Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeLarge-Scale Data Selection for Instruction Tuning
Selecting high-quality training data from a larger pool is a crucial step when instruction-tuning language models, as carefully curated datasets often produce models that outperform those trained on much larger, noisier datasets. Automated data selection approaches for instruction-tuning are typically tested by selecting small datasets (roughly 10k samples) from small pools (100-200k samples). However, popular deployed instruction-tuned models often train on hundreds of thousands to millions of samples, subsampled from even larger data pools. We present a systematic study of how well data selection methods scale to these settings, selecting up to 2.5M samples from pools of up to 5.8M samples and evaluating across 7 diverse tasks. We show that many recently proposed methods fall short of random selection in this setting (while using more compute), and even decline in performance when given access to larger pools of data to select over. However, we find that a variant of representation-based data selection (RDS+), which uses weighted mean pooling of pretrained LM hidden states, consistently outperforms more complex methods across all settings tested -- all whilst being more compute-efficient. Our findings highlight that the scaling properties of proposed automated selection methods should be more closely examined. We release our code, data, and models at https://github.com/hamishivi/automated-instruction-selection.
A New Rejection Sampling Approach to k-means++ With Improved Trade-Offs
The k-means++ seeding algorithm (Arthur & Vassilvitskii, 2007) is widely used in practice for the k-means clustering problem where the goal is to cluster a dataset X subset R ^d into k clusters. The popularity of this algorithm is due to its simplicity and provable guarantee of being O(log k) competitive with the optimal solution in expectation. However, its running time is O(|X|kd), making it expensive for large datasets. In this work, we present a simple and effective rejection sampling based approach for speeding up k-means++. Our first method runs in time O(nnz (X) + beta k^2d) while still being O(log k ) competitive in expectation. Here, beta is a parameter which is the ratio of the variance of the dataset to the optimal k-means cost in expectation and O hides logarithmic factors in k and |X|. Our second method presents a new trade-off between computational cost and solution quality. It incurs an additional scale-invariant factor of k^{-Omega( m/beta)} Var (X) in addition to the O(log k) guarantee of k-means++ improving upon a result of (Bachem et al, 2016a) who get an additional factor of m^{-1}Var(X) while still running in time O(nnz(X) + mk^2d). We perform extensive empirical evaluations to validate our theoretical results and to show the effectiveness of our approach on real datasets.
Generalizing Pooling Functions in Convolutional Neural Networks: Mixed, Gated, and Tree
We seek to improve deep neural networks by generalizing the pooling operations that play a central role in current architectures. We pursue a careful exploration of approaches to allow pooling to learn and to adapt to complex and variable patterns. The two primary directions lie in (1) learning a pooling function via (two strategies of) combining of max and average pooling, and (2) learning a pooling function in the form of a tree-structured fusion of pooling filters that are themselves learned. In our experiments every generalized pooling operation we explore improves performance when used in place of average or max pooling. We experimentally demonstrate that the proposed pooling operations provide a boost in invariance properties relative to conventional pooling and set the state of the art on several widely adopted benchmark datasets; they are also easy to implement, and can be applied within various deep neural network architectures. These benefits come with only a light increase in computational overhead during training and a very modest increase in the number of model parameters.
Flexible Model Aggregation for Quantile Regression
Quantile regression is a fundamental problem in statistical learning motivated by a need to quantify uncertainty in predictions, or to model a diverse population without being overly reductive. For instance, epidemiological forecasts, cost estimates, and revenue predictions all benefit from being able to quantify the range of possible values accurately. As such, many models have been developed for this problem over many years of research in statistics, machine learning, and related fields. Rather than proposing yet another (new) algorithm for quantile regression we adopt a meta viewpoint: we investigate methods for aggregating any number of conditional quantile models, in order to improve accuracy and robustness. We consider weighted ensembles where weights may vary over not only individual models, but also over quantile levels, and feature values. All of the models we consider in this paper can be fit using modern deep learning toolkits, and hence are widely accessible (from an implementation point of view) and scalable. To improve the accuracy of the predicted quantiles (or equivalently, prediction intervals), we develop tools for ensuring that quantiles remain monotonically ordered, and apply conformal calibration methods. These can be used without any modification of the original library of base models. We also review some basic theory surrounding quantile aggregation and related scoring rules, and contribute a few new results to this literature (for example, the fact that post sorting or post isotonic regression can only improve the weighted interval score). Finally, we provide an extensive suite of empirical comparisons across 34 data sets from two different benchmark repositories.
Learning Mixtures of Gaussians with Censored Data
We study the problem of learning mixtures of Gaussians with censored data. Statistical learning with censored data is a classical problem, with numerous practical applications, however, finite-sample guarantees for even simple latent variable models such as Gaussian mixtures are missing. Formally, we are given censored data from a mixture of univariate Gaussians $sum_{i=1}^k w_i N(mu_i,sigma^2), i.e. the sample is observed only if it lies inside a set S. The goal is to learn the weights w_i and the means \mu_i. We propose an algorithm that takes only 1{\varepsilon^{O(k)}} samples to estimate the weights w_i and the means \mu_i within \varepsilon$ error.
Double-Weighting for Covariate Shift Adaptation
Supervised learning is often affected by a covariate shift in which the marginal distributions of instances (covariates x) of training and testing samples p_tr(x) and p_te(x) are different but the label conditionals coincide. Existing approaches address such covariate shift by either using the ratio p_te(x)/p_tr(x) to weight training samples (reweighted methods) or using the ratio p_tr(x)/p_te(x) to weight testing samples (robust methods). However, the performance of such approaches can be poor under support mismatch or when the above ratios take large values. We propose a minimax risk classification (MRC) approach for covariate shift adaptation that avoids such limitations by weighting both training and testing samples. In addition, we develop effective techniques that obtain both sets of weights and generalize the conventional kernel mean matching method. We provide novel generalization bounds for our method that show a significant increase in the effective sample size compared with reweighted methods. The proposed method also achieves enhanced classification performance in both synthetic and empirical experiments.
Covariate balancing using the integral probability metric for causal inference
Weighting methods in causal inference have been widely used to achieve a desirable level of covariate balancing. However, the existing weighting methods have desirable theoretical properties only when a certain model, either the propensity score or outcome regression model, is correctly specified. In addition, the corresponding estimators do not behave well for finite samples due to large variance even when the model is correctly specified. In this paper, we consider to use the integral probability metric (IPM), which is a metric between two probability measures, for covariate balancing. Optimal weights are determined so that weighted empirical distributions for the treated and control groups have the smallest IPM value for a given set of discriminators. We prove that the corresponding estimator can be consistent without correctly specifying any model (neither the propensity score nor the outcome regression model). In addition, we empirically show that our proposed method outperforms existing weighting methods with large margins for finite samples.
Tackling Interference Induced by Data Training Loops in A/B Tests: A Weighted Training Approach
In modern recommendation systems, the standard pipeline involves training machine learning models on historical data to predict user behaviors and improve recommendations continuously. However, these data training loops can introduce interference in A/B tests, where data generated by control and treatment algorithms, potentially with different distributions, are combined. To address these challenges, we introduce a novel approach called weighted training. This approach entails training a model to predict the probability of each data point appearing in either the treatment or control data and subsequently applying weighted losses during model training. We demonstrate that this approach achieves the least variance among all estimators that do not cause shifts in the training distributions. Through simulation studies, we demonstrate the lower bias and variance of our approach compared to other methods.
Treatment Effects Estimation by Uniform Transformer
In observational studies, balancing covariates in different treatment groups is essential to estimate treatment effects. One of the most commonly used methods for such purposes is weighting. The performance of this class of methods usually depends on strong regularity conditions for the underlying model, which might not hold in practice. In this paper, we investigate weighting methods from a functional estimation perspective and argue that the weights needed for covariate balancing could differ from those needed for treatment effects estimation under low regularity conditions. Motivated by this observation, we introduce a new framework of weighting that directly targets the treatment effects estimation. Unlike existing methods, the resulting estimator for a treatment effect under this new framework is a simple kernel-based U-statistic after applying a data-driven transformation to the observed covariates. We characterize the theoretical properties of the new estimators of treatment effects under a nonparametric setting and show that they are able to work robustly under low regularity conditions. The new framework is also applied to several numerical examples to demonstrate its practical merits.
Dirichlet-based Per-Sample Weighting by Transition Matrix for Noisy Label Learning
For learning with noisy labels, the transition matrix, which explicitly models the relation between noisy label distribution and clean label distribution, has been utilized to achieve the statistical consistency of either the classifier or the risk. Previous researches have focused more on how to estimate this transition matrix well, rather than how to utilize it. We propose good utilization of the transition matrix is crucial and suggest a new utilization method based on resampling, coined RENT. Specifically, we first demonstrate current utilizations can have potential limitations for implementation. As an extension to Reweighting, we suggest the Dirichlet distribution-based per-sample Weight Sampling (DWS) framework, and compare reweighting and resampling under DWS framework. With the analyses from DWS, we propose RENT, a REsampling method with Noise Transition matrix. Empirically, RENT consistently outperforms existing transition matrix utilization methods, which includes reweighting, on various benchmark datasets. Our code is available at https://github.com/BaeHeeSun/RENT.
Why only Micro-F1? Class Weighting of Measures for Relation Classification
Relation classification models are conventionally evaluated using only a single measure, e.g., micro-F1, macro-F1 or AUC. In this work, we analyze weighting schemes, such as micro and macro, for imbalanced datasets. We introduce a framework for weighting schemes, where existing schemes are extremes, and two new intermediate schemes. We show that reporting results of different weighting schemes better highlights strengths and weaknesses of a model.
Generalized Sum Pooling for Metric Learning
A common architectural choice for deep metric learning is a convolutional neural network followed by global average pooling (GAP). Albeit simple, GAP is a highly effective way to aggregate information. One possible explanation for the effectiveness of GAP is considering each feature vector as representing a different semantic entity and GAP as a convex combination of them. Following this perspective, we generalize GAP and propose a learnable generalized sum pooling method (GSP). GSP improves GAP with two distinct abilities: i) the ability to choose a subset of semantic entities, effectively learning to ignore nuisance information, and ii) learning the weights corresponding to the importance of each entity. Formally, we propose an entropy-smoothed optimal transport problem and show that it is a strict generalization of GAP, i.e., a specific realization of the problem gives back GAP. We show that this optimization problem enjoys analytical gradients enabling us to use it as a direct learnable replacement for GAP. We further propose a zero-shot loss to ease the learning of GSP. We show the effectiveness of our method with extensive evaluations on 4 popular metric learning benchmarks. Code is available at: GSP-DML Framework
On the Effectiveness of the Pooling Methods for Biomedical Relation Extraction with Deep Learning
Deep learning models have achieved state-of-the-art performances on many relation extraction datasets. A common element in these deep learning models involves the pooling mechanisms where a sequence of hidden vectors is aggregated to generate a single representation vector, serving as the features to perform prediction for RE. Unfortunately, the models in the literature tend to employ different strategies to perform pooling for RE, leading to the challenge to determine the best pooling mechanism for this problem, especially in the biomedical domain. In order to answer this question, in this work, we conduct a comprehensive study to evaluate the effectiveness of different pooling mechanisms for the deep learning models in biomedical RE. The experimental results suggest that dependency-based pooling is the best pooling strategy for RE in the biomedical domain, yielding the state-of-the-art performance on two benchmark datasets for this problem.
AnchorAL: Computationally Efficient Active Learning for Large and Imbalanced Datasets
Active learning for imbalanced classification tasks is challenging as the minority classes naturally occur rarely. Gathering a large pool of unlabelled data is thus essential to capture minority instances. Standard pool-based active learning is computationally expensive on large pools and often reaches low accuracy by overfitting the initial decision boundary, thus failing to explore the input space and find minority instances. To address these issues we propose AnchorAL. At each iteration, AnchorAL chooses class-specific instances from the labelled set, or anchors, and retrieves the most similar unlabelled instances from the pool. This resulting subpool is then used for active learning. Using a small, fixed-sized subpool AnchorAL allows scaling any active learning strategy to large pools. By dynamically selecting different anchors at each iteration it promotes class balance and prevents overfitting the initial decision boundary, thus promoting the discovery of new clusters of minority instances. Experiments across different classification tasks, active learning strategies, and model architectures AnchorAL is (i) faster, often reducing runtime from hours to minutes, (ii) trains more performant models, (iii) and returns more balanced datasets than competing methods.
Revisiting Weighted Aggregation in Federated Learning with Neural Networks
In federated learning (FL), weighted aggregation of local models is conducted to generate a global model, and the aggregation weights are normalized (the sum of weights is 1) and proportional to the local data sizes. In this paper, we revisit the weighted aggregation process and gain new insights into the training dynamics of FL. First, we find that the sum of weights can be smaller than 1, causing global weight shrinking effect (analogous to weight decay) and improving generalization. We explore how the optimal shrinking factor is affected by clients' data heterogeneity and local epochs. Second, we dive into the relative aggregation weights among clients to depict the clients' importance. We develop client coherence to study the learning dynamics and find a critical point that exists. Before entering the critical point, more coherent clients play more essential roles in generalization. Based on the above insights, we propose an effective method for Federated Learning with Learnable Aggregation Weights, named as FedLAW. Extensive experiments verify that our method can improve the generalization of the global model by a large margin on different datasets and models.
A Lightweight Method for Tackling Unknown Participation Statistics in Federated Averaging
In federated learning (FL), clients usually have diverse participation statistics that are unknown a priori, which can significantly harm the performance of FL if not handled properly. Existing works aiming at addressing this problem are usually based on global variance reduction, which requires a substantial amount of additional memory in a multiplicative factor equal to the total number of clients. An important open problem is to find a lightweight method for FL in the presence of clients with unknown participation rates. In this paper, we address this problem by adapting the aggregation weights in federated averaging (FedAvg) based on the participation history of each client. We first show that, with heterogeneous participation statistics, FedAvg with non-optimal aggregation weights can diverge from the optimal solution of the original FL objective, indicating the need of finding optimal aggregation weights. However, it is difficult to compute the optimal weights when the participation statistics are unknown. To address this problem, we present a new algorithm called FedAU, which improves FedAvg by adaptively weighting the client updates based on online estimates of the optimal weights without knowing the statistics of client participation. We provide a theoretical convergence analysis of FedAU using a novel methodology to connect the estimation error and convergence. Our theoretical results reveal important and interesting insights, while showing that FedAU converges to an optimal solution of the original objective and has desirable properties such as linear speedup. Our experimental results also verify the advantage of FedAU over baseline methods with various participation patterns.
Data Augmentations in Deep Weight Spaces
Learning in weight spaces, where neural networks process the weights of other deep neural networks, has emerged as a promising research direction with applications in various fields, from analyzing and editing neural fields and implicit neural representations, to network pruning and quantization. Recent works designed architectures for effective learning in that space, which takes into account its unique, permutation-equivariant, structure. Unfortunately, so far these architectures suffer from severe overfitting and were shown to benefit from large datasets. This poses a significant challenge because generating data for this learning setup is laborious and time-consuming since each data sample is a full set of network weights that has to be trained. In this paper, we address this difficulty by investigating data augmentations for weight spaces, a set of techniques that enable generating new data examples on the fly without having to train additional input weight space elements. We first review several recently proposed data augmentation schemes %that were proposed recently and divide them into categories. We then introduce a novel augmentation scheme based on the Mixup method. We evaluate the performance of these techniques on existing benchmarks as well as new benchmarks we generate, which can be valuable for future studies.
Scalable Generative Modeling of Weighted Graphs
Weighted graphs are ubiquitous throughout biology, chemistry, and the social sciences, motivating the development of generative models for abstract weighted graph data using deep neural networks. However, most current deep generative models are either designed for unweighted graphs and are not easily extended to weighted topologies or incorporate edge weights without consideration of a joint distribution with topology. Furthermore, learning a distribution over weighted graphs must account for complex nonlocal dependencies between both the edges of the graph and corresponding weights of each edge. We develop an autoregressive model BiGG-E, a nontrivial extension of the BiGG model, that learns a joint distribution over weighted graphs while still exploiting sparsity to generate a weighted graph with n nodes and m edges in O((n + m)log n) time. Simulation studies and experiments on a variety of benchmark datasets demonstrate that BiGG-E best captures distributions over weighted graphs while remaining scalable and computationally efficient.
Model Merging by Uncertainty-Based Gradient Matching
Models trained on different datasets can be merged by a weighted-averaging of their parameters, but why does it work and when can it fail? Here, we connect the inaccuracy of weighted-averaging to mismatches in the gradients and propose a new uncertainty-based scheme to improve the performance by reducing the mismatch. The connection also reveals implicit assumptions in other schemes such as averaging, task arithmetic, and Fisher-weighted averaging. Our new method gives consistent improvements for large language models and vision transformers, both in terms of performance and robustness to hyperparameters.
Fast and Eager k-Medoids Clustering: O(k) Runtime Improvement of the PAM, CLARA, and CLARANS Algorithms
Clustering non-Euclidean data is difficult, and one of the most used algorithms besides hierarchical clustering is the popular algorithm Partitioning Around Medoids (PAM), also simply referred to as k-medoids clustering. In Euclidean geometry the mean-as used in k-means-is a good estimator for the cluster center, but this does not exist for arbitrary dissimilarities. PAM uses the medoid instead, the object with the smallest dissimilarity to all others in the cluster. This notion of centrality can be used with any (dis-)similarity, and thus is of high relevance to many domains and applications. A key issue with PAM is its high run time cost. We propose modifications to the PAM algorithm that achieve an O(k)-fold speedup in the second ("SWAP") phase of the algorithm, but will still find the same results as the original PAM algorithm. If we relax the choice of swaps performed (while retaining comparable quality), we can further accelerate the algorithm by eagerly performing additional swaps in each iteration. With the substantially faster SWAP, we can now explore faster initialization strategies, because (i) the classic ("BUILD") initialization now becomes the bottleneck, and (ii) our swap is fast enough to compensate for worse starting conditions. We also show how the CLARA and CLARANS algorithms benefit from the proposed modifications. While we do not study the parallelization of our approach in this work, it can easily be combined with earlier approaches to use PAM and CLARA on big data (some of which use PAM as a subroutine, hence can immediately benefit from these improvements), where the performance with high k becomes increasingly important. In experiments on real data with k=100,200, we observed a 458x respectively 1191x speedup compared to the original PAM SWAP algorithm, making PAM applicable to larger data sets, and in particular to higher k.
Decoupling Weighing and Selecting for Integrating Multiple Graph Pre-training Tasks
Recent years have witnessed the great success of graph pre-training for graph representation learning. With hundreds of graph pre-training tasks proposed, integrating knowledge acquired from multiple pre-training tasks has become a popular research topic. In this paper, we identify two important collaborative processes for this topic: (1) select: how to select an optimal task combination from a given task pool based on their compatibility, and (2) weigh: how to weigh the selected tasks based on their importance. While there currently has been a lot of work focused on weighing, comparatively little effort has been devoted to selecting. This paper proposes a novel instance-level framework for integrating multiple graph pre-training tasks, Weigh And Select (WAS), where the two collaborative processes, weighing and selecting, are combined by decoupled siamese networks. Specifically, it first adaptively learns an optimal combination of tasks for each instance from a given task pool, based on which a customized instance-level task weighing strategy is learned. Extensive experiments on 16 graph datasets across node-level and graph-level downstream tasks have demonstrated that by combining a few simple but classical tasks, WAS can achieve comparable performance to other leading counterparts. The code is available at https://github.com/TianyuFan0504/WAS.
Distributed Learning of Mixtures of Experts
In modern machine learning problems we deal with datasets that are either distributed by nature or potentially large for which distributing the computations is usually a standard way to proceed, since centralized algorithms are in general ineffective. We propose a distributed learning approach for mixtures of experts (MoE) models with an aggregation strategy to construct a reduction estimator from local estimators fitted parallelly to distributed subsets of the data. The aggregation is based on an optimal minimization of an expected transportation divergence between the large MoE composed of local estimators and the unknown desired MoE model. We show that the provided reduction estimator is consistent as soon as the local estimators to be aggregated are consistent, and its construction is performed by a proposed majorization-minimization (MM) algorithm that is computationally effective. We study the statistical and numerical properties for the proposed reduction estimator on experiments that demonstrate its performance compared to namely the global estimator constructed in a centralized way from the full dataset. For some situations, the computation time is more than ten times faster, for a comparable performance. Our source codes are publicly available on Github.
AirCast: Improving Air Pollution Forecasting Through Multi-Variable Data Alignment
Air pollution remains a leading global health risk, exacerbated by rapid industrialization and urbanization, contributing significantly to morbidity and mortality rates. In this paper, we introduce AirCast, a novel multi-variable air pollution forecasting model, by combining weather and air quality variables. AirCast employs a multi-task head architecture that simultaneously forecasts atmospheric conditions and pollutant concentrations, improving its understanding of how weather patterns affect air quality. Predicting extreme pollution events is challenging due to their rare occurrence in historic data, resulting in a heavy-tailed distribution of pollution levels. To address this, we propose a novel Frequency-weighted Mean Absolute Error (fMAE) loss, adapted from the class-balanced loss for regression tasks. Informed from domain knowledge, we investigate the selection of key variables known to influence pollution levels. Additionally, we align existing weather and chemical datasets across spatial and temporal dimensions. AirCast's integrated approach, combining multi-task learning, frequency weighted loss and domain informed variable selection, enables more accurate pollution forecasts. Our source code and models are made public here (https://github.com/vishalned/AirCast.git)
Predicting Rare Events by Shrinking Towards Proportional Odds
Training classifiers is difficult with severe class imbalance, but many rare events are the culmination of a sequence with much more common intermediate outcomes. For example, in online marketing a user first sees an ad, then may click on it, and finally may make a purchase; estimating the probability of purchases is difficult because of their rarity. We show both theoretically and through data experiments that the more abundant data in earlier steps may be leveraged to improve estimation of probabilities of rare events. We present PRESTO, a relaxation of the proportional odds model for ordinal regression. Instead of estimating weights for one separating hyperplane that is shifted by separate intercepts for each of the estimated Bayes decision boundaries between adjacent pairs of categorical responses, we estimate separate weights for each of these transitions. We impose an L1 penalty on the differences between weights for the same feature in adjacent weight vectors in order to shrink towards the proportional odds model. We prove that PRESTO consistently estimates the decision boundary weights under a sparsity assumption. Synthetic and real data experiments show that our method can estimate rare probabilities in this setting better than both logistic regression on the rare category, which fails to borrow strength from more abundant categories, and the proportional odds model, which is too inflexible.
