simply naive prompts to LLMs do not work well. In the present work, we define ChatEL, which is a three-step framework to prompt LLMs to return accurate results. Overall the ChatEL framework improves the average F1 performance across 10 datasets by more than 2%. Finally, a thorough error analysis shows many instances with the ground truth labels were actually incorrect, and the labels predicted by ChatEL were actually correct. This indicates that the quantitative results presented in this paper may be a conservative estimate of the actual performance. All data and code are available as an open-source package on GitHub at https://github.com/yifding/In_Context_EL.
Scalable Zero-shot Entity Linking with Dense Entity Retrieval
This paper introduces a conceptually simple, scalable, and highly effective BERT-based entity linking model, along with an extensive evaluation of its accuracy-speed trade-off. We present a two-stage zero-shot linking algorithm, where each entity is defined only by a short textual description. The first stage does retrieval in a dense space defined by a bi-encoder that independently embeds the mention context and the entity descriptions. Each candidate is then re-ranked with a cross-encoder, that concatenates the mention and entity text. Experiments demonstrate that this approach is state of the art on recent zero-shot benchmarks (6 point absolute gains) and also on more established non-zero-shot evaluations (e.g. TACKBP-2010), despite its relative simplicity (e.g. no explicit entity embeddings or manually engineered mention tables). We also show that bi-encoder linking is very fast with nearest neighbour search (e.g. linking with 5.9 million candidates in 2 milliseconds), and that much of the accuracy gain from the more expensive cross-encoder can be transferred to the bi-encoder via knowledge distillation. Our code and models are available at https://github.com/facebookresearch/BLINK.
SpEL: Structured Prediction for Entity Linking
Entity linking is a prominent thread of research focused on structured data creation by linking spans of text to an ontology or knowledge source. We revisit the use of structured prediction for entity linking which classifies each individual input token as an entity, and aggregates the token predictions. Our system, called SpEL (Structured prediction for Entity Linking) is a state-of-the-art entity linking system that uses some new ideas to apply structured prediction to the task of entity linking including: two refined fine-tuning steps; a context sensitive prediction aggregation strategy; reduction of the size of the model's output vocabulary, and; we address a common problem in entity-linking systems where there is a training vs. inference tokenization mismatch. Our experiments show that we can outperform the state-of-the-art on the commonly used AIDA benchmark dataset for entity linking to Wikipedia. Our method is also very compute efficient in terms of number of parameters and speed of inference.
Multi-level Matching Network for Multimodal Entity Linking
Multimodal entity linking (MEL) aims to link ambiguous mentions within multimodal contexts to corresponding entities in a multimodal knowledge base. Most existing approaches to MEL are based on representation learning or vision-and-language pre-training mechanisms for exploring the complementary effect among multiple modalities. However, these methods suffer from two limitations. On the one hand, they overlook the possibility of considering negative samples from the same modality. On the other hand, they lack mechanisms to capture bidirectional cross-modal interaction. To address these issues, we propose a Multi-level Matching network for Multimodal Entity Linking (M3EL). Specifically, M3EL is composed of three different modules: (i) a Multimodal Feature Extraction module, which extracts modality-specific representations with a multimodal encoder and introduces an intra-modal contrastive learning sub-module to obtain better discriminative embeddings based on uni-modal differences; (ii) an Intra-modal Matching Network module, which contains two levels of matching granularity: Coarse-grained Global-to-Global and Fine-grained Global-to-Local, to achieve local and global level intra-modal interaction; (iii) a Cross-modal Matching Network module, which applies bidirectional strategies, Textual-to-Visual and Visual-to-Textual matching, to implement bidirectional cross-modal interaction. Extensive experiments conducted on WikiMEL, RichpediaMEL, and WikiDiverse datasets demonstrate the outstanding performance of M3EL when compared to the state-of-the-art baselines.
Knowledge-Rich Self-Supervision for Biomedical Entity Linking
Entity linking faces significant challenges such as prolific variations and prevalent ambiguities, especially in high-value domains with myriad entities. Standard classification approaches suffer from the annotation bottleneck and cannot effectively handle unseen entities. Zero-shot entity linking has emerged as a promising direction for generalizing to new entities, but it still requires example gold entity mentions during training and canonical descriptions for all entities, both of which are rarely available outside of Wikipedia. In this paper, we explore Knowledge-RIch Self-Supervision (tt KRISS) for biomedical entity linking, by leveraging readily available domain knowledge. In training, it generates self-supervised mention examples on unlabeled text using a domain ontology and trains a contextual encoder using contrastive learning. For inference, it samples self-supervised mentions as prototypes for each entity and conducts linking by mapping the test mention to the most similar prototype. Our approach can easily incorporate entity descriptions and gold mention labels if available. We conducted extensive experiments on seven standard datasets spanning biomedical literature and clinical notes. Without using any labeled information, our method produces tt KRISSBERT, a universal entity linker for four million UMLS entities that attains new state of the art, outperforming prior self-supervised methods by as much as 20 absolute points in accuracy.
EntQA: Entity Linking as Question Answering
A conventional approach to entity linking is to first find mentions in a given document and then infer their underlying entities in the knowledge base. A well-known limitation of this approach is that it requires finding mentions without knowing their entities, which is unnatural and difficult. We present a new model that does not suffer from this limitation called EntQA, which stands for Entity linking as Question Answering. EntQA first proposes candidate entities with a fast retrieval module, and then scrutinizes the document to find mentions of each candidate with a powerful reader module. Our approach combines progress in entity linking with that in open-domain question answering and capitalizes on pretrained models for dense entity retrieval and reading comprehension. Unlike in previous works, we do not rely on a mention-candidates dictionary or large-scale weak supervision. EntQA achieves strong results on the GERBIL benchmarking platform.
Neural Entity Linking: A Survey of Models Based on Deep Learning
This survey presents a comprehensive description of recent neural entity linking (EL) systems developed since 2015 as a result of the "deep learning revolution" in natural language processing. Its goal is to systemize design features of neural entity linking systems and compare their performance to the remarkable classic methods on common benchmarks. This work distills a generic architecture of a neural EL system and discusses its components, such as candidate generation, mention-context encoding, and entity ranking, summarizing prominent methods for each of them. The vast variety of modifications of this general architecture are grouped by several common themes: joint entity mention detection and disambiguation, models for global linking, domain-independent techniques including zero-shot and distant supervision methods, and cross-lingual approaches. Since many neural models take advantage of entity and mention/context embeddings to represent their meaning, this work also overviews prominent entity embedding techniques. Finally, the survey touches on applications of entity linking, focusing on the recently emerged use-case of enhancing deep pre-trained masked language models based on the Transformer architecture.
Hansel: A Chinese Few-Shot and Zero-Shot Entity Linking Benchmark
Modern Entity Linking (EL) systems entrench a popularity bias, yet there is no dataset focusing on tail and emerging entities in languages other than English. We present Hansel, a new benchmark in Chinese that fills the vacancy of non-English few-shot and zero-shot EL challenges. The test set of Hansel is human annotated and reviewed, created with a novel method for collecting zero-shot EL datasets. It covers 10K diverse documents in news, social media posts and other web articles, with Wikidata as its target Knowledge Base. We demonstrate that the existing state-of-the-art EL system performs poorly on Hansel (R@1 of 36.6% on Few-Shot). We then establish a strong baseline that scores a R@1 of 46.2% on Few-Shot and 76.6% on Zero-Shot on our dataset. We also show that our baseline achieves competitive results on TAC-KBP2015 Chinese Entity Linking task.
Understanding Scanned Receipts
Tasking machines with understanding receipts can have important applications such as enabling detailed analytics on purchases, enforcing expense policies, and inferring patterns of purchase behavior on large collections of receipts. In this paper, we focus on the task of Named Entity Linking (NEL) of scanned receipt line items; specifically, the task entails associating shorthand text from OCR'd receipts with a knowledge base (KB) of grocery products. For example, the scanned item "STO BABY SPINACH" should be linked to the catalog item labeled "Simple Truth Organic Baby Spinach". Experiments that employ a variety of Information Retrieval techniques in combination with statistical phrase detection shows promise for effective understanding of scanned receipt data.
Entity Linking in the Job Market Domain
In Natural Language Processing, entity linking (EL) has centered around Wikipedia, but yet remains underexplored for the job market domain. Disambiguating skill mentions can help us get insight into the current labor market demands. In this work, we are the first to explore EL in this domain, specifically targeting the linkage of occupational skills to the ESCO taxonomy (le Vrang et al., 2014). Previous efforts linked coarse-grained (full) sentences to a corresponding ESCO skill. In this work, we link more fine-grained span-level mentions of skills. We tune two high-performing neural EL models, a bi-encoder (Wu et al., 2020) and an autoregressive model (Cao et al., 2021), on a synthetically generated mention--skill pair dataset and evaluate them on a human-annotated skill-linking benchmark. Our findings reveal that both models are capable of linking implicit mentions of skills to their correct taxonomy counterparts. Empirically, BLINK outperforms GENRE in strict evaluation, but GENRE performs better in loose evaluation (accuracy@k).
Zero-Shot Entity Linking by Reading Entity Descriptions
We present the zero-shot entity linking task, where mentions must be linked to unseen entities without in-domain labeled data. The goal is to enable robust transfer to highly specialized domains, and so no metadata or alias tables are assumed. In this setting, entities are only identified by text descriptions, and models must rely strictly on language understanding to resolve the new entities. First, we show that strong reading comprehension models pre-trained on large unlabeled data can be used to generalize to unseen entities. Second, we propose a simple and effective adaptive pre-training strategy, which we term domain-adaptive pre-training (DAP), to address the domain shift problem associated with linking unseen entities in a new domain. We present experiments on a new dataset that we construct for this task and show that DAP improves over strong pre-training baselines, including BERT. The data and code are available at https://github.com/lajanugen/zeshel.
Web-Scale Visual Entity Recognition: An LLM-Driven Data Approach
Web-scale visual entity recognition, the task of associating images with their corresponding entities within vast knowledge bases like Wikipedia, presents significant challenges due to the lack of clean, large-scale training data. In this paper, we propose a novel methodology to curate such a dataset, leveraging a multimodal large language model (LLM) for label verification, metadata generation, and rationale explanation. Instead of relying on the multimodal LLM to directly annotate data, which we found to be suboptimal, we prompt it to reason about potential candidate entity labels by accessing additional contextually relevant information (such as Wikipedia), resulting in more accurate annotations. We further use the multimodal LLM to enrich the dataset by generating question-answer pairs and a grounded finegrained textual description (referred to as "rationale") that explains the connection between images and their assigned entities. Experiments demonstrate that models trained on this automatically curated data achieve state-of-the-art performance on web-scale visual entity recognition tasks (e.g. +6.9% improvement in OVEN entity task), underscoring the importance of high-quality training data in this domain.
Kuaipedia: a Large-scale Multi-modal Short-video Encyclopedia
Online encyclopedias, such as Wikipedia, have been well-developed and researched in the last two decades. One can find any attributes or other information of a wiki item on a wiki page edited by a community of volunteers. However, the traditional text, images and tables can hardly express some aspects of an wiki item. For example, when we talk about ``Shiba Inu'', one may care more about ``How to feed it'' or ``How to train it not to protect its food''. Currently, short-video platforms have become a hallmark in the online world. Whether you're on TikTok, Instagram, Kuaishou, or YouTube Shorts, short-video apps have changed how we consume and create content today. Except for producing short videos for entertainment, we can find more and more authors sharing insightful knowledge widely across all walks of life. These short videos, which we call knowledge videos, can easily express any aspects (e.g. hair or how-to-feed) consumers want to know about an item (e.g. Shiba Inu), and they can be systematically analyzed and organized like an online encyclopedia. In this paper, we propose Kuaipedia, a large-scale multi-modal encyclopedia consisting of items, aspects, and short videos lined to them, which was extracted from billions of videos of Kuaishou (Kwai), a well-known short-video platform in China. We first collected items from multiple sources and mined user-centered aspects from millions of users' queries to build an item-aspect tree. Then we propose a new task called ``multi-modal item-aspect linking'' as an expansion of ``entity linking'' to link short videos into item-aspect pairs and build the whole short-video encyclopedia. Intrinsic evaluations show that our encyclopedia is of large scale and highly accurate. We also conduct sufficient extrinsic experiments to show how Kuaipedia can help fundamental applications such as entity typing and entity linking.
A Read-and-Select Framework for Zero-shot Entity Linking
Zero-shot entity linking (EL) aims at aligning entity mentions to unseen entities to challenge the generalization ability. Previous methods largely focus on the candidate retrieval stage and ignore the essential candidate ranking stage, which disambiguates among entities and makes the final linking prediction. In this paper, we propose a read-and-select (ReS) framework by modeling the main components of entity disambiguation, i.e., mention-entity matching and cross-entity comparison. First, for each candidate, the reading module leverages mention context to output mention-aware entity representations, enabling mention-entity matching. Then, in the selecting module, we frame the choice of candidates as a sequence labeling problem, and all candidate representations are fused together to enable cross-entity comparison. Our method achieves the state-of-the-art performance on the established zero-shot EL dataset ZESHEL with a 2.55% micro-average accuracy gain, with no need for laborious multi-phase pre-training used in most of the previous work, showing the effectiveness of both mention-entity and cross-entity interaction.
KITTEN: A Knowledge-Intensive Evaluation of Image Generation on Visual Entities
Recent advancements in text-to-image generation have significantly enhanced the quality of synthesized images. Despite this progress, evaluations predominantly focus on aesthetic appeal or alignment with text prompts. Consequently, there is limited understanding of whether these models can accurately represent a wide variety of realistic visual entities - a task requiring real-world knowledge. To address this gap, we propose a benchmark focused on evaluating Knowledge-InTensive image generaTion on real-world ENtities (i.e., KITTEN). Using KITTEN, we conduct a systematic study on the fidelity of entities in text-to-image generation models, focusing on their ability to generate a wide range of real-world visual entities, such as landmark buildings, aircraft, plants, and animals. We evaluate the latest text-to-image models and retrieval-augmented customization models using both automatic metrics and carefully-designed human evaluations, with an emphasis on the fidelity of entities in the generated images. Our findings reveal that even the most advanced text-to-image models often fail to generate entities with accurate visual details. Although retrieval-augmented models can enhance the fidelity of entity by incorporating reference images during testing, they often over-rely on these references and struggle to produce novel configurations of the entity as requested in creative text prompts.
An Entity Linking Agent for Question Answering
Some Question Answering (QA) systems rely on knowledge bases (KBs) to provide accurate answers. Entity Linking (EL) plays a critical role in linking natural language mentions to KB entries. However, most existing EL methods are designed for long contexts and do not perform well on short, ambiguous user questions in QA tasks. We propose an entity linking agent for QA, based on a Large Language Model that simulates human cognitive workflows. The agent actively identifies entity mentions, retrieves candidate entities, and makes decision. To verify the effectiveness of our agent, we conduct two experiments: tool-based entity linking and QA task evaluation. The results confirm the robustness and effectiveness of our agent.
LLMAEL: Large Language Models are Good Context Augmenters for Entity Linking
Entity Linking (EL) models are well-trained at mapping mentions to their corresponding entities according to a given context. However, EL models struggle to disambiguate long-tail entities due to their limited training data. Meanwhile, large language models (LLMs) are more robust at interpreting uncommon mentions. Yet, due to a lack of specialized training, LLMs suffer at generating correct entity IDs. Furthermore, training an LLM to perform EL is cost-intensive. Building upon these insights, we introduce LLM-Augmented Entity Linking LLMAEL, a plug-and-play approach to enhance entity linking through LLM data augmentation. We leverage LLMs as knowledgeable context augmenters, generating mention-centered descriptions as additional input, while preserving traditional EL models for task specific processing. Experiments on 6 standard datasets show that the vanilla LLMAEL outperforms baseline EL models in most cases, while the fine-tuned LLMAEL set the new state-of-the-art results across all 6 benchmarks.
ReFinED: An Efficient Zero-shot-capable Approach to End-to-End Entity Linking
We introduce ReFinED, an efficient end-to-end entity linking model which uses fine-grained entity types and entity descriptions to perform linking. The model performs mention detection, fine-grained entity typing, and entity disambiguation for all mentions within a document in a single forward pass, making it more than 60 times faster than competitive existing approaches. ReFinED also surpasses state-of-the-art performance on standard entity linking datasets by an average of 3.7 F1. The model is capable of generalising to large-scale knowledge bases such as Wikidata (which has 15 times more entities than Wikipedia) and of zero-shot entity linking. The combination of speed, accuracy and scale makes ReFinED an effective and cost-efficient system for extracting entities from web-scale datasets, for which the model has been successfully deployed. Our code and pre-trained models are available at https://github.com/alexa/ReFinED
Unsupervised Matching of Data and Text
Entity resolution is a widely studied problem with several proposals to match records across relations. Matching textual content is a widespread task in many applications, such as question answering and search. While recent methods achieve promising results for these two tasks, there is no clear solution for the more general problem of matching textual content and structured data. We introduce a framework that supports this new task in an unsupervised setting for any pair of corpora, being relational tables or text documents. Our method builds a fine-grained graph over the content of the corpora and derives word embeddings to represent the objects to match in a low dimensional space. The learned representation enables effective and efficient matching at different granularity, from relational tuples to text sentences and paragraphs. Our flexible framework can exploit pre-trained resources, but it does not depends on their existence and achieves better quality performance in matching content when the vocabulary is domain specific. We also introduce optimizations in the graph creation process with an "expand and compress" approach that first identifies new valid relationships across elements, to improve matching, and then prunes nodes and edges, to reduce the graph size. Experiments on real use cases and public datasets show that our framework produces embeddings that outperform word embeddings and fine-tuned language models both in results' quality and in execution times.
Self-Contained Entity Discovery from Captioned Videos
This paper introduces the task of visual named entity discovery in videos without the need for task-specific supervision or task-specific external knowledge sources. Assigning specific names to entities (e.g. faces, scenes, or objects) in video frames is a long-standing challenge. Commonly, this problem is addressed as a supervised learning objective by manually annotating faces with entity labels. To bypass the annotation burden of this setup, several works have investigated the problem by utilizing external knowledge sources such as movie databases. While effective, such approaches do not work when task-specific knowledge sources are not provided and can only be applied to movies and TV series. In this work, we take the problem a step further and propose to discover entities in videos from videos and corresponding captions or subtitles. We introduce a three-stage method where we (i) create bipartite entity-name graphs from frame-caption pairs, (ii) find visual entity agreements, and (iii) refine the entity assignment through entity-level prototype construction. To tackle this new problem, we outline two new benchmarks SC-Friends and SC-BBT based on the Friends and Big Bang Theory TV series. Experiments on the benchmarks demonstrate the ability of our approach to discover which named entity belongs to which face or scene, with an accuracy close to a supervised oracle, just from the multimodal information present in videos. Additionally, our qualitative examples show the potential challenges of self-contained discovery of any visual entity for future work. The code and the data are available on GitHub.