Direct Estimation of Information Divergence Using Nearest Neighbor Ratios
We propose a direct estimation method for R\'{e}nyi and f-divergence measures based on a new graph theoretical interpretation. Suppose that we are given two sample sets X and Y, respectively with N and M samples, where eta:=M/N is a constant value. Considering the k-nearest neighbor (k-NN) graph of Y in the joint data set (X,Y), we show that the average powered ratio of the number of X points to the number of Y points among all k-NN points is proportional to R\'{e}nyi divergence of X and Y densities. A similar method can also be used to estimate f-divergence measures. We derive bias and variance rates, and show that for the class of gamma-H\"{o}lder smooth functions, the estimator achieves the MSE rate of O(N^{-2gamma/(gamma+d)}). Furthermore, by using a weighted ensemble estimation technique, for density functions with continuous and bounded derivatives of up to the order d, and some extra conditions at the support set boundary, we derive an ensemble estimator that achieves the parametric MSE rate of O(1/N). Our estimators are more computationally tractable than other competing estimators, which makes them appealing in many practical applications.
What are the best systems? New perspectives on NLP Benchmarking
In Machine Learning, a benchmark refers to an ensemble of datasets associated with one or multiple metrics together with a way to aggregate different systems performances. They are instrumental in (i) assessing the progress of new methods along different axes and (ii) selecting the best systems for practical use. This is particularly the case for NLP with the development of large pre-trained models (e.g. GPT, BERT) that are expected to generalize well on a variety of tasks. While the community mainly focused on developing new datasets and metrics, there has been little interest in the aggregation procedure, which is often reduced to a simple average over various performance measures. However, this procedure can be problematic when the metrics are on a different scale, which may lead to spurious conclusions. This paper proposes a new procedure to rank systems based on their performance across different tasks. Motivated by the social choice theory, the final system ordering is obtained through aggregating the rankings induced by each task and is theoretically grounded. We conduct extensive numerical experiments (on over 270k scores) to assess the soundness of our approach both on synthetic and real scores (e.g. GLUE, EXTREM, SEVAL, TAC, FLICKR). In particular, we show that our method yields different conclusions on state-of-the-art systems than the mean-aggregation procedure while being both more reliable and robust.
Data-Efficient Learning via Clustering-Based Sensitivity Sampling: Foundation Models and Beyond
We study the data selection problem, whose aim is to select a small representative subset of data that can be used to efficiently train a machine learning model. We present a new data selection approach based on k-means clustering and sensitivity sampling. Assuming access to an embedding representation of the data with respect to which the model loss is H\"older continuous, our approach provably allows selecting a set of ``typical'' k + 1/varepsilon^2 elements whose average loss corresponds to the average loss of the whole dataset, up to a multiplicative (1pmvarepsilon) factor and an additive varepsilon lambda Phi_k, where Phi_k represents the k-means cost for the input embeddings and lambda is the H\"older constant. We furthermore demonstrate the performance and scalability of our approach on fine-tuning foundation models and show that it outperforms state-of-the-art methods. We also show how it can be applied on linear regression, leading to a new sampling strategy that surprisingly matches the performances of leverage score sampling, while being conceptually simpler and more scalable.
Vote'n'Rank: Revision of Benchmarking with Social Choice Theory
The development of state-of-the-art systems in different applied areas of machine learning (ML) is driven by benchmarks, which have shaped the paradigm of evaluating generalisation capabilities from multiple perspectives. Although the paradigm is shifting towards more fine-grained evaluation across diverse tasks, the delicate question of how to aggregate the performances has received particular interest in the community. In general, benchmarks follow the unspoken utilitarian principles, where the systems are ranked based on their mean average score over task-specific metrics. Such aggregation procedure has been viewed as a sub-optimal evaluation protocol, which may have created the illusion of progress. This paper proposes Vote'n'Rank, a framework for ranking systems in multi-task benchmarks under the principles of the social choice theory. We demonstrate that our approach can be efficiently utilised to draw new insights on benchmarking in several ML sub-fields and identify the best-performing systems in research and development case studies. The Vote'n'Rank's procedures are more robust than the mean average while being able to handle missing performance scores and determine conditions under which the system becomes the winner.
A Model Zoo on Phase Transitions in Neural Networks
Using the weights of trained Neural Network (NN) models as data modality has recently gained traction as a research field - dubbed Weight Space Learning (WSL). Multiple recent works propose WSL methods to analyze models, evaluate methods, or synthesize weights. Weight space learning methods require populations of trained models as datasets for development and evaluation. However, existing collections of models - called `model zoos' - are unstructured or follow a rudimentary definition of diversity. In parallel, work rooted in statistical physics has identified phases and phase transitions in NN models. Models are homogeneous within the same phase but qualitatively differ from one phase to another. We combine the idea of `model zoos' with phase information to create a controlled notion of diversity in populations. We introduce 12 large-scale zoos that systematically cover known phases and vary over model architecture, size, and datasets. These datasets cover different modalities, such as computer vision, natural language processing, and scientific ML. For every model, we compute loss landscape metrics and validate full coverage of the phases. With this dataset, we provide the community with a resource with a wide range of potential applications for WSL and beyond. Evidence suggests the loss landscape phase plays a role in applications such as model training, analysis, or sparsification. We demonstrate this in an exploratory study of the downstream methods like transfer learning or model weights averaging.
A survey on online active learning
Online active learning is a paradigm in machine learning that aims to select the most informative data points to label from a data stream. The problem of minimizing the cost associated with collecting labeled observations has gained a lot of attention in recent years, particularly in real-world applications where data is only available in an unlabeled form. Annotating each observation can be time-consuming and costly, making it difficult to obtain large amounts of labeled data. To overcome this issue, many active learning strategies have been proposed in the last decades, aiming to select the most informative observations for labeling in order to improve the performance of machine learning models. These approaches can be broadly divided into two categories: static pool-based and stream-based active learning. Pool-based active learning involves selecting a subset of observations from a closed pool of unlabeled data, and it has been the focus of many surveys and literature reviews. However, the growing availability of data streams has led to an increase in the number of approaches that focus on online active learning, which involves continuously selecting and labeling observations as they arrive in a stream. This work aims to provide an overview of the most recently proposed approaches for selecting the most informative observations from data streams in real time. We review the various techniques that have been proposed and discuss their strengths and limitations, as well as the challenges and opportunities that exist in this area of research.
DivBO: Diversity-aware CASH for Ensemble Learning
The Combined Algorithm Selection and Hyperparameters optimization (CASH) problem is one of the fundamental problems in Automated Machine Learning (AutoML). Motivated by the success of ensemble learning, recent AutoML systems build post-hoc ensembles to output the final predictions instead of using the best single learner. However, while most CASH methods focus on searching for a single learner with the best performance, they neglect the diversity among base learners (i.e., they may suggest similar configurations to previously evaluated ones), which is also a crucial consideration when building an ensemble. To tackle this issue and further enhance the ensemble performance, we propose DivBO, a diversity-aware framework to inject explicit search of diversity into the CASH problems. In the framework, we propose to use a diversity surrogate to predict the pair-wise diversity of two unseen configurations. Furthermore, we introduce a temporary pool and a weighted acquisition function to guide the search of both performance and diversity based on Bayesian optimization. Empirical results on 15 public datasets show that DivBO achieves the best average ranks (1.82 and 1.73) on both validation and test errors among 10 compared methods, including post-hoc designs in recent AutoML systems and state-of-the-art baselines for ensemble learning on CASH problems.
Faster k-Medoids Clustering: Improving the PAM, CLARA, and CLARANS Algorithms
Clustering non-Euclidean data is difficult, and one of the most used algorithms besides hierarchical clustering is the popular algorithm Partitioning Around Medoids (PAM), also simply referred to as k-medoids. In Euclidean geometry the mean-as used in k-means-is a good estimator for the cluster center, but this does not hold for arbitrary dissimilarities. PAM uses the medoid instead, the object with the smallest dissimilarity to all others in the cluster. This notion of centrality can be used with any (dis-)similarity, and thus is of high relevance to many domains such as biology that require the use of Jaccard, Gower, or more complex distances. A key issue with PAM is its high run time cost. We propose modifications to the PAM algorithm to achieve an O(k)-fold speedup in the second SWAP phase of the algorithm, but will still find the same results as the original PAM algorithm. If we slightly relax the choice of swaps performed (at comparable quality), we can further accelerate the algorithm by performing up to k swaps in each iteration. With the substantially faster SWAP, we can now also explore alternative strategies for choosing the initial medoids. We also show how the CLARA and CLARANS algorithms benefit from these modifications. It can easily be combined with earlier approaches to use PAM and CLARA on big data (some of which use PAM as a subroutine, hence can immediately benefit from these improvements), where the performance with high k becomes increasingly important. In experiments on real data with k=100, we observed a 200-fold speedup compared to the original PAM SWAP algorithm, making PAM applicable to larger data sets as long as we can afford to compute a distance matrix, and in particular to higher k (at k=2, the new SWAP was only 1.5 times faster, as the speedup is expected to increase with k).
FedDisco: Federated Learning with Discrepancy-Aware Collaboration
This work considers the category distribution heterogeneity in federated learning. This issue is due to biased labeling preferences at multiple clients and is a typical setting of data heterogeneity. To alleviate this issue, most previous works consider either regularizing local models or fine-tuning the global model, while they ignore the adjustment of aggregation weights and simply assign weights based on the dataset size. However, based on our empirical observations and theoretical analysis, we find that the dataset size is not optimal and the discrepancy between local and global category distributions could be a beneficial and complementary indicator for determining aggregation weights. We thus propose a novel aggregation method, Federated Learning with Discrepancy-aware Collaboration (FedDisco), whose aggregation weights not only involve both the dataset size and the discrepancy value, but also contribute to a tighter theoretical upper bound of the optimization error. FedDisco also promotes privacy-preservation, communication and computation efficiency, as well as modularity. Extensive experiments show that our FedDisco outperforms several state-of-the-art methods and can be easily incorporated with many existing methods to further enhance the performance. Our code will be available at https://github.com/MediaBrain-SJTU/FedDisco.
Knowledge Distillation Based on Transformed Teacher Matching
As a technique to bridge logit matching and probability distribution matching, temperature scaling plays a pivotal role in knowledge distillation (KD). Conventionally, temperature scaling is applied to both teacher's logits and student's logits in KD. Motivated by some recent works, in this paper, we drop instead temperature scaling on the student side, and systematically study the resulting variant of KD, dubbed transformed teacher matching (TTM). By reinterpreting temperature scaling as a power transform of probability distribution, we show that in comparison with the original KD, TTM has an inherent R\'enyi entropy term in its objective function, which serves as an extra regularization term. Extensive experiment results demonstrate that thanks to this inherent regularization, TTM leads to trained students with better generalization than the original KD. To further enhance student's capability to match teacher's power transformed probability distribution, we introduce a sample-adaptive weighting coefficient into TTM, yielding a novel distillation approach dubbed weighted TTM (WTTM). It is shown, by comprehensive experiments, that although WTTM is simple, it is effective, improves upon TTM, and achieves state-of-the-art accuracy performance. Our source code is available at https://github.com/zkxufo/TTM.
Multi-Task Differential Privacy Under Distribution Skew
We study the problem of multi-task learning under user-level differential privacy, in which n users contribute data to m tasks, each involving a subset of users. One important aspect of the problem, that can significantly impact quality, is the distribution skew among tasks. Certain tasks may have much fewer data samples than others, making them more susceptible to the noise added for privacy. It is natural to ask whether algorithms can adapt to this skew to improve the overall utility. We give a systematic analysis of the problem, by studying how to optimally allocate a user's privacy budget among tasks. We propose a generic algorithm, based on an adaptive reweighting of the empirical loss, and show that when there is task distribution skew, this gives a quantifiable improvement of excess empirical risk. Experimental studies on recommendation problems that exhibit a long tail of small tasks, demonstrate that our methods significantly improve utility, achieving the state of the art on two standard benchmarks.
Probabilistic Partitive Partitioning (PPP)
Clustering is a NP-hard problem. Thus, no optimal algorithm exists, heuristics are applied to cluster the data. Heuristics can be very resource-intensive, if not applied properly. For substantially large data sets computational efficiencies can be achieved by reducing the input space if a minimal loss of information can be achieved. Clustering algorithms, in general, face two common problems: 1) these converge to different settings with different initial conditions and; 2) the number of clusters has to be arbitrarily decided beforehand. This problem has become critical in the realm of big data. Recently, clustering algorithms have emerged which can speedup computations using parallel processing over the grid but face the aforementioned problems. Goals: Our goals are to find methods to cluster data which: 1) guarantee convergence to the same settings irrespective of the initial conditions; 2) eliminate the need to establish the number of clusters beforehand, and 3) can be applied to cluster large datasets. Methods: We introduce a method that combines probabilistic and combinatorial clustering methods to produce repeatable and compact clusters that are not sensitive to initial conditions. This method harnesses the power of k-means (a combinatorial clustering method) to cluster/partition very large dimensional datasets and uses the Gaussian Mixture Model (a probabilistic clustering method) to validate the k-means partitions. Results: We show that this method produces very compact clusters that are not sensitive to initial conditions. This method can be used to identify the most 'separable' set in a dataset which increases the 'clusterability' of a dataset. This method also eliminates the need to specify the number of clusters in advance.
Reducing the Footprint of Multi-Vector Retrieval with Minimal Performance Impact via Token Pooling
Over the last few years, multi-vector retrieval methods, spearheaded by ColBERT, have become an increasingly popular approach to Neural IR. By storing representations at the token level rather than at the document level, these methods have demonstrated very strong retrieval performance, especially in out-of-domain settings. However, the storage and memory requirements necessary to store the large number of associated vectors remain an important drawback, hindering practical adoption. In this paper, we introduce a simple clustering-based token pooling approach to aggressively reduce the number of vectors that need to be stored. This method can reduce the space & memory footprint of ColBERT indexes by 50% with virtually no retrieval performance degradation. This method also allows for further reductions, reducing the vector count by 66%-to-75% , with degradation remaining below 5% on a vast majority of datasets. Importantly, this approach requires no architectural change nor query-time processing, and can be used as a simple drop-in during indexation with any ColBERT-like model.
Weighting vectors for machine learning: numerical harmonic analysis applied to boundary detection
Metric space magnitude, an active field of research in algebraic topology, is a scalar quantity that summarizes the effective number of distinct points that live in a general metric space. The {\em weighting vector} is a closely-related concept that captures, in a nontrivial way, much of the underlying geometry of the original metric space. Recent work has demonstrated that when the metric space is Euclidean, the weighting vector serves as an effective tool for boundary detection. We recast this result and show the weighting vector may be viewed as a solution to a kernelized SVM. As one consequence, we apply this new insight to the task of outlier detection, and we demonstrate performance that is competitive or exceeds performance of state-of-the-art techniques on benchmark data sets. Under mild assumptions, we show the weighting vector, which has computational cost of matrix inversion, can be efficiently approximated in linear time. We show how nearest neighbor methods can approximate solutions to the minimization problems defined by SVMs.
From Relational Pooling to Subgraph GNNs: A Universal Framework for More Expressive Graph Neural Networks
Relational pooling is a framework for building more expressive and permutation-invariant graph neural networks. However, there is limited understanding of the exact enhancement in the expressivity of RP and its connection with the Weisfeiler Lehman hierarchy. Starting from RP, we propose to explicitly assign labels to nodes as additional features to improve expressive power of message passing neural networks. The method is then extended to higher dimensional WL, leading to a novel k,l-WL algorithm, a more general framework than k-WL. Theoretically, we analyze the expressivity of k,l-WL with respect to k and l and unifies it with a great number of subgraph GNNs. Complexity reduction methods are also systematically discussed to build powerful and practical k,l-GNN instances. We theoretically and experimentally prove that our method is universally compatible and capable of improving the expressivity of any base GNN model. Our k,l-GNNs achieve superior performance on many synthetic and real-world datasets, which verifies the effectiveness of our framework.
Generalized Reductions: Making any Hierarchical Clustering Fair and Balanced with Low Cost
Clustering is a fundamental building block of modern statistical analysis pipelines. Fair clustering has seen much attention from the machine learning community in recent years. We are some of the first to study fairness in the context of hierarchical clustering, after the results of Ahmadian et al. from NeurIPS in 2020. We evaluate our results using Dasgupta's cost function, perhaps one of the most prevalent theoretical metrics for hierarchical clustering evaluation. Our work vastly improves the previous O(n^{5/6}polylog(n)) fair approximation for cost to a near polylogarithmic O(n^delta polylog(n)) fair approximation for any constant deltain(0,1). This result establishes a cost-fairness tradeoff and extends to broader fairness constraints than the previous work. We also show how to alter existing hierarchical clusterings to guarantee fairness and cluster balance across any level in the hierarchy.
Automatic Data Curation for Self-Supervised Learning: A Clustering-Based Approach
Self-supervised features are the cornerstone of modern machine learning systems. They are typically pre-trained on data collections whose construction and curation typically require extensive human effort. This manual process has some limitations similar to those encountered in supervised learning, e.g., the crowd-sourced selection of data is costly and time-consuming, preventing scaling the dataset size. In this work, we consider the problem of automatic curation of high-quality datasets for self-supervised pre-training. We posit that such datasets should be large, diverse and balanced, and propose a clustering-based approach for building ones satisfying all these criteria. Our method involves successive and hierarchical applications of k-means on a large and diverse data repository to obtain clusters that distribute uniformly among data concepts, followed by a hierarchical, balanced sampling step from these clusters. Extensive experiments on three different data domains including web-based images, satellite images and text show that features trained on our automatically curated datasets outperform those trained on uncurated data while being on par or better than ones trained on manually curated data.
Inverse Distance Aggregation for Federated Learning with Non-IID Data
Federated learning (FL) has been a promising approach in the field of medical imaging in recent years. A critical problem in FL, specifically in medical scenarios is to have a more accurate shared model which is robust to noisy and out-of distribution clients. In this work, we tackle the problem of statistical heterogeneity in data for FL which is highly plausible in medical data where for example the data comes from different sites with different scanner settings. We propose IDA (Inverse Distance Aggregation), a novel adaptive weighting approach for clients based on meta-information which handles unbalanced and non-iid data. We extensively analyze and evaluate our method against the well-known FL approach, Federated Averaging as a baseline.
Neural Link Prediction with Walk Pooling
Graph neural networks achieve high accuracy in link prediction by jointly leveraging graph topology and node attributes. Topology, however, is represented indirectly; state-of-the-art methods based on subgraph classification label nodes with distance to the target link, so that, although topological information is present, it is tempered by pooling. This makes it challenging to leverage features like loops and motifs associated with network formation mechanisms. We propose a link prediction algorithm based on a new pooling scheme called WalkPool. WalkPool combines the expressivity of topological heuristics with the feature-learning ability of neural networks. It summarizes a putative link by random walk probabilities of adjacent paths. Instead of extracting transition probabilities from the original graph, it computes the transition matrix of a "predictive" latent graph by applying attention to learned features; this may be interpreted as feature-sensitive topology fingerprinting. WalkPool can leverage unsupervised node features or be combined with GNNs and trained end-to-end. It outperforms state-of-the-art methods on all common link prediction benchmarks, both homophilic and heterophilic, with and without node attributes. Applying WalkPool to a set of unsupervised GNNs significantly improves prediction accuracy, suggesting that it may be used as a general-purpose graph pooling scheme.
Diverse Weight Averaging for Out-of-Distribution Generalization
Standard neural networks struggle to generalize under distribution shifts in computer vision. Fortunately, combining multiple networks can consistently improve out-of-distribution generalization. In particular, weight averaging (WA) strategies were shown to perform best on the competitive DomainBed benchmark; they directly average the weights of multiple networks despite their nonlinearities. In this paper, we propose Diverse Weight Averaging (DiWA), a new WA strategy whose main motivation is to increase the functional diversity across averaged models. To this end, DiWA averages weights obtained from several independent training runs: indeed, models obtained from different runs are more diverse than those collected along a single run thanks to differences in hyperparameters and training procedures. We motivate the need for diversity by a new bias-variance-covariance-locality decomposition of the expected error, exploiting similarities between WA and standard functional ensembling. Moreover, this decomposition highlights that WA succeeds when the variance term dominates, which we show occurs when the marginal distribution changes at test time. Experimentally, DiWA consistently improves the state of the art on DomainBed without inference overhead.
Multi-Draft Speculative Sampling: Canonical Architectures and Theoretical Limits
We consider multi-draft speculative sampling, where the proposal sequences are sampled independently from different draft models. At each step, a token-level draft selection scheme takes a list of valid tokens as input and produces an output token whose distribution matches that of the target model. Previous works have demonstrated that the optimal scheme (which maximizes the probability of accepting one of the input tokens) can be cast as a solution to a linear program. In this work we show that the optimal scheme can be decomposed into a two-step solution: in the first step an importance sampling (IS) type scheme is used to select one intermediate token; in the second step (single-draft) speculative sampling is applied to generate the output token. For the case of two identical draft models we further 1) establish a necessary and sufficient condition on the distributions of the target and draft models for the acceptance probability to equal one and 2) provide an explicit expression for the optimal acceptance probability. Our theoretical analysis also motives a new class of token-level selection scheme based on weighted importance sampling. Our experimental results demonstrate consistent improvements in the achievable block efficiency and token rates over baseline schemes in a number of scenarios.
A Survey on Cost Types, Interaction Schemes, and Annotator Performance Models in Selection Algorithms for Active Learning in Classification
Pool-based active learning (AL) aims to optimize the annotation process (i.e., labeling) as the acquisition of annotations is often time-consuming and therefore expensive. For this purpose, an AL strategy queries annotations intelligently from annotators to train a high-performance classification model at a low annotation cost. Traditional AL strategies operate in an idealized framework. They assume a single, omniscient annotator who never gets tired and charges uniformly regardless of query difficulty. However, in real-world applications, we often face human annotators, e.g., crowd or in-house workers, who make annotation mistakes and can be reluctant to respond if tired or faced with complex queries. Recently, a wide range of novel AL strategies has been proposed to address these issues. They differ in at least one of the following three central aspects from traditional AL: (1) They explicitly consider (multiple) human annotators whose performances can be affected by various factors, such as missing expertise. (2) They generalize the interaction with human annotators by considering different query and annotation types, such as asking an annotator for feedback on an inferred classification rule. (3) They take more complex cost schemes regarding annotations and misclassifications into account. This survey provides an overview of these AL strategies and refers to them as real-world AL. Therefore, we introduce a general real-world AL strategy as part of a learning cycle and use its elements, e.g., the query and annotator selection algorithm, to categorize about 60 real-world AL strategies. Finally, we outline possible directions for future research in the field of AL.
RegMean++: Enhancing Effectiveness and Generalization of Regression Mean for Model Merging
Regression Mean (RegMean), an approach that formulates model merging as a linear regression problem, aims to find the optimal weights for each linear layer in the merge model by minimizing the discrepancy in predictions between the merge and candidate models. RegMean provides a precise closed-form solution for the merging problem; therefore, it offers explainability and computational efficiency. However, RegMean merges each linear layer independently, overlooking how the features and information in the earlier layers propagate through the layers and influence the final prediction in the merge model. In this paper, we introduce RegMean++, a simple yet effective alternative to RegMean, that explicitly incorporates both intra- and cross-layer dependencies between merge models' layers into RegMean's objective. By accounting for these dependencies, RegMean++ better captures the behaviors of the merge model. Extensive experiments demonstrate that RegMean++ consistently outperforms RegMean across diverse settings, including in-domain (ID) and out-of-domain (OOD) generalization, sequential merging, large-scale tasks, and robustness under several types of distribution shifts. Furthermore, RegMean++ achieves competitive or state-of-the-art performance compared to various recent advanced model merging methods. Our code is available at https://github.com/nthehai01/RegMean-plusplus.
Subset Selection Based On Multiple Rankings in the Presence of Bias: Effectiveness of Fairness Constraints for Multiwinner Voting Score Functions
We consider the problem of subset selection where one is given multiple rankings of items and the goal is to select the highest ``quality'' subset. Score functions from the multiwinner voting literature have been used to aggregate rankings into quality scores for subsets. We study this setting of subset selection problems when, in addition, rankings may contain systemic or unconscious biases toward a group of items. For a general model of input rankings and biases, we show that requiring the selected subset to satisfy group fairness constraints can improve the quality of the selection with respect to unbiased rankings. Importantly, we show that for fairness constraints to be effective, different multiwinner score functions may require a drastically different number of rankings: While for some functions, fairness constraints need an exponential number of rankings to recover a close-to-optimal solution, for others, this dependency is only polynomial. This result relies on a novel notion of ``smoothness'' of submodular functions in this setting that quantifies how well a function can ``correctly'' assess the quality of items in the presence of bias. The results in this paper can be used to guide the choice of multiwinner score functions for the subset selection setting considered here; we additionally provide a tool to empirically enable this.
Multi-annotator Deep Learning: A Probabilistic Framework for Classification
Solving complex classification tasks using deep neural networks typically requires large amounts of annotated data. However, corresponding class labels are noisy when provided by error-prone annotators, e.g., crowd workers. Training standard deep neural networks leads to subpar performances in such multi-annotator supervised learning settings. We address this issue by presenting a probabilistic training framework named multi-annotator deep learning (MaDL). A ground truth and an annotator performance model are jointly trained in an end-to-end learning approach. The ground truth model learns to predict instances' true class labels, while the annotator performance model infers probabilistic estimates of annotators' performances. A modular network architecture enables us to make varying assumptions regarding annotators' performances, e.g., an optional class or instance dependency. Further, we learn annotator embeddings to estimate annotators' densities within a latent space as proxies of their potentially correlated annotations. Together with a weighted loss function, we improve the learning from correlated annotation patterns. In a comprehensive evaluation, we examine three research questions about multi-annotator supervised learning. Our findings indicate MaDL's state-of-the-art performance and robustness against many correlated, spamming annotators.
The Connection Between R-Learning and Inverse-Variance Weighting for Estimation of Heterogeneous Treatment Effects
Our motivation is to shed light the performance of the widely popular "R-Learner." Like many other methods for estimating conditional average treatment effects (CATEs), R-Learning can be expressed as a weighted pseudo-outcome regression (POR). Previous comparisons of POR techniques have paid careful attention to the choice of pseudo-outcome transformation. However, we argue that the dominant driver of performance is actually the choice of weights. Specifically, we argue that R-Learning implicitly performs an inverse-variance weighted form of POR. These weights stabilize the regression and allow for convenient simplifications of bias terms.
"Why did the Model Fail?": Attributing Model Performance Changes to Distribution Shifts
Machine learning models frequently experience performance drops under distribution shifts. The underlying cause of such shifts may be multiple simultaneous factors such as changes in data quality, differences in specific covariate distributions, or changes in the relationship between label and features. When a model does fail during deployment, attributing performance change to these factors is critical for the model developer to identify the root cause and take mitigating actions. In this work, we introduce the problem of attributing performance differences between environments to distribution shifts in the underlying data generating mechanisms. We formulate the problem as a cooperative game where the players are distributions. We define the value of a set of distributions to be the change in model performance when only this set of distributions has changed between environments, and derive an importance weighting method for computing the value of an arbitrary set of distributions. The contribution of each distribution to the total performance change is then quantified as its Shapley value. We demonstrate the correctness and utility of our method on synthetic, semi-synthetic, and real-world case studies, showing its effectiveness in attributing performance changes to a wide range of distribution shifts.
The Universality Lens: Why Even Highly Over-Parametrized Models Learn Well
A fundamental question in modern machine learning is why large, over-parameterized models, such as deep neural networks and transformers, tend to generalize well, even when their number of parameters far exceeds the number of training samples. We investigate this phenomenon through the lens of information theory, grounded in universal learning theory. Specifically, we study a Bayesian mixture learner with log-loss and (almost) uniform prior over an expansive hypothesis class. Our key result shows that the learner's regret is not determined by the overall size of the hypothesis class, but rather by the cumulative probability of all models that are close, in Kullback-Leibler divergence distance, to the true data-generating process. We refer to this cumulative probability as the weight of the hypothesis. This leads to a natural notion of model simplicity: simple models are those with large weight and thus require fewer samples to generalize, while complex models have small weight and need more data. This perspective provides a rigorous and intuitive explanation for why over-parameterized models often avoid overfitting: the presence of simple hypotheses allows the posterior to concentrate on them when supported by the data. We further bridge theory and practice by recalling that stochastic gradient descent with Langevin dynamics samples from the correct posterior distribution, enabling our theoretical learner to be approximated using standard machine learning methods combined with ensemble learning. Our analysis yields non-uniform regret bounds and aligns with key practical concepts such as flat minima and model distillation. The results apply broadly across online, batch, and supervised learning settings, offering a unified and principled understanding of the generalization behavior of modern AI systems.
Hard Negatives or False Negatives: Correcting Pooling Bias in Training Neural Ranking Models
Neural ranking models (NRMs) have become one of the most important techniques in information retrieval (IR). Due to the limitation of relevance labels, the training of NRMs heavily relies on negative sampling over unlabeled data. In general machine learning scenarios, it has shown that training with hard negatives (i.e., samples that are close to positives) could lead to better performance. Surprisingly, we find opposite results from our empirical studies in IR. When sampling top-ranked results (excluding the labeled positives) as negatives from a stronger retriever, the performance of the learned NRM becomes even worse. Based on our investigation, the superficial reason is that there are more false negatives (i.e., unlabeled positives) in the top-ranked results with a stronger retriever, which may hurt the training process; The root is the existence of pooling bias in the dataset constructing process, where annotators only judge and label very few samples selected by some basic retrievers. Therefore, in principle, we can formulate the false negative issue in training NRMs as learning from labeled datasets with pooling bias. To solve this problem, we propose a novel Coupled Estimation Technique (CET) that learns both a relevance model and a selection model simultaneously to correct the pooling bias for training NRMs. Empirical results on three retrieval benchmarks show that NRMs trained with our technique can achieve significant gains on ranking effectiveness against other baseline strategies.
Exploring Weight Balancing on Long-Tailed Recognition Problem
Recognition problems in long-tailed data, in which the sample size per class is heavily skewed, have gained importance because the distribution of the sample size per class in a dataset is generally exponential unless the sample size is intentionally adjusted. Various methods have been devised to address these problems. Recently, weight balancing, which combines well-known classical regularization techniques with two-stage training, has been proposed. Despite its simplicity, it is known for its high performance compared with existing methods devised in various ways. However, there is a lack of understanding as to why this method is effective for long-tailed data. In this study, we analyze weight balancing by focusing on neural collapse and the cone effect at each training stage and found that it can be decomposed into an increase in Fisher's discriminant ratio of the feature extractor caused by weight decay and cross entropy loss and implicit logit adjustment caused by weight decay and class-balanced loss. Our analysis enables the training method to be further simplified by reducing the number of training stages to one while increasing accuracy.
Project and Forget: Solving Large-Scale Metric Constrained Problems
Given a set of dissimilarity measurements amongst data points, determining what metric representation is most "consistent" with the input measurements or the metric that best captures the relevant geometric features of the data is a key step in many machine learning algorithms. Existing methods are restricted to specific kinds of metrics or small problem sizes because of the large number of metric constraints in such problems. In this paper, we provide an active set algorithm, Project and Forget, that uses Bregman projections, to solve metric constrained problems with many (possibly exponentially) inequality constraints. We provide a theoretical analysis of Project and Forget and prove that our algorithm converges to the global optimal solution and that the L_2 distance of the current iterate to the optimal solution decays asymptotically at an exponential rate. We demonstrate that using our method we can solve large problem instances of three types of metric constrained problems: general weight correlation clustering, metric nearness, and metric learning; in each case, out-performing the state of the art methods with respect to CPU times and problem sizes.
Evaluating Large-Vocabulary Object Detectors: The Devil is in the Details
By design, average precision (AP) for object detection aims to treat all classes independently: AP is computed independently per category and averaged. On one hand, this is desirable as it treats all classes equally. On the other hand, it ignores cross-category confidence calibration, a key property in real-world use cases. Unfortunately, under important conditions (i.e., large vocabulary, high instance counts) the default implementation of AP is neither category independent, nor does it directly reward properly calibrated detectors. In fact, we show that on LVIS the default implementation produces a gameable metric, where a simple, un-intuitive re-ranking policy can improve AP by a large margin. To address these limitations, we introduce two complementary metrics. First, we present a simple fix to the default AP implementation, ensuring that it is independent across categories as originally intended. We benchmark recent LVIS detection advances and find that many reported gains do not translate to improvements under our new evaluation, suggesting recent improvements may arise from difficult to interpret changes to cross-category rankings. Given the importance of reliably benchmarking cross-category rankings, we consider a pooled version of AP (AP-Pool) that rewards properly calibrated detectors by directly comparing cross-category rankings. Finally, we revisit classical approaches for calibration and find that explicitly calibrating detectors improves state-of-the-art on AP-Pool by 1.7 points
Long-tailed Classification from a Bayesian-decision-theory Perspective
Long-tailed classification poses a challenge due to its heavy imbalance in class probabilities and tail-sensitivity risks with asymmetric misprediction costs. Recent attempts have used re-balancing loss and ensemble methods, but they are largely heuristic and depend heavily on empirical results, lacking theoretical explanation. Furthermore, existing methods overlook the decision loss, which characterizes different costs associated with tailed classes. This paper presents a general and principled framework from a Bayesian-decision-theory perspective, which unifies existing techniques including re-balancing and ensemble methods, and provides theoretical justifications for their effectiveness. From this perspective, we derive a novel objective based on the integrated risk and a Bayesian deep-ensemble approach to improve the accuracy of all classes, especially the "tail". Besides, our framework allows for task-adaptive decision loss which provides provably optimal decisions in varying task scenarios, along with the capability to quantify uncertainty. Finally, We conduct comprehensive experiments, including standard classification, tail-sensitive classification with a new False Head Rate metric, calibration, and ablation studies. Our framework significantly improves the current SOTA even on large-scale real-world datasets like ImageNet.
Oracle Efficient Algorithms for Groupwise Regret
We study the problem of online prediction, in which at each time step t, an individual x_t arrives, whose label we must predict. Each individual is associated with various groups, defined based on their features such as age, sex, race etc., which may intersect. Our goal is to make predictions that have regret guarantees not just overall but also simultaneously on each sub-sequence comprised of the members of any single group. Previous work such as [Blum & Lykouris] and [Lee et al] provide attractive regret guarantees for these problems; however, these are computationally intractable on large model classes. We show that a simple modification of the sleeping experts technique of [Blum & Lykouris] yields an efficient reduction to the well-understood problem of obtaining diminishing external regret absent group considerations. Our approach gives similar regret guarantees compared to [Blum & Lykouris]; however, we run in time linear in the number of groups, and are oracle-efficient in the hypothesis class. This in particular implies that our algorithm is efficient whenever the number of groups is polynomially bounded and the external-regret problem can be solved efficiently, an improvement on [Blum & Lykouris]'s stronger condition that the model class must be small. Our approach can handle online linear regression and online combinatorial optimization problems like online shortest paths. Beyond providing theoretical regret bounds, we evaluate this algorithm with an extensive set of experiments on synthetic data and on two real data sets -- Medical costs and the Adult income dataset, both instantiated with intersecting groups defined in terms of race, sex, and other demographic characteristics. We find that uniformly across groups, our algorithm gives substantial error improvements compared to running a standard online linear regression algorithm with no groupwise regret guarantees.
Scaling Laws for Data Filtering -- Data Curation cannot be Compute Agnostic
Vision-language models (VLMs) are trained for thousands of GPU hours on carefully curated web datasets. In recent times, data curation has gained prominence with several works developing strategies to retain 'high-quality' subsets of 'raw' scraped data. For instance, the LAION public dataset retained only 10% of the total crawled data. However, these strategies are typically developed agnostic of the available compute for training. In this paper, we first demonstrate that making filtering decisions independent of training compute is often suboptimal: the limited high-quality data rapidly loses its utility when repeated, eventually requiring the inclusion of 'unseen' but 'lower-quality' data. To address this quality-quantity tradeoff (QQT), we introduce neural scaling laws that account for the non-homogeneous nature of web data, an angle ignored in existing literature. Our scaling laws (i) characterize the differing 'utility' of various quality subsets of web data; (ii) account for how utility diminishes for a data point at its 'nth' repetition; and (iii) formulate the mutual interaction of various data pools when combined, enabling the estimation of model performance on a combination of multiple data pools without ever jointly training on them. Our key message is that data curation cannot be agnostic of the total compute that a model will be trained for. Our scaling laws allow us to curate the best possible pool for achieving top performance on Datacomp at various compute budgets, carving out a pareto-frontier for data curation. Code is available at https://github.com/locuslab/scaling_laws_data_filtering.
Optimally Weighted Ensembles of Regression Models: Exact Weight Optimization and Applications
Automated model selection is often proposed to users to choose which machine learning model (or method) to apply to a given regression task. In this paper, we show that combining different regression models can yield better results than selecting a single ('best') regression model, and outline an efficient method that obtains optimally weighted convex linear combination from a heterogeneous set of regression models. More specifically, in this paper, a heuristic weight optimization, used in a preceding conference paper, is replaced by an exact optimization algorithm using convex quadratic programming. We prove convexity of the quadratic programming formulation for the straightforward formulation and for a formulation with weighted data points. The novel weight optimization is not only (more) exact but also more efficient. The methods we develop in this paper are implemented and made available via github-open source. They can be executed on commonly available hardware and offer a transparent and easy to interpret interface. The results indicate that the approach outperforms model selection methods on a range of data sets, including data sets with mixed variable type from drug discovery applications.
Towards Understanding Generalization of Macro-AUC in Multi-label Learning
Macro-AUC is the arithmetic mean of the class-wise AUCs in multi-label learning and is commonly used in practice. However, its theoretical understanding is far lacking. Toward solving it, we characterize the generalization properties of various learning algorithms based on the corresponding surrogate losses w.r.t. Macro-AUC. We theoretically identify a critical factor of the dataset affecting the generalization bounds: the label-wise class imbalance. Our results on the imbalance-aware error bounds show that the widely-used univariate loss-based algorithm is more sensitive to the label-wise class imbalance than the proposed pairwise and reweighted loss-based ones, which probably implies its worse performance. Moreover, empirical results on various datasets corroborate our theory findings. To establish it, technically, we propose a new (and more general) McDiarmid-type concentration inequality, which may be of independent interest.
The Power of Few: Accelerating and Enhancing Data Reweighting with Coreset Selection
As machine learning tasks continue to evolve, the trend has been to gather larger datasets and train increasingly larger models. While this has led to advancements in accuracy, it has also escalated computational costs to unsustainable levels. Addressing this, our work aims to strike a delicate balance between computational efficiency and model accuracy, a persisting challenge in the field. We introduce a novel method that employs core subset selection for reweighting, effectively optimizing both computational time and model performance. By focusing on a strategically selected coreset, our approach offers a robust representation, as it efficiently minimizes the influence of outliers. The re-calibrated weights are then mapped back to and propagated across the entire dataset. Our experimental results substantiate the effectiveness of this approach, underscoring its potential as a scalable and precise solution for model training.
Training Unbiased Diffusion Models From Biased Dataset
With significant advancements in diffusion models, addressing the potential risks of dataset bias becomes increasingly important. Since generated outputs directly suffer from dataset bias, mitigating latent bias becomes a key factor in improving sample quality and proportion. This paper proposes time-dependent importance reweighting to mitigate the bias for the diffusion models. We demonstrate that the time-dependent density ratio becomes more precise than previous approaches, thereby minimizing error propagation in generative learning. While directly applying it to score-matching is intractable, we discover that using the time-dependent density ratio both for reweighting and score correction can lead to a tractable form of the objective function to regenerate the unbiased data density. Furthermore, we theoretically establish a connection with traditional score-matching, and we demonstrate its convergence to an unbiased distribution. The experimental evidence supports the usefulness of the proposed method, which outperforms baselines including time-independent importance reweighting on CIFAR-10, CIFAR-100, FFHQ, and CelebA with various bias settings. Our code is available at https://github.com/alsdudrla10/TIW-DSM.
Approximation Algorithms for Fair Range Clustering
This paper studies the fair range clustering problem in which the data points are from different demographic groups and the goal is to pick k centers with the minimum clustering cost such that each group is at least minimally represented in the centers set and no group dominates the centers set. More precisely, given a set of n points in a metric space (P,d) where each point belongs to one of the ell different demographics (i.e., P = P_1 uplus P_2 uplus cdots uplus P_ell) and a set of ell intervals [alpha_1, beta_1], cdots, [alpha_ell, beta_ell] on desired number of centers from each group, the goal is to pick a set of k centers C with minimum ell_p-clustering cost (i.e., (sum_{vin P} d(v,C)^p)^{1/p}) such that for each group iin ell, |Ccap P_i| in [alpha_i, beta_i]. In particular, the fair range ell_p-clustering captures fair range k-center, k-median and k-means as its special cases. In this work, we provide efficient constant factor approximation algorithms for fair range ell_p-clustering for all values of pin [1,infty).
On Model Stability as a Function of Random Seed
In this paper, we focus on quantifying model stability as a function of random seed by investigating the effects of the induced randomness on model performance and the robustness of the model in general. We specifically perform a controlled study on the effect of random seeds on the behaviour of attention, gradient-based and surrogate model based (LIME) interpretations. Our analysis suggests that random seeds can adversely affect the consistency of models resulting in counterfactual interpretations. We propose a technique called Aggressive Stochastic Weight Averaging (ASWA)and an extension called Norm-filtered Aggressive Stochastic Weight Averaging (NASWA) which improves the stability of models over random seeds. With our ASWA and NASWA based optimization, we are able to improve the robustness of the original model, on average reducing the standard deviation of the model's performance by 72%.