Revisiting Sparse Retrieval for Few-shot Entity Linking
Entity linking aims to link ambiguous mentions to their corresponding entities in a knowledge base. One of the key challenges comes from insufficient labeled data for specific domains. Although dense retrievers have achieved excellent performance on several benchmarks, their performance decreases significantly when only a limited amount of in-domain labeled data is available. In such few-shot setting, we revisit the sparse retrieval method, and propose an ELECTRA-based keyword extractor to denoise the mention context and construct a better query expression. For training the extractor, we propose a distant supervision method to automatically generate training data based on overlapping tokens between mention contexts and entity descriptions. Experimental results on the ZESHEL dataset demonstrate that the proposed method outperforms state-of-the-art models by a significant margin across all test domains, showing the effectiveness of keyword-enhanced sparse retrieval.
BuDDIE: A Business Document Dataset for Multi-task Information Extraction
The field of visually rich document understanding (VRDU) aims to solve a multitude of well-researched NLP tasks in a multi-modal domain. Several datasets exist for research on specific tasks of VRDU such as document classification (DC), key entity extraction (KEE), entity linking, visual question answering (VQA), inter alia. These datasets cover documents like invoices and receipts with sparse annotations such that they support one or two co-related tasks (e.g., entity extraction and entity linking). Unfortunately, only focusing on a single specific of documents or task is not representative of how documents often need to be processed in the wild - where variety in style and requirements is expected. In this paper, we introduce BuDDIE (Business Document Dataset for Information Extraction), the first multi-task dataset of 1,665 real-world business documents that contains rich and dense annotations for DC, KEE, and VQA. Our dataset consists of publicly available business entity documents from US state government websites. The documents are structured and vary in their style and layout across states and types (e.g., forms, certificates, reports, etc.). We provide data variety and quality metrics for BuDDIE as well as a series of baselines for each task. Our baselines cover traditional textual, multi-modal, and large language model approaches to VRDU.
MagicLens: Self-Supervised Image Retrieval with Open-Ended Instructions
Image retrieval, i.e., finding desired images given a reference image, inherently encompasses rich, multi-faceted search intents that are difficult to capture solely using image-based measures. Recent work leverages text instructions to allow users to more freely express their search intents. However, existing work primarily focuses on image pairs that are visually similar and/or can be characterized by a small set of pre-defined relations. The core thesis of this paper is that text instructions can enable retrieving images with richer relations beyond visual similarity. To show this, we introduce MagicLens, a series of self-supervised image retrieval models that support open-ended instructions. MagicLens is built on a key novel insight: image pairs that naturally occur on the same web pages contain a wide range of implicit relations (e.g., inside view of), and we can bring those implicit relations explicit by synthesizing instructions via large multimodal models (LMMs) and large language models (LLMs). Trained on 36.7M (query image, instruction, target image) triplets with rich semantic relations mined from the web, MagicLens achieves comparable or better results on eight benchmarks of various image retrieval tasks than prior state-of-the-art (SOTA) methods. Remarkably, it outperforms previous SOTA but with a 50X smaller model size on multiple benchmarks. Additional human analyses on a 1.4M-image unseen corpus further demonstrate the diversity of search intents supported by MagicLens.
Aligning Vision to Language: Text-Free Multimodal Knowledge Graph Construction for Enhanced LLMs Reasoning
Multimodal reasoning in Large Language Models (LLMs) struggles with incomplete knowledge and hallucination artifacts, challenges that textual Knowledge Graphs (KGs) only partially mitigate due to their modality isolation. While Multimodal Knowledge Graphs (MMKGs) promise enhanced cross-modal understanding, their practical construction is impeded by semantic narrowness of manual text annotations and inherent noise in visual-semantic entity linkages. In this paper, we propose Vision-align-to-Language integrated Knowledge Graph (VaLiK), a novel approach for constructing MMKGs that enhances LLMs reasoning through cross-modal information supplementation. Specifically, we cascade pre-trained Vision-Language Models (VLMs) to align image features with text, transforming them into descriptions that encapsulate image-specific information. Furthermore, we developed a cross-modal similarity verification mechanism to quantify semantic consistency, effectively filtering out noise introduced during feature alignment. Even without manually annotated image captions, the refined descriptions alone suffice to construct the MMKG. Compared to conventional MMKGs construction paradigms, our approach achieves substantial storage efficiency gains while maintaining direct entity-to-image linkage capability. Experimental results on multimodal reasoning tasks demonstrate that LLMs augmented with VaLiK outperform previous state-of-the-art models. Our code is published at https://github.com/Wings-Of-Disaster/VaLiK.
COMETA: A Corpus for Medical Entity Linking in the Social Media
Whilst there has been growing progress in Entity Linking (EL) for general language, existing datasets fail to address the complex nature of health terminology in layman's language. Meanwhile, there is a growing need for applications that can understand the public's voice in the health domain. To address this we introduce a new corpus called COMETA, consisting of 20k English biomedical entity mentions from Reddit expert-annotated with links to SNOMED CT, a widely-used medical knowledge graph. Our corpus satisfies a combination of desirable properties, from scale and coverage to diversity and quality, that to the best of our knowledge has not been met by any of the existing resources in the field. Through benchmark experiments on 20 EL baselines from string- to neural-based models we shed light on the ability of these systems to perform complex inference on entities and concepts under 2 challenging evaluation scenarios. Our experimental results on COMETA illustrate that no golden bullet exists and even the best mainstream techniques still have a significant performance gap to fill, while the best solution relies on combining different views of data.
MATE: Meet At The Embedding -- Connecting Images with Long Texts
While advancements in Vision Language Models (VLMs) have significantly improved the alignment of visual and textual data, these models primarily focus on aligning images with short descriptive captions. This focus limits their ability to handle complex text interactions, particularly with longer texts such as lengthy captions or documents, which have not been extensively explored yet. In this paper, we introduce Meet At The Embedding (MATE), a novel approach that combines the capabilities of VLMs with Large Language Models (LLMs) to overcome this challenge without the need for additional image-long text pairs. Specifically, we replace the text encoder of the VLM with a pretrained LLM-based encoder that excels in understanding long texts. To bridge the gap between VLM and LLM, MATE incorporates a projection module that is trained in a multi-stage manner. It starts by aligning the embeddings from the VLM text encoder with those from the LLM using extensive text pairs. This module is then employed to seamlessly align image embeddings closely with LLM embeddings. We propose two new cross-modal retrieval benchmarks to assess the task of connecting images with long texts (lengthy captions / documents). Extensive experimental results demonstrate that MATE effectively connects images with long texts, uncovering diverse semantic relationships.
VLM^2-Bench: A Closer Look at How Well VLMs Implicitly Link Explicit Matching Visual Cues
Visually linking matching cues is a crucial ability in daily life, such as identifying the same person in multiple photos based on their cues, even without knowing who they are. Despite the extensive knowledge that vision-language models (VLMs) possess, it remains largely unexplored whether they are capable of performing this fundamental task. To address this, we introduce VLM^2-Bench, a benchmark designed to assess whether VLMs can Visually Link Matching cues, with 9 subtasks and over 3,000 test cases. Comprehensive evaluation across eight open-source VLMs and GPT-4o, along with further analysis of various language-side and vision-side prompting methods, leads to a total of eight key findings. We identify critical challenges in models' ability to link visual cues, highlighting a significant performance gap where even GPT-4o lags 34.80% behind humans. Based on these insights, we advocate for (i) enhancing core visual capabilities to improve adaptability and reduce reliance on prior knowledge, (ii) establishing clearer principles for integrating language-based reasoning in vision-centric tasks to prevent unnecessary biases, and (iii) shifting vision-text training paradigms toward fostering models' ability to independently structure and infer relationships among visual cues.
Vision Search Assistant: Empower Vision-Language Models as Multimodal Search Engines
Search engines enable the retrieval of unknown information with texts. However, traditional methods fall short when it comes to understanding unfamiliar visual content, such as identifying an object that the model has never seen before. This challenge is particularly pronounced for large vision-language models (VLMs): if the model has not been exposed to the object depicted in an image, it struggles to generate reliable answers to the user's question regarding that image. Moreover, as new objects and events continuously emerge, frequently updating VLMs is impractical due to heavy computational burdens. To address this limitation, we propose Vision Search Assistant, a novel framework that facilitates collaboration between VLMs and web agents. This approach leverages VLMs' visual understanding capabilities and web agents' real-time information access to perform open-world Retrieval-Augmented Generation via the web. By integrating visual and textual representations through this collaboration, the model can provide informed responses even when the image is novel to the system. Extensive experiments conducted on both open-set and closed-set QA benchmarks demonstrate that the Vision Search Assistant significantly outperforms the other models and can be widely applied to existing VLMs.
FarFetched: Entity-centric Reasoning and Claim Validation for the Greek Language based on Textually Represented Environments
Our collective attention span is shortened by the flood of online information. With FarFetched, we address the need for automated claim validation based on the aggregated evidence derived from multiple online news sources. We introduce an entity-centric reasoning framework in which latent connections between events, actions, or statements are revealed via entity mentions and represented in a graph database. Using entity linking and semantic similarity, we offer a way for collecting and combining information from diverse sources in order to generate evidence relevant to the user's claim. Then, we leverage textual entailment recognition to quantitatively determine whether this assertion is credible, based on the created evidence. Our approach tries to fill the gap in automated claim validation for less-resourced languages and is showcased on the Greek language, complemented by the training of relevant semantic textual similarity (STS) and natural language inference (NLI) models that are evaluated on translated versions of common benchmarks.
Visual News: Benchmark and Challenges in News Image Captioning
We propose Visual News Captioner, an entity-aware model for the task of news image captioning. We also introduce Visual News, a large-scale benchmark consisting of more than one million news images along with associated news articles, image captions, author information, and other metadata. Unlike the standard image captioning task, news images depict situations where people, locations, and events are of paramount importance. Our proposed method can effectively combine visual and textual features to generate captions with richer information such as events and entities. More specifically, built upon the Transformer architecture, our model is further equipped with novel multi-modal feature fusion techniques and attention mechanisms, which are designed to generate named entities more accurately. Our method utilizes much fewer parameters while achieving slightly better prediction results than competing methods. Our larger and more diverse Visual News dataset further highlights the remaining challenges in captioning news images.
Flickr30k Entities: Collecting Region-to-Phrase Correspondences for Richer Image-to-Sentence Models
The Flickr30k dataset has become a standard benchmark for sentence-based image description. This paper presents Flickr30k Entities, which augments the 158k captions from Flickr30k with 244k coreference chains, linking mentions of the same entities across different captions for the same image, and associating them with 276k manually annotated bounding boxes. Such annotations are essential for continued progress in automatic image description and grounded language understanding. They enable us to define a new benchmark for localization of textual entity mentions in an image. We present a strong baseline for this task that combines an image-text embedding, detectors for common objects, a color classifier, and a bias towards selecting larger objects. While our baseline rivals in accuracy more complex state-of-the-art models, we show that its gains cannot be easily parlayed into improvements on such tasks as image-sentence retrieval, thus underlining the limitations of current methods and the need for further research.
Aligning Information Capacity Between Vision and Language via Dense-to-Sparse Feature Distillation for Image-Text Matching
Enabling Visual Semantic Models to effectively handle multi-view description matching has been a longstanding challenge. Existing methods typically learn a set of embeddings to find the optimal match for each view's text and compute similarity. However, the visual and text embeddings learned through these approaches have limited information capacity and are prone to interference from locally similar negative samples. To address this issue, we argue that the information capacity of embeddings is crucial and propose Dense-to-Sparse Feature Distilled Visual Semantic Embedding (D2S-VSE), which enhances the information capacity of sparse text by leveraging dense text distillation. Specifically, D2S-VSE is a two-stage framework. In the pre-training stage, we align images with dense text to enhance the information capacity of visual semantic embeddings. In the fine-tuning stage, we optimize two tasks simultaneously, distilling dense text embeddings to sparse text embeddings while aligning images and sparse texts, enhancing the information capacity of sparse text embeddings. Our proposed D2S-VSE model is extensively evaluated on the large-scale MS-COCO and Flickr30K datasets, demonstrating its superiority over recent state-of-the-art methods.
Large-Scale Label Interpretation Learning for Few-Shot Named Entity Recognition
Few-shot named entity recognition (NER) detects named entities within text using only a few annotated examples. One promising line of research is to leverage natural language descriptions of each entity type: the common label PER might, for example, be verbalized as ''person entity.'' In an initial label interpretation learning phase, the model learns to interpret such verbalized descriptions of entity types. In a subsequent few-shot tagset extension phase, this model is then given a description of a previously unseen entity type (such as ''music album'') and optionally a few training examples to perform few-shot NER for this type. In this paper, we systematically explore the impact of a strong semantic prior to interpret verbalizations of new entity types by massively scaling up the number and granularity of entity types used for label interpretation learning. To this end, we leverage an entity linking benchmark to create a dataset with orders of magnitude of more distinct entity types and descriptions as currently used datasets. We find that this increased signal yields strong results in zero- and few-shot NER in in-domain, cross-domain, and even cross-lingual settings. Our findings indicate significant potential for improving few-shot NER through heuristical data-based optimization.
MOFI: Learning Image Representations from Noisy Entity Annotated Images
We present MOFI, Manifold OF Images, a new vision foundation model designed to learn image representations from noisy entity annotated images. MOFI differs from previous work in two key aspects: (i) pre-training data, and (ii) training recipe. Regarding data, we introduce a new approach to automatically assign entity labels to images from noisy image-text pairs. Our approach involves employing a named entity recognition model to extract entities from the alt-text, and then using a CLIP model to select the correct entities as labels of the paired image. It's a simple, cost-effective method that can scale to handle billions of web-mined image-text pairs. Through this method, we have created Image-to-Entities (I2E), a new dataset with 1 billion images and 2 million distinct entities, covering rich visual concepts in the wild. Building upon the I2E dataset, we study different training recipes like supervised pre-training, contrastive pre-training, and multi-task learning. For contrastive pre-training, we treat entity names as free-form text, and further enrich them with entity descriptions. Experiments show that supervised pre-training with large-scale fine-grained entity labels is highly effective for image retrieval tasks, and multi-task training further improves the performance. The final MOFI model achieves 86.66% mAP on the challenging GPR1200 dataset, surpassing the previous state-of-the-art performance of 72.19% from OpenAI's CLIP model. Further experiments on zero-shot and linear probe image classification also show that MOFI outperforms a CLIP model trained on the original image-text data, demonstrating the effectiveness of the I2E dataset in learning strong image representations. We release our code and model weights at https://github.com/apple/ml-mofi.
DocLLM: A layout-aware generative language model for multimodal document understanding
Enterprise documents such as forms, invoices, receipts, reports, contracts, and other similar records, often carry rich semantics at the intersection of textual and spatial modalities. The visual cues offered by their complex layouts play a crucial role in comprehending these documents effectively. In this paper, we present DocLLM, a lightweight extension to traditional large language models (LLMs) for reasoning over visual documents, taking into account both textual semantics and spatial layout. Our model differs from existing multimodal LLMs by avoiding expensive image encoders and focuses exclusively on bounding box information to incorporate the spatial layout structure. Specifically, the cross-alignment between text and spatial modalities is captured by decomposing the attention mechanism in classical transformers to a set of disentangled matrices. Furthermore, we devise a pre-training objective that learns to infill text segments. This approach allows us to address irregular layouts and heterogeneous content frequently encountered in visual documents. The pre-trained model is fine-tuned using a large-scale instruction dataset, covering four core document intelligence tasks. We demonstrate that our solution outperforms SotA LLMs on 14 out of 16 datasets across all tasks, and generalizes well to 4 out of 5 previously unseen datasets.
Re-Imagen: Retrieval-Augmented Text-to-Image Generator
Research on text-to-image generation has witnessed significant progress in generating diverse and photo-realistic images, driven by diffusion and auto-regressive models trained on large-scale image-text data. Though state-of-the-art models can generate high-quality images of common entities, they often have difficulty generating images of uncommon entities, such as `Chortai (dog)' or `Picarones (food)'. To tackle this issue, we present the Retrieval-Augmented Text-to-Image Generator (Re-Imagen), a generative model that uses retrieved information to produce high-fidelity and faithful images, even for rare or unseen entities. Given a text prompt, Re-Imagen accesses an external multi-modal knowledge base to retrieve relevant (image, text) pairs and uses them as references to generate the image. With this retrieval step, Re-Imagen is augmented with the knowledge of high-level semantics and low-level visual details of the mentioned entities, and thus improves its accuracy in generating the entities' visual appearances. We train Re-Imagen on a constructed dataset containing (image, text, retrieval) triples to teach the model to ground on both text prompt and retrieval. Furthermore, we develop a new sampling strategy to interleave the classifier-free guidance for text and retrieval conditions to balance the text and retrieval alignment. Re-Imagen achieves significant gain on FID score over COCO and WikiImage. To further evaluate the capabilities of the model, we introduce EntityDrawBench, a new benchmark that evaluates image generation for diverse entities, from frequent to rare, across multiple object categories including dogs, foods, landmarks, birds, and characters. Human evaluation on EntityDrawBench shows that Re-Imagen can significantly improve the fidelity of generated images, especially on less frequent entities.
Autoregressive Entity Retrieval
Entities are at the center of how we represent and aggregate knowledge. For instance, Encyclopedias such as Wikipedia are structured by entities (e.g., one per Wikipedia article). The ability to retrieve such entities given a query is fundamental for knowledge-intensive tasks such as entity linking and open-domain question answering. Current approaches can be understood as classifiers among atomic labels, one for each entity. Their weight vectors are dense entity representations produced by encoding entity meta information such as their descriptions. This approach has several shortcomings: (i) context and entity affinity is mainly captured through a vector dot product, potentially missing fine-grained interactions; (ii) a large memory footprint is needed to store dense representations when considering large entity sets; (iii) an appropriately hard set of negative data has to be subsampled at training time. In this work, we propose GENRE, the first system that retrieves entities by generating their unique names, left to right, token-by-token in an autoregressive fashion. This mitigates the aforementioned technical issues since: (i) the autoregressive formulation directly captures relations between context and entity name, effectively cross encoding both; (ii) the memory footprint is greatly reduced because the parameters of our encoder-decoder architecture scale with vocabulary size, not entity count; (iii) the softmax loss is computed without subsampling negative data. We experiment with more than 20 datasets on entity disambiguation, end-to-end entity linking and document retrieval tasks, achieving new state-of-the-art or very competitive results while using a tiny fraction of the memory footprint of competing systems. Finally, we demonstrate that new entities can be added by simply specifying their names. Code and pre-trained models at https://github.com/facebookresearch/GENRE.