One-Nearest-Neighbor Search is All You Need for Minimax Optimal Regression and Classification
Recently, Qiao, Duan, and Cheng~(2019) proposed a distributed nearest-neighbor classification method, in which a massive dataset is split into smaller groups, each processed with a k-nearest-neighbor classifier, and the final class label is predicted by a majority vote among these groupwise class labels. This paper shows that the distributed algorithm with k=1 over a sufficiently large number of groups attains a minimax optimal error rate up to a multiplicative logarithmic factor under some regularity conditions, for both regression and classification problems. Roughly speaking, distributed 1-nearest-neighbor rules with M groups has a performance comparable to standard Theta(M)-nearest-neighbor rules. In the analysis, alternative rules with a refined aggregation method are proposed and shown to attain exact minimax optimal rates.
Decoupling Representation and Classifier for Long-Tailed Recognition
The long-tail distribution of the visual world poses great challenges for deep learning based classification models on how to handle the class imbalance problem. Existing solutions usually involve class-balancing strategies, e.g., by loss re-weighting, data re-sampling, or transfer learning from head- to tail-classes, but most of them adhere to the scheme of jointly learning representations and classifiers. In this work, we decouple the learning procedure into representation learning and classification, and systematically explore how different balancing strategies affect them for long-tailed recognition. The findings are surprising: (1) data imbalance might not be an issue in learning high-quality representations; (2) with representations learned with the simplest instance-balanced (natural) sampling, it is also possible to achieve strong long-tailed recognition ability by adjusting only the classifier. We conduct extensive experiments and set new state-of-the-art performance on common long-tailed benchmarks like ImageNet-LT, Places-LT and iNaturalist, showing that it is possible to outperform carefully designed losses, sampling strategies, even complex modules with memory, by using a straightforward approach that decouples representation and classification. Our code is available at https://github.com/facebookresearch/classifier-balancing.
Large Language Model (LLM) Bias Index -- LLMBI
The Large Language Model Bias Index (LLMBI) is a pioneering approach designed to quantify and address biases inherent in large language models (LLMs), such as GPT-4. We recognise the increasing prevalence and impact of LLMs across diverse sectors. This research introduces a novel metric, LLMBI, to systematically measure and mitigate biases potentially skewing model responses. We formulated LLMBI using a composite scoring system incorporating multiple dimensions of bias, including but not limited to age, gender, and racial biases. To operationalise this metric, we engaged in a multi-step process involving collecting and annotating LLM responses, applying sophisticated Natural Language Processing (NLP) techniques for bias detection, and computing the LLMBI score through a specially crafted mathematical formula. The formula integrates weighted averages of various bias dimensions, a penalty for dataset diversity deficiencies, and a correction for sentiment biases. Our empirical analysis, conducted using responses from OpenAI's API, employs advanced sentiment analysis as a representative method for bias detection. The research reveals LLMs, whilst demonstrating impressive capabilities in text generation, exhibit varying degrees of bias across different dimensions. LLMBI provides a quantifiable measure to compare biases across models and over time, offering a vital tool for systems engineers, researchers and regulators in enhancing the fairness and reliability of LLMs. It highlights the potential of LLMs in mimicking unbiased human-like responses. Additionally, it underscores the necessity of continuously monitoring and recalibrating such models to align with evolving societal norms and ethical standards.
Monotone deep Boltzmann machines
Deep Boltzmann machines (DBMs), one of the first ``deep'' learning methods ever studied, are multi-layered probabilistic models governed by a pairwise energy function that describes the likelihood of all variables/nodes in the network. In practice, DBMs are often constrained, i.e., via the restricted Boltzmann machine (RBM) architecture (which does not permit intra-layer connections), in order to allow for more efficient inference. In this work, we revisit the generic DBM approach, and ask the question: are there other possible restrictions to their design that would enable efficient (approximate) inference? In particular, we develop a new class of restricted model, the monotone DBM, which allows for arbitrary self-connection in each layer, but restricts the weights in a manner that guarantees the existence and global uniqueness of a mean-field fixed point. To do this, we leverage tools from the recently-proposed monotone Deep Equilibrium model and show that a particular choice of activation results in a fixed-point iteration that gives a variational mean-field solution. While this approach is still largely conceptual, it is the first architecture that allows for efficient approximate inference in fully-general weight structures for DBMs. We apply this approach to simple deep convolutional Boltzmann architectures and demonstrate that it allows for tasks such as the joint completion and classification of images, within a single deep probabilistic setting, while avoiding the pitfalls of mean-field inference in traditional RBMs.
Maximum Likelihood Estimation is All You Need for Well-Specified Covariate Shift
A key challenge of modern machine learning systems is to achieve Out-of-Distribution (OOD) generalization -- generalizing to target data whose distribution differs from that of source data. Despite its significant importance, the fundamental question of ``what are the most effective algorithms for OOD generalization'' remains open even under the standard setting of covariate shift. This paper addresses this fundamental question by proving that, surprisingly, classical Maximum Likelihood Estimation (MLE) purely using source data (without any modification) achieves the minimax optimality for covariate shift under the well-specified setting. That is, no algorithm performs better than MLE in this setting (up to a constant factor), justifying MLE is all you need. Our result holds for a very rich class of parametric models, and does not require any boundedness condition on the density ratio. We illustrate the wide applicability of our framework by instantiating it to three concrete examples -- linear regression, logistic regression, and phase retrieval. This paper further complement the study by proving that, under the misspecified setting, MLE is no longer the optimal choice, whereas Maximum Weighted Likelihood Estimator (MWLE) emerges as minimax optimal in certain scenarios.
Dynamic Loss-Based Sample Reweighting for Improved Large Language Model Pretraining
Pretraining large language models (LLMs) on vast and heterogeneous datasets is crucial for achieving state-of-the-art performance across diverse downstream tasks. However, current training paradigms treat all samples equally, overlooking the importance or relevance of individual samples throughout the training process. Existing reweighting strategies, which primarily focus on group-level data importance, fail to leverage fine-grained instance-level information and do not adapt dynamically to individual sample importance as training progresses. In this paper, we introduce novel algorithms for dynamic, instance-level data reweighting aimed at improving both the efficiency and effectiveness of LLM pretraining. Our methods adjust the weight of each training sample based on its loss value in an online fashion, allowing the model to dynamically focus on more informative or important samples at the current training stage. In particular, our framework allows us to systematically devise reweighting strategies deprioritizing redundant or uninformative data, which we find tend to work best. Furthermore, we develop a new theoretical framework for analyzing the impact of loss-based reweighting on the convergence of gradient-based optimization, providing the first formal characterization of how these strategies affect convergence bounds. We empirically validate our approach across a spectrum of tasks, from pretraining 7B and 1.4B parameter LLMs to smaller-scale language models and linear regression problems, demonstrating that our loss-based reweighting approach can lead to faster convergence and significantly improved performance.
Approximate Stein Classes for Truncated Density Estimation
Estimating truncated density models is difficult, as these models have intractable normalising constants and hard to satisfy boundary conditions. Score matching can be adapted to solve the truncated density estimation problem, but requires a continuous weighting function which takes zero at the boundary and is positive elsewhere. Evaluation of such a weighting function (and its gradient) often requires a closed-form expression of the truncation boundary and finding a solution to a complicated optimisation problem. In this paper, we propose approximate Stein classes, which in turn leads to a relaxed Stein identity for truncated density estimation. We develop a novel discrepancy measure, truncated kernelised Stein discrepancy (TKSD), which does not require fixing a weighting function in advance, and can be evaluated using only samples on the boundary. We estimate a truncated density model by minimising the Lagrangian dual of TKSD. Finally, experiments show the accuracy of our method to be an improvement over previous works even without the explicit functional form of the boundary.
Weight Normalization: A Simple Reparameterization to Accelerate Training of Deep Neural Networks
We present weight normalization: a reparameterization of the weight vectors in a neural network that decouples the length of those weight vectors from their direction. By reparameterizing the weights in this way we improve the conditioning of the optimization problem and we speed up convergence of stochastic gradient descent. Our reparameterization is inspired by batch normalization but does not introduce any dependencies between the examples in a minibatch. This means that our method can also be applied successfully to recurrent models such as LSTMs and to noise-sensitive applications such as deep reinforcement learning or generative models, for which batch normalization is less well suited. Although our method is much simpler, it still provides much of the speed-up of full batch normalization. In addition, the computational overhead of our method is lower, permitting more optimization steps to be taken in the same amount of time. We demonstrate the usefulness of our method on applications in supervised image recognition, generative modelling, and deep reinforcement learning.
Personalized Federated Learning under Mixture of Distributions
The recent trend towards Personalized Federated Learning (PFL) has garnered significant attention as it allows for the training of models that are tailored to each client while maintaining data privacy. However, current PFL techniques primarily focus on modeling the conditional distribution heterogeneity (i.e. concept shift), which can result in suboptimal performance when the distribution of input data across clients diverges (i.e. covariate shift). Additionally, these techniques often lack the ability to adapt to unseen data, further limiting their effectiveness in real-world scenarios. To address these limitations, we propose a novel approach, FedGMM, which utilizes Gaussian mixture models (GMM) to effectively fit the input data distributions across diverse clients. The model parameters are estimated by maximum likelihood estimation utilizing a federated Expectation-Maximization algorithm, which is solved in closed form and does not assume gradient similarity. Furthermore, FedGMM possesses an additional advantage of adapting to new clients with minimal overhead, and it also enables uncertainty quantification. Empirical evaluations on synthetic and benchmark datasets demonstrate the superior performance of our method in both PFL classification and novel sample detection.
Estimation Beyond Data Reweighting: Kernel Method of Moments
Moment restrictions and their conditional counterparts emerge in many areas of machine learning and statistics ranging from causal inference to reinforcement learning. Estimators for these tasks, generally called methods of moments, include the prominent generalized method of moments (GMM) which has recently gained attention in causal inference. GMM is a special case of the broader family of empirical likelihood estimators which are based on approximating a population distribution by means of minimizing a varphi-divergence to an empirical distribution. However, the use of varphi-divergences effectively limits the candidate distributions to reweightings of the data samples. We lift this long-standing limitation and provide a method of moments that goes beyond data reweighting. This is achieved by defining an empirical likelihood estimator based on maximum mean discrepancy which we term the kernel method of moments (KMM). We provide a variant of our estimator for conditional moment restrictions and show that it is asymptotically first-order optimal for such problems. Finally, we show that our method achieves competitive performance on several conditional moment restriction tasks.
Initializing Models with Larger Ones
Weight initialization plays an important role in neural network training. Widely used initialization methods are proposed and evaluated for networks that are trained from scratch. However, the growing number of pretrained models now offers new opportunities for tackling this classical problem of weight initialization. In this work, we introduce weight selection, a method for initializing smaller models by selecting a subset of weights from a pretrained larger model. This enables the transfer of knowledge from pretrained weights to smaller models. Our experiments demonstrate that weight selection can significantly enhance the performance of small models and reduce their training time. Notably, it can also be used together with knowledge distillation. Weight selection offers a new approach to leverage the power of pretrained models in resource-constrained settings, and we hope it can be a useful tool for training small models in the large-model era. Code is available at https://github.com/OscarXZQ/weight-selection.
Analysis of Linear Mode Connectivity via Permutation-Based Weight Matching
Recently, Ainsworth et al. showed that using weight matching (WM) to minimize the L_2 distance in a permutation search of model parameters effectively identifies permutations that satisfy linear mode connectivity (LMC), in which the loss along a linear path between two independently trained models with different seeds remains nearly constant. This paper provides a theoretical analysis of LMC using WM, which is crucial for understanding stochastic gradient descent's effectiveness and its application in areas like model merging. We first experimentally and theoretically show that permutations found by WM do not significantly reduce the L_2 distance between two models and the occurrence of LMC is not merely due to distance reduction by WM in itself. We then provide theoretical insights showing that permutations can change the directions of the singular vectors, but not the singular values, of the weight matrices in each layer. This finding shows that permutations found by WM mainly align the directions of singular vectors associated with large singular values across models. This alignment brings the singular vectors with large singular values, which determine the model functionality, closer between pre-merged and post-merged models, so that the post-merged model retains functionality similar to the pre-merged models, making it easy to satisfy LMC. Finally, we analyze the difference between WM and straight-through estimator (STE), a dataset-dependent permutation search method, and show that WM outperforms STE, especially when merging three or more models.
Fairness in Streaming Submodular Maximization over a Matroid Constraint
Streaming submodular maximization is a natural model for the task of selecting a representative subset from a large-scale dataset. If datapoints have sensitive attributes such as gender or race, it becomes important to enforce fairness to avoid bias and discrimination. This has spurred significant interest in developing fair machine learning algorithms. Recently, such algorithms have been developed for monotone submodular maximization under a cardinality constraint. In this paper, we study the natural generalization of this problem to a matroid constraint. We give streaming algorithms as well as impossibility results that provide trade-offs between efficiency, quality and fairness. We validate our findings empirically on a range of well-known real-world applications: exemplar-based clustering, movie recommendation, and maximum coverage in social networks.
Deeper Insights into Weight Sharing in Neural Architecture Search
With the success of deep neural networks, Neural Architecture Search (NAS) as a way of automatic model design has attracted wide attention. As training every child model from scratch is very time-consuming, recent works leverage weight-sharing to speed up the model evaluation procedure. These approaches greatly reduce computation by maintaining a single copy of weights on the super-net and share the weights among every child model. However, weight-sharing has no theoretical guarantee and its impact has not been well studied before. In this paper, we conduct comprehensive experiments to reveal the impact of weight-sharing: (1) The best-performing models from different runs or even from consecutive epochs within the same run have significant variance; (2) Even with high variance, we can extract valuable information from training the super-net with shared weights; (3) The interference between child models is a main factor that induces high variance; (4) Properly reducing the degree of weight sharing could effectively reduce variance and improve performance.
Neural Active Learning Beyond Bandits
We study both stream-based and pool-based active learning with neural network approximations. A recent line of works proposed bandit-based approaches that transformed active learning into a bandit problem, achieving both theoretical and empirical success. However, the performance and computational costs of these methods may be susceptible to the number of classes, denoted as K, due to this transformation. Therefore, this paper seeks to answer the question: "How can we mitigate the adverse impacts of K while retaining the advantages of principled exploration and provable performance guarantees in active learning?" To tackle this challenge, we propose two algorithms based on the newly designed exploitation and exploration neural networks for stream-based and pool-based active learning. Subsequently, we provide theoretical performance guarantees for both algorithms in a non-parametric setting, demonstrating a slower error-growth rate concerning K for the proposed approaches. We use extensive experiments to evaluate the proposed algorithms, which consistently outperform state-of-the-art baselines.
KaLM-Embedding-V2: Superior Training Techniques and Data Inspire A Versatile Embedding Model
In this paper, we propose KaLM-Embedding-V2, a versatile and compact embedding model, which achieves impressive performance in general-purpose text embedding tasks by leveraging superior training techniques and data. Our key innovations include: (1) To better align the architecture with representation learning, we remove the causal attention mask and adopt a fully bidirectional transformer with simple yet effective mean-pooling to produce fixed-length embeddings; (2) We employ a multi-stage training pipeline: (i) pre-training on large-scale weakly supervised open-source corpora; (ii) fine-tuning on high-quality retrieval and non-retrieval datasets; and (iii) model-soup parameter averaging for robust generalization. Besides, we introduce a focal-style reweighting mechanism that concentrates learning on difficult samples and an online hard-negative mixing strategy to continuously enrich hard negatives without expensive offline mining; (3) We collect over 20 categories of data for pre-training and 100 categories of data for fine-tuning, to boost both the performance and generalization of the embedding model. Extensive evaluations on the Massive Text Embedding Benchmark (MTEB) Chinese and English show that our model significantly outperforms others of comparable size, and competes with 3x, 14x, 18x, and 26x larger embedding models, setting a new standard for a versatile and compact embedding model with less than 1B parameters.
SPLADE v2: Sparse Lexical and Expansion Model for Information Retrieval
In neural Information Retrieval (IR), ongoing research is directed towards improving the first retriever in ranking pipelines. Learning dense embeddings to conduct retrieval using efficient approximate nearest neighbors methods has proven to work well. Meanwhile, there has been a growing interest in learning sparse representations for documents and queries, that could inherit from the desirable properties of bag-of-words models such as the exact matching of terms and the efficiency of inverted indexes. Introduced recently, the SPLADE model provides highly sparse representations and competitive results with respect to state-of-the-art dense and sparse approaches. In this paper, we build on SPLADE and propose several significant improvements in terms of effectiveness and/or efficiency. More specifically, we modify the pooling mechanism, benchmark a model solely based on document expansion, and introduce models trained with distillation. We also report results on the BEIR benchmark. Overall, SPLADE is considerably improved with more than 9\% gains on NDCG@10 on TREC DL 2019, leading to state-of-the-art results on the BEIR benchmark.
Spurious Feature Diversification Improves Out-of-distribution Generalization
Generalization to out-of-distribution (OOD) data is a critical challenge in machine learning. Ensemble-based methods, like weight space ensembles that interpolate model parameters, have been shown to achieve superior OOD performance. However, the underlying mechanism for their effectiveness remains unclear. In this study, we closely examine WiSE-FT, a popular weight space ensemble method that interpolates between a pre-trained and a fine-tuned model. We observe an unexpected phenomenon, in which WiSE-FT successfully corrects many cases where each individual model makes incorrect predictions, which contributes significantly to its OOD effectiveness. To gain further insights, we conduct theoretical analysis in a multi-class setting with a large number of spurious features. Our analysis predicts the above phenomenon and it further shows that ensemble-based models reduce prediction errors in the OOD settings by utilizing a more diverse set of spurious features. Contrary to the conventional wisdom that focuses on learning invariant features for better OOD performance, our findings suggest that incorporating a large number of diverse spurious features weakens their individual contributions, leading to improved overall OOD generalization performance. Empirically we demonstrate the effectiveness of utilizing diverse spurious features on a MultiColorMNIST dataset, and our experimental results are consistent with the theoretical analysis. Building upon the new theoretical insights into the efficacy of ensemble methods, we further identify an issue of WiSE-FT caused by the overconfidence of fine-tuned models in OOD situations. This overconfidence magnifies the fine-tuned model's incorrect prediction, leading to deteriorated OOD ensemble performance. To remedy this problem, we propose a novel method called BAlaNced averaGing (BANG), which significantly enhances the OOD performance of WiSE-FT.
Robust Consensus in Ranking Data Analysis: Definitions, Properties and Computational Issues
As the issue of robustness in AI systems becomes vital, statistical learning techniques that are reliable even in presence of partly contaminated data have to be developed. Preference data, in the form of (complete) rankings in the simplest situations, are no exception and the demand for appropriate concepts and tools is all the more pressing given that technologies fed by or producing this type of data (e.g. search engines, recommending systems) are now massively deployed. However, the lack of vector space structure for the set of rankings (i.e. the symmetric group S_n) and the complex nature of statistics considered in ranking data analysis make the formulation of robustness objectives in this domain challenging. In this paper, we introduce notions of robustness, together with dedicated statistical methods, for Consensus Ranking the flagship problem in ranking data analysis, aiming at summarizing a probability distribution on S_n by a median ranking. Precisely, we propose specific extensions of the popular concept of breakdown point, tailored to consensus ranking, and address the related computational issues. Beyond the theoretical contributions, the relevance of the approach proposed is supported by an experimental study.
Learning to Pool in Graph Neural Networks for Extrapolation
Graph neural networks (GNNs) are one of the most popular approaches to using deep learning on graph-structured data, and they have shown state-of-the-art performances on a variety of tasks. However, according to a recent study, a careful choice of pooling functions, which are used for the aggregation and readout operations in GNNs, is crucial for enabling GNNs to extrapolate. Without proper choices of pooling functions, which varies across tasks, GNNs completely fail to generalize to out-of-distribution data, while the number of possible choices grows exponentially with the number of layers. In this paper, we present GNP, a L^p norm-like pooling function that is trainable end-to-end for any given task. Notably, GNP generalizes most of the widely-used pooling functions. We verify experimentally that simply using GNP for every aggregation and readout operation enables GNNs to extrapolate well on many node-level, graph-level, and set-related tasks; and GNP sometimes performs even better than the best-performing choices among existing pooling functions.
Hypers at ComMA@ICON: Modelling Aggressiveness, Gender Bias and Communal Bias Identification
Due to the exponentially increasing reach of social media, it is essential to focus on its negative aspects as it can potentially divide society and incite people into violence. In this paper, we present our system description of work on the shared task ComMA@ICON, where we have to classify how aggressive the sentence is and if the sentence is gender-biased or communal biased. These three could be the primary reasons to cause significant problems in society. As team Hypers we have proposed an approach that utilizes different pretrained models with Attention and mean pooling methods. We were able to get Rank 3 with 0.223 Instance F1 score on Bengali, Rank 2 with 0.322 Instance F1 score on Multi-lingual set, Rank 4 with 0.129 Instance F1 score on Meitei and Rank 5 with 0.336 Instance F1 score on Hindi. The source code and the pretrained models of this work can be found here.
Theoretical analysis and computation of the sample Frechet mean for sets of large graphs based on spectral information
To characterize the location (mean, median) of a set of graphs, one needs a notion of centrality that is adapted to metric spaces, since graph sets are not Euclidean spaces. A standard approach is to consider the Frechet mean. In this work, we equip a set of graphs with the pseudometric defined by the norm between the eigenvalues of their respective adjacency matrix. Unlike the edit distance, this pseudometric reveals structural changes at multiple scales, and is well adapted to studying various statistical problems for graph-valued data. We describe an algorithm to compute an approximation to the sample Frechet mean of a set of undirected unweighted graphs with a fixed size using this pseudometric.
Balanced Mixture of SuperNets for Learning the CNN Pooling Architecture
Downsampling layers, including pooling and strided convolutions, are crucial components of the convolutional neural network architecture that determine both the granularity/scale of image feature analysis as well as the receptive field size of a given layer. To fully understand this problem, we analyse the performance of models independently trained with each pooling configurations on CIFAR10, using a ResNet20 network, and show that the position of the downsampling layers can highly influence the performance of a network and predefined downsampling configurations are not optimal. Network Architecture Search (NAS) might be used to optimize downsampling configurations as an hyperparameter. However, we find that common one-shot NAS based on a single SuperNet does not work for this problem. We argue that this is because a SuperNet trained for finding the optimal pooling configuration fully shares its parameters among all pooling configurations. This makes its training hard, because learning some configurations can harm the performance of others. Therefore, we propose a balanced mixture of SuperNets that automatically associates pooling configurations to different weight models and helps to reduce the weight-sharing and inter-influence of pooling configurations on the SuperNet parameters. We evaluate our proposed approach on CIFAR10, CIFAR100, as well as Food101 and show that in all cases, our model outperforms other approaches and improves over the default pooling configurations.
Nemotron-CC: Transforming Common Crawl into a Refined Long-Horizon Pretraining Dataset
Recent English Common Crawl datasets like FineWeb-Edu and DCLM achieved significant benchmark gains via aggressive model-based filtering, but at the cost of removing 90% of data. This limits their suitability for long token horizon training, such as 15T tokens for Llama 3.1. In this paper, we show how to achieve better trade-offs between accuracy and data quantity by a combination of classifier ensembling, synthetic data rephrasing, and reduced reliance on heuristic filters. When training 8B parameter models for 1T tokens, using a high-quality subset of our data improves MMLU by 5.6 over DCLM, demonstrating the efficacy of our methods for boosting accuracies over a relatively short token horizon. Furthermore, our full 6.3T token dataset matches DCLM on MMLU, but contains four times more unique real tokens than DCLM. This unlocks state-of-the-art training over a long token horizon: an 8B parameter model trained for 15T tokens, of which 7.2T came from our dataset, is better than the Llama 3.1 8B model: +5 on MMLU, +3.1 on ARC-Challenge, and +0.5 on average across ten diverse tasks. The dataset is available at https://data.commoncrawl.org/contrib/Nemotron/Nemotron-CC/index.html
Efficient Algorithms for Generalized Linear Bandits with Heavy-tailed Rewards
This paper investigates the problem of generalized linear bandits with heavy-tailed rewards, whose (1+epsilon)-th moment is bounded for some epsilonin (0,1]. Although there exist methods for generalized linear bandits, most of them focus on bounded or sub-Gaussian rewards and are not well-suited for many real-world scenarios, such as financial markets and web-advertising. To address this issue, we propose two novel algorithms based on truncation and mean of medians. These algorithms achieve an almost optimal regret bound of O(dT^{1{1+epsilon}}), where d is the dimension of contextual information and T is the time horizon. Our truncation-based algorithm supports online learning, distinguishing it from existing truncation-based approaches. Additionally, our mean-of-medians-based algorithm requires only O(log T) rewards and one estimator per epoch, making it more practical. Moreover, our algorithms improve the regret bounds by a logarithmic factor compared to existing algorithms when epsilon=1. Numerical experimental results confirm the merits of our algorithms.
Biomedical Document Clustering and Visualization based on the Concepts of Diseases
Document clustering is a text mining technique used to provide better document search and browsing in digital libraries or online corpora. A lot of research has been done on biomedical document clustering that is based on using existing ontology. But, associations and co-occurrences of the medical concepts are not well represented by using ontology. In this research, a vector representation of concepts of diseases and similarity measurement between concepts are proposed. They identify the closest concepts of diseases in the context of a corpus. Each document is represented by using the vector space model. A weight scheme is proposed to consider both local content and associations between concepts. A Self-Organizing Map is used as document clustering algorithm. The vector projection and visualization features of SOM enable visualization and analysis of the clusters distributions and relationships on the two dimensional space. The experimental results show that the proposed document clustering framework generates meaningful clusters and facilitate visualization of the clusters based on the concepts of diseases.
Improved Policy Evaluation for Randomized Trials of Algorithmic Resource Allocation
We consider the task of evaluating policies of algorithmic resource allocation through randomized controlled trials (RCTs). Such policies are tasked with optimizing the utilization of limited intervention resources, with the goal of maximizing the benefits derived. Evaluation of such allocation policies through RCTs proves difficult, notwithstanding the scale of the trial, because the individuals' outcomes are inextricably interlinked through resource constraints controlling the policy decisions. Our key contribution is to present a new estimator leveraging our proposed novel concept, that involves retrospective reshuffling of participants across experimental arms at the end of an RCT. We identify conditions under which such reassignments are permissible and can be leveraged to construct counterfactual trials, whose outcomes can be accurately ascertained, for free. We prove theoretically that such an estimator is more accurate than common estimators based on sample means -- we show that it returns an unbiased estimate and simultaneously reduces variance. We demonstrate the value of our approach through empirical experiments on synthetic, semi-synthetic as well as real case study data and show improved estimation accuracy across the board.
Machine Learning with Multitype Protected Attributes: Intersectional Fairness through Regularisation
Ensuring equitable treatment (fairness) across protected attributes (such as gender or ethnicity) is a critical issue in machine learning. Most existing literature focuses on binary classification, but achieving fairness in regression tasks-such as insurance pricing or hiring score assessments-is equally important. Moreover, anti-discrimination laws also apply to continuous attributes, such as age, for which many existing methods are not applicable. In practice, multiple protected attributes can exist simultaneously; however, methods targeting fairness across several attributes often overlook so-called "fairness gerrymandering", thereby ignoring disparities among intersectional subgroups (e.g., African-American women or Hispanic men). In this paper, we propose a distance covariance regularisation framework that mitigates the association between model predictions and protected attributes, in line with the fairness definition of demographic parity, and that captures both linear and nonlinear dependencies. To enhance applicability in the presence of multiple protected attributes, we extend our framework by incorporating two multivariate dependence measures based on distance covariance: the previously proposed joint distance covariance (JdCov) and our novel concatenated distance covariance (CCdCov), which effectively address fairness gerrymandering in both regression and classification tasks involving protected attributes of various types. We discuss and illustrate how to calibrate regularisation strength, including a method based on Jensen-Shannon divergence, which quantifies dissimilarities in prediction distributions across groups. We apply our framework to the COMPAS recidivism dataset and a large motor insurance claims dataset.
BRIO: Bringing Order to Abstractive Summarization
Abstractive summarization models are commonly trained using maximum likelihood estimation, which assumes a deterministic (one-point) target distribution in which an ideal model will assign all the probability mass to the reference summary. This assumption may lead to performance degradation during inference, where the model needs to compare several system-generated (candidate) summaries that have deviated from the reference summary. To address this problem, we propose a novel training paradigm which assumes a non-deterministic distribution so that different candidate summaries are assigned probability mass according to their quality. Our method achieves a new state-of-the-art result on the CNN/DailyMail (47.78 ROUGE-1) and XSum (49.07 ROUGE-1) datasets. Further analysis also shows that our model can estimate probabilities of candidate summaries that are more correlated with their level of quality.
True to the Model or True to the Data?
A variety of recent papers discuss the application of Shapley values, a concept for explaining coalitional games, for feature attribution in machine learning. However, the correct way to connect a machine learning model to a coalitional game has been a source of controversy. The two main approaches that have been proposed differ in the way that they condition on known features, using either (1) an interventional or (2) an observational conditional expectation. While previous work has argued that one of the two approaches is preferable in general, we argue that the choice is application dependent. Furthermore, we argue that the choice comes down to whether it is desirable to be true to the model or true to the data. We use linear models to investigate this choice. After deriving an efficient method for calculating observational conditional expectation Shapley values for linear models, we investigate how correlation in simulated data impacts the convergence of observational conditional expectation Shapley values. Finally, we present two real data examples that we consider to be representative of possible use cases for feature attribution -- (1) credit risk modeling and (2) biological discovery. We show how a different choice of value function performs better in each scenario, and how possible attributions are impacted by modeling choices.
Investigating Multi-layer Representations for Dense Passage Retrieval
Dense retrieval models usually adopt vectors from the last hidden layer of the document encoder to represent a document, which is in contrast to the fact that representations in different layers of a pre-trained language model usually contain different kinds of linguistic knowledge, and behave differently during fine-tuning. Therefore, we propose to investigate utilizing representations from multiple encoder layers to make up the representation of a document, which we denote Multi-layer Representations (MLR). We first investigate how representations in different layers affect MLR's performance under the multi-vector retrieval setting, and then propose to leverage pooling strategies to reduce multi-vector models to single-vector ones to improve retrieval efficiency. Experiments demonstrate the effectiveness of MLR over dual encoder, ME-BERT and ColBERT in the single-vector retrieval setting, as well as demonstrate that it works well with other advanced training techniques such as retrieval-oriented pre-training and hard negative mining.
DeepLearningBrasil@LT-EDI-2023: Exploring Deep Learning Techniques for Detecting Depression in Social Media Text
In this paper, we delineate the strategy employed by our team, DeepLearningBrasil, which secured us the first place in the shared task DepSign-LT-EDI@RANLP-2023, achieving a 47.0% Macro F1-Score and a notable 2.4% advantage. The task was to classify social media texts into three distinct levels of depression - "not depressed," "moderately depressed," and "severely depressed." Leveraging the power of the RoBERTa and DeBERTa models, we further pre-trained them on a collected Reddit dataset, specifically curated from mental health-related Reddit's communities (Subreddits), leading to an enhanced understanding of nuanced mental health discourse. To address lengthy textual data, we used truncation techniques that retained the essence of the content by focusing on its beginnings and endings. Our model was robust against unbalanced data by incorporating sample weights into the loss. Cross-validation and ensemble techniques were then employed to combine our k-fold trained models, delivering an optimal solution. The accompanying code is made available for transparency and further development.
DivClust: Controlling Diversity in Deep Clustering
Clustering has been a major research topic in the field of machine learning, one to which Deep Learning has recently been applied with significant success. However, an aspect of clustering that is not addressed by existing deep clustering methods, is that of efficiently producing multiple, diverse partitionings for a given dataset. This is particularly important, as a diverse set of base clusterings are necessary for consensus clustering, which has been found to produce better and more robust results than relying on a single clustering. To address this gap, we propose DivClust, a diversity controlling loss that can be incorporated into existing deep clustering frameworks to produce multiple clusterings with the desired degree of diversity. We conduct experiments with multiple datasets and deep clustering frameworks and show that: a) our method effectively controls diversity across frameworks and datasets with very small additional computational cost, b) the sets of clusterings learned by DivClust include solutions that significantly outperform single-clustering baselines, and c) using an off-the-shelf consensus clustering algorithm, DivClust produces consensus clustering solutions that consistently outperform single-clustering baselines, effectively improving the performance of the base deep clustering framework.
CROWDLAB: Supervised learning to infer consensus labels and quality scores for data with multiple annotators
Real-world data for classification is often labeled by multiple annotators. For analyzing such data, we introduce CROWDLAB, a straightforward approach to utilize any trained classifier to estimate: (1) A consensus label for each example that aggregates the available annotations; (2) A confidence score for how likely each consensus label is correct; (3) A rating for each annotator quantifying the overall correctness of their labels. Existing algorithms to estimate related quantities in crowdsourcing often rely on sophisticated generative models with iterative inference. CROWDLAB instead uses a straightforward weighted ensemble. Existing algorithms often rely solely on annotator statistics, ignoring the features of the examples from which the annotations derive. CROWDLAB utilizes any classifier model trained on these features, and can thus better generalize between examples with similar features. On real-world multi-annotator image data, our proposed method provides superior estimates for (1)-(3) than existing algorithms like Dawid-Skene/GLAD.
Demons in the Detail: On Implementing Load Balancing Loss for Training Specialized Mixture-of-Expert Models
This paper revisits the implementation of Load-balancing Loss (LBL) when training Mixture-of-Experts (MoEs) models. Specifically, LBL for MoEs is defined as N_E sum_{i=1}^{N_E} f_i p_i, where N_E is the total number of experts, f_i represents the frequency of expert i being selected, and p_i denotes the average gating score of the expert i. Existing MoE training frameworks usually employ the parallel training strategy so that f_i and the LBL are calculated within a micro-batch and then averaged across parallel groups. In essence, a micro-batch for training billion-scale LLMs normally contains very few sequences. So, the micro-batch LBL is almost at the sequence level, and the router is pushed to distribute the token evenly within each sequence. Under this strict constraint, even tokens from a domain-specific sequence (e.g., code) are uniformly routed to all experts, thereby inhibiting expert specialization. In this work, we propose calculating LBL using a global-batch to loose this constraint. Because a global-batch contains much more diverse sequences than a micro-batch, which will encourage load balance at the corpus level. Specifically, we introduce an extra communication step to synchronize f_i across micro-batches and then use it to calculate the LBL. Through experiments on training MoEs-based LLMs (up to 42.8B total parameters and 400B tokens), we surprisingly find that the global-batch LBL strategy yields excellent performance gains in both pre-training perplexity and downstream tasks. Our analysis reveals that the global-batch LBL also greatly improves the domain specialization of MoE experts.
FedSWA: Improving Generalization in Federated Learning with Highly Heterogeneous Data via Momentum-Based Stochastic Controlled Weight Averaging
For federated learning (FL) algorithms such as FedSAM, their generalization capability is crucial for real-word applications. In this paper, we revisit the generalization problem in FL and investigate the impact of data heterogeneity on FL generalization. We find that FedSAM usually performs worse than FedAvg in the case of highly heterogeneous data, and thus propose a novel and effective federated learning algorithm with Stochastic Weight Averaging (called FedSWA), which aims to find flatter minima in the setting of highly heterogeneous data. Moreover, we introduce a new momentum-based stochastic controlled weight averaging FL algorithm (FedMoSWA), which is designed to better align local and global models. Theoretically, we provide both convergence analysis and generalization bounds for FedSWA and FedMoSWA. We also prove that the optimization and generalization errors of FedMoSWA are smaller than those of their counterparts, including FedSAM and its variants. Empirically, experimental results on CIFAR10/100 and Tiny ImageNet demonstrate the superiority of the proposed algorithms compared to their counterparts. Open source code at: https://github.com/junkangLiu0/FedSWA.
PA&DA: Jointly Sampling PAth and DAta for Consistent NAS
Based on the weight-sharing mechanism, one-shot NAS methods train a supernet and then inherit the pre-trained weights to evaluate sub-models, largely reducing the search cost. However, several works have pointed out that the shared weights suffer from different gradient descent directions during training. And we further find that large gradient variance occurs during supernet training, which degrades the supernet ranking consistency. To mitigate this issue, we propose to explicitly minimize the gradient variance of the supernet training by jointly optimizing the sampling distributions of PAth and DAta (PA&DA). We theoretically derive the relationship between the gradient variance and the sampling distributions, and reveal that the optimal sampling probability is proportional to the normalized gradient norm of path and training data. Hence, we use the normalized gradient norm as the importance indicator for path and training data, and adopt an importance sampling strategy for the supernet training. Our method only requires negligible computation cost for optimizing the sampling distributions of path and data, but achieves lower gradient variance during supernet training and better generalization performance for the supernet, resulting in a more consistent NAS. We conduct comprehensive comparisons with other improved approaches in various search spaces. Results show that our method surpasses others with more reliable ranking performance and higher accuracy of searched architectures, showing the effectiveness of our method. Code is available at https://github.com/ShunLu91/PA-DA.
Predictive Multiplicity in Probabilistic Classification
Machine learning models are often used to inform real world risk assessment tasks: predicting consumer default risk, predicting whether a person suffers from a serious illness, or predicting a person's risk to appear in court. Given multiple models that perform almost equally well for a prediction task, to what extent do predictions vary across these models? If predictions are relatively consistent for similar models, then the standard approach of choosing the model that optimizes a penalized loss suffices. But what if predictions vary significantly for similar models? In machine learning, this is referred to as predictive multiplicity i.e. the prevalence of conflicting predictions assigned by near-optimal competing models. In this paper, we present a framework for measuring predictive multiplicity in probabilistic classification (predicting the probability of a positive outcome). We introduce measures that capture the variation in risk estimates over the set of competing models, and develop optimization-based methods to compute these measures efficiently and reliably for convex empirical risk minimization problems. We demonstrate the incidence and prevalence of predictive multiplicity in real-world tasks. Further, we provide insight into how predictive multiplicity arises by analyzing the relationship between predictive multiplicity and data set characteristics (outliers, separability, and majority-minority structure). Our results emphasize the need to report predictive multiplicity more widely.
Universal Neural Functionals
A challenging problem in many modern machine learning tasks is to process weight-space features, i.e., to transform or extract information from the weights and gradients of a neural network. Recent works have developed promising weight-space models that are equivariant to the permutation symmetries of simple feedforward networks. However, they are not applicable to general architectures, since the permutation symmetries of a weight space can be complicated by recurrence or residual connections. This work proposes an algorithm that automatically constructs permutation equivariant models, which we refer to as universal neural functionals (UNFs), for any weight space. Among other applications, we demonstrate how UNFs can be substituted into existing learned optimizer designs, and find promising improvements over prior methods when optimizing small image classifiers and language models. Our results suggest that learned optimizers can benefit from considering the (symmetry) structure of the weight space they optimize. We open-source our library for constructing UNFs at https://github.com/AllanYangZhou/universal_neural_functional.
Escaping Saddle Points for Effective Generalization on Class-Imbalanced Data
Real-world datasets exhibit imbalances of varying types and degrees. Several techniques based on re-weighting and margin adjustment of loss are often used to enhance the performance of neural networks, particularly on minority classes. In this work, we analyze the class-imbalanced learning problem by examining the loss landscape of neural networks trained with re-weighting and margin-based techniques. Specifically, we examine the spectral density of Hessian of class-wise loss, through which we observe that the network weights converge to a saddle point in the loss landscapes of minority classes. Following this observation, we also find that optimization methods designed to escape from saddle points can be effectively used to improve generalization on minority classes. We further theoretically and empirically demonstrate that Sharpness-Aware Minimization (SAM), a recent technique that encourages convergence to a flat minima, can be effectively used to escape saddle points for minority classes. Using SAM results in a 6.2\% increase in accuracy on the minority classes over the state-of-the-art Vector Scaling Loss, leading to an overall average increase of 4\% across imbalanced datasets. The code is available at: https://github.com/val-iisc/Saddle-LongTail.
Theoretical Guarantees of Learning Ensembling Strategies with Applications to Time Series Forecasting
Ensembling is among the most popular tools in machine learning (ML) due to its effectiveness in minimizing variance and thus improving generalization. Most ensembling methods for black-box base learners fall under the umbrella of "stacked generalization," namely training an ML algorithm that takes the inferences from the base learners as input. While stacking has been widely applied in practice, its theoretical properties are poorly understood. In this paper, we prove a novel result, showing that choosing the best stacked generalization from a (finite or finite-dimensional) family of stacked generalizations based on cross-validated performance does not perform "much worse" than the oracle best. Our result strengthens and significantly extends the results in Van der Laan et al. (2007). Inspired by the theoretical analysis, we further propose a particular family of stacked generalizations in the context of probabilistic forecasting, each one with a different sensitivity for how much the ensemble weights are allowed to vary across items, timestamps in the forecast horizon, and quantiles. Experimental results demonstrate the performance gain of the proposed method.
Solving Token Gradient Conflict in Mixture-of-Experts for Large Vision-Language Model
The Mixture-of-Experts (MoE) has gained increasing attention in studying Large Vision-Language Models (LVLMs). It uses a sparse model to replace the dense model, achieving comparable performance while activating fewer parameters during inference, thus significantly reducing the inference cost. Existing MoE methods in LVLMs encourage different experts to handle different tokens, and they usually employ a router to predict the routing of each token. However, the predictions are based solely on sample features and do not truly reveal the optimization directions of tokens. This may lead to severe optimization interference between different tokens assigned to an expert. To address this problem, this paper proposes a novel method based on token-level gradient analysis, i.e., Solving Token Gradient Conflict (STGC). Specifically, we first use token-level gradients to identify conflicting tokens in experts. After that, we add a specialized loss tailored to eliminate conflicts among tokens within each expert. Our method can serve as a plug-in for diverse Large Vision-Language Models, and extensive experimental results demonstrate its effectiveness. The code will be publicly available at https://github.com/longrongyang/STGC.
Dynamic Data Mixing Maximizes Instruction Tuning for Mixture-of-Experts
Mixture-of-Experts (MoE) models have shown remarkable capability in instruction tuning, especially when the number of tasks scales. However, previous methods simply merge all training tasks (e.g. creative writing, coding, and mathematics) and apply fixed sampling weights, without considering the importance of different tasks as the model training state changes. In this way, the most helpful data cannot be effectively distinguished, leading to suboptimal model performance. To reduce the potential redundancies of datasets, we make the first attempt and propose a novel dynamic data mixture for MoE instruction tuning. Specifically, inspired by MoE's token routing preference, we build dataset-level representations and then capture the subtle differences among datasets. Finally, we propose to dynamically adjust the sampling weight of datasets by their inter-redundancies, thus maximizing global performance under a limited training budget. The experimental results on two MoE models demonstrate the effectiveness of our approach on both downstream knowledge \& reasoning tasks and open-ended queries. Code and models are available at https://github.com/Spico197/MoE-SFT .