Symlink: A New Dataset for Scientific Symbol-Description Linking
Mathematical symbols and descriptions appear in various forms across document section boundaries without explicit markup. In this paper, we present a new large-scale dataset that emphasizes extracting symbols and descriptions in scientific documents. Symlink annotates scientific papers of 5 different domains (i.e., computer science, biology, physics, mathematics, and economics). Our experiments on Symlink demonstrate the challenges of the symbol-description linking task for existing models and call for further research effort in this area. We will publicly release Symlink to facilitate future research.
Efficient and Interpretable Neural Models for Entity Tracking
What would it take for a natural language model to understand a novel, such as The Lord of the Rings? Among other things, such a model must be able to: (a) identify and record new characters (entities) and their attributes as they are introduced in the text, and (b) identify subsequent references to the characters previously introduced and update their attributes. This problem of entity tracking is essential for language understanding, and thus, useful for a wide array of downstream applications in NLP such as question-answering, summarization. In this thesis, we focus on two key problems in relation to facilitating the use of entity tracking models: (i) scaling entity tracking models to long documents, such as a novel, and (ii) integrating entity tracking into language models. Applying language technologies to long documents has garnered interest recently, but computational constraints are a significant bottleneck in scaling up current methods. In this thesis, we argue that computationally efficient entity tracking models can be developed by representing entities with rich, fixed-dimensional vector representations derived from pretrained language models, and by exploiting the ephemeral nature of entities. We also argue for the integration of entity tracking into language models as it will allow for: (i) wider application given the current ubiquitous use of pretrained language models in NLP applications, and (ii) easier adoption since it is much easier to swap in a new pretrained language model than to integrate a separate standalone entity tracking model.
Linguistic Binding in Diffusion Models: Enhancing Attribute Correspondence through Attention Map Alignment
Text-conditioned image generation models often generate incorrect associations between entities and their visual attributes. This reflects an impaired mapping between linguistic binding of entities and modifiers in the prompt and visual binding of the corresponding elements in the generated image. As one notable example, a query like ``a pink sunflower and a yellow flamingo'' may incorrectly produce an image of a yellow sunflower and a pink flamingo. To remedy this issue, we propose SynGen, an approach which first syntactically analyses the prompt to identify entities and their modifiers, and then uses a novel loss function that encourages the cross-attention maps to agree with the linguistic binding reflected by the syntax. Specifically, we encourage large overlap between attention maps of entities and their modifiers, and small overlap with other entities and modifier words. The loss is optimized during inference, without retraining or fine-tuning the model. Human evaluation on three datasets, including one new and challenging set, demonstrate significant improvements of SynGen compared with current state of the art methods. This work highlights how making use of sentence structure during inference can efficiently and substantially improve the faithfulness of text-to-image generation.
Cross-Modal Implicit Relation Reasoning and Aligning for Text-to-Image Person Retrieval
Text-to-image person retrieval aims to identify the target person based on a given textual description query. The primary challenge is to learn the mapping of visual and textual modalities into a common latent space. Prior works have attempted to address this challenge by leveraging separately pre-trained unimodal models to extract visual and textual features. However, these approaches lack the necessary underlying alignment capabilities required to match multimodal data effectively. Besides, these works use prior information to explore explicit part alignments, which may lead to the distortion of intra-modality information. To alleviate these issues, we present IRRA: a cross-modal Implicit Relation Reasoning and Aligning framework that learns relations between local visual-textual tokens and enhances global image-text matching without requiring additional prior supervision. Specifically, we first design an Implicit Relation Reasoning module in a masked language modeling paradigm. This achieves cross-modal interaction by integrating the visual cues into the textual tokens with a cross-modal multimodal interaction encoder. Secondly, to globally align the visual and textual embeddings, Similarity Distribution Matching is proposed to minimize the KL divergence between image-text similarity distributions and the normalized label matching distributions. The proposed method achieves new state-of-the-art results on all three public datasets, with a notable margin of about 3%-9% for Rank-1 accuracy compared to prior methods.
Beyond One-to-One: Rethinking the Referring Image Segmentation
Referring image segmentation aims to segment the target object referred by a natural language expression. However, previous methods rely on the strong assumption that one sentence must describe one target in the image, which is often not the case in real-world applications. As a result, such methods fail when the expressions refer to either no objects or multiple objects. In this paper, we address this issue from two perspectives. First, we propose a Dual Multi-Modal Interaction (DMMI) Network, which contains two decoder branches and enables information flow in two directions. In the text-to-image decoder, text embedding is utilized to query the visual feature and localize the corresponding target. Meanwhile, the image-to-text decoder is implemented to reconstruct the erased entity-phrase conditioned on the visual feature. In this way, visual features are encouraged to contain the critical semantic information about target entity, which supports the accurate segmentation in the text-to-image decoder in turn. Secondly, we collect a new challenging but realistic dataset called Ref-ZOM, which includes image-text pairs under different settings. Extensive experiments demonstrate our method achieves state-of-the-art performance on different datasets, and the Ref-ZOM-trained model performs well on various types of text inputs. Codes and datasets are available at https://github.com/toggle1995/RIS-DMMI.
Argument-Aware Approach To Event Linking
Event linking connects event mentions in text with relevant nodes in a knowledge base (KB). Prior research in event linking has mainly borrowed methods from entity linking, overlooking the distinct features of events. Compared to the extensively explored entity linking task, events have more complex structures and can be more effectively distinguished by examining their associated arguments. Moreover, the information-rich nature of events leads to the scarcity of event KBs. This emphasizes the need for event linking models to identify and classify event mentions not in the KB as ``out-of-KB,'' an area that has received limited attention. In this work, we tackle these challenges by introducing an argument-aware approach. First, we improve event linking models by augmenting input text with tagged event argument information, facilitating the recognition of key information about event mentions. Subsequently, to help the model handle ``out-of-KB'' scenarios, we synthesize out-of-KB training examples from in-KB instances through controlled manipulation of event arguments. Our experiment across two test datasets showed significant enhancements in both in-KB and out-of-KB scenarios, with a notable 22% improvement in out-of-KB evaluations.
Linking Representations with Multimodal Contrastive Learning
Many applications require grouping instances contained in diverse document datasets into classes. Most widely used methods do not employ deep learning and do not exploit the inherently multimodal nature of documents. Notably, record linkage is typically conceptualized as a string-matching problem. This study develops CLIPPINGS, (Contrastively Linking Pooled Pre-trained Embeddings), a multimodal framework for record linkage. CLIPPINGS employs end-to-end training of symmetric vision and language bi-encoders, aligned through contrastive language-image pre-training, to learn a metric space where the pooled image-text representation for a given instance is close to representations in the same class and distant from representations in different classes. At inference time, instances can be linked by retrieving their nearest neighbor from an offline exemplar embedding index or by clustering their representations. The study examines two challenging applications: constructing comprehensive supply chains for mid-20th century Japan through linking firm level financial records - with each firm name represented by its crop in the document image and the corresponding OCR - and detecting which image-caption pairs in a massive corpus of historical U.S. newspapers came from the same underlying photo wire source. CLIPPINGS outperforms widely used string matching methods by a wide margin and also outperforms unimodal methods. Moreover, a purely self-supervised model trained on only image-OCR pairs also outperforms popular string-matching methods without requiring any labels.
Performance Gap in Entity Knowledge Extraction Across Modalities in Vision Language Models
Vision-language models (VLMs) excel at extracting and reasoning about information from images. Yet, their capacity to leverage internal knowledge about specific entities remains underexplored. This work investigates the disparity in model performance when answering factual questions about an entity described in text versus depicted in an image. Our results reveal a significant accuracy drop - reaching 18% for some models - when the entity is presented visually instead of textually. To study this gap we present PopVQA, a dataset which allows separating entity recognition and question answering, and use it to benchmark several models. We hypothesize that this decline arises from limitations in how information flows from image tokens to query tokens. Thus, we use mechanistic interpretability tools to reveal that, although image tokens are preprocessed by the vision encoder, meaningful information flow from these tokens occurs only in the much deeper layers. Furthermore, critical image processing happens in the language model's middle layers, allowing few layers for consecutive reasoning, highlighting a potential inefficiency in how the model utilizes its layers for reasoning. These insights shed light on the internal mechanics of VLMs and offer pathways for enhancing their reasoning capabilities. PopVQA can be found at https://huggingface.co/datasets/idoco/PopVQA.
Open-domain Visual Entity Recognition: Towards Recognizing Millions of Wikipedia Entities
Large-scale multi-modal pre-training models such as CLIP and PaLI exhibit strong generalization on various visual domains and tasks. However, existing image classification benchmarks often evaluate recognition on a specific domain (e.g., outdoor images) or a specific task (e.g., classifying plant species), which falls short of evaluating whether pre-trained foundational models are universal visual recognizers. To address this, we formally present the task of Open-domain Visual Entity recognitioN (OVEN), where a model need to link an image onto a Wikipedia entity with respect to a text query. We construct OVEN-Wiki by re-purposing 14 existing datasets with all labels grounded onto one single label space: Wikipedia entities. OVEN challenges models to select among six million possible Wikipedia entities, making it a general visual recognition benchmark with the largest number of labels. Our study on state-of-the-art pre-trained models reveals large headroom in generalizing to the massive-scale label space. We show that a PaLI-based auto-regressive visual recognition model performs surprisingly well, even on Wikipedia entities that have never been seen during fine-tuning. We also find existing pretrained models yield different strengths: while PaLI-based models obtain higher overall performance, CLIP-based models are better at recognizing tail entities.
Inductive Entity Representations from Text via Link Prediction
Knowledge Graphs (KG) are of vital importance for multiple applications on the web, including information retrieval, recommender systems, and metadata annotation. Regardless of whether they are built manually by domain experts or with automatic pipelines, KGs are often incomplete. Recent work has begun to explore the use of textual descriptions available in knowledge graphs to learn vector representations of entities in order to preform link prediction. However, the extent to which these representations learned for link prediction generalize to other tasks is unclear. This is important given the cost of learning such representations. Ideally, we would prefer representations that do not need to be trained again when transferring to a different task, while retaining reasonable performance. In this work, we propose a holistic evaluation protocol for entity representations learned via a link prediction objective. We consider the inductive link prediction and entity classification tasks, which involve entities not seen during training. We also consider an information retrieval task for entity-oriented search. We evaluate an architecture based on a pretrained language model, that exhibits strong generalization to entities not observed during training, and outperforms related state-of-the-art methods (22% MRR improvement in link prediction on average). We further provide evidence that the learned representations transfer well to other tasks without fine-tuning. In the entity classification task we obtain an average improvement of 16% in accuracy compared with baselines that also employ pre-trained models. In the information retrieval task, we obtain significant improvements of up to 8.8% in NDCG@10 for natural language queries. We thus show that the learned representations are not limited KG-specific tasks, and have greater generalization properties than evaluated in previous work.
ColPali: Efficient Document Retrieval with Vision Language Models
Documents are visually rich structures that convey information through text, as well as tables, figures, page layouts, or fonts. While modern document retrieval systems exhibit strong performance on query-to-text matching, they struggle to exploit visual cues efficiently, hindering their performance on practical document retrieval applications such as Retrieval Augmented Generation. To benchmark current systems on visually rich document retrieval, we introduce the Visual Document Retrieval Benchmark ViDoRe, composed of various page-level retrieving tasks spanning multiple domains, languages, and settings. The inherent shortcomings of modern systems motivate the introduction of a new retrieval model architecture, ColPali, which leverages the document understanding capabilities of recent Vision Language Models to produce high-quality contextualized embeddings solely from images of document pages. Combined with a late interaction matching mechanism, ColPali largely outperforms modern document retrieval pipelines while being drastically faster and end-to-end trainable.
Learning the Visualness of Text Using Large Vision-Language Models
Visual text evokes an image in a person's mind, while non-visual text fails to do so. A method to automatically detect visualness in text will unlock the ability to augment text with relevant images, as neural text-to-image generation and retrieval models operate on the implicit assumption that the input text is visual in nature. We curate a dataset of 3,620 English sentences and their visualness scores provided by multiple human annotators. Additionally, we use documents that contain text and visual assets to create a distantly supervised corpus of document text and associated images. We also propose a fine-tuning strategy that adapts large vision-language models like CLIP that assume a one-to-one correspondence between text and image to the task of scoring text visualness from text input alone. Our strategy involves modifying the model's contrastive learning objective to map text identified as non-visual to a common NULL image while matching visual text to their corresponding images in the document. We evaluate the proposed approach on its ability to (i) classify visual and non-visual text accurately, and (ii) attend over words that are identified as visual in psycholinguistic studies. Empirical evaluation indicates that our approach performs better than several heuristics and baseline models for the proposed task. Furthermore, to highlight the importance of modeling the visualness of text, we conduct qualitative analyses of text-to-image generation systems like DALL-E.
NERetrieve: Dataset for Next Generation Named Entity Recognition and Retrieval
Recognizing entities in texts is a central need in many information-seeking scenarios, and indeed, Named Entity Recognition (NER) is arguably one of the most successful examples of a widely adopted NLP task and corresponding NLP technology. Recent advances in large language models (LLMs) appear to provide effective solutions (also) for NER tasks that were traditionally handled with dedicated models, often matching or surpassing the abilities of the dedicated models. Should NER be considered a solved problem? We argue to the contrary: the capabilities provided by LLMs are not the end of NER research, but rather an exciting beginning. They allow taking NER to the next level, tackling increasingly more useful, and increasingly more challenging, variants. We present three variants of the NER task, together with a dataset to support them. The first is a move towards more fine-grained -- and intersectional -- entity types. The second is a move towards zero-shot recognition and extraction of these fine-grained types based on entity-type labels. The third, and most challenging, is the move from the recognition setup to a novel retrieval setup, where the query is a zero-shot entity type, and the expected result is all the sentences from a large, pre-indexed corpus that contain entities of these types, and their corresponding spans. We show that all of these are far from being solved. We provide a large, silver-annotated corpus of 4 million paragraphs covering 500 entity types, to facilitate research towards all of these three goals.
Any Information Is Just Worth One Single Screenshot: Unifying Search With Visualized Information Retrieval
With the popularity of multimodal techniques, it receives growing interests to acquire useful information in visual forms. In this work, we formally define an emerging IR paradigm called Visualized Information Retrieval, or Vis-IR, where multimodal information, such as texts, images, tables and charts, is jointly represented by a unified visual format called Screenshots, for various retrieval applications. We further make three key contributions for Vis-IR. First, we create VIRA (Vis-IR Aggregation), a large-scale dataset comprising a vast collection of screenshots from diverse sources, carefully curated into captioned and question-answer formats. Second, we develop UniSE (Universal Screenshot Embeddings), a family of retrieval models that enable screenshots to query or be queried across arbitrary data modalities. Finally, we construct MVRB (Massive Visualized IR Benchmark), a comprehensive benchmark covering a variety of task forms and application scenarios. Through extensive evaluations on MVRB, we highlight the deficiency from existing multimodal retrievers and the substantial improvements made by UniSE. Our work will be shared with the community, laying a solid foundation for this emerging field.
TextCaps: a Dataset for Image Captioning with Reading Comprehension
Image descriptions can help visually impaired people to quickly understand the image content. While we made significant progress in automatically describing images and optical character recognition, current approaches are unable to include written text in their descriptions, although text is omnipresent in human environments and frequently critical to understand our surroundings. To study how to comprehend text in the context of an image we collect a novel dataset, TextCaps, with 145k captions for 28k images. Our dataset challenges a model to recognize text, relate it to its visual context, and decide what part of the text to copy or paraphrase, requiring spatial, semantic, and visual reasoning between multiple text tokens and visual entities, such as objects. We study baselines and adapt existing approaches to this new task, which we refer to as image captioning with reading comprehension. Our analysis with automatic and human studies shows that our new TextCaps dataset provides many new technical challenges over previous datasets.
Relation-Rich Visual Document Generator for Visual Information Extraction
Despite advances in Large Language Models (LLMs) and Multimodal LLMs (MLLMs) for visual document understanding (VDU), visual information extraction (VIE) from relation-rich documents remains challenging due to the layout diversity and limited training data. While existing synthetic document generators attempt to address data scarcity, they either rely on manually designed layouts and templates, or adopt rule-based approaches that limit layout diversity. Besides, current layout generation methods focus solely on topological patterns without considering textual content, making them impractical for generating documents with complex associations between the contents and layouts. In this paper, we propose a Relation-rIch visual Document GEnerator (RIDGE) that addresses these limitations through a two-stage approach: (1) Content Generation, which leverages LLMs to generate document content using a carefully designed Hierarchical Structure Text format which captures entity categories and relationships, and (2) Content-driven Layout Generation, which learns to create diverse, plausible document layouts solely from easily available Optical Character Recognition (OCR) results, requiring no human labeling or annotations efforts. Experimental results have demonstrated that our method significantly enhances the performance of document understanding models on various VIE benchmarks. The code and model will be available at https://github.com/AI-Application-and-Integration-Lab/RIDGE .
VIRTUE: Visual-Interactive Text-Image Universal Embedder
Multimodal representation learning models have demonstrated successful operation across complex tasks, and the integration of vision-language models (VLMs) has further enabled embedding models with instruction-following capabilities. However, existing embedding models lack visual-interactive capabilities to specify regions of interest from users (e.g., point, bounding box, mask), which have been explored in generative models to broaden their human-interactive applicability. Equipping embedding models with visual interactions not only would unlock new applications with localized grounding of user intent, which remains unexplored, but also enable the models to learn entity-level information within images to complement their global representations for conventional embedding tasks. In this paper, we propose a novel Visual-InteRactive Text-Image Universal Embedder (VIRTUE) that extends the capabilities of the segmentation model and the vision-language model to the realm of representation learning. In VIRTUE, the segmentation model can process visual prompts that pinpoint specific regions within an image, thereby enabling the embedder to handle complex and ambiguous scenarios more precisely. To evaluate the visual-interaction ability of VIRTUE, we introduce a large-scale Segmentation-and-Scene Caption Retrieval (SCaR) benchmark comprising 1M samples that aims to retrieve the text caption by jointly considering the entity with a specific object and image scene. VIRTUE consistently achieves a state-of-the-art performance with significant improvements across 36 universal MMEB (3.1%-8.5%) and five visual-interactive SCaR (15.2%-20.3%) tasks.