A Novel Method of Fuzzy Topic Modeling based on Transformer Processing
Topic modeling is admittedly a convenient way to monitor markets trend. Conventionally, Latent Dirichlet Allocation, LDA, is considered a must-do model to gain this type of information. By given the merit of deducing keyword with token conditional probability in LDA, we can know the most possible or essential topic. However, the results are not intuitive because the given topics cannot wholly fit human knowledge. LDA offers the first possible relevant keywords, which also brings out another problem of whether the connection is reliable based on the statistic possibility. It is also hard to decide the topic number manually in advance. As the booming trend of using fuzzy membership to cluster and using transformers to embed words, this work presents the fuzzy topic modeling based on soft clustering and document embedding from state-of-the-art transformer-based model. In our practical application in a press release monitoring, the fuzzy topic modeling gives a more natural result than the traditional output from LDA.
Showing Your Work Doesn't Always Work
In natural language processing, a recently popular line of work explores how to best report the experimental results of neural networks. One exemplar publication, titled "Show Your Work: Improved Reporting of Experimental Results," advocates for reporting the expected validation effectiveness of the best-tuned model, with respect to the computational budget. In the present work, we critically examine this paper. As far as statistical generalizability is concerned, we find unspoken pitfalls and caveats with this approach. We analytically show that their estimator is biased and uses error-prone assumptions. We find that the estimator favors negative errors and yields poor bootstrapped confidence intervals. We derive an unbiased alternative and bolster our claims with empirical evidence from statistical simulation. Our codebase is at http://github.com/castorini/meanmax.
What Makes a "Good" Data Augmentation in Knowledge Distillation -- A Statistical Perspective
Knowledge distillation (KD) is a general neural network training approach that uses a teacher model to guide the student model. Existing works mainly study KD from the network output side (e.g., trying to design a better KD loss function), while few have attempted to understand it from the input side. Especially, its interplay with data augmentation (DA) has not been well understood. In this paper, we ask: Why do some DA schemes (e.g., CutMix) inherently perform much better than others in KD? What makes a "good" DA in KD? Our investigation from a statistical perspective suggests that a good DA scheme should reduce the covariance of the teacher-student cross-entropy. A practical metric, the stddev of teacher's mean probability (T. stddev), is further presented and well justified empirically. Besides the theoretical understanding, we also introduce a new entropy-based data-mixing DA scheme, CutMixPick, to further enhance CutMix. Extensive empirical studies support our claims and demonstrate how we can harvest considerable performance gains simply by using a better DA scheme in knowledge distillation.
DISCO: Diversifying Sample Condensation for Efficient Model Evaluation
Evaluating modern machine learning models has become prohibitively expensive. Benchmarks such as LMMs-Eval and HELM demand thousands of GPU hours per model. Costly evaluation reduces inclusivity, slows the cycle of innovation, and worsens environmental impact. The typical approach follows two steps. First, select an anchor subset of data. Second, train a mapping from the accuracy on this subset to the final test result. The drawback is that anchor selection depends on clustering, which can be complex and sensitive to design choices. We argue that promoting diversity among samples is not essential; what matters is to select samples that maximise diversity in model responses. Our method, Diversifying Sample Condensation (DISCO), selects the top-k samples with the greatest model disagreements. This uses greedy, sample-wise statistics rather than global clustering. The approach is conceptually simpler. From a theoretical view, inter-model disagreement provides an information-theoretically optimal rule for such greedy selection. DISCO shows empirical gains over prior methods, achieving state-of-the-art results in performance prediction across MMLU, Hellaswag, Winogrande, and ARC. Code is available here: https://github.com/arubique/disco-public.
Multi-Label Sentiment Analysis on 100 Languages with Dynamic Weighting for Label Imbalance
We investigate cross-lingual sentiment analysis, which has attracted significant attention due to its applications in various areas including market research, politics and social sciences. In particular, we introduce a sentiment analysis framework in multi-label setting as it obeys Plutchik wheel of emotions. We introduce a novel dynamic weighting method that balances the contribution from each class during training, unlike previous static weighting methods that assign non-changing weights based on their class frequency. Moreover, we adapt the focal loss that favors harder instances from single-label object recognition literature to our multi-label setting. Furthermore, we derive a method to choose optimal class-specific thresholds that maximize the macro-f1 score in linear time complexity. Through an extensive set of experiments, we show that our method obtains the state-of-the-art performance in 7 of 9 metrics in 3 different languages using a single model compared to the common baselines and the best-performing methods in the SemEval competition. We publicly share our code for our model, which can perform sentiment analysis in 100 languages, to facilitate further research.
Sampling Streaming Data with Parallel Vector Quantization -- PVQ
Accumulation of corporate data in the cloud has attracted more enterprise applications to the cloud creating data gravity. As a consequence, network traffic has become more cloud centric. This increase in cloud centric traffic poses new challenges in designing learning systems for streaming data due to class imbalance. The number of classes plays a vital role in the accuracy of the classifiers built from the data streams. In this paper, we present a vector quantization-based sampling method, which substantially reduces the class imbalance in data streams. We demonstrate its effectiveness by conducting experiments on network traffic and anomaly dataset with commonly used ML model building methods; Multilayered Perceptron on TensorFlow backend, Support Vector Machines, K-Nearest Neighbour, and Random Forests. We built models using parallel processing, batch processing, and randomly selecting samples. We show that the accuracy of classification models improves when the data streams are pre-processed with our method. We used out of the box hyper-parameters of these classifiers and auto sklearn for hyperparameter optimization.
Don't be a Fool: Pooling Strategies in Offensive Language Detection from User-Intended Adversarial Attacks
Offensive language detection is an important task for filtering out abusive expressions and improving online user experiences. However, malicious users often attempt to avoid filtering systems through the involvement of textual noises. In this paper, we propose these evasions as user-intended adversarial attacks that insert special symbols or leverage the distinctive features of the Korean language. Furthermore, we introduce simple yet effective pooling strategies in a layer-wise manner to defend against the proposed attacks, focusing on the preceding layers not just the last layer to capture both offensiveness and token embeddings. We demonstrate that these pooling strategies are more robust to performance degradation even when the attack rate is increased, without directly training of such patterns. Notably, we found that models pre-trained on clean texts could achieve a comparable performance in detecting attacked offensive language, to models pre-trained on noisy texts by employing these pooling strategies.
Evaluate Bias without Manual Test Sets: A Concept Representation Perspective for LLMs
Bias in Large Language Models (LLMs) significantly undermines their reliability and fairness. We focus on a common form of bias: when two reference concepts in the model's concept space, such as sentiment polarities (e.g., "positive" and "negative"), are asymmetrically correlated with a third, target concept, such as a reviewing aspect, the model exhibits unintended bias. For instance, the understanding of "food" should not skew toward any particular sentiment. Existing bias evaluation methods assess behavioral differences of LLMs by constructing labeled data for different social groups and measuring model responses across them, a process that requires substantial human effort and captures only a limited set of social concepts. To overcome these limitations, we propose BiasLens, a test-set-free bias analysis framework based on the structure of the model's vector space. BiasLens combines Concept Activation Vectors (CAVs) with Sparse Autoencoders (SAEs) to extract interpretable concept representations, and quantifies bias by measuring the variation in representational similarity between the target concept and each of the reference concepts. Even without labeled data, BiasLens shows strong agreement with traditional bias evaluation metrics (Spearman correlation r > 0.85). Moreover, BiasLens reveals forms of bias that are difficult to detect using existing methods. For example, in simulated clinical scenarios, a patient's insurance status can cause the LLM to produce biased diagnostic assessments. Overall, BiasLens offers a scalable, interpretable, and efficient paradigm for bias discovery, paving the way for improving fairness and transparency in LLMs.
Diversity and Inclusion Metrics in Subset Selection
The ethical concept of fairness has recently been applied in machine learning (ML) settings to describe a wide range of constraints and objectives. When considering the relevance of ethical concepts to subset selection problems, the concepts of diversity and inclusion are additionally applicable in order to create outputs that account for social power and access differentials. We introduce metrics based on these concepts, which can be applied together, separately, and in tandem with additional fairness constraints. Results from human subject experiments lend support to the proposed criteria. Social choice methods can additionally be leveraged to aggregate and choose preferable sets, and we detail how these may be applied.
Robust Evaluation Measures for Evaluating Social Biases in Masked Language Models
Many evaluation measures are used to evaluate social biases in masked language models (MLMs). However, we find that these previously proposed evaluation measures are lacking robustness in scenarios with limited datasets. This is because these measures are obtained by comparing the pseudo-log-likelihood (PLL) scores of the stereotypical and anti-stereotypical samples using an indicator function. The disadvantage is the limited mining of the PLL score sets without capturing its distributional information. In this paper, we represent a PLL score set as a Gaussian distribution and use Kullback Leibler (KL) divergence and Jensen Shannon (JS) divergence to construct evaluation measures for the distributions of stereotypical and anti-stereotypical PLL scores. Experimental results on the publicly available datasets StereoSet (SS) and CrowS-Pairs (CP) show that our proposed measures are significantly more robust and interpretable than those proposed previously.
Reverse Diffusion Monte Carlo
We propose a Monte Carlo sampler from the reverse diffusion process. Unlike the practice of diffusion models, where the intermediary updates -- the score functions -- are learned with a neural network, we transform the score matching problem into a mean estimation one. By estimating the means of the regularized posterior distributions, we derive a novel Monte Carlo sampling algorithm called reverse diffusion Monte Carlo (rdMC), which is distinct from the Markov chain Monte Carlo (MCMC) methods. We determine the sample size from the error tolerance and the properties of the posterior distribution to yield an algorithm that can approximately sample the target distribution with any desired accuracy. Additionally, we demonstrate and prove under suitable conditions that sampling with rdMC can be significantly faster than that with MCMC. For multi-modal target distributions such as those in Gaussian mixture models, rdMC greatly improves over the Langevin-style MCMC sampling methods both theoretically and in practice. The proposed rdMC method offers a new perspective and solution beyond classical MCMC algorithms for the challenging complex distributions.
Watset: Local-Global Graph Clustering with Applications in Sense and Frame Induction
We present a detailed theoretical and computational analysis of the Watset meta-algorithm for fuzzy graph clustering, which has been found to be widely applicable in a variety of domains. This algorithm creates an intermediate representation of the input graph that reflects the "ambiguity" of its nodes. Then, it uses hard clustering to discover clusters in this "disambiguated" intermediate graph. After outlining the approach and analyzing its computational complexity, we demonstrate that Watset shows competitive results in three applications: unsupervised synset induction from a synonymy graph, unsupervised semantic frame induction from dependency triples, and unsupervised semantic class induction from a distributional thesaurus. Our algorithm is generic and can be also applied to other networks of linguistic data.
Risk forecasting using Long Short-Term Memory Mixture Density Networks
This work aims to implement Long Short-Term Memory mixture density networks (LSTM-MDNs) for Value-at-Risk forecasting and compare their performance with established models (historical simulation, CMM, and GARCH) using a defined backtesting procedure. The focus was on the neural network's ability to capture volatility clustering and its real-world applicability. Three architectures were tested: a 2-component mixture density network, a regularized 2-component model (Arimond et al., 2020), and a 3-component mixture model, the latter being tested for the first time in Value-at-Risk forecasting. Backtesting was performed on three stock indices (FTSE 100, S&P 500, EURO STOXX 50) over two distinct two-year periods (2017-2018 as a calm period, 2021-2022 as turbulent). Model performance was assessed through unconditional coverage and independence assumption tests. The neural network's ability to handle volatility clustering was validated via correlation analysis and graphical evaluation. Results show limited success for the neural network approach. LSTM-MDNs performed poorly for 2017/2018 but outperformed benchmark models in 2021/2022. The LSTM mechanism allowed the neural network to capture volatility clustering similarly to GARCH models. However, several issues were identified: the need for proper model initialization and reliance on large datasets for effective learning. The findings suggest that while LSTM-MDNs provide adequate risk forecasts, further research and adjustments are necessary for stable performance.
Advantage Weighted Matching: Aligning RL with Pretraining in Diffusion Models
Reinforcement Learning (RL) has emerged as a central paradigm for advancing Large Language Models (LLMs), where pre-training and RL post-training share the same log-likelihood formulation. In contrast, recent RL approaches for diffusion models, most notably Denoising Diffusion Policy Optimization (DDPO), optimize an objective different from the pretraining objectives--score/flow matching loss. In this work, we establish a novel theoretical analysis: DDPO is an implicit form of score/flow matching with noisy targets, which increases variance and slows convergence. Building on this analysis, we introduce Advantage Weighted Matching (AWM), a policy-gradient method for diffusion. It uses the same score/flow-matching loss as pretraining to obtain a lower-variance objective and reweights each sample by its advantage. In effect, AWM raises the influence of high-reward samples and suppresses low-reward ones while keeping the modeling objective identical to pretraining. This unifies pretraining and RL conceptually and practically, is consistent with policy-gradient theory, reduces variance, and yields faster convergence. This simple yet effective design yields substantial benefits: on GenEval, OCR, and PickScore benchmarks, AWM delivers up to a 24times speedup over Flow-GRPO (which builds on DDPO), when applied to Stable Diffusion 3.5 Medium and FLUX, without compromising generation quality. Code is available at https://github.com/scxue/advantage_weighted_matching.
BASE Layers: Simplifying Training of Large, Sparse Models
We introduce a new balanced assignment of experts (BASE) layer for large language models that greatly simplifies existing high capacity sparse layers. Sparse layers can dramatically improve the efficiency of training and inference by routing each token to specialized expert modules that contain only a small fraction of the model parameters. However, it can be difficult to learn balanced routing functions that make full use of the available experts; existing approaches typically use routing heuristics or auxiliary expert-balancing loss functions. In contrast, we formulate token-to-expert allocation as a linear assignment problem, allowing an optimal assignment in which each expert receives an equal number of tokens. This optimal assignment scheme improves efficiency by guaranteeing balanced compute loads, and also simplifies training by not requiring any new hyperparameters or auxiliary losses. Code is publicly released at https://github.com/pytorch/fairseq/
Subclass-balancing Contrastive Learning for Long-tailed Recognition
Long-tailed recognition with imbalanced class distribution naturally emerges in practical machine learning applications. Existing methods such as data reweighing, resampling, and supervised contrastive learning enforce the class balance with a price of introducing imbalance between instances of head class and tail class, which may ignore the underlying rich semantic substructures of the former and exaggerate the biases in the latter. We overcome these drawbacks by a novel ``subclass-balancing contrastive learning (SBCL)'' approach that clusters each head class into multiple subclasses of similar sizes as the tail classes and enforce representations to capture the two-layer class hierarchy between the original classes and their subclasses. Since the clustering is conducted in the representation space and updated during the course of training, the subclass labels preserve the semantic substructures of head classes. Meanwhile, it does not overemphasize tail class samples, so each individual instance contribute to the representation learning equally. Hence, our method achieves both the instance- and subclass-balance, while the original class labels are also learned through contrastive learning among subclasses from different classes. We evaluate SBCL over a list of long-tailed benchmark datasets and it achieves the state-of-the-art performance. In addition, we present extensive analyses and ablation studies of SBCL to verify its advantages.
LExI: Layer-Adaptive Active Experts for Efficient MoE Model Inference
Mixture-of-Experts (MoE) models scale efficiently by activating only a subset of experts per token, offering a computationally sparse alternative to dense architectures. While prior post-training optimizations, such as inter- and intra-expert pruning, reduce memory usage they provide limited gains in inference-time compute efficiency. Moreover, existing MoE architectures typically activate a fixed number of experts uniformly across all layers, resulting in redundant computation and suboptimal performance. In this work, we first demonstrate that MoE pruning strategies improve only the memory footprint but do not significantly improve inference performance on GPU using optimized frameworks such as vLLM. To address this, we introduce LExI, a data-free optimization technique that determines the optimal number of active experts per layer in a pretrained MoE model. LExI leverages only the model weights to estimate the relative importance of each layer and adaptively assigns the number of active experts accordingly per layer. Experiments on state-of-the-art language and vision MoE benchmarks demonstrate that LExI significantly outperforms traditional MoE pruning approaches in terms of inference efficiency with negligible accuracy loss. For example, using LExI, Qwen1.5-MoE achieves the same throughput on Nvidia H100 GPU with 10% better accuracy than traditional expert pruning.
Cluster-Specific Predictions with Multi-Task Gaussian Processes
A model involving Gaussian processes (GPs) is introduced to simultaneously handle multi-task learning, clustering, and prediction for multiple functional data. This procedure acts as a model-based clustering method for functional data as well as a learning step for subsequent predictions for new tasks. The model is instantiated as a mixture of multi-task GPs with common mean processes. A variational EM algorithm is derived for dealing with the optimisation of the hyper-parameters along with the hyper-posteriors' estimation of latent variables and processes. We establish explicit formulas for integrating the mean processes and the latent clustering variables within a predictive distribution, accounting for uncertainty on both aspects. This distribution is defined as a mixture of cluster-specific GP predictions, which enhances the performances when dealing with group-structured data. The model handles irregular grid of observations and offers different hypotheses on the covariance structure for sharing additional information across tasks. The performances on both clustering and prediction tasks are assessed through various simulated scenarios and real datasets. The overall algorithm, called MagmaClust, is publicly available as an R package.
Alternative Loss Function in Evaluation of Transformer Models
The proper design and architecture of testing of machine learning models, especially in their application to quantitative finance problems, is crucial. The most important in this process is selecting an adequate loss function used for training, validation, estimation purposes, and tuning of hyperparameters. Therefore, in this research, through empirical experiments on equity and cryptocurrency assets, we introduce the Mean Absolute Directional Loss (MADL) function which is more adequate for optimizing forecast-generating models used in algorithmic investment strategies. The MADL function results are compared for Transformer and LSTM models and we show that almost in every case Transformer results are significantly better than those obtained with LSTM.
Online Matching with Stochastic Rewards: Advanced Analyses Using Configuration Linear Programs
Mehta and Panigrahi (2012) proposed Online Matching with Stochastic Rewards, which generalizes the Online Bipartite Matching problem of Karp, Vazirani, and Vazirani (1990) by associating the edges with success probabilities. This new feature captures the pay-per-click model in online advertising. Recently, Huang and Zhang (2020) studied this problem under the online primal dual framework using the Configuration Linear Program (LP), and got the best known competitive ratios of the Stochastic Balance algorithm. Their work suggests that the more expressive Configuration LP is more suitable for this problem than the Matching LP. This paper advances the theory of Configuration LP in two directions. Our technical contribution includes a characterization of the joint matching outcome of an offline vertex and all its neighbors. This characterization may be of independent interest, and is aligned with the spirit of Configuration LP. By contrast, previous analyses of Ranking generally focus on only one neighbor. Second, we designed a Stochastic Configuration LP that captures a stochastic benchmark proposed by Goyal and Udwani (2020), who used a Path-based LP. The Stochastic Configuration LP is smaller and simpler than the Path-based LP. Moreover, using the new LP we improved the competitive ratio of Stochastic Balance from 0.596 to 0.611 when the success probabilities are infinitesimal, and to 0.613 when the success probabilities are further equal.
Likelihood Adjusted Semidefinite Programs for Clustering Heterogeneous Data
Clustering is a widely deployed unsupervised learning tool. Model-based clustering is a flexible framework to tackle data heterogeneity when the clusters have different shapes. Likelihood-based inference for mixture distributions often involves non-convex and high-dimensional objective functions, imposing difficult computational and statistical challenges. The classic expectation-maximization (EM) algorithm is a computationally thrifty iterative method that maximizes a surrogate function minorizing the log-likelihood of observed data in each iteration, which however suffers from bad local maxima even in the special case of the standard Gaussian mixture model with common isotropic covariance matrices. On the other hand, recent studies reveal that the unique global solution of a semidefinite programming (SDP) relaxed K-means achieves the information-theoretically sharp threshold for perfectly recovering the cluster labels under the standard Gaussian mixture model. In this paper, we extend the SDP approach to a general setting by integrating cluster labels as model parameters and propose an iterative likelihood adjusted SDP (iLA-SDP) method that directly maximizes the exact observed likelihood in the presence of data heterogeneity. By lifting the cluster assignment to group-specific membership matrices, iLA-SDP avoids centroids estimation -- a key feature that allows exact recovery under well-separateness of centroids without being trapped by their adversarial configurations. Thus iLA-SDP is less sensitive than EM to initialization and more stable on high-dimensional data. Our numeric experiments demonstrate that iLA-SDP can achieve lower mis-clustering errors over several widely used clustering methods including K-means, SDP and EM algorithms.
BiLLM: Pushing the Limit of Post-Training Quantization for LLMs
Pretrained large language models (LLMs) exhibit exceptional general language processing capabilities but come with significant demands on memory and computational resources. As a powerful compression technology, binarization can extremely reduce model weights to a mere 1 bit, lowering the expensive computation and memory requirements. However, existing quantization techniques fall short of maintaining LLM performance under ultra-low bit-widths. In response to this challenge, we present BiLLM, a groundbreaking 1-bit post-training quantization scheme tailored for pretrained LLMs. Based on the weight distribution of LLMs, BiLLM first identifies and structurally selects salient weights, and minimizes the compression loss through an effective binary residual approximation strategy. Moreover, considering the bell-shaped distribution of the non-salient weights, we propose an optimal splitting search to group and binarize them accurately. BiLLM achieving for the first time high-accuracy inference (e.g. 8.41 perplexity on LLaMA2-70B) with only 1.08-bit weights across various LLMs families and evaluation metrics, outperforms SOTA quantization methods of LLM by significant margins. Moreover, BiLLM enables the binarization process of the LLM with 7 billion weights within 0.5 hours on a single GPU, demonstrating satisfactory time efficiency.
Model Averaging and Double Machine Learning
This paper discusses pairing double/debiased machine learning (DDML) with stacking, a model averaging method for combining multiple candidate learners, to estimate structural parameters. In addition to conventional stacking, we consider two stacking variants available for DDML: short-stacking exploits the cross-fitting step of DDML to substantially reduce the computational burden and pooled stacking enforces common stacking weights over cross-fitting folds. Using calibrated simulation studies and two applications estimating gender gaps in citations and wages, we show that DDML with stacking is more robust to partially unknown functional forms than common alternative approaches based on single pre-selected learners. We provide Stata and R software implementing our proposals.
MARLIN: Mixed-Precision Auto-Regressive Parallel Inference on Large Language Models
As inference on Large Language Models (LLMs) emerges as an important workload in machine learning applications, weight quantization has become a standard technique for efficient GPU deployment. Quantization not only reduces model size, but has also been shown to yield substantial speedups for single-user inference, due to reduced memory movement, with low accuracy impact. Yet, it remains open whether speedups are achievable also in batched settings with multiple parallel clients, which are highly relevant for practical serving. It is unclear whether GPU kernels can be designed to remain practically memory-bound, while supporting the substantially increased compute requirements of batched workloads. This paper resolves this question positively by describing the design of Mixed-precision Auto-Regressive LINear kernels, called MARLIN. Concretely, given a model whose weights are compressed via quantization to, e.g., 4 bits per element, MARLIN shows that batchsizes up to 16-32 can be supported with close to maximum (4times) quantization speedup, and larger batchsizes up to 64-128 with gradually decreasing, but still significant, acceleration. MARLIN accomplishes this via a combination of techniques, such as asynchronous memory access, complex task scheduling and pipelining, and bespoke quantization support. Our experiments show that MARLIN's near-optimal performance on individual LLM layers across different scenarios can also lead to end-to-end LLM inference speedups (of up to 2.8times) when integrated with the popular vLLM serving engine. Finally, MARLIN is extensible to further compression techniques, like NVIDIA 2:4 sparsity, leading to additional speedups.
Numerical Claim Detection in Finance: A New Financial Dataset, Weak-Supervision Model, and Market Analysis
In this paper, we investigate the influence of claims in analyst reports and earnings calls on financial market returns, considering them as significant quarterly events for publicly traded companies. To facilitate a comprehensive analysis, we construct a new financial dataset for the claim detection task in the financial domain. We benchmark various language models on this dataset and propose a novel weak-supervision model that incorporates the knowledge of subject matter experts (SMEs) in the aggregation function, outperforming existing approaches. We also demonstrate the practical utility of our proposed model by constructing a novel measure of optimism. Here, we observe the dependence of earnings surprise and return on our optimism measure. Our dataset, models, and code are publicly (under CC BY 4.0 license) available on GitHub.
Harnessing Diversity for Important Data Selection in Pretraining Large Language Models
Data selection is of great significance in pre-training large language models, given the variation in quality within the large-scale available training corpora. To achieve this, researchers are currently investigating the use of data influence to measure the importance of data instances, i.e., a high influence score indicates that incorporating this instance to the training set is likely to enhance the model performance. Consequently, they select the top-k instances with the highest scores. However, this approach has several limitations. (1) Computing the influence of all available data is time-consuming. (2) The selected data instances are not diverse enough, which may hinder the pre-trained model's ability to generalize effectively to various downstream tasks. In this paper, we introduce Quad, a data selection approach that considers both quality and diversity by using data influence to achieve state-of-the-art pre-training results. In particular, noting that attention layers capture extensive semantic details, we have adapted the accelerated iHVP computation methods for attention layers, enhancing our ability to evaluate the influence of data, i.e., its quality. For the diversity, Quad clusters the dataset into similar data instances within each cluster and diverse instances across different clusters. For each cluster, if we opt to select data from it, we take some samples to evaluate the influence to prevent processing all instances. To determine which clusters to select, we utilize the classic Multi-Armed Bandit method, treating each cluster as an arm. This approach favors clusters with highly influential instances (ensuring high quality) or clusters that have been selected less frequently (ensuring diversity), thereby well balancing between quality and diversity.
Pooling Image Datasets With Multiple Covariate Shift and Imbalance
Small sample sizes are common in many disciplines, which necessitates pooling roughly similar datasets across multiple institutions to study weak but relevant associations between images and disease outcomes. Such data often manifest shift/imbalance in covariates (i.e., secondary non-imaging data). Controlling for such nuisance variables is common within standard statistical analysis, but the ideas do not directly apply to overparameterized models. Consequently, recent work has shown how strategies from invariant representation learning provides a meaningful starting point, but the current repertoire of methods is limited to accounting for shifts/imbalances in just a couple of covariates at a time. In this paper, we show how viewing this problem from the perspective of Category theory provides a simple and effective solution that completely avoids elaborate multi-stage training pipelines that would otherwise be needed. We show the effectiveness of this approach via extensive experiments on real datasets. Further, we discuss how this style of formulation offers a unified perspective on at least 5+ distinct problem settings, from self-supervised learning to matching problems in 3D reconstruction.
Multivariate Representation Learning for Information Retrieval
Dense retrieval models use bi-encoder network architectures for learning query and document representations. These representations are often in the form of a vector representation and their similarities are often computed using the dot product function. In this paper, we propose a new representation learning framework for dense retrieval. Instead of learning a vector for each query and document, our framework learns a multivariate distribution and uses negative multivariate KL divergence to compute the similarity between distributions. For simplicity and efficiency reasons, we assume that the distributions are multivariate normals and then train large language models to produce mean and variance vectors for these distributions. We provide a theoretical foundation for the proposed framework and show that it can be seamlessly integrated into the existing approximate nearest neighbor algorithms to perform retrieval efficiently. We conduct an extensive suite of experiments on a wide range of datasets, and demonstrate significant improvements compared to competitive dense retrieval models.
SMOTE: Synthetic Minority Over-sampling Technique
An approach to the construction of classifiers from imbalanced datasets is described. A dataset is imbalanced if the classification categories are not approximately equally represented. Often real-world data sets are predominately composed of "normal" examples with only a small percentage of "abnormal" or "interesting" examples. It is also the case that the cost of misclassifying an abnormal (interesting) example as a normal example is often much higher than the cost of the reverse error. Under-sampling of the majority (normal) class has been proposed as a good means of increasing the sensitivity of a classifier to the minority class. This paper shows that a combination of our method of over-sampling the minority (abnormal) class and under-sampling the majority (normal) class can achieve better classifier performance (in ROC space) than only under-sampling the majority class. This paper also shows that a combination of our method of over-sampling the minority class and under-sampling the majority class can achieve better classifier performance (in ROC space) than varying the loss ratios in Ripper or class priors in Naive Bayes. Our method of over-sampling the minority class involves creating synthetic minority class examples. Experiments are performed using C4.5, Ripper and a Naive Bayes classifier. The method is evaluated using the area under the Receiver Operating Characteristic curve (AUC) and the ROC convex hull strategy.
When to Accept Automated Predictions and When to Defer to Human Judgment?
Ensuring the reliability and safety of automated decision-making is crucial. It is well-known that data distribution shifts in machine learning can produce unreliable outcomes. This paper proposes a new approach for measuring the reliability of predictions under distribution shifts. We analyze how the outputs of a trained neural network change using clustering to measure distances between outputs and class centroids. We propose this distance as a metric to evaluate the confidence of predictions under distribution shifts. We assign each prediction to a cluster with centroid representing the mean softmax output for all correct predictions of a given class. We then define a safety threshold for a class as the smallest distance from an incorrect prediction to the given class centroid. We evaluate the approach on the MNIST and CIFAR-10 datasets using a Convolutional Neural Network and a Vision Transformer, respectively. The results show that our approach is consistent across these data sets and network models, and indicate that the proposed metric can offer an efficient way of determining when automated predictions are acceptable and when they should be deferred to human operators given a distribution shift.
PHI-S: Distribution Balancing for Label-Free Multi-Teacher Distillation
Various visual foundation models have distinct strengths and weaknesses, both of which can be improved through heterogeneous multi-teacher knowledge distillation without labels, termed "agglomerative models." We build upon this body of work by studying the effect of the teachers' activation statistics, particularly the impact of the loss function on the resulting student model quality. We explore a standard toolkit of statistical normalization techniques to better align the different distributions and assess their effects. Further, we examine the impact on downstream teacher-matching metrics, which motivates the use of Hadamard matrices. With these matrices, we demonstrate useful properties, showing how they can be used for isotropic standardization, where each dimension of a multivariate distribution is standardized using the same scale. We call this technique "PHI Standardization" (PHI-S) and empirically demonstrate that it produces the best student model across the suite of methods studied.
Analysis of Classifier-Free Guidance Weight Schedulers
Classifier-Free Guidance (CFG) enhances the quality and condition adherence of text-to-image diffusion models. It operates by combining the conditional and unconditional predictions using a fixed weight. However, recent works vary the weights throughout the diffusion process, reporting superior results but without providing any rationale or analysis. By conducting comprehensive experiments, this paper provides insights into CFG weight schedulers. Our findings suggest that simple, monotonically increasing weight schedulers consistently lead to improved performances, requiring merely a single line of code. In addition, more complex parametrized schedulers can be optimized for further improvement, but do not generalize across different models and tasks.
Mitigating Metric Bias in Minimum Bayes Risk Decoding
While Minimum Bayes Risk (MBR) decoding using metrics such as COMET or MetricX has outperformed traditional decoding methods such as greedy or beam search, it introduces a challenge we refer to as metric bias. As MBR decoding aims to produce translations that score highly according to a specific utility metric, this very process makes it impossible to use the same metric for both decoding and evaluation, as improvements might simply be due to reward hacking rather than reflecting real quality improvements. In this work we find that compared to human ratings, neural metrics not only overestimate the quality of MBR decoding when the same metric is used as the utility metric, but they also overestimate the quality of MBR/QE decoding with other neural utility metrics as well. We also show that the metric bias issue can be mitigated by using an ensemble of utility metrics during MBR decoding: human evaluations show that MBR decoding using an ensemble of utility metrics outperforms a single utility metric.
Utilizing Social Media Attributes for Enhanced Keyword Detection: An IDF-LDA Model Applied to Sina Weibo
With the rapid development of social media such as Twitter and Weibo, detecting keywords from a huge volume of text data streams in real-time has become a critical problem. The keyword detection problem aims at searching important information from massive text data to reflect the most important events or topics. However, social media data usually has unique features: the documents are usually short, the language is colloquial, and the data is likely to have significant temporal patterns. Therefore, it could be challenging to discover critical information from these text streams. In this paper, we propose a novel method to address the keyword detection problem in social media. Our model combines the Inverse Document Frequency (IDF) and Latent Dirichlet Allocation (LDA) models to better cope with the distinct attributes of social media data, such as the number of likes, comments, and retweets. By weighting the importance of each document based on these attributes, our method can effectively detect more representative keywords over time. Comprehensive experiments conducted under various conditions on Weibo data illustrate that our approach outperforms the baselines in various evaluation metrics, including precision and recall for multiple problem settings.
Dr.LLM: Dynamic Layer Routing in LLMs
Large Language Models (LLMs) process every token through all layers of a transformer stack, causing wasted computation on simple queries and insufficient flexibility for harder ones that need deeper reasoning. Adaptive-depth methods can improve efficiency, but prior approaches rely on costly inference-time search, architectural changes, or large-scale retraining, and in practice often degrade accuracy despite efficiency gains. We introduce Dr.LLM, Dynamic routing of Layers for LLMs, a retrofittable framework that equips pretrained models with lightweight per-layer routers deciding to skip, execute, or repeat a block. Routers are trained with explicit supervision: using Monte Carlo Tree Search (MCTS), we derive high-quality layer configurations that preserve or improve accuracy under a compute budget. Our design, windowed pooling for stable routing, focal loss with class balancing, and bottleneck MLP routers, ensures robustness under class imbalance and long sequences. On ARC (logic) and DART (math), Dr.LLM improves accuracy by up to +3.4%p while saving 5 layers per example on average. Routers generalize to out-of-domain tasks (MMLU, GSM8k, AIME, TruthfulQA, SQuADv2, GPQA, PIQA, AGIEval) with only 0.85% accuracy drop while retaining efficiency, and outperform prior routing methods by up to +7.7%p. Overall, Dr.LLM shows that explicitly supervised routers retrofit frozen LLMs for budget-aware, accuracy-driven inference without altering base weights.
Why does Throwing Away Data Improve Worst-Group Error?
When facing data with imbalanced classes or groups, practitioners follow an intriguing strategy to achieve best results. They throw away examples until the classes or groups are balanced in size, and then perform empirical risk minimization on the reduced training set. This opposes common wisdom in learning theory, where the expected error is supposed to decrease as the dataset grows in size. In this work, we leverage extreme value theory to address this apparent contradiction. Our results show that the tails of the data distribution play an important role in determining the worst-group-accuracy of linear classifiers. When learning on data with heavy tails, throwing away data restores the geometric symmetry of the resulting classifier, and therefore improves its worst-group generalization.
Model Stock: All we need is just a few fine-tuned models
This paper introduces an efficient fine-tuning method for large pre-trained models, offering strong in-distribution (ID) and out-of-distribution (OOD) performance. Breaking away from traditional practices that need a multitude of fine-tuned models for averaging, our approach employs significantly fewer models to achieve final weights yet yield superior accuracy. Drawing from key insights in the weight space of fine-tuned weights, we uncover a strong link between the performance and proximity to the center of weight space. Based on this, we introduce a method that approximates a center-close weight using only two fine-tuned models, applicable during or after training. Our innovative layer-wise weight averaging technique surpasses state-of-the-art model methods such as Model Soup, utilizing only two fine-tuned models. This strategy can be aptly coined Model Stock, highlighting its reliance on selecting a minimal number of models to draw a more optimized-averaged model. We demonstrate the efficacy of Model Stock with fine-tuned models based upon pre-trained CLIP architectures, achieving remarkable performance on both ID and OOD tasks on the standard benchmarks, all while barely bringing extra computational demands. Our code and pre-trained models are available at https://github.com/naver-ai/model-stock.
MoE-Pruner: Pruning Mixture-of-Experts Large Language Model using the Hints from Its Router
Mixture-of-Experts (MoE) architectures face challenges such as high memory consumption and redundancy in experts. Pruning MoE can reduce network weights while maintaining model performance. Motivated by the recent observation of emergent large magnitude features in Large Language Models (LLM) and MoE routing policy, we propose MoE-Pruner, a method that prunes weights with the smallest magnitudes multiplied by the corresponding input activations and router weights, on each output neuron. Our pruning method is one-shot, requiring no retraining or weight updates. We evaluate our method on Mixtral-8x7B and Mixtral-8x22B across multiple language benchmarks. Experimental results show that our pruning method significantly outperforms state-of-the-art LLM pruning methods. Furthermore, our pruned MoE models can benefit from a pretrained teacher model through expert-wise knowledge distillation, improving performance post-pruning. Experimental results demonstrate that the Mixtral-8x7B model with 50% sparsity maintains 99% of the performance of the original model after the expert-wise knowledge distillation.
Weight Averaging Improves Knowledge Distillation under Domain Shift
Knowledge distillation (KD) is a powerful model compression technique broadly used in practical deep learning applications. It is focused on training a small student network to mimic a larger teacher network. While it is widely known that KD can offer an improvement to student generalization in i.i.d setting, its performance under domain shift, i.e. the performance of student networks on data from domains unseen during training, has received little attention in the literature. In this paper we make a step towards bridging the research fields of knowledge distillation and domain generalization. We show that weight averaging techniques proposed in domain generalization literature, such as SWAD and SMA, also improve the performance of knowledge distillation under domain shift. In addition, we propose a simplistic weight averaging strategy that does not require evaluation on validation data during training and show that it performs on par with SWAD and SMA when applied to KD. We name our final distillation approach Weight-Averaged Knowledge Distillation (WAKD).
Faster Learned Sparse Retrieval with Block-Max Pruning
Learned sparse retrieval systems aim to combine the effectiveness of contextualized language models with the scalability of conventional data structures such as inverted indexes. Nevertheless, the indexes generated by these systems exhibit significant deviations from the ones that use traditional retrieval models, leading to a discrepancy in the performance of existing query optimizations that were specifically developed for traditional structures. These disparities arise from structural variations in query and document statistics, including sub-word tokenization, leading to longer queries, smaller vocabularies, and different score distributions within posting lists. This paper introduces Block-Max Pruning (BMP), an innovative dynamic pruning strategy tailored for indexes arising in learned sparse retrieval environments. BMP employs a block filtering mechanism to divide the document space into small, consecutive document ranges, which are then aggregated and sorted on the fly, and fully processed only as necessary, guided by a defined safe early termination criterion or based on approximate retrieval requirements. Through rigorous experimentation, we show that BMP substantially outperforms existing dynamic pruning strategies, offering unparalleled efficiency in safe retrieval contexts and improved tradeoffs between precision and efficiency in approximate retrieval tasks.
Predicting Movie Success with Multi-Task Learning: A Hybrid Framework Combining GPT-Based Sentiment Analysis and SIR Propagation
This study presents a hybrid framework for predicting movie success. The framework integrates multi-task learning (MTL), GPT-based sentiment analysis, and Susceptible-Infected-Recovered (SIR) propagation modeling. The study examines limitations in existing approaches. It models static production attributes, information dissemination, and audience sentiment at the same time. The framework uses 5,840 films from 2004 to 2024 and approximate 300,000 user reviews. It shows predictive performance with classification accuracy of 0.964 and regression metrics of MAE 0.388. Ablation analysis indicates component interactions. Selective feature combinations perform better than the comprehensive model. This result questions assumptions about feature integration. The model shows virality patterns between successful and unsuccessful films. Innovations include epidemiological modeling for information diffusion, multidimensional sentiment features from GPT-based analysis, and a shared representation architecture that optimizes multiple success metrics. The framework provides applications in the film production lifecycle. It also contributes to understanding how audience engagement leads to commercial outcomes.
How to Train Your Super-Net: An Analysis of Training Heuristics in Weight-Sharing NAS
Weight sharing promises to make neural architecture search (NAS) tractable even on commodity hardware. Existing methods in this space rely on a diverse set of heuristics to design and train the shared-weight backbone network, a.k.a. the super-net. Since heuristics and hyperparameters substantially vary across different methods, a fair comparison between them can only be achieved by systematically analyzing the influence of these factors. In this paper, we therefore provide a systematic evaluation of the heuristics and hyperparameters that are frequently employed by weight-sharing NAS algorithms. Our analysis uncovers that some commonly-used heuristics for super-net training negatively impact the correlation between super-net and stand-alone performance, and evidences the strong influence of certain hyperparameters and architectural choices. Our code and experiments set a strong and reproducible baseline that future works can build on.
Position: Don't use the CLT in LLM evals with fewer than a few hundred datapoints
Rigorous statistical evaluations of large language models (LLMs), including valid error bars and significance testing, are essential for meaningful and reliable performance assessment. Currently, when such statistical measures are reported, they typically rely on the Central Limit Theorem (CLT). In this position paper, we argue that while CLT-based methods for uncertainty quantification are appropriate when benchmarks consist of thousands of examples, they fail to provide adequate uncertainty estimates for LLM evaluations that rely on smaller, highly specialized benchmarks. In these small-data settings, we demonstrate that CLT-based methods perform very poorly, usually dramatically underestimating uncertainty (i.e. producing error bars that are too small). We give recommendations for alternative frequentist and Bayesian methods that are both easy to implement and more appropriate in these increasingly common scenarios. We provide a simple Python library for these Bayesian methods at https://github.com/sambowyer/bayes_evals .
Attention Weighted Mixture of Experts with Contrastive Learning for Personalized Ranking in E-commerce
Ranking model plays an essential role in e-commerce search and recommendation. An effective ranking model should give a personalized ranking list for each user according to the user preference. Existing algorithms usually extract a user representation vector from the user behavior sequence, then feed the vector into a feed-forward network (FFN) together with other features for feature interactions, and finally produce a personalized ranking score. Despite tremendous progress in the past, there is still room for improvement. Firstly, the personalized patterns of feature interactions for different users are not explicitly modeled. Secondly, most of existing algorithms have poor personalized ranking results for long-tail users with few historical behaviors due to the data sparsity. To overcome the two challenges, we propose Attention Weighted Mixture of Experts (AW-MoE) with contrastive learning for personalized ranking. Firstly, AW-MoE leverages the MoE framework to capture personalized feature interactions for different users. To model the user preference, the user behavior sequence is simultaneously fed into expert networks and the gate network. Within the gate network, one gate unit and one activation unit are designed to adaptively learn the fine-grained activation vector for experts using an attention mechanism. Secondly, a random masking strategy is applied to the user behavior sequence to simulate long-tail users, and an auxiliary contrastive loss is imposed to the output of the gate network to improve the model generalization for these users. This is validated by a higher performance gain on the long-tail user test set. Experiment results on a JD real production dataset and a public dataset demonstrate the effectiveness of AW-MoE, which significantly outperforms state-of-art methods. Notably, AW-MoE has been successfully deployed in the JD e-commerce search engine, ...