NodePiece: Compositional and Parameter-Efficient Representations of Large Knowledge Graphs
Conventional representation learning algorithms for knowledge graphs (KG) map each entity to a unique embedding vector. Such a shallow lookup results in a linear growth of memory consumption for storing the embedding matrix and incurs high computational costs when working with real-world KGs. Drawing parallels with subword tokenization commonly used in NLP, we explore the landscape of more parameter-efficient node embedding strategies with possibly sublinear memory requirements. To this end, we propose NodePiece, an anchor-based approach to learn a fixed-size entity vocabulary. In NodePiece, a vocabulary of subword/sub-entity units is constructed from anchor nodes in a graph with known relation types. Given such a fixed-size vocabulary, it is possible to bootstrap an encoding and embedding for any entity, including those unseen during training. Experiments show that NodePiece performs competitively in node classification, link prediction, and relation prediction tasks while retaining less than 10% of explicit nodes in a graph as anchors and often having 10x fewer parameters. To this end, we show that a NodePiece-enabled model outperforms existing shallow models on a large OGB WikiKG 2 graph having 70x fewer parameters.
ToMMeR -- Efficient Entity Mention Detection from Large Language Models
Identifying which text spans refer to entities -- mention detection -- is both foundational for information extraction and a known performance bottleneck. We introduce ToMMeR, a lightweight model (<300K parameters) probing mention detection capabilities from early LLM layers. Across 13 NER benchmarks, ToMMeR achieves 93\% recall zero-shot, with over 90\% precision using an LLM as a judge showing that ToMMeR rarely produces spurious predictions despite high recall. Cross-model analysis reveals that diverse architectures (14M-15B parameters) converge on similar mention boundaries (DICE >75\%), confirming that mention detection emerges naturally from language modeling. When extended with span classification heads, ToMMeR achieves near SOTA NER performance (80-87\% F1 on standard benchmarks). Our work provides evidence that structured entity representations exist in early transformer layers and can be efficiently recovered with minimal parameters.
IDEL: In-Database Entity Linking with Neural Embeddings
We present a novel architecture, In-Database Entity Linking (IDEL), in which we integrate the analytics-optimized RDBMS MonetDB with neural text mining abilities. Our system design abstracts core tasks of most neural entity linking systems for MonetDB. To the best of our knowledge, this is the first defacto implemented system integrating entity-linking in a database. We leverage the ability of MonetDB to support in-database-analytics with user defined functions (UDFs) implemented in Python. These functions call machine learning libraries for neural text mining, such as TensorFlow. The system achieves zero cost for data shipping and transformation by utilizing MonetDB's ability to embed Python processes in the database kernel and exchange data in NumPy arrays. IDEL represents text and relational data in a joint vector space with neural embeddings and can compensate errors with ambiguous entity representations. For detecting matching entities, we propose a novel similarity function based on joint neural embeddings which are learned via minimizing pairwise contrastive ranking loss. This function utilizes a high dimensional index structures for fast retrieval of matching entities. Our first implementation and experiments using the WebNLG corpus show the effectiveness and the potentials of IDEL.
Referring Expression Instance Retrieval and A Strong End-to-End Baseline
Using natural language to query visual information is a fundamental need in real-world applications. Text-Image Retrieval (TIR) retrieves a target image from a gallery based on an image-level description, while Referring Expression Comprehension (REC) localizes a target object within a given image using an instance-level description. However, real-world applications often present more complex demands. Users typically query an instance-level description across a large gallery and expect to receive both relevant image and the corresponding instance location. In such scenarios, TIR struggles with fine-grained descriptions and object-level localization, while REC is limited in its ability to efficiently search large galleries and lacks an effective ranking mechanism. In this paper, we introduce a new task called Referring Expression Instance Retrieval (REIR), which supports both instance-level retrieval and localization based on fine-grained referring expressions. First, we propose a large-scale benchmark for REIR, named REIRCOCO, constructed by prompting advanced vision-language models to generate high-quality referring expressions for instances in the MSCOCO and RefCOCO datasets. Second, we present a baseline method, Contrastive Language-Instance Alignment with Relation Experts (CLARE), which employs a dual-stream architecture to address REIR in an end-to-end manner. Given a referring expression, the textual branch encodes it into a query embedding. The visual branch detects candidate objects and extracts their instance-level visual features. The most similar candidate to the query is selected for bounding box prediction. CLARE is first trained on object detection and REC datasets to establish initial grounding capabilities, then optimized via Contrastive Language-Instance Alignment (CLIA) for improved retrieval across images. We will release our code and benchmark publicly.
Knowledge Enhanced Contextual Word Representations
Contextual word representations, typically trained on unstructured, unlabeled text, do not contain any explicit grounding to real world entities and are often unable to remember facts about those entities. We propose a general method to embed multiple knowledge bases (KBs) into large scale models, and thereby enhance their representations with structured, human-curated knowledge. For each KB, we first use an integrated entity linker to retrieve relevant entity embeddings, then update contextual word representations via a form of word-to-entity attention. In contrast to previous approaches, the entity linkers and self-supervised language modeling objective are jointly trained end-to-end in a multitask setting that combines a small amount of entity linking supervision with a large amount of raw text. After integrating WordNet and a subset of Wikipedia into BERT, the knowledge enhanced BERT (KnowBert) demonstrates improved perplexity, ability to recall facts as measured in a probing task and downstream performance on relationship extraction, entity typing, and word sense disambiguation. KnowBert's runtime is comparable to BERT's and it scales to large KBs.
Captions Are Worth a Thousand Words: Enhancing Product Retrieval with Pretrained Image-to-Text Models
This paper explores the usage of multimodal image-to-text models to enhance text-based item retrieval. We propose utilizing pre-trained image captioning and tagging models, such as instructBLIP and CLIP, to generate text-based product descriptions which are combined with existing text descriptions. Our work is particularly impactful for smaller eCommerce businesses who are unable to maintain the high-quality text descriptions necessary to effectively perform item retrieval for search and recommendation use cases. We evaluate the searchability of ground-truth text, image-generated text, and combinations of both texts on several subsets of Amazon's publicly available ESCI dataset. The results demonstrate the dual capability of our proposed models to enhance the retrieval of existing text and generate highly-searchable standalone descriptions.
Unified Visual Relationship Detection with Vision and Language Models
This work focuses on training a single visual relationship detector predicting over the union of label spaces from multiple datasets. Merging labels spanning different datasets could be challenging due to inconsistent taxonomies. The issue is exacerbated in visual relationship detection when second-order visual semantics are introduced between pairs of objects. To address this challenge, we propose UniVRD, a novel bottom-up method for Unified Visual Relationship Detection by leveraging vision and language models (VLMs). VLMs provide well-aligned image and text embeddings, where similar relationships are optimized to be close to each other for semantic unification. Our bottom-up design enables the model to enjoy the benefit of training with both object detection and visual relationship datasets. Empirical results on both human-object interaction detection and scene-graph generation demonstrate the competitive performance of our model. UniVRD achieves 38.07 mAP on HICO-DET, outperforming the current best bottom-up HOI detector by 14.26 mAP. More importantly, we show that our unified detector performs as well as dataset-specific models in mAP, and achieves further improvements when we scale up the model. Our code will be made publicly available on GitHub.
Visual-Text Cross Alignment: Refining the Similarity Score in Vision-Language Models
It has recently been discovered that using a pre-trained vision-language model (VLM), e.g., CLIP, to align a whole query image with several finer text descriptions generated by a large language model can significantly enhance zero-shot performance. However, in this paper, we empirically find that the finer descriptions tend to align more effectively with local areas of the query image rather than the whole image, and then we theoretically validate this finding. Thus, we present a method called weighted visual-text cross alignment (WCA). This method begins with a localized visual prompting technique, designed to identify local visual areas within the query image. The local visual areas are then cross-aligned with the finer descriptions by creating a similarity matrix using the pre-trained VLM. To determine how well a query image aligns with each category, we develop a score function based on the weighted similarities in this matrix. Extensive experiments demonstrate that our method significantly improves zero-shot performance across various datasets, achieving results that are even comparable to few-shot learning methods.
NER Retriever: Zero-Shot Named Entity Retrieval with Type-Aware Embeddings
We present NER Retriever, a zero-shot retrieval framework for ad-hoc Named Entity Retrieval, a variant of Named Entity Recognition (NER), where the types of interest are not provided in advance, and a user-defined type description is used to retrieve documents mentioning entities of that type. Instead of relying on fixed schemas or fine-tuned models, our method builds on internal representations of large language models (LLMs) to embed both entity mentions and user-provided open-ended type descriptions into a shared semantic space. We show that internal representations, specifically the value vectors from mid-layer transformer blocks, encode fine-grained type information more effectively than commonly used top-layer embeddings. To refine these representations, we train a lightweight contrastive projection network that aligns type-compatible entities while separating unrelated types. The resulting entity embeddings are compact, type-aware, and well-suited for nearest-neighbor search. Evaluated on three benchmarks, NER Retriever significantly outperforms both lexical and dense sentence-level retrieval baselines. Our findings provide empirical support for representation selection within LLMs and demonstrate a practical solution for scalable, schema-free entity retrieval. The NER Retriever Codebase is publicly available at https://github.com/ShacharOr100/ner_retriever
ReLiK: Retrieve and LinK, Fast and Accurate Entity Linking and Relation Extraction on an Academic Budget
Entity Linking (EL) and Relation Extraction (RE) are fundamental tasks in Natural Language Processing, serving as critical components in a wide range of applications. In this paper, we propose ReLiK, a Retriever-Reader architecture for both EL and RE, where, given an input text, the Retriever module undertakes the identification of candidate entities or relations that could potentially appear within the text. Subsequently, the Reader module is tasked to discern the pertinent retrieved entities or relations and establish their alignment with the corresponding textual spans. Notably, we put forward an innovative input representation that incorporates the candidate entities or relations alongside the text, making it possible to link entities or extract relations in a single forward pass and to fully leverage pre-trained language models contextualization capabilities, in contrast with previous Retriever-Reader-based methods, which require a forward pass for each candidate. Our formulation of EL and RE achieves state-of-the-art performance in both in-domain and out-of-domain benchmarks while using academic budget training and with up to 40x inference speed compared to competitors. Finally, we show how our architecture can be used seamlessly for Information Extraction (cIE), i.e. EL + RE, and setting a new state of the art by employing a shared Reader that simultaneously extracts entities and relations.
VISTA: Visualized Text Embedding For Universal Multi-Modal Retrieval
Multi-modal retrieval becomes increasingly popular in practice. However, the existing retrievers are mostly text-oriented, which lack the capability to process visual information. Despite the presence of vision-language models like CLIP, the current methods are severely limited in representing the text-only and image-only data. In this work, we present a new embedding model VISTA for universal multi-modal retrieval. Our work brings forth threefold technical contributions. Firstly, we introduce a flexible architecture which extends a powerful text encoder with the image understanding capability by introducing visual token embeddings. Secondly, we develop two data generation strategies, which bring high-quality composed image-text to facilitate the training of the embedding model. Thirdly, we introduce a multi-stage training algorithm, which first aligns the visual token embedding with the text encoder using massive weakly labeled data, and then develops multi-modal representation capability using the generated composed image-text data. In our experiments, VISTA achieves superior performances across a variety of multi-modal retrieval tasks in both zero-shot and supervised settings. Our model, data, and source code are available at https://github.com/FlagOpen/FlagEmbedding.
V*: Guided Visual Search as a Core Mechanism in Multimodal LLMs
When we look around and perform complex tasks, how we see and selectively process what we see is crucial. However, the lack of this visual search mechanism in current multimodal LLMs (MLLMs) hinders their ability to focus on important visual details, especially when handling high-resolution and visually crowded images. To address this, we introduce V*, an LLM-guided visual search mechanism that employs the world knowledge in LLMs for efficient visual querying. When combined with an MLLM, this mechanism enhances collaborative reasoning, contextual understanding, and precise targeting of specific visual elements. This integration results in a new MLLM meta-architecture, named Show, sEArch, and TelL (SEAL). We further create V*Bench, a benchmark specifically designed to evaluate MLLMs in their ability to process high-resolution images and focus on visual details. Our study highlights the necessity of incorporating visual search capabilities into multimodal systems. The code is available https://github.com/penghao-wu/vstar.
I Can't Believe There's No Images! Learning Visual Tasks Using only Language Supervision
Many high-level skills that are required for computer vision tasks, such as parsing questions, comparing and contrasting semantics, and writing descriptions, are also required in other domains such as natural language processing. In this paper, we ask whether it is possible to learn those skills from text data and then transfer them to vision tasks without ever training on visual training data. Key to our approach is exploiting the joint embedding space of contrastively trained vision and language encoders. In practice, there can be systematic differences between embedding spaces for different modalities in contrastive models, and we analyze how these differences affect our approach and study strategies to mitigate this concern. We produce models using only text training data on four representative tasks: image captioning, visual entailment, visual question answering and visual news captioning, and evaluate them on standard benchmarks using images. We find these models perform close to models trained on images, while surpassing prior work for captioning and visual entailment in this text-only setting by over 9 points, and outperforming all prior work on visual news by over 30 points. We also showcase a variety of stylistic image captioning models that are trained using no image data and no human-curated language data, but instead using readily-available text data from books, the web, or language models.
Visual Story-Writing: Writing by Manipulating Visual Representations of Stories
We define "visual story-writing" as using visual representations of story elements to support writing and revising narrative texts. To demonstrate this approach, we developed a text editor that automatically visualizes a graph of entity interactions, movement between locations, and a timeline of story events. Interacting with these visualizations results in suggested text edits: for example, connecting two characters in the graph creates an interaction between them, moving an entity updates their described location, and rearranging events on the timeline reorganizes the narrative sequence. Through two user studies on narrative text editing and writing, we found that visuals supported participants in planning high-level revisions, tracking story elements, and exploring story variations in ways that encourage creativity. Broadly, our work lays the foundation for writing support, not just through words, but also visuals.
Shatter and Gather: Learning Referring Image Segmentation with Text Supervision
Referring image segmentation, the task of segmenting any arbitrary entities described in free-form texts, opens up a variety of vision applications. However, manual labeling of training data for this task is prohibitively costly, leading to lack of labeled data for training. We address this issue by a weakly supervised learning approach using text descriptions of training images as the only source of supervision. To this end, we first present a new model that discovers semantic entities in input image and then combines such entities relevant to text query to predict the mask of the referent. We also present a new loss function that allows the model to be trained without any further supervision. Our method was evaluated on four public benchmarks for referring image segmentation, where it clearly outperformed the existing method for the same task and recent open-vocabulary segmentation models on all the benchmarks.
MoLoRAG: Bootstrapping Document Understanding via Multi-modal Logic-aware Retrieval
Document Understanding is a foundational AI capability with broad applications, and Document Question Answering (DocQA) is a key evaluation task. Traditional methods convert the document into text for processing by Large Language Models (LLMs), but this process strips away critical multi-modal information like figures. While Large Vision-Language Models (LVLMs) address this limitation, their constrained input size makes multi-page document comprehension infeasible. Retrieval-augmented generation (RAG) methods mitigate this by selecting relevant pages, but they rely solely on semantic relevance, ignoring logical connections between pages and the query, which is essential for reasoning. To this end, we propose MoLoRAG, a logic-aware retrieval framework for multi-modal, multi-page document understanding. By constructing a page graph that captures contextual relationships between pages, a lightweight VLM performs graph traversal to retrieve relevant pages, including those with logical connections often overlooked. This approach combines semantic and logical relevance to deliver more accurate retrieval. After retrieval, the top-K pages are fed into arbitrary LVLMs for question answering. To enhance flexibility, MoLoRAG offers two variants: a training-free solution for easy deployment and a fine-tuned version to improve logical relevance checking. Experiments on four DocQA datasets demonstrate average improvements of 9.68% in accuracy over LVLM direct inference and 7.44% in retrieval precision over baselines. Codes and datasets are released at https://github.com/WxxShirley/MoLoRAG.
Visual Text Processing: A Comprehensive Review and Unified Evaluation
Visual text is a crucial component in both document and scene images, conveying rich semantic information and attracting significant attention in the computer vision community. Beyond traditional tasks such as text detection and recognition, visual text processing has witnessed rapid advancements driven by the emergence of foundation models, including text image reconstruction and text image manipulation. Despite significant progress, challenges remain due to the unique properties that differentiate text from general objects. Effectively capturing and leveraging these distinct textual characteristics is essential for developing robust visual text processing models. In this survey, we present a comprehensive, multi-perspective analysis of recent advancements in visual text processing, focusing on two key questions: (1) What textual features are most suitable for different visual text processing tasks? (2) How can these distinctive text features be effectively incorporated into processing frameworks? Furthermore, we introduce VTPBench, a new benchmark that encompasses a broad range of visual text processing datasets. Leveraging the advanced visual quality assessment capabilities of multimodal large language models (MLLMs), we propose VTPScore, a novel evaluation metric designed to ensure fair and reliable evaluation. Our empirical study with more than 20 specific models reveals substantial room for improvement in the current techniques. Our aim is to establish this work as a fundamental resource that fosters future exploration and innovation in the dynamic field of visual text processing. The relevant repository is available at https://github.com/shuyansy/Visual-Text-Processing-survey.
Visualized Text-to-Image Retrieval
We propose Visualize-then-Retrieve (VisRet), a new paradigm for Text-to-Image (T2I) retrieval that mitigates the limitations of cross-modal similarity alignment of existing multi-modal embeddings. VisRet first projects textual queries into the image modality via T2I generation. Then, it performs retrieval within the image modality to bypass the weaknesses of cross-modal retrievers in recognizing subtle visual-spatial features. Experiments on three knowledge-intensive T2I retrieval benchmarks, including a newly introduced multi-entity benchmark, demonstrate that VisRet consistently improves T2I retrieval by 24.5% to 32.7% NDCG@10 across different embedding models. VisRet also significantly benefits downstream visual question answering accuracy when used in retrieval-augmented generation pipelines. The method is plug-and-play and compatible with off-the-shelf retrievers, making it an effective module for knowledge-intensive multi-modal systems. Our code and the new benchmark are publicly available at https://github.com/xiaowu0162/Visualize-then-Retrieve.
Visual Spatial Description: Controlled Spatial-Oriented Image-to-Text Generation
Image-to-text tasks, such as open-ended image captioning and controllable image description, have received extensive attention for decades. Here, we further advance this line of work by presenting Visual Spatial Description (VSD), a new perspective for image-to-text toward spatial semantics. Given an image and two objects inside it, VSD aims to produce one description focusing on the spatial perspective between the two objects. Accordingly, we manually annotate a dataset to facilitate the investigation of the newly-introduced task and build several benchmark encoder-decoder models by using VL-BART and VL-T5 as backbones. In addition, we investigate pipeline and joint end-to-end architectures for incorporating visual spatial relationship classification (VSRC) information into our model. Finally, we conduct experiments on our benchmark dataset to evaluate all our models. Results show that our models are impressive, providing accurate and human-like spatial-oriented text descriptions. Meanwhile, VSRC has great potential for VSD, and the joint end-to-end architecture is the better choice for their integration. We make the dataset and codes public for research purposes.
Document Haystack: A Long Context Multimodal Image/Document Understanding Vision LLM Benchmark
The proliferation of multimodal Large Language Models has significantly advanced the ability to analyze and understand complex data inputs from different modalities. However, the processing of long documents remains under-explored, largely due to a lack of suitable benchmarks. To address this, we introduce Document Haystack, a comprehensive benchmark designed to evaluate the performance of Vision Language Models (VLMs) on long, visually complex documents. Document Haystack features documents ranging from 5 to 200 pages and strategically inserts pure text or multimodal text+image "needles" at various depths within the documents to challenge VLMs' retrieval capabilities. Comprising 400 document variants and a total of 8,250 questions, it is supported by an objective, automated evaluation framework. We detail the construction and characteristics of the Document Haystack dataset, present results from prominent VLMs and discuss potential research avenues in this area.
Unified Multi-Modal Interleaved Document Representation for Information Retrieval
Information Retrieval (IR) methods aim to identify relevant documents in response to a given query, which have gained remarkable attention due to their successful application in various natural language tasks. However, existing approaches typically consider only the textual information within the documents, which overlooks the fact that documents can contain multiple modalities, including texts, images, and tables. Further, they often segment each long document into multiple discrete passages for embedding, preventing them from capturing the overall document context and interactions between paragraphs. We argue that these two limitations lead to suboptimal document representations for retrieval. In this work, to address them, we aim to produce more comprehensive and nuanced document representations by holistically embedding documents interleaved with different modalities. Specifically, we achieve this by leveraging the capability of recent vision-language models that enable the processing and integration of text, images, and tables into a unified format and representation. Moreover, to mitigate the information loss from segmenting documents into passages, instead of representing and retrieving passages individually, we further merge the representations of segmented passages into one single document representation, while we additionally introduce a reranking strategy to decouple and identify the relevant passage within the document if necessary. Then, through extensive experiments on diverse information retrieval scenarios considering both the textual and multimodal queries, we show that our approach substantially outperforms relevant baselines, thanks to the consideration of the multimodal information interleaved within the documents in a unified way.
Referring to Any Person
Humans are undoubtedly the most important participants in computer vision, and the ability to detect any individual given a natural language description, a task we define as referring to any person, holds substantial practical value. However, we find that existing models generally fail to achieve real-world usability, and current benchmarks are limited by their focus on one-to-one referring, that hinder progress in this area. In this work, we revisit this task from three critical perspectives: task definition, dataset design, and model architecture. We first identify five aspects of referable entities and three distinctive characteristics of this task. Next, we introduce HumanRef, a novel dataset designed to tackle these challenges and better reflect real-world applications. From a model design perspective, we integrate a multimodal large language model with an object detection framework, constructing a robust referring model named RexSeek. Experimental results reveal that state-of-the-art models, which perform well on commonly used benchmarks like RefCOCO/+/g, struggle with HumanRef due to their inability to detect multiple individuals. In contrast, RexSeek not only excels in human referring but also generalizes effectively to common object referring, making it broadly applicable across various perception tasks. Code is available at https://github.com/IDEA-Research/RexSeek
Adaptive Markup Language Generation for Contextually-Grounded Visual Document Understanding
Visual Document Understanding has become essential with the increase of text-rich visual content. This field poses significant challenges due to the need for effective integration of visual perception and textual comprehension, particularly across diverse document types with complex layouts. Moreover, existing fine-tuning datasets for this domain often fall short in providing the detailed contextual information for robust understanding, leading to hallucinations and limited comprehension of spatial relationships among visual elements. To address these challenges, we propose an innovative pipeline that utilizes adaptive generation of markup languages, such as Markdown, JSON, HTML, and TiKZ, to build highly structured document representations and deliver contextually-grounded responses. We introduce two fine-grained structured datasets: DocMark-Pile, comprising approximately 3.8M pretraining data pairs for document parsing, and DocMark-Instruct, featuring 624k fine-tuning data annotations for grounded instruction following. Extensive experiments demonstrate that our proposed model significantly outperforms existing state-of-theart MLLMs across a range of visual document understanding benchmarks, facilitating advanced reasoning and comprehension capabilities in complex visual scenarios. Our code and models are released at https://github. com/Euphoria16/DocMark.
Visually-Aware Context Modeling for News Image Captioning
News Image Captioning aims to create captions from news articles and images, emphasizing the connection between textual context and visual elements. Recognizing the significance of human faces in news images and the face-name co-occurrence pattern in existing datasets, we propose a face-naming module for learning better name embeddings. Apart from names, which can be directly linked to an image area (faces), news image captions mostly contain context information that can only be found in the article. We design a retrieval strategy using CLIP to retrieve sentences that are semantically close to the image, mimicking human thought process of linking articles to images. Furthermore, to tackle the problem of the imbalanced proportion of article context and image context in captions, we introduce a simple yet effective method Contrasting with Language Model backbone (CoLaM) to the training pipeline. We conduct extensive experiments to demonstrate the efficacy of our framework. We out-perform the previous state-of-the-art (without external data) by 7.97/5.80 CIDEr scores on GoodNews/NYTimes800k. Our code is available at https://github.com/tingyu215/VACNIC.
Multilingual Autoregressive Entity Linking
We present mGENRE, a sequence-to-sequence system for the Multilingual Entity Linking (MEL) problem -- the task of resolving language-specific mentions to a multilingual Knowledge Base (KB). For a mention in a given language, mGENRE predicts the name of the target entity left-to-right, token-by-token in an autoregressive fashion. The autoregressive formulation allows us to effectively cross-encode mention string and entity names to capture more interactions than the standard dot product between mention and entity vectors. It also enables fast search within a large KB even for mentions that do not appear in mention tables and with no need for large-scale vector indices. While prior MEL works use a single representation for each entity, we match against entity names of as many languages as possible, which allows exploiting language connections between source input and target name. Moreover, in a zero-shot setting on languages with no training data at all, mGENRE treats the target language as a latent variable that is marginalized at prediction time. This leads to over 50% improvements in average accuracy. We show the efficacy of our approach through extensive evaluation including experiments on three popular MEL benchmarks where mGENRE establishes new state-of-the-art results. Code and pre-trained models at https://github.com/facebookresearch/GENRE.
PDF-MVQA: A Dataset for Multimodal Information Retrieval in PDF-based Visual Question Answering
Document Question Answering (QA) presents a challenge in understanding visually-rich documents (VRD), particularly those dominated by lengthy textual content like research journal articles. Existing studies primarily focus on real-world documents with sparse text, while challenges persist in comprehending the hierarchical semantic relations among multiple pages to locate multimodal components. To address this gap, we propose PDF-MVQA, which is tailored for research journal articles, encompassing multiple pages and multimodal information retrieval. Unlike traditional machine reading comprehension (MRC) tasks, our approach aims to retrieve entire paragraphs containing answers or visually rich document entities like tables and figures. Our contributions include the introduction of a comprehensive PDF Document VQA dataset, allowing the examination of semantically hierarchical layout structures in text-dominant documents. We also present new VRD-QA frameworks designed to grasp textual contents and relations among document layouts simultaneously, extending page-level understanding to the entire multi-page document. Through this work, we aim to enhance the capabilities of existing vision-and-language models in handling challenges posed by text-dominant documents in VRD-QA.
Reasoning to Attend: Try to Understand How <SEG> Token Works
Current Large Multimodal Models (LMMs) empowered visual grounding typically rely on <SEG> tokens as a text prompt to jointly optimize the vision-language model (e.g., LLaVA) and the downstream task-specific model (e.g., SAM). However, we observe that little research has looked into how it works.In this work, we first visualize the similarity maps, which are obtained by computing the semantic similarity between the <SEG> token and the image token embeddings derived from the last hidden layer in both the LLaVA encoder and SAM decoder. Intriguingly, we have found that a striking consistency holds in terms of activation responses in the similarity map, which reveals that what the <SEG> token contributes to is semantic similarity within image-text pairs. Specifically, the <SEG> token, a placeholder expanded in text vocabulary, extensively queries among individual tokenized image patches to match the semantics of an object from text to the paired image, while the Large Language Models (LLMs) are being fine-tuned. Upon the above findings, we present READ, which facilitates LMMs' resilient REAsoning capability of where to attenD under the guidance of highly activated points borrowed from similarity maps. Remarkably, READ features an intuitive design, Similarity as Points module (SasP), which can be seamlessly applied to <SEG>-like paradigms in a plug-and-play fashion. Also, extensive experiments have been conducted on ReasonSeg and RefCOCO(+/g) datasets. To validate whether READ suffers from catastrophic forgetting of previous skills after fine-tuning, we further assess its generation ability on an augmented FP-RefCOCO(+/g) dataset. All codes and models are publicly available at https://github.com/rui-qian/READ.
ModernVBERT: Towards Smaller Visual Document Retrievers
Multimodal embedding models are gaining prevalence, notably for document retrieval as efficient alternatives to text-only pipelines. These models are typically built by finetuning large vision-language decoders (VLMs) with contrastive losses on text-image pairs. In this work, we show that, while cost-efficient, this repurposing approach often bottlenecks retrieval performance. Through controlled experiments, we establish a principled recipe for improving visual document retrieval models. We notably measure the impact of attention masking, image resolution, modality alignment data regimes, and late interaction centered contrastive objectives which emerge as central performance factors. Building on these insights, we release ModernVBERT, a compact 250M-parameter vision-language encoder that outperforms models up to 10 times larger when finetuned on document retrieval tasks. Models and code are made available at https://huggingface.co/ModernVBERT.
Tracking Discrete and Continuous Entity State for Process Understanding
Procedural text, which describes entities and their interactions as they undergo some process, depicts entities in a uniquely nuanced way. First, each entity may have some observable discrete attributes, such as its state or location; modeling these involves imposing global structure and enforcing consistency. Second, an entity may have properties which are not made explicit but can be effectively induced and tracked by neural networks. In this paper, we propose a structured neural architecture that reflects this dual nature of entity evolution. The model tracks each entity recurrently, updating its hidden continuous representation at each step to contain relevant state information. The global discrete state structure is explicitly modeled with a neural CRF over the changing hidden representation of the entity. This CRF can explicitly capture constraints on entity states over time, enforcing that, for example, an entity cannot move to a location after it is destroyed. We evaluate the performance of our proposed model on QA tasks over process paragraphs in the ProPara dataset and find that our model achieves state-of-the-art results.
KnowGL: Knowledge Generation and Linking from Text
We propose KnowGL, a tool that allows converting text into structured relational data represented as a set of ABox assertions compliant with the TBox of a given Knowledge Graph (KG), such as Wikidata. We address this problem as a sequence generation task by leveraging pre-trained sequence-to-sequence language models, e.g. BART. Given a sentence, we fine-tune such models to detect pairs of entity mentions and jointly generate a set of facts consisting of the full set of semantic annotations for a KG, such as entity labels, entity types, and their relationships. To showcase the capabilities of our tool, we build a web application consisting of a set of UI widgets that help users to navigate through the semantic data extracted from a given input text. We make the KnowGL model available at https://huggingface.co/ibm/knowgl-large.
ABC: Achieving Better Control of Multimodal Embeddings using VLMs
Visual embedding models excel at zero-shot tasks like visual retrieval and classification. However, these models cannot be used for tasks that contain ambiguity or require user instruction. These tasks necessitate a multimodal embedding model, which outputs embeddings that combine visual and natural language input. Existing CLIP-based approaches embed images and text independently, and fuse the result. We find that this results in weak interactions between modalities, and poor user control over the representation. We introduce ABC, an open-source multimodal embedding model that uses a vision-language model backbone to deeply integrate image features with natural language instructions. ABC achieves bestfor-size performance on MSCOCO image-to-text retrieval and is the top performing model on classification and VQA tasks in the Massive Multimodal Embedding Benchmark. With a strongly unified vision-language representation, ABC can use natural language to solve subtle and potentially ambiguous visual retrieval problems. To evaluate this capability, we design CtrlBench, a benchmark that requires interleaving textual instructions with image content for correct retrieval. ABC advances the state of multimodal embeddings by offering high-quality representations and flexible natural language control. Our model and datasets are available at our project page.
Major Entity Identification: A Generalizable Alternative to Coreference Resolution
The limited generalization of coreference resolution (CR) models has been a major bottleneck in the task's broad application. Prior work has identified annotation differences, especially for mention detection, as one of the main reasons for the generalization gap and proposed using additional annotated target domain data. Rather than relying on this additional annotation, we propose an alternative referential task, Major Entity Identification (MEI), where we: (a) assume the target entities to be specified in the input, and (b) limit the task to only the frequent entities. Through extensive experiments, we demonstrate that MEI models generalize well across domains on multiple datasets with supervised models and LLM-based few-shot prompting. Additionally, MEI fits the classification framework, which enables the use of robust and intuitive classification-based metrics. Finally, MEI is also of practical use as it allows a user to search for all mentions of a particular entity or a group of entities of interest.
LinkAlign: Scalable Schema Linking for Real-World Large-Scale Multi-Database Text-to-SQL
Schema linking is a critical bottleneck in applying existing Text-to-SQL models to real-world, large-scale, multi-database environments. Through error analysis, we identify two major challenges in schema linking: (1) Database Retrieval: accurately selecting the target database from a large schema pool, while effectively filtering out irrelevant ones; and (2) Schema Item Grounding: precisely identifying the relevant tables and columns within complex and often redundant schemas for SQL generation. Based on these, we introduce LinkAlign, a novel framework tailored for large-scale databases with thousands of fields. LinkAlign comprises three key steps: multi-round semantic enhanced retrieval and irrelevant information isolation for Challenge 1, and schema extraction enhancement for Challenge 2. Each stage supports both Agent and Pipeline execution modes, enabling balancing efficiency and performance via modular design. To enable more realistic evaluation, we construct AmbiDB, a synthetic dataset designed to reflect the ambiguity of real-world schema linking. Experiments on widely-used Text-to-SQL benchmarks demonstrate that LinkAlign consistently outperforms existing baselines on all schema linking metrics. Notably, it improves the overall Text-to-SQL pipeline and achieves a new state-of-the-art score of 33.09% on the Spider 2.0-Lite benchmark using only open-source LLMs, ranking first on the leaderboard at the time of submission. The codes are available at https://github.com/Satissss/LinkAlign
Towards Deep Semantic Analysis Of Hashtags
Hashtags are semantico-syntactic constructs used across various social networking and microblogging platforms to enable users to start a topic specific discussion or classify a post into a desired category. Segmenting and linking the entities present within the hashtags could therefore help in better understanding and extraction of information shared across the social media. However, due to lack of space delimiters in the hashtags (e.g #nsavssnowden), the segmentation of hashtags into constituent entities ("NSA" and "Edward Snowden" in this case) is not a trivial task. Most of the current state-of-the-art social media analytics systems like Sentiment Analysis and Entity Linking tend to either ignore hashtags, or treat them as a single word. In this paper, we present a context aware approach to segment and link entities in the hashtags to a knowledge base (KB) entry, based on the context within the tweet. Our approach segments and links the entities in hashtags such that the coherence between hashtag semantics and the tweet is maximized. To the best of our knowledge, no existing study addresses the issue of linking entities in hashtags for extracting semantic information. We evaluate our method on two different datasets, and demonstrate the effectiveness of our technique in improving the overall entity linking in tweets via additional semantic information provided by segmenting and linking entities in a hashtag.
TransRefer3D: Entity-and-Relation Aware Transformer for Fine-Grained 3D Visual Grounding
Recently proposed fine-grained 3D visual grounding is an essential and challenging task, whose goal is to identify the 3D object referred by a natural language sentence from other distractive objects of the same category. Existing works usually adopt dynamic graph networks to indirectly model the intra/inter-modal interactions, making the model difficult to distinguish the referred object from distractors due to the monolithic representations of visual and linguistic contents. In this work, we exploit Transformer for its natural suitability on permutation-invariant 3D point clouds data and propose a TransRefer3D network to extract entity-and-relation aware multimodal context among objects for more discriminative feature learning. Concretely, we devise an Entity-aware Attention (EA) module and a Relation-aware Attention (RA) module to conduct fine-grained cross-modal feature matching. Facilitated by co-attention operation, our EA module matches visual entity features with linguistic entity features while RA module matches pair-wise visual relation features with linguistic relation features, respectively. We further integrate EA and RA modules into an Entity-and-Relation aware Contextual Block (ERCB) and stack several ERCBs to form our TransRefer3D for hierarchical multimodal context modeling. Extensive experiments on both Nr3D and Sr3D datasets demonstrate that our proposed model significantly outperforms existing approaches by up to 10.6% and claims the new state-of-the-art. To the best of our knowledge, this is the first work investigating Transformer architecture for fine-grained 3D visual grounding task.
Direction-Oriented Visual-semantic Embedding Model for Remote Sensing Image-text Retrieval
Image-text retrieval has developed rapidly in recent years. However, it is still a challenge in remote sensing due to visual-semantic imbalance, which leads to incorrect matching of non-semantic visual and textual features. To solve this problem, we propose a novel Direction-Oriented Visual-semantic Embedding Model (DOVE) to mine the relationship between vision and language. Our highlight is to conduct visual and textual representations in latent space, directing them as close as possible to a redundancy-free regional visual representation. Concretely, a Regional-Oriented Attention Module (ROAM) adaptively adjusts the distance between the final visual and textual embeddings in the latent semantic space, oriented by regional visual features. Meanwhile, a lightweight Digging Text Genome Assistant (DTGA) is designed to expand the range of tractable textual representation and enhance global word-level semantic connections using less attention operations. Ultimately, we exploit a global visual-semantic constraint to reduce single visual dependency and serve as an external constraint for the final visual and textual representations. The effectiveness and superiority of our method are verified by extensive experiments including parameter evaluation, quantitative comparison, ablation studies and visual analysis, on two benchmark datasets, RSICD and RSITMD.
SURf: Teaching Large Vision-Language Models to Selectively Utilize Retrieved Information
Large Vision-Language Models (LVLMs) have become pivotal at the intersection of computer vision and natural language processing. However, the full potential of LVLMs Retrieval-Augmented Generation (RAG) capabilities remains underutilized. Existing works either focus solely on the text modality or are limited to specific tasks. Moreover, most LVLMs struggle to selectively utilize retrieved information and are sensitive to irrelevant or misleading references. To address these challenges, we propose a self-refinement framework designed to teach LVLMs to Selectively Utilize Retrieved Information (SURf). Specifically, when given questions that are incorrectly answered by the LVLM backbone, we obtain references that help correct the answers (positive references) and those that do not (negative references). We then fine-tune the LVLM backbone using a combination of these positive and negative references. Our experiments across three tasks and seven datasets demonstrate that our framework significantly enhances LVLMs ability to effectively utilize retrieved multimodal references and improves their robustness against irrelevant or misleading information. The source code is available at https://github.com/GasolSun36/SURf.
Transferable Decoding with Visual Entities for Zero-Shot Image Captioning
Image-to-text generation aims to describe images using natural language. Recently, zero-shot image captioning based on pre-trained vision-language models (VLMs) and large language models (LLMs) has made significant progress. However, we have observed and empirically demonstrated that these methods are susceptible to modality bias induced by LLMs and tend to generate descriptions containing objects (entities) that do not actually exist in the image but frequently appear during training (i.e., object hallucination). In this paper, we propose ViECap, a transferable decoding model that leverages entity-aware decoding to generate descriptions in both seen and unseen scenarios. ViECap incorporates entity-aware hard prompts to guide LLMs' attention toward the visual entities present in the image, enabling coherent caption generation across diverse scenes. With entity-aware hard prompts, ViECap is capable of maintaining performance when transferring from in-domain to out-of-domain scenarios. Extensive experiments demonstrate that ViECap sets a new state-of-the-art cross-domain (transferable) captioning and performs competitively in-domain captioning compared to previous VLMs-based zero-shot methods. Our code is available at: https://github.com/FeiElysia/ViECap
A Unified Encoder-Decoder Framework with Entity Memory
Entities, as important carriers of real-world knowledge, play a key role in many NLP tasks. We focus on incorporating entity knowledge into an encoder-decoder framework for informative text generation. Existing approaches tried to index, retrieve, and read external documents as evidence, but they suffered from a large computational overhead. In this work, we propose an encoder-decoder framework with an entity memory, namely EDMem. The entity knowledge is stored in the memory as latent representations, and the memory is pre-trained on Wikipedia along with encoder-decoder parameters. To precisely generate entity names, we design three decoding methods to constrain entity generation by linking entities in the memory. EDMem is a unified framework that can be used on various entity-intensive question answering and generation tasks. Extensive experimental results show that EDMem outperforms both memory-based auto-encoder models and non-memory encoder-decoder models.
Improving Fake News Detection by Using an Entity-enhanced Framework to Fuse Diverse Multimodal Clues
Recently, fake news with text and images have achieved more effective diffusion than text-only fake news, raising a severe issue of multimodal fake news detection. Current studies on this issue have made significant contributions to developing multimodal models, but they are defective in modeling the multimodal content sufficiently. Most of them only preliminarily model the basic semantics of the images as a supplement to the text, which limits their performance on detection. In this paper, we find three valuable text-image correlations in multimodal fake news: entity inconsistency, mutual enhancement, and text complementation. To effectively capture these multimodal clues, we innovatively extract visual entities (such as celebrities and landmarks) to understand the news-related high-level semantics of images, and then model the multimodal entity inconsistency and mutual enhancement with the help of visual entities. Moreover, we extract the embedded text in images as the complementation of the original text. All things considered, we propose a novel entity-enhanced multimodal fusion framework, which simultaneously models three cross-modal correlations to detect diverse multimodal fake news. Extensive experiments demonstrate the superiority of our model compared to the state of the art.
Mapping Natural Language Commands to Web Elements
The web provides a rich, open-domain environment with textual, structural, and spatial properties. We propose a new task for grounding language in this environment: given a natural language command (e.g., "click on the second article"), choose the correct element on the web page (e.g., a hyperlink or text box). We collected a dataset of over 50,000 commands that capture various phenomena such as functional references (e.g. "find who made this site"), relational reasoning (e.g. "article by john"), and visual reasoning (e.g. "top-most article"). We also implemented and analyzed three baseline models that capture different phenomena present in the dataset.
X-Pool: Cross-Modal Language-Video Attention for Text-Video Retrieval
In text-video retrieval, the objective is to learn a cross-modal similarity function between a text and a video that ranks relevant text-video pairs higher than irrelevant pairs. However, videos inherently express a much wider gamut of information than texts. Instead, texts often capture sub-regions of entire videos and are most semantically similar to certain frames within videos. Therefore, for a given text, a retrieval model should focus on the text's most semantically similar video sub-regions to make a more relevant comparison. Yet, most existing works aggregate entire videos without directly considering text. Common text-agnostic aggregations schemes include mean-pooling or self-attention over the frames, but these are likely to encode misleading visual information not described in the given text. To address this, we propose a cross-modal attention model called X-Pool that reasons between a text and the frames of a video. Our core mechanism is a scaled dot product attention for a text to attend to its most semantically similar frames. We then generate an aggregated video representation conditioned on the text's attention weights over the frames. We evaluate our method on three benchmark datasets of MSR-VTT, MSVD and LSMDC, achieving new state-of-the-art results by up to 12% in relative improvement in Recall@1. Our findings thereby highlight the importance of joint text-video reasoning to extract important visual cues according to text. Full code and demo can be found at: https://layer6ai-labs.github.io/xpool/
COFAR: Commonsense and Factual Reasoning in Image Search
One characteristic that makes humans superior to modern artificially intelligent models is the ability to interpret images beyond what is visually apparent. Consider the following two natural language search queries - (i) "a queue of customers patiently waiting to buy ice cream" and (ii) "a queue of tourists going to see a famous Mughal architecture in India." Interpreting these queries requires one to reason with (i) Commonsense such as interpreting people as customers or tourists, actions as waiting to buy or going to see; and (ii) Fact or world knowledge associated with named visual entities, for example, whether the store in the image sells ice cream or whether the landmark in the image is a Mughal architecture located in India. Such reasoning goes beyond just visual recognition. To enable both commonsense and factual reasoning in the image search, we present a unified framework, namely Knowledge Retrieval-Augmented Multimodal Transformer (KRAMT), that treats the named visual entities in an image as a gateway to encyclopedic knowledge and leverages them along with natural language query to ground relevant knowledge. Further, KRAMT seamlessly integrates visual content and grounded knowledge to learn alignment between images and search queries. This unified framework is then used to perform image search requiring commonsense and factual reasoning. The retrieval performance of KRAMT is evaluated and compared with related approaches on a new dataset we introduce - namely COFAR. We make our code and dataset available at https://vl2g.github.io/projects/cofar
Joint Learning of the Embedding of Words and Entities for Named Entity Disambiguation
Named Entity Disambiguation (NED) refers to the task of resolving multiple named entity mentions in a document to their correct references in a knowledge base (KB) (e.g., Wikipedia). In this paper, we propose a novel embedding method specifically designed for NED. The proposed method jointly maps words and entities into the same continuous vector space. We extend the skip-gram model by using two models. The KB graph model learns the relatedness of entities using the link structure of the KB, whereas the anchor context model aims to align vectors such that similar words and entities occur close to one another in the vector space by leveraging KB anchors and their context words. By combining contexts based on the proposed embedding with standard NED features, we achieved state-of-the-art accuracy of 93.1% on the standard CoNLL dataset and 85.2% on the TAC 2010 dataset.
TAGA: Text-Attributed Graph Self-Supervised Learning by Synergizing Graph and Text Mutual Transformations
Text-Attributed Graphs (TAGs) enhance graph structures with natural language descriptions, enabling detailed representation of data and their relationships across a broad spectrum of real-world scenarios. Despite the potential for deeper insights, existing TAG representation learning primarily relies on supervised methods, necessitating extensive labeled data and limiting applicability across diverse contexts. This paper introduces a new self-supervised learning framework, Text-And-Graph Multi-View Alignment (TAGA), which overcomes these constraints by integrating TAGs' structural and semantic dimensions. TAGA constructs two complementary views: Text-of-Graph view, which organizes node texts into structured documents based on graph topology, and the Graph-of-Text view, which converts textual nodes and connections into graph data. By aligning representations from both views, TAGA captures joint textual and structural information. In addition, a novel structure-preserving random walk algorithm is proposed for efficient training on large-sized TAGs. Our framework demonstrates strong performance in zero-shot and few-shot scenarios across eight real-world datasets.
VisText: A Benchmark for Semantically Rich Chart Captioning
Captions that describe or explain charts help improve recall and comprehension of the depicted data and provide a more accessible medium for people with visual disabilities. However, current approaches for automatically generating such captions struggle to articulate the perceptual or cognitive features that are the hallmark of charts (e.g., complex trends and patterns). In response, we introduce VisText: a dataset of 12,441 pairs of charts and captions that describe the charts' construction, report key statistics, and identify perceptual and cognitive phenomena. In VisText, a chart is available as three representations: a rasterized image, a backing data table, and a scene graph -- a hierarchical representation of a chart's visual elements akin to a web page's Document Object Model (DOM). To evaluate the impact of VisText, we fine-tune state-of-the-art language models on our chart captioning task and apply prefix-tuning to produce captions that vary the semantic content they convey. Our models generate coherent, semantically rich captions and perform on par with state-of-the-art chart captioning models across machine translation and text generation metrics. Through qualitative analysis, we identify six broad categories of errors that our models make that can inform future work.
The (R)Evolution of Multimodal Large Language Models: A Survey
Connecting text and visual modalities plays an essential role in generative intelligence. For this reason, inspired by the success of large language models, significant research efforts are being devoted to the development of Multimodal Large Language Models (MLLMs). These models can seamlessly integrate visual and textual modalities, both as input and output, while providing a dialogue-based interface and instruction-following capabilities. In this paper, we provide a comprehensive review of recent visual-based MLLMs, analyzing their architectural choices, multimodal alignment strategies, and training techniques. We also conduct a detailed analysis of these models across a wide range of tasks, including visual grounding, image generation and editing, visual understanding, and domain-specific applications. Additionally, we compile and describe training datasets and evaluation benchmarks, conducting comparisons among existing models in terms of performance and computational requirements. Overall, this survey offers a comprehensive overview of the current state of the art, laying the groundwork for future MLLMs.
CiteTracker: Correlating Image and Text for Visual Tracking
Existing visual tracking methods typically take an image patch as the reference of the target to perform tracking. However, a single image patch cannot provide a complete and precise concept of the target object as images are limited in their ability to abstract and can be ambiguous, which makes it difficult to track targets with drastic variations. In this paper, we propose the CiteTracker to enhance target modeling and inference in visual tracking by connecting images and text. Specifically, we develop a text generation module to convert the target image patch into a descriptive text containing its class and attribute information, providing a comprehensive reference point for the target. In addition, a dynamic description module is designed to adapt to target variations for more effective target representation. We then associate the target description and the search image using an attention-based correlation module to generate the correlated features for target state reference. Extensive experiments on five diverse datasets are conducted to evaluate the proposed algorithm and the favorable performance against the state-of-the-art methods demonstrates the effectiveness of the proposed tracking method.
mPLUG-DocOwl 1.5: Unified Structure Learning for OCR-free Document Understanding
Structure information is critical for understanding the semantics of text-rich images, such as documents, tables, and charts. Existing Multimodal Large Language Models (MLLMs) for Visual Document Understanding are equipped with text recognition ability but lack general structure understanding abilities for text-rich document images. In this work, we emphasize the importance of structure information in Visual Document Understanding and propose the Unified Structure Learning to boost the performance of MLLMs. Our Unified Structure Learning comprises structure-aware parsing tasks and multi-grained text localization tasks across 5 domains: document, webpage, table, chart, and natural image. To better encode structure information, we design a simple and effective vision-to-text module H-Reducer, which can not only maintain the layout information but also reduce the length of visual features by merging horizontal adjacent patches through convolution, enabling the LLM to understand high-resolution images more efficiently. Furthermore, by constructing structure-aware text sequences and multi-grained pairs of texts and bounding boxes for publicly available text-rich images, we build a comprehensive training set DocStruct4M to support structure learning. Finally, we construct a small but high-quality reasoning tuning dataset DocReason25K to trigger the detailed explanation ability in the document domain. Our model DocOwl 1.5 achieves state-of-the-art performance on 10 visual document understanding benchmarks, improving the SOTA performance of MLLMs with a 7B LLM by more than 10 points in 5/10 benchmarks. Our codes, models, and datasets are publicly available at https://github.com/X-PLUG/mPLUG-DocOwl/tree/main/DocOwl1.5.
Leveraging Contextual Information for Effective Entity Salience Detection
In text documents such as news articles, the content and key events usually revolve around a subset of all the entities mentioned in a document. These entities, often deemed as salient entities, provide useful cues of the aboutness of a document to a reader. Identifying the salience of entities was found helpful in several downstream applications such as search, ranking, and entity-centric summarization, among others. Prior work on salient entity detection mainly focused on machine learning models that require heavy feature engineering. We show that fine-tuning medium-sized language models with a cross-encoder style architecture yields substantial performance gains over feature engineering approaches. To this end, we conduct a comprehensive benchmarking of four publicly available datasets using models representative of the medium-sized pre-trained language model family. Additionally, we show that zero-shot prompting of instruction-tuned language models yields inferior results, indicating the task's uniqueness and complexity.
On Web-based Visual Corpus Construction for Visual Document Understanding
In recent years, research on visual document understanding (VDU) has grown significantly, with a particular emphasis on the development of self-supervised learning methods. However, one of the significant challenges faced in this field is the limited availability of publicly accessible visual corpora or extensive collections of images with detailed text annotations, particularly for non-Latin or resource-scarce languages. To address this challenge, we propose Web-based Visual Corpus Builder (Webvicob), a dataset generator engine capable of constructing large-scale, multilingual visual corpora from raw Wikipedia HTML dumps. Our experiments demonstrate that the data generated by Webvicob can be used to train robust VDU models that perform well on various downstream tasks, such as DocVQA and post-OCR parsing. Furthermore, when using a dataset of 1 million images generated by Webvicob, we observed an improvement of over 13% on the DocVQA Task 3 compared to a dataset of 11 million images from the IIT-CDIP. The implementation of our engine is publicly available on https://github.com/clovaai/webvicob
Increasing Coverage and Precision of Textual Information in Multilingual Knowledge Graphs
Recent work in Natural Language Processing and Computer Vision has been using textual information -- e.g., entity names and descriptions -- available in knowledge graphs to ground neural models to high-quality structured data. However, when it comes to non-English languages, the quantity and quality of textual information are comparatively scarce. To address this issue, we introduce the novel task of automatic Knowledge Graph Enhancement (KGE) and perform a thorough investigation on bridging the gap in both the quantity and quality of textual information between English and non-English languages. More specifically, we: i) bring to light the problem of increasing multilingual coverage and precision of entity names and descriptions in Wikidata; ii) demonstrate that state-of-the-art methods, namely, Machine Translation (MT), Web Search (WS), and Large Language Models (LLMs), struggle with this task; iii) present M-NTA, a novel unsupervised approach that combines MT, WS, and LLMs to generate high-quality textual information; and, iv) study the impact of increasing multilingual coverage and precision of non-English textual information in Entity Linking, Knowledge Graph Completion, and Question Answering. As part of our effort towards better multilingual knowledge graphs, we also introduce WikiKGE-10, the first human-curated benchmark to evaluate KGE approaches in 10 languages across 7 language families.
Hierarchical Multimodal Pre-training for Visually Rich Webpage Understanding
The growing prevalence of visually rich documents, such as webpages and scanned/digital-born documents (images, PDFs, etc.), has led to increased interest in automatic document understanding and information extraction across academia and industry. Although various document modalities, including image, text, layout, and structure, facilitate human information retrieval, the interconnected nature of these modalities presents challenges for neural networks. In this paper, we introduce WebLM, a multimodal pre-training network designed to address the limitations of solely modeling text and structure modalities of HTML in webpages. Instead of processing document images as unified natural images, WebLM integrates the hierarchical structure of document images to enhance the understanding of markup-language-based documents. Additionally, we propose several pre-training tasks to model the interaction among text, structure, and image modalities effectively. Empirical results demonstrate that the pre-trained WebLM significantly surpasses previous state-of-the-art pre-trained models across several webpage understanding tasks. The pre-trained models and code are available at https://github.com/X-LANCE/weblm.
Improving Fine-grained Visual Understanding in VLMs through Text-Only Training
Visual-Language Models (VLMs) have become a powerful tool for bridging the gap between visual and linguistic understanding. However, the conventional learning approaches for VLMs often suffer from limitations, such as the high resource requirements of collecting and training image-text paired data. Recent research has suggested that language understanding plays a crucial role in the performance of VLMs, potentially indicating that text-only training could be a viable approach. In this work, we investigate the feasibility of enhancing fine-grained visual understanding in VLMs through text-only training. Inspired by how humans develop visual concept understanding, where rich textual descriptions can guide visual recognition, we hypothesize that VLMs can also benefit from leveraging text-based representations to improve their visual recognition abilities. We conduct comprehensive experiments on two distinct domains: fine-grained species classification and cultural visual understanding tasks. Our findings demonstrate that text-only training can be comparable to conventional image-text training while significantly reducing computational costs. This suggests a more efficient and cost-effective pathway for advancing VLM capabilities, particularly valuable in resource-constrained environments.
Trust the Model: Compact VLMs as In-Context Judges for Image-Text Data Quality
Vision-language models (VLMs) extend the conventional large language models by integrating visual data, enabling richer multimodal reasoning and significantly broadens the practical applications of AI. However, including visual inputs also brings new challenges in maintaining data quality. Empirical evidence consistently shows that carefully curated and representative training examples often yield superior results compared to simply increasing the quantity of data. Inspired by this observation, we introduce a streamlined data filtration framework that employs a compact VLM, fine-tuned on a high-quality image-caption annotated dataset. This model effectively evaluates and filters potential training samples based on caption and image quality and alignment. Unlike previous approaches, which typically add auxiliary filtration modules on top of existing full-scale VLMs, our method exclusively utilizes the inherent evaluative capability of a purpose-built small VLM. This strategy eliminates the need for extra modules and reduces training overhead. Our lightweight model efficiently filters out inaccurate, noisy web data, improving image-text alignment and caption linguistic fluency. Experimental results show that datasets underwent high-precision filtration using our compact VLM perform on par with, or even surpass, larger and noisier datasets gathered through high-volume web crawling. Thus, our method provides a lightweight yet robust solution for building high-quality vision-language training corpora. \\ Availability and implementation: Our compact VLM filtration model, training data, utility scripts, and Supplementary data (Appendices) are freely available at https://github.com/daulettoibazar/Compact_VLM_Filter.
REF-VLM: Triplet-Based Referring Paradigm for Unified Visual Decoding
Multimodal Large Language Models (MLLMs) demonstrate robust zero-shot capabilities across diverse vision-language tasks after training on mega-scale datasets. However, dense prediction tasks, such as semantic segmentation and keypoint detection, pose significant challenges for MLLMs when represented solely as text outputs. Simultaneously, current MLLMs utilizing latent embeddings for visual task decoding generally demonstrate limited adaptability to both multi-task learning and multi-granularity scenarios. In this work, we present REF-VLM, an end-to-end framework for unified training of various visual decoding tasks. To address complex visual decoding scenarios, we introduce the Triplet-Based Referring Paradigm (TRP), which explicitly decouples three critical dimensions in visual decoding tasks through a triplet structure: concepts, decoding types, and targets. TRP employs symbolic delimiters to enforce structured representation learning, enhancing the parsability and interpretability of model outputs. Additionally, we construct Visual-Task Instruction Following Dataset (VTInstruct), a large-scale multi-task dataset containing over 100 million multimodal dialogue samples across 25 task types. Beyond text inputs and outputs, VT-Instruct incorporates various visual prompts such as point, box, scribble, and mask, and generates outputs composed of text and visual units like box, keypoint, depth and mask. The combination of different visual prompts and visual units generates a wide variety of task types, expanding the applicability of REF-VLM significantly. Both qualitative and quantitative experiments demonstrate that our REF-VLM outperforms other MLLMs across a variety of standard benchmarks. The code, dataset, and demo available at https://github.com/MacavityT/REF-VLM.
Learning Implicit Entity-object Relations by Bidirectional Generative Alignment for Multimodal NER
The challenge posed by multimodal named entity recognition (MNER) is mainly two-fold: (1) bridging the semantic gap between text and image and (2) matching the entity with its associated object in image. Existing methods fail to capture the implicit entity-object relations, due to the lack of corresponding annotation. In this paper, we propose a bidirectional generative alignment method named BGA-MNER to tackle these issues. Our BGA-MNER consists of image2text and text2image generation with respect to entity-salient content in two modalities. It jointly optimizes the bidirectional reconstruction objectives, leading to aligning the implicit entity-object relations under such direct and powerful constraints. Furthermore, image-text pairs usually contain unmatched components which are noisy for generation. A stage-refined context sampler is proposed to extract the matched cross-modal content for generation. Extensive experiments on two benchmarks demonstrate that our method achieves state-of-the-art performance without image input during inference.
BizGen: Advancing Article-level Visual Text Rendering for Infographics Generation
Recently, state-of-the-art text-to-image generation models, such as Flux and Ideogram 2.0, have made significant progress in sentence-level visual text rendering. In this paper, we focus on the more challenging scenarios of article-level visual text rendering and address a novel task of generating high-quality business content, including infographics and slides, based on user provided article-level descriptive prompts and ultra-dense layouts. The fundamental challenges are twofold: significantly longer context lengths and the scarcity of high-quality business content data. In contrast to most previous works that focus on a limited number of sub-regions and sentence-level prompts, ensuring precise adherence to ultra-dense layouts with tens or even hundreds of sub-regions in business content is far more challenging. We make two key technical contributions: (i) the construction of scalable, high-quality business content dataset, i.e., Infographics-650K, equipped with ultra-dense layouts and prompts by implementing a layer-wise retrieval-augmented infographic generation scheme; and (ii) a layout-guided cross attention scheme, which injects tens of region-wise prompts into a set of cropped region latent space according to the ultra-dense layouts, and refine each sub-regions flexibly during inference using a layout conditional CFG. We demonstrate the strong results of our system compared to previous SOTA systems such as Flux and SD3 on our BizEval prompt set. Additionally, we conduct thorough ablation experiments to verify the effectiveness of each component. We hope our constructed Infographics-650K and BizEval can encourage the broader community to advance the progress of business content generation.
Rethinking Uncertainly Missing and Ambiguous Visual Modality in Multi-Modal Entity Alignment
As a crucial extension of entity alignment (EA), multi-modal entity alignment (MMEA) aims to identify identical entities across disparate knowledge graphs (KGs) by exploiting associated visual information. However, existing MMEA approaches primarily concentrate on the fusion paradigm of multi-modal entity features, while neglecting the challenges presented by the pervasive phenomenon of missing and intrinsic ambiguity of visual images. In this paper, we present a further analysis of visual modality incompleteness, benchmarking latest MMEA models on our proposed dataset MMEA-UMVM, where the types of alignment KGs covering bilingual and monolingual, with standard (non-iterative) and iterative training paradigms to evaluate the model performance. Our research indicates that, in the face of modality incompleteness, models succumb to overfitting the modality noise, and exhibit performance oscillations or declines at high rates of missing modality. This proves that the inclusion of additional multi-modal data can sometimes adversely affect EA. To address these challenges, we introduce UMAEA , a robust multi-modal entity alignment approach designed to tackle uncertainly missing and ambiguous visual modalities. It consistently achieves SOTA performance across all 97 benchmark splits, significantly surpassing existing baselines with limited parameters and time consumption, while effectively alleviating the identified limitations of other models. Our code and benchmark data are available at https://github.com/zjukg/UMAEA.
Visual Clues: Bridging Vision and Language Foundations for Image Paragraph Captioning
People say, "A picture is worth a thousand words". Then how can we get the rich information out of the image? We argue that by using visual clues to bridge large pretrained vision foundation models and language models, we can do so without any extra cross-modal training. Thanks to the strong zero-shot capability of foundation models, we start by constructing a rich semantic representation of the image (e.g., image tags, object attributes / locations, captions) as a structured textual prompt, called visual clues, using a vision foundation model. Based on visual clues, we use large language model to produce a series of comprehensive descriptions for the visual content, which is then verified by the vision model again to select the candidate that aligns best with the image. We evaluate the quality of generated descriptions by quantitative and qualitative measurement. The results demonstrate the effectiveness of such a structured semantic representation.
InstructDoc: A Dataset for Zero-Shot Generalization of Visual Document Understanding with Instructions
We study the problem of completing various visual document understanding (VDU) tasks, e.g., question answering and information extraction, on real-world documents through human-written instructions. To this end, we propose InstructDoc, the first large-scale collection of 30 publicly available VDU datasets, each with diverse instructions in a unified format, which covers a wide range of 12 tasks and includes open document types/formats. Furthermore, to enhance the generalization performance on VDU tasks, we design a new instruction-based document reading and understanding model, InstructDr, that connects document images, image encoders, and large language models (LLMs) through a trainable bridging module. Experiments demonstrate that InstructDr can effectively adapt to new VDU datasets, tasks, and domains via given instructions and outperforms existing multimodal LLMs and ChatGPT without specific training.
Type-supervised sequence labeling based on the heterogeneous star graph for named entity recognition
Named entity recognition is a fundamental task in natural language processing, identifying the span and category of entities in unstructured texts. The traditional sequence labeling methodology ignores the nested entities, i.e. entities included in other entity mentions. Many approaches attempt to address this scenario, most of which rely on complex structures or have high computation complexity. The representation learning of the heterogeneous star graph containing text nodes and type nodes is investigated in this paper. In addition, we revise the graph attention mechanism into a hybrid form to address its unreasonableness in specific topologies. The model performs the type-supervised sequence labeling after updating nodes in the graph. The annotation scheme is an extension of the single-layer sequence labeling and is able to cope with the vast majority of nested entities. Extensive experiments on public NER datasets reveal the effectiveness of our model in extracting both flat and nested entities. The method achieved state-of-the-art performance on both flat and nested datasets. The significant improvement in accuracy reflects the superiority of the multi-layer labeling strategy.
VRDU: A Benchmark for Visually-rich Document Understanding
Understanding visually-rich business documents to extract structured data and automate business workflows has been receiving attention both in academia and industry. Although recent multi-modal language models have achieved impressive results, we find that existing benchmarks do not reflect the complexity of real documents seen in industry. In this work, we identify the desiderata for a more comprehensive benchmark and propose one we call Visually Rich Document Understanding (VRDU). VRDU contains two datasets that represent several challenges: rich schema including diverse data types as well as hierarchical entities, complex templates including tables and multi-column layouts, and diversity of different layouts (templates) within a single document type. We design few-shot and conventional experiment settings along with a carefully designed matching algorithm to evaluate extraction results. We report the performance of strong baselines and offer three observations: (1) generalizing to new document templates is still very challenging, (2) few-shot performance has a lot of headroom, and (3) models struggle with hierarchical fields such as line-items in an invoice. We plan to open source the benchmark and the evaluation toolkit. We hope this helps the community make progress on these challenging tasks in extracting structured data from visually rich documents.
Kosmos-2: Grounding Multimodal Large Language Models to the World
We introduce Kosmos-2, a Multimodal Large Language Model (MLLM), enabling new capabilities of perceiving object descriptions (e.g., bounding boxes) and grounding text to the visual world. Specifically, we represent refer expressions as links in Markdown, i.e., ``[text span](bounding boxes)'', where object descriptions are sequences of location tokens. Together with multimodal corpora, we construct large-scale data of grounded image-text pairs (called GrIT) to train the model. In addition to the existing capabilities of MLLMs (e.g., perceiving general modalities, following instructions, and performing in-context learning), Kosmos-2 integrates the grounding capability into downstream applications. We evaluate Kosmos-2 on a wide range of tasks, including (i) multimodal grounding, such as referring expression comprehension, and phrase grounding, (ii) multimodal referring, such as referring expression generation, (iii) perception-language tasks, and (iv) language understanding and generation. This work lays out the foundation for the development of Embodiment AI and sheds light on the big convergence of language, multimodal perception, action, and world modeling, which is a key step toward artificial general intelligence. Data, demo, and pretrained models are available at https://aka.ms/kosmos-2.
ZS4IE: A toolkit for Zero-Shot Information Extraction with simple Verbalizations
The current workflow for Information Extraction (IE) analysts involves the definition of the entities/relations of interest and a training corpus with annotated examples. In this demonstration we introduce a new workflow where the analyst directly verbalizes the entities/relations, which are then used by a Textual Entailment model to perform zero-shot IE. We present the design and implementation of a toolkit with a user interface, as well as experiments on four IE tasks that show that the system achieves very good performance at zero-shot learning using only 5--15 minutes per type of a user's effort. Our demonstration system is open-sourced at https://github.com/BBN-E/ZS4IE . A demonstration video is available at https://vimeo.com/676138340 .
Text-Video Retrieval with Disentangled Conceptualization and Set-to-Set Alignment
Text-video retrieval is a challenging cross-modal task, which aims to align visual entities with natural language descriptions. Current methods either fail to leverage the local details or are computationally expensive. What's worse, they fail to leverage the heterogeneous concepts in data. In this paper, we propose the Disentangled Conceptualization and Set-to-set Alignment (DiCoSA) to simulate the conceptualizing and reasoning process of human beings. For disentangled conceptualization, we divide the coarse feature into multiple latent factors related to semantic concepts. For set-to-set alignment, where a set of visual concepts correspond to a set of textual concepts, we propose an adaptive pooling method to aggregate semantic concepts to address the partial matching. In particular, since we encode concepts independently in only a few dimensions, DiCoSA is superior at efficiency and granularity, ensuring fine-grained interactions using a similar computational complexity as coarse-grained alignment. Extensive experiments on five datasets, including MSR-VTT, LSMDC, MSVD, ActivityNet, and DiDeMo, demonstrate that our method outperforms the existing state-of-the-art methods.
A Survey of State of the Art Large Vision Language Models: Alignment, Benchmark, Evaluations and Challenges
Multimodal Vision Language Models (VLMs) have emerged as a transformative topic at the intersection of computer vision and natural language processing, enabling machines to perceive and reason about the world through both visual and textual modalities. For example, models such as CLIP, Claude, and GPT-4V demonstrate strong reasoning and understanding abilities on visual and textual data and beat classical single modality vision models on zero-shot classification [93]. With their rapid advancements in research and growing popularity in various applications, we provide a comprehensive survey of VLMs. Specifically, we provide a systematic overview of VLMs in the following aspects: [1] model information of the major VLMs developed up to 2025; [2] the transition of VLM architectures and the newest VLM alignment methods; [3] summary and categorization of the popular benchmarks and evaluation metrics of VLMs; [4] the challenges and issues faced by current VLMs such as hallucination, alignment, fairness, and safety. Detailed collections including papers and model repository links are listed in https://github.com/zli12321/Vision-Language-Models-Overview.
Can VLMs Recall Factual Associations From Visual References?
Through a controlled study, we identify a systematic deficiency in the multimodal grounding of Vision Language Models (VLMs). While VLMs can recall factual associations when provided a textual reference to an entity; their ability to do so is significantly diminished when the reference is visual instead. Forcing VLMs to rely on image representations of an entity halves their ability to recall factual knowledge, suggesting that VLMs struggle to link their internal knowledge of an entity with its image representation. We show that such linking failures are correlated with the expression of distinct patterns in model internal states, and that probes on these internal states achieve over 92% accuracy at flagging cases where the VLM response is unreliable. These probes can be applied, without retraining, to identify when a VLM will fail to correctly answer a question that requires an understanding of multimodal input. When used to facilitate selective prediction on a visual question answering task, the probes increase coverage by 7.87% (absolute) while also reducing the risk of error by 0.9% (absolute). Addressing the systematic, detectable deficiency is an important avenue in language grounding, and we provide informed recommendations for future directions.
RAG-Anything: All-in-One RAG Framework
Retrieval-Augmented Generation (RAG) has emerged as a fundamental paradigm for expanding Large Language Models beyond their static training limitations. However, a critical misalignment exists between current RAG capabilities and real-world information environments. Modern knowledge repositories are inherently multimodal, containing rich combinations of textual content, visual elements, structured tables, and mathematical expressions. Yet existing RAG frameworks are limited to textual content, creating fundamental gaps when processing multimodal documents. We present RAG-Anything, a unified framework that enables comprehensive knowledge retrieval across all modalities. Our approach reconceptualizes multimodal content as interconnected knowledge entities rather than isolated data types. The framework introduces dual-graph construction to capture both cross-modal relationships and textual semantics within a unified representation. We develop cross-modal hybrid retrieval that combines structural knowledge navigation with semantic matching. This enables effective reasoning over heterogeneous content where relevant evidence spans multiple modalities. RAG-Anything demonstrates superior performance on challenging multimodal benchmarks, achieving significant improvements over state-of-the-art methods. Performance gains become particularly pronounced on long documents where traditional approaches fail. Our framework establishes a new paradigm for multimodal knowledge access, eliminating the architectural fragmentation that constrains current systems. Our framework is open-sourced at: https://github.com/HKUDS/RAG-Anything.
Dynamic Entity Representations in Neural Language Models
Understanding a long document requires tracking how entities are introduced and evolve over time. We present a new type of language model, EntityNLM, that can explicitly model entities, dynamically update their representations, and contextually generate their mentions. Our model is generative and flexible; it can model an arbitrary number of entities in context while generating each entity mention at an arbitrary length. In addition, it can be used for several different tasks such as language modeling, coreference resolution, and entity prediction. Experimental results with all these tasks demonstrate that our model consistently outperforms strong baselines and prior work.
When Graph meets Multimodal: Benchmarking and Meditating on Multimodal Attributed Graphs Learning
Multimodal Attributed Graphs (MAGs) are ubiquitous in real-world applications, encompassing extensive knowledge through multimodal attributes attached to nodes (e.g., texts and images) and topological structure representing node interactions. Despite its potential to advance diverse research fields like social networks and e-commerce, MAG representation learning (MAGRL) remains underexplored due to the lack of standardized datasets and evaluation frameworks. In this paper, we first propose MAGB, a comprehensive MAG benchmark dataset, featuring curated graphs from various domains with both textual and visual attributes. Based on MAGB dataset, we further systematically evaluate two mainstream MAGRL paradigms: GNN-as-Predictor, which integrates multimodal attributes via Graph Neural Networks (GNNs), and VLM-as-Predictor, which harnesses Vision Language Models (VLMs) for zero-shot reasoning. Extensive experiments on MAGB reveal following critical insights: (i) Modality significances fluctuate drastically with specific domain characteristics. (ii) Multimodal embeddings can elevate the performance ceiling of GNNs. However, intrinsic biases among modalities may impede effective training, particularly in low-data scenarios. (iii) VLMs are highly effective at generating multimodal embeddings that alleviate the imbalance between textual and visual attributes. These discoveries, which illuminate the synergy between multimodal attributes and graph topologies, contribute to reliable benchmarks, paving the way for future MAG research. The MAGB dataset and evaluation pipeline are publicly available at https://github.com/sktsherlock/MAGB.
VisualWebInstruct: Scaling up Multimodal Instruction Data through Web Search
Vision-Language Models have made significant progress on many perception-focused tasks, however, their progress on reasoning-focused tasks seem to be limited due to the lack of high-quality and diverse training data. In this work, we aim to address the scarcity issue of reasoning-focused multimodal datasets. We propose VisualWebInstruct - a novel approach that leverages search engine to create a diverse, and high-quality dataset spanning multiple disciplines like math, physics, finance, chemistry, etc. Starting with meticulously selected 30,000 seed images, we employ Google Image search to identify websites containing similar images. We collect and process the HTMLs from over 700K unique URL sources. Through a pipeline of content extraction, filtering and synthesis, we build a dataset of approximately 900K question-answer pairs, with 40% being visual QA pairs and the rest as text QA pairs. Models fine-tuned on VisualWebInstruct demonstrate significant performance gains: (1) training from Llava-OV-mid shows 10-20% absolute point gains across benchmarks, (2) training from MAmmoTH-VL shows 5% absoluate gain. Our best model MAmmoTH-VL2 shows state-of-the-art performance within the 10B parameter class on MMMU-Pro-std (40.7%), MathVerse (42.6%), and DynaMath (55.7%). These remarkable results highlight the effectiveness of our dataset in enhancing VLMs' reasoning capabilities for complex multimodal tasks.
Exploring the Distinctiveness and Fidelity of the Descriptions Generated by Large Vision-Language Models
Large Vision-Language Models (LVLMs) are gaining traction for their remarkable ability to process and integrate visual and textual data. Despite their popularity, the capacity of LVLMs to generate precise, fine-grained textual descriptions has not been fully explored. This study addresses this gap by focusing on distinctiveness and fidelity, assessing how models like Open-Flamingo, IDEFICS, and MiniGPT-4 can distinguish between similar objects and accurately describe visual features. We proposed the Textual Retrieval-Augmented Classification (TRAC) framework, which, by leveraging its generative capabilities, allows us to delve deeper into analyzing fine-grained visual description generation. This research provides valuable insights into the generation quality of LVLMs, enhancing the understanding of multimodal language models. Notably, MiniGPT-4 stands out for its better ability to generate fine-grained descriptions, outperforming the other two models in this aspect. The code is provided at https://anonymous.4open.science/r/Explore_FGVDs-E277.
Deep Boosting Learning: A Brand-new Cooperative Approach for Image-Text Matching
Image-text matching remains a challenging task due to heterogeneous semantic diversity across modalities and insufficient distance separability within triplets. Different from previous approaches focusing on enhancing multi-modal representations or exploiting cross-modal correspondence for more accurate retrieval, in this paper we aim to leverage the knowledge transfer between peer branches in a boosting manner to seek a more powerful matching model. Specifically, we propose a brand-new Deep Boosting Learning (DBL) algorithm, where an anchor branch is first trained to provide insights into the data properties, with a target branch gaining more advanced knowledge to develop optimal features and distance metrics. Concretely, an anchor branch initially learns the absolute or relative distance between positive and negative pairs, providing a foundational understanding of the particular network and data distribution. Building upon this knowledge, a target branch is concurrently tasked with more adaptive margin constraints to further enlarge the relative distance between matched and unmatched samples. Extensive experiments validate that our DBL can achieve impressive and consistent improvements based on various recent state-of-the-art models in the image-text matching field, and outperform related popular cooperative strategies, e.g., Conventional Distillation, Mutual Learning, and Contrastive Learning. Beyond the above, we confirm that DBL can be seamlessly integrated into their training scenarios and achieve superior performance under the same computational costs, demonstrating the flexibility and broad applicability of our proposed method. Our code is publicly available at: https://github.com/Paranioar/DBL.
Universal Multi-modal Entity Alignment via Iteratively Fusing Modality Similarity Paths
The objective of Entity Alignment (EA) is to identify equivalent entity pairs from multiple Knowledge Graphs (KGs) and create a more comprehensive and unified KG. The majority of EA methods have primarily focused on the structural modality of KGs, lacking exploration of multi-modal information. A few multi-modal EA methods have made good attempts in this field. Still, they have two shortcomings: (1) inconsistent and inefficient modality modeling that designs complex and distinct models for each modality; (2) ineffective modality fusion due to the heterogeneous nature of modalities in EA. To tackle these challenges, we propose PathFusion, consisting of two main components: (1) MSP, a unified modeling approach that simplifies the alignment process by constructing paths connecting entities and modality nodes to represent multiple modalities; (2) IRF, an iterative fusion method that effectively combines information from different modalities using the path as an information carrier. Experimental results on real-world datasets demonstrate the superiority of PathFusion over state-of-the-art methods, with 22.4%-28.9% absolute improvement on Hits@1, and 0.194-0.245 absolute improvement on MRR.
Entity Disambiguation with Entity Definitions
Local models have recently attained astounding performances in Entity Disambiguation (ED), with generative and extractive formulations being the most promising research directions. However, previous works limited their studies to using, as the textual representation of each candidate, only its Wikipedia title. Although certainly effective, this strategy presents a few critical issues, especially when titles are not sufficiently informative or distinguishable from one another. In this paper, we address this limitation and investigate to what extent more expressive textual representations can mitigate it. We thoroughly evaluate our approach against standard benchmarks in ED and find extractive formulations to be particularly well-suited to these representations: we report a new state of the art on 2 out of 6 benchmarks we consider and strongly improve the generalization capability over unseen patterns. We release our code, data and model checkpoints at https://github.com/SapienzaNLP/extend.
Align and Prompt: Video-and-Language Pre-training with Entity Prompts
Video-and-language pre-training has shown promising improvements on various downstream tasks. Most previous methods capture cross-modal interactions with a transformer-based multimodal encoder, not fully addressing the misalignment between unimodal video and text features. Besides, learning fine-grained visual-language alignment usually requires off-the-shelf object detectors to provide object information, which is bottlenecked by the detector's limited vocabulary and expensive computation cost. We propose Align and Prompt: an efficient and effective video-and-language pre-training framework with better cross-modal alignment. First, we introduce a video-text contrastive (VTC) loss to align unimodal video-text features at the instance level, which eases the modeling of cross-modal interactions. Then, we propose a new visually-grounded pre-training task, prompting entity modeling (PEM), which aims to learn fine-grained region-entity alignment. To achieve this, we first introduce an entity prompter module, which is trained with VTC to produce the similarity between a video crop and text prompts instantiated with entity names. The PEM task then asks the model to predict the entity pseudo-labels (i.e~normalized similarity scores) for randomly-selected video crops. The resulting pre-trained model achieves state-of-the-art performance on both text-video retrieval and videoQA, outperforming prior work by a substantial margin. Our code and pre-trained models are available at https://github.com/salesforce/ALPRO.
LEOPARD : A Vision Language Model For Text-Rich Multi-Image Tasks
Text-rich images, where text serves as the central visual element guiding the overall understanding, are prevalent in real-world applications, such as presentation slides, scanned documents, and webpage snapshots. Tasks involving multiple text-rich images are especially challenging, as they require not only understanding the content of individual images but reasoning about inter-relationships and logical flows across multiple visual inputs. Despite the importance of these scenarios, current multimodal large language models (MLLMs) struggle to handle such tasks due to two key challenges: (1) the scarcity of high-quality instruction tuning datasets for text-rich multi-image scenarios, and (2) the difficulty in balancing image resolution with visual feature sequence length. To address these challenges, we propose \OurMethod, a MLLM designed specifically for handling vision-language tasks involving multiple text-rich images. First, we curated about one million high-quality multimodal instruction-tuning data, tailored to text-rich, multi-image scenarios. Second, we developed an adaptive high-resolution multi-image encoding module to dynamically optimize the allocation of visual sequence length based on the original aspect ratios and resolutions of the input images. Experiments across a wide range of benchmarks demonstrate our model's superior capabilities in text-rich, multi-image evaluations and competitive performance in general domain evaluations.
Towards Visual Grounding: A Survey
Visual Grounding is also known as Referring Expression Comprehension and Phrase Grounding. It involves localizing a natural number of specific regions within an image based on a given textual description. The objective of this task is to emulate the prevalent referential relationships in social conversations, equipping machines with human-like multimodal comprehension capabilities. Consequently, it has extensive applications in various domains. However, since 2021, visual grounding has witnessed significant advancements, with emerging new concepts such as grounded pre-training, grounding multimodal LLMs, generalized visual grounding, and giga-pixel grounding, which have brought numerous new challenges. In this survey, we initially examine the developmental history of visual grounding and provide an overview of essential background knowledge. We systematically track and summarize the advancements and meticulously organize the various settings in visual grounding, thereby establishing precise definitions of these settings to standardize future research and ensure a fair comparison. Additionally, we delve into several advanced topics and highlight numerous applications of visual grounding. Finally, we outline the challenges confronting visual grounding and propose valuable directions for future research, which may serve as inspiration for subsequent researchers. By extracting common technical details, this survey encompasses the representative works in each subtopic over the past decade. To the best, this paper presents the most comprehensive overview currently available in the field of grounding. This survey is designed to be suitable for both beginners and experienced researchers, serving as an invaluable resource for understanding key concepts and tracking the latest research developments. We keep tracing related works at https://github.com/linhuixiao/Awesome-Visual-Grounding.
Seeing the Image: Prioritizing Visual Correlation by Contrastive Alignment
Existing image-text modality alignment in Vision Language Models (VLMs) treats each text token equally in an autoregressive manner. Despite being simple and effective, this method results in sub-optimal cross-modal alignment by over-emphasizing the text tokens that are less correlated with or even contradictory with the input images. In this paper, we advocate for assigning distinct contributions for each text token based on its visual correlation. Specifically, we present by contrasting image inputs, the difference in prediction logits on each text token provides strong guidance of visual correlation. We therefore introduce Contrastive ALignment (CAL), a simple yet effective re-weighting strategy that prioritizes training visually correlated tokens. Our experimental results demonstrate that CAL consistently improves different types of VLMs across different resolutions and model sizes on various benchmark datasets. Importantly, our method incurs minimal additional computational overhead, rendering it highly efficient compared to alternative data scaling strategies. Codes are available at https://github.com/foundation-multimodal-models/CAL.
Multi-Vector Models with Textual Guidance for Fine-Grained Scientific Document Similarity
We present a new scientific document similarity model based on matching fine-grained aspects of texts. To train our model, we exploit a naturally-occurring source of supervision: sentences in the full-text of papers that cite multiple papers together (co-citations). Such co-citations not only reflect close paper relatedness, but also provide textual descriptions of how the co-cited papers are related. This novel form of textual supervision is used for learning to match aspects across papers. We develop multi-vector representations where vectors correspond to sentence-level aspects of documents, and present two methods for aspect matching: (1) A fast method that only matches single aspects, and (2) a method that makes sparse multiple matches with an Optimal Transport mechanism that computes an Earth Mover's Distance between aspects. Our approach improves performance on document similarity tasks in four datasets. Further, our fast single-match method achieves competitive results, paving the way for applying fine-grained similarity to large scientific corpora. Code, data, and models available at: https://github.com/allenai/aspire
Bridging the Gap between Reality and Ideality of Entity Matching: A Revisiting and Benchmark Re-Construction
Entity matching (EM) is the most critical step for entity resolution (ER). While current deep learningbased methods achieve very impressive performance on standard EM benchmarks, their realworld application performance is much frustrating. In this paper, we highlight that such the gap between reality and ideality stems from the unreasonable benchmark construction process, which is inconsistent with the nature of entity matching and therefore leads to biased evaluations of current EM approaches. To this end, we build a new EM corpus and re-construct EM benchmarks to challenge critical assumptions implicit in the previous benchmark construction process by step-wisely changing the restricted entities, balanced labels, and single-modal records in previous benchmarks into open entities, imbalanced labels, and multimodal records in an open environment. Experimental results demonstrate that the assumptions made in the previous benchmark construction process are not coincidental with the open environment, which conceal the main challenges of the task and therefore significantly overestimate the current progress of entity matching. The constructed benchmarks and code are publicly released
Llama Nemoretriever Colembed: Top-Performing Text-Image Retrieval Model
Motivated by the growing demand for retrieval systems that operate across modalities, we introduce llama-nemoretriever-colembed, a unified text-image retrieval model that delivers state-of-the-art performance across multiple benchmarks. We release two model variants, 1B and 3B. The 3B model achieves state of the art performance, scoring NDCG@5 91.0 on ViDoRe V1 and 63.5 on ViDoRe V2, placing first on both leaderboards as of June 27, 2025. Our approach leverages the NVIDIA Eagle2 Vision-Language model (VLM), modifies its architecture by replacing causal attention with bidirectional attention, and integrates a ColBERT-style late interaction mechanism to enable fine-grained multimodal retrieval in a shared embedding space. While this mechanism delivers superior retrieval accuracy, it introduces trade-offs in storage and efficiency. We provide a comprehensive analysis of these trade-offs. Additionally, we adopt a two-stage training strategy to enhance the model's retrieval capabilities.
LGD: Leveraging Generative Descriptions for Zero-Shot Referring Image Segmentation
Zero-shot referring image segmentation aims to locate and segment the target region based on a referring expression, with the primary challenge of aligning and matching semantics across visual and textual modalities without training. Previous works address this challenge by utilizing Vision-Language Models and mask proposal networks for region-text matching. However, this paradigm may lead to incorrect target localization due to the inherent ambiguity and diversity of free-form referring expressions. To alleviate this issue, we present LGD (Leveraging Generative Descriptions), a framework that utilizes the advanced language generation capabilities of Multi-Modal Large Language Models to enhance region-text matching performance in Vision-Language Models. Specifically, we first design two kinds of prompts, the attribute prompt and the surrounding prompt, to guide the Multi-Modal Large Language Models in generating descriptions related to the crucial attributes of the referent object and the details of surrounding objects, referred to as attribute description and surrounding description, respectively. Secondly, three visual-text matching scores are introduced to evaluate the similarity between instance-level visual features and textual features, which determines the mask most associated with the referring expression. The proposed method achieves new state-of-the-art performance on three public datasets RefCOCO, RefCOCO+ and RefCOCOg, with maximum improvements of 9.97% in oIoU and 11.29% in mIoU compared to previous methods.
Learning semantic sentence representations from visually grounded language without lexical knowledge
Current approaches to learning semantic representations of sentences often use prior word-level knowledge. The current study aims to leverage visual information in order to capture sentence level semantics without the need for word embeddings. We use a multimodal sentence encoder trained on a corpus of images with matching text captions to produce visually grounded sentence embeddings. Deep Neural Networks are trained to map the two modalities to a common embedding space such that for an image the corresponding caption can be retrieved and vice versa. We show that our model achieves results comparable to the current state-of-the-art on two popular image-caption retrieval benchmark data sets: MSCOCO and Flickr8k. We evaluate the semantic content of the resulting sentence embeddings using the data from the Semantic Textual Similarity benchmark task and show that the multimodal embeddings correlate well with human semantic similarity judgements. The system achieves state-of-the-art results on several of these benchmarks, which shows that a system trained solely on multimodal data, without assuming any word representations, is able to capture sentence level semantics. Importantly, this result shows that we do not need prior knowledge of lexical level semantics in order to model sentence level semantics. These findings demonstrate the importance of visual information in semantics.
Demystifying Embedding Spaces using Large Language Models
Embeddings have become a pivotal means to represent complex, multi-faceted information about entities, concepts, and relationships in a condensed and useful format. Nevertheless, they often preclude direct interpretation. While downstream tasks make use of these compressed representations, meaningful interpretation usually requires visualization using dimensionality reduction or specialized machine learning interpretability methods. This paper addresses the challenge of making such embeddings more interpretable and broadly useful, by employing Large Language Models (LLMs) to directly interact with embeddings -- transforming abstract vectors into understandable narratives. By injecting embeddings into LLMs, we enable querying and exploration of complex embedding data. We demonstrate our approach on a variety of diverse tasks, including: enhancing concept activation vectors (CAVs), communicating novel embedded entities, and decoding user preferences in recommender systems. Our work couples the immense information potential of embeddings with the interpretative power of LLMs.
LLaVA-Read: Enhancing Reading Ability of Multimodal Language Models
Large multimodal language models have demonstrated impressive capabilities in understanding and manipulating images. However, many of these models struggle with comprehending intensive textual contents embedded within the images, primarily due to the limited text recognition and layout understanding ability. To understand the sources of these limitations, we perform an exploratory analysis showing the drawbacks of classical visual encoders on visual text understanding. Hence, we present LLaVA-Read, a multimodal large language model that utilizes dual visual encoders along with a visual text encoder. Our model surpasses existing state-of-the-art models in various text-rich image understanding tasks, showcasing enhanced comprehension of textual content within images. Together, our research suggests visual text understanding remains an open challenge and an efficient visual text encoder is crucial for future successful multimodal systems.
V-FLUTE: Visual Figurative Language Understanding with Textual Explanations
Large Vision-Language models (VLMs) have demonstrated strong reasoning capabilities in tasks requiring a fine-grained understanding of literal images and text, such as visual question-answering or visual entailment. However, there has been little exploration of these models' capabilities when presented with images and captions containing figurative phenomena such as metaphors or humor, the meaning of which is often implicit. To close this gap, we propose a new task and a high-quality dataset: Visual Figurative Language Understanding with Textual Explanations (V-FLUTE). We frame the visual figurative language understanding problem as an explainable visual entailment task, where the model has to predict whether the image (premise) entails a claim (hypothesis) and justify the predicted label with a textual explanation. Using a human-AI collaboration framework, we build a high-quality dataset, V-FLUTE, that contains 6,027 <image, claim, label, explanation> instances spanning five diverse multimodal figurative phenomena: metaphors, similes, idioms, sarcasm, and humor. The figurative phenomena can be present either in the image, the caption, or both. We further conduct both automatic and human evaluations to assess current VLMs' capabilities in understanding figurative phenomena.
ImageRef-VL: Enabling Contextual Image Referencing in Vision-Language Models
Vision-Language Models (VLMs) have demonstrated remarkable capabilities in understanding multimodal inputs and have been widely integrated into Retrieval-Augmented Generation (RAG) based conversational systems. While current VLM-powered chatbots can provide textual source references in their responses, they exhibit significant limitations in referencing contextually relevant images during conversations. In this paper, we introduce Contextual Image Reference -- the ability to appropriately reference relevant images from retrieval documents based on conversation context -- and systematically investigate VLMs' capability in this aspect. We conduct the first evaluation for contextual image referencing, comprising a dedicated testing dataset and evaluation metrics. Furthermore, we propose ImageRef-VL, a method that significantly enhances open-source VLMs' image referencing capabilities through instruction fine-tuning on a large-scale, manually curated multimodal conversation dataset. Experimental results demonstrate that ImageRef-VL not only outperforms proprietary models but also achieves an 88% performance improvement over state-of-the-art open-source VLMs in contextual image referencing tasks. Our code is available at https://github.com/bytedance/ImageRef-VL.