Rethinking Channel Dimensions to Isolate Outliers for Low-bit Weight Quantization of Large Language Models
Large Language Models (LLMs) have recently demonstrated a remarkable success across various tasks. However, efficiently serving LLMs has been a challenge due to its large memory bottleneck, specifically in small batch inference settings (e.g. mobile devices). Weight-only quantization can be a promising approach, but sub-4 bit quantization remains a challenge due to large-magnitude activation outliers. To mitigate the undesirable outlier effect, we first propose per-IC quantization, a simple yet effective method that creates quantization groups within each input channel (IC) rather than the conventional per-output channel (OC). Our method is motivated by the observation that activation outliers affect the input dimension of the weight matrix, so similarly grouping the weights in the IC direction can isolate outliers to be within a group. We also find that activation outliers do not dictate quantization difficulty, and inherent weight sensitivities also exist. With per-IC quantization as a new outlier-friendly scheme, we then propose Adaptive Dimensions (AdaDim), a versatile quantization framework that can adapt to various weight sensitivity patterns. We demonstrate the effectiveness of AdaDim by augmenting prior methods such as Round-To-Nearest and GPTQ, showing significant improvements across various language modeling benchmarks for both base (up to +4.7% on MMLU) and instruction-tuned (up to +10% on HumanEval) LLMs.
Vanishing Variance Problem in Fully Decentralized Neural-Network Systems
Federated learning and gossip learning are emerging methodologies designed to mitigate data privacy concerns by retaining training data on client devices and exclusively sharing locally-trained machine learning (ML) models with others. The primary distinction between the two lies in their approach to model aggregation: federated learning employs a centralized parameter server, whereas gossip learning adopts a fully decentralized mechanism, enabling direct model exchanges among nodes. This decentralized nature often positions gossip learning as less efficient compared to federated learning. Both methodologies involve a critical step: computing a representation of received ML models and integrating this representation into the existing model. Conventionally, this representation is derived by averaging the received models, exemplified by the FedAVG algorithm. Our findings suggest that this averaging approach inherently introduces a potential delay in model convergence. We identify the underlying cause and refer to it as the "vanishing variance" problem, where averaging across uncorrelated ML models undermines the optimal variance established by the Xavier weight initialization. Unlike federated learning where the central server ensures model correlation, and unlike traditional gossip learning which circumvents this problem through model partitioning and sampling, our research introduces a variance-corrected model averaging algorithm. This novel algorithm preserves the optimal variance needed during model averaging, irrespective of network topology or non-IID data distributions. Our extensive simulation results demonstrate that our approach enables gossip learning to achieve convergence efficiency comparable to that of federated learning.
Accounting For Informative Sampling When Learning to Forecast Treatment Outcomes Over Time
Machine learning (ML) holds great potential for accurately forecasting treatment outcomes over time, which could ultimately enable the adoption of more individualized treatment strategies in many practical applications. However, a significant challenge that has been largely overlooked by the ML literature on this topic is the presence of informative sampling in observational data. When instances are observed irregularly over time, sampling times are typically not random, but rather informative -- depending on the instance's characteristics, past outcomes, and administered treatments. In this work, we formalize informative sampling as a covariate shift problem and show that it can prohibit accurate estimation of treatment outcomes if not properly accounted for. To overcome this challenge, we present a general framework for learning treatment outcomes in the presence of informative sampling using inverse intensity-weighting, and propose a novel method, TESAR-CDE, that instantiates this framework using Neural CDEs. Using a simulation environment based on a clinical use case, we demonstrate the effectiveness of our approach in learning under informative sampling.
Aioli: A Unified Optimization Framework for Language Model Data Mixing
Language model performance depends on identifying the optimal mixture of data groups to train on (e.g., law, code, math). Prior work has proposed a diverse set of methods to efficiently learn mixture proportions, ranging from fitting regression models over training runs to dynamically updating proportions throughout training. Surprisingly, we find that no existing method consistently outperforms a simple stratified sampling baseline in terms of average test perplexity. To understand this inconsistency, we unify existing methods into a standard framework, showing they are equivalent to solving a common optimization problem: minimize average loss subject to a method-specific mixing law -- an implicit assumption on the relationship between loss and mixture proportions. This framework suggests that measuring the fidelity of a method's mixing law can offer insights into its performance. Empirically, we find that existing methods set their mixing law parameters inaccurately, resulting in the inconsistent mixing performance we observe. Using this insight, we derive a new online method named Aioli, which directly estimates the mixing law parameters throughout training and uses them to dynamically adjust proportions. Aioli outperforms stratified sampling on 6 out of 6 datasets by an average of 0.27 test perplexity points, whereas existing methods fail to consistently beat stratified sampling, doing up to 6.9 points worse. Moreover, in a practical setting where proportions are learned on shorter runs due to computational constraints, Aioli can dynamically adjust these proportions over the full training run, consistently improving performance over existing methods by up to 12.012 test perplexity points.
Semi-Supervised Learning via Weight-aware Distillation under Class Distribution Mismatch
Semi-Supervised Learning (SSL) under class distribution mismatch aims to tackle a challenging problem wherein unlabeled data contain lots of unknown categories unseen in the labeled ones. In such mismatch scenarios, traditional SSL suffers severe performance damage due to the harmful invasion of the instances with unknown categories into the target classifier. In this study, by strict mathematical reasoning, we reveal that the SSL error under class distribution mismatch is composed of pseudo-labeling error and invasion error, both of which jointly bound the SSL population risk. To alleviate the SSL error, we propose a robust SSL framework called Weight-Aware Distillation (WAD) that, by weights, selectively transfers knowledge beneficial to the target task from unsupervised contrastive representation to the target classifier. Specifically, WAD captures adaptive weights and high-quality pseudo labels to target instances by exploring point mutual information (PMI) in representation space to maximize the role of unlabeled data and filter unknown categories. Theoretically, we prove that WAD has a tight upper bound of population risk under class distribution mismatch. Experimentally, extensive results demonstrate that WAD outperforms five state-of-the-art SSL approaches and one standard baseline on two benchmark datasets, CIFAR10 and CIFAR100, and an artificial cross-dataset. The code is available at https://github.com/RUC-DWBI-ML/research/tree/main/WAD-master.
Highly Imbalanced Regression with Tabular Data in SEP and Other Applications
We investigate imbalanced regression with tabular data that have an imbalance ratio larger than 1,000 ("highly imbalanced"). Accurately estimating the target values of rare instances is important in applications such as forecasting the intensity of rare harmful Solar Energetic Particle (SEP) events. For regression, the MSE loss does not consider the correlation between predicted and actual values. Typical inverse importance functions allow only convex functions. Uniform sampling might yield mini-batches that do not have rare instances. We propose CISIR that incorporates correlation, Monotonically Decreasing Involution (MDI) importance, and stratified sampling. Based on five datasets, our experimental results indicate that CISIR can achieve lower error and higher correlation than some recent methods. Also, adding our correlation component to other recent methods can improve their performance. Lastly, MDI importance can outperform other importance functions. Our code can be found in https://github.com/Machine-Earning/CISIR.
Mind Your Outliers! Investigating the Negative Impact of Outliers on Active Learning for Visual Question Answering
Active learning promises to alleviate the massive data needs of supervised machine learning: it has successfully improved sample efficiency by an order of magnitude on traditional tasks like topic classification and object recognition. However, we uncover a striking contrast to this promise: across 5 models and 4 datasets on the task of visual question answering, a wide variety of active learning approaches fail to outperform random selection. To understand this discrepancy, we profile 8 active learning methods on a per-example basis, and identify the problem as collective outliers -- groups of examples that active learning methods prefer to acquire but models fail to learn (e.g., questions that ask about text in images or require external knowledge). Through systematic ablation experiments and qualitative visualizations, we verify that collective outliers are a general phenomenon responsible for degrading pool-based active learning. Notably, we show that active learning sample efficiency increases significantly as the number of collective outliers in the active learning pool decreases. We conclude with a discussion and prescriptive recommendations for mitigating the effects of these outliers in future work.
An Effective Meaningful Way to Evaluate Survival Models
One straightforward metric to evaluate a survival prediction model is based on the Mean Absolute Error (MAE) -- the average of the absolute difference between the time predicted by the model and the true event time, over all subjects. Unfortunately, this is challenging because, in practice, the test set includes (right) censored individuals, meaning we do not know when a censored individual actually experienced the event. In this paper, we explore various metrics to estimate MAE for survival datasets that include (many) censored individuals. Moreover, we introduce a novel and effective approach for generating realistic semi-synthetic survival datasets to facilitate the evaluation of metrics. Our findings, based on the analysis of the semi-synthetic datasets, reveal that our proposed metric (MAE using pseudo-observations) is able to rank models accurately based on their performance, and often closely matches the true MAE -- in particular, is better than several alternative methods.
Geometry-Aware Adaptation for Pretrained Models
Machine learning models -- including prominent zero-shot models -- are often trained on datasets whose labels are only a small proportion of a larger label space. Such spaces are commonly equipped with a metric that relates the labels via distances between them. We propose a simple approach to exploit this information to adapt the trained model to reliably predict new classes -- or, in the case of zero-shot prediction, to improve its performance -- without any additional training. Our technique is a drop-in replacement of the standard prediction rule, swapping argmax with the Fr\'echet mean. We provide a comprehensive theoretical analysis for this approach, studying (i) learning-theoretic results trading off label space diameter, sample complexity, and model dimension, (ii) characterizations of the full range of scenarios in which it is possible to predict any unobserved class, and (iii) an optimal active learning-like next class selection procedure to obtain optimal training classes for when it is not possible to predict the entire range of unobserved classes. Empirically, using easily-available external metrics, our proposed approach, Loki, gains up to 29.7% relative improvement over SimCLR on ImageNet and scales to hundreds of thousands of classes. When no such metric is available, Loki can use self-derived metrics from class embeddings and obtains a 10.5% improvement on pretrained zero-shot models such as CLIP.
Autoregressive Image Generation without Vector Quantization
Conventional wisdom holds that autoregressive models for image generation are typically accompanied by vector-quantized tokens. We observe that while a discrete-valued space can facilitate representing a categorical distribution, it is not a necessity for autoregressive modeling. In this work, we propose to model the per-token probability distribution using a diffusion procedure, which allows us to apply autoregressive models in a continuous-valued space. Rather than using categorical cross-entropy loss, we define a Diffusion Loss function to model the per-token probability. This approach eliminates the need for discrete-valued tokenizers. We evaluate its effectiveness across a wide range of cases, including standard autoregressive models and generalized masked autoregressive (MAR) variants. By removing vector quantization, our image generator achieves strong results while enjoying the speed advantage of sequence modeling. We hope this work will motivate the use of autoregressive generation in other continuous-valued domains and applications.
Geometry of Sample Spaces
In statistics, independent, identically distributed random samples do not carry a natural ordering, and their statistics are typically invariant with respect to permutations of their order. Thus, an n-sample in a space M can be considered as an element of the quotient space of M^n modulo the permutation group. The present paper takes this definition of sample space and the related concept of orbit types as a starting point for developing a geometric perspective on statistics. We aim at deriving a general mathematical setting for studying the behavior of empirical and population means in spaces ranging from smooth Riemannian manifolds to general stratified spaces. We fully describe the orbifold and path-metric structure of the sample space when M is a manifold or path-metric space, respectively. These results are non-trivial even when M is Euclidean. We show that the infinite sample space exists in a Gromov-Hausdorff type sense and coincides with the Wasserstein space of probability distributions on M. We exhibit Fr\'echet means and k-means as metric projections onto 1-skeleta or k-skeleta in Wasserstein space, and we define a new and more general notion of polymeans. This geometric characterization via metric projections applies equally to sample and population means, and we use it to establish asymptotic properties of polymeans such as consistency and asymptotic normality.
Noise-Robust and Resource-Efficient ADMM-based Federated Learning
Federated learning (FL) leverages client-server communications to train global models on decentralized data. However, communication noise or errors can impair model accuracy. To address this problem, we propose a novel FL algorithm that enhances robustness against communication noise while also reducing communication load. We derive the proposed algorithm through solving the weighted least-squares (WLS) regression problem as an illustrative example. We first frame WLS regression as a distributed convex optimization problem over a federated network employing random scheduling for improved communication efficiency. We then apply the alternating direction method of multipliers (ADMM) to iteratively solve this problem. To counteract the detrimental effects of cumulative communication noise, we introduce a key modification by eliminating the dual variable and implementing a new local model update at each participating client. This subtle yet effective change results in using a single noisy global model update at each client instead of two, improving robustness against additive communication noise. Furthermore, we incorporate another modification enabling clients to continue local updates even when not selected by the server, leading to substantial performance improvements. Our theoretical analysis confirms the convergence of our algorithm in both mean and the mean-square senses, even when the server communicates with a random subset of clients over noisy links at each iteration. Numerical results validate the effectiveness of our proposed algorithm and corroborate our theoretical findings.
Pairwise Ranking Losses of Click-Through Rates Prediction for Welfare Maximization in Ad Auctions
We study the design of loss functions for click-through rates (CTR) to optimize (social) welfare in advertising auctions. Existing works either only focus on CTR predictions without consideration of business objectives (e.g., welfare) in auctions or assume that the distribution over the participants' expected cost-per-impression (eCPM) is known a priori, then use various additional assumptions on the parametric form of the distribution to derive loss functions for predicting CTRs. In this work, we bring back the welfare objectives of ad auctions into CTR predictions and propose a novel weighted rankloss to train the CTR model. Compared to existing literature, our approach provides a provable guarantee on welfare but without assumptions on the eCPMs' distribution while also avoiding the intractability of naively applying existing learning-to-rank methods. Further, we propose a theoretically justifiable technique for calibrating the losses using labels generated from a teacher network, only assuming that the teacher network has bounded ell_2 generalization error. Finally, we demonstrate the advantages of the proposed loss on synthetic and real-world data.
Kaggle forecasting competitions: An overlooked learning opportunity
Competitions play an invaluable role in the field of forecasting, as exemplified through the recent M4 competition. The competition received attention from both academics and practitioners and sparked discussions around the representativeness of the data for business forecasting. Several competitions featuring real-life business forecasting tasks on the Kaggle platform has, however, been largely ignored by the academic community. We believe the learnings from these competitions have much to offer to the forecasting community and provide a review of the results from six Kaggle competitions. We find that most of the Kaggle datasets are characterized by higher intermittence and entropy than the M-competitions and that global ensemble models tend to outperform local single models. Furthermore, we find the strong performance of gradient boosted decision trees, increasing success of neural networks for forecasting, and a variety of techniques for adapting machine learning models to the forecasting task.
Optimum Risk Portfolio and Eigen Portfolio: A Comparative Analysis Using Selected Stocks from the Indian Stock Market
Designing an optimum portfolio that allocates weights to its constituent stocks in a way that achieves the best trade-off between the return and the risk is a challenging research problem. The classical mean-variance theory of portfolio proposed by Markowitz is found to perform sub-optimally on the real-world stock market data since the error in estimation for the expected returns adversely affects the performance of the portfolio. This paper presents three approaches to portfolio design, viz, the minimum risk portfolio, the optimum risk portfolio, and the Eigen portfolio, for seven important sectors of the Indian stock market. The daily historical prices of the stocks are scraped from Yahoo Finance website from January 1, 2016, to December 31, 2020. Three portfolios are built for each of the seven sectors chosen for this study, and the portfolios are analyzed on the training data based on several metrics such as annualized return and risk, weights assigned to the constituent stocks, the correlation heatmaps, and the principal components of the Eigen portfolios. Finally, the optimum risk portfolios and the Eigen portfolios for all sectors are tested on their return over a period of a six-month period. The performances of the portfolios are compared and the portfolio yielding the higher return for each sector is identified.
Magnitude of arithmetic scalar and matrix categories
We develop tools for explicitly constructing categories enriched over generating data and that compose via ordinary scalar and matrix arithmetic arithmetic operations. We characterize meaningful size maps, weightings, and magnitude that reveal features analogous to outliers that these same notions have previously been shown to reveal in the context of metric spaces. Throughout, we provide examples of such "outlier detection" relevant to the analysis of computer programs, neural networks, cyber-physical systems, and networks of communications channels.
It Takes Two to Tango: Mixup for Deep Metric Learning
Metric learning involves learning a discriminative representation such that embeddings of similar classes are encouraged to be close, while embeddings of dissimilar classes are pushed far apart. State-of-the-art methods focus mostly on sophisticated loss functions or mining strategies. On the one hand, metric learning losses consider two or more examples at a time. On the other hand, modern data augmentation methods for classification consider two or more examples at a time. The combination of the two ideas is under-studied. In this work, we aim to bridge this gap and improve representations using mixup, which is a powerful data augmentation approach interpolating two or more examples and corresponding target labels at a time. This task is challenging because unlike classification, the loss functions used in metric learning are not additive over examples, so the idea of interpolating target labels is not straightforward. To the best of our knowledge, we are the first to investigate mixing both examples and target labels for deep metric learning. We develop a generalized formulation that encompasses existing metric learning loss functions and modify it to accommodate for mixup, introducing Metric Mix, or Metrix. We also introduce a new metric - utilization, to demonstrate that by mixing examples during training, we are exploring areas of the embedding space beyond the training classes, thereby improving representations. To validate the effect of improved representations, we show that mixing inputs, intermediate representations or embeddings along with target labels significantly outperforms state-of-the-art metric learning methods on four benchmark deep metric learning datasets.
Non-asymptotic oracle inequalities for the Lasso in high-dimensional mixture of experts
Mixture of experts (MoE) has a well-principled finite mixture model construction for prediction, allowing the gating network (mixture weights) to learn from the predictors (explanatory variables) together with the experts' network (mixture component densities). We investigate the estimation properties of MoEs in a high-dimensional setting, where the number of predictors is much larger than the sample size, for which the literature lacks computational and especially theoretical results. We consider the class of finite MoE models with softmax gating functions and Gaussian regression experts, and focus on the theoretical properties of their l_1-regularized estimation via the Lasso. We provide a lower bound on the regularization parameter of the Lasso penalty that ensures an l_1-oracle inequality is satisfied by the Lasso estimator according to the Kullback--Leibler loss. We further state an l_1-ball oracle inequality for the l_1-penalized maximum likelihood estimator from the model selection.
Head-wise Shareable Attention for Large Language Models
Large Language Models (LLMs) suffer from huge number of parameters, which restricts their deployment on edge devices. Weight sharing is one promising solution that encourages weight reuse, effectively reducing memory usage with less performance drop. However, current weight sharing techniques primarily focus on small-scale models like BERT and employ coarse-grained sharing rules, e.g., layer-wise. This becomes limiting given the prevalence of LLMs and sharing an entire layer or block obviously diminishes the flexibility of weight sharing. In this paper, we present a perspective on $textbf{head-wise shareable attention for large language models}. We further propose two memory-efficient methods that share parameters across attention heads, with a specific focus on LLMs. Both of them use the same dynamic strategy to select the shared weight matrices. The first method directly reuses the pre-trained weights without retraining, denoted as DirectShare. The second method first post-trains with constraint on weight matrix similarity and then shares, denoted as PostShare$. Experimental results reveal our head-wise shared models still maintain satisfactory capabilities, demonstrating the feasibility of fine-grained weight sharing applied to LLMs.
Post-hoc Bias Scoring Is Optimal For Fair Classification
We consider a binary classification problem under group fairness constraints, which can be one of Demographic Parity (DP), Equalized Opportunity (EOp), or Equalized Odds (EO). We propose an explicit characterization of Bayes optimal classifier under the fairness constraints, which turns out to be a simple modification rule of the unconstrained classifier. Namely, we introduce a novel instance-level measure of bias, which we call bias score, and the modification rule is a simple linear rule on top of the finite amount of bias scores.Based on this characterization, we develop a post-hoc approach that allows us to adapt to fairness constraints while maintaining high accuracy. In the case of DP and EOp constraints, the modification rule is thresholding a single bias score, while in the case of EO constraints we are required to fit a linear modification rule with 2 parameters. The method can also be applied for composite group-fairness criteria, such as ones involving several sensitive attributes.
When Layers Play the Lottery, all Tickets Win at Initialization
Pruning is a standard technique for reducing the computational cost of deep networks. Many advances in pruning leverage concepts from the Lottery Ticket Hypothesis (LTH). LTH reveals that inside a trained dense network exists sparse subnetworks (tickets) able to achieve similar accuracy (i.e., win the lottery - winning tickets). Pruning at initialization focuses on finding winning tickets without training a dense network. Studies on these concepts share the trend that subnetworks come from weight or filter pruning. In this work, we investigate LTH and pruning at initialization from the lens of layer pruning. First, we confirm the existence of winning tickets when the pruning process removes layers. Leveraged by this observation, we propose to discover these winning tickets at initialization, eliminating the requirement of heavy computational resources for training the initial (over-parameterized) dense network. Extensive experiments show that our winning tickets notably speed up the training phase and reduce up to 51% of carbon emission, an important step towards democratization and green Artificial Intelligence. Beyond computational benefits, our winning tickets exhibit robustness against adversarial and out-of-distribution examples. Finally, we show that our subnetworks easily win the lottery at initialization while tickets from filter removal (the standard structured LTH) hardly become winning tickets.
Transductive Few-Shot Learning: Clustering is All You Need?
We investigate a general formulation for clustering and transductive few-shot learning, which integrates prototype-based objectives, Laplacian regularization and supervision constraints from a few labeled data points. We propose a concave-convex relaxation of the problem, and derive a computationally efficient block-coordinate bound optimizer, with convergence guarantee. At each iteration,our optimizer computes independent (parallel) updates for each point-to-cluster assignment. Therefore, it could be trivially distributed for large-scale clustering and few-shot tasks. Furthermore, we provides a thorough convergence analysis based on point-to-set maps. Were port comprehensive clustering and few-shot learning experiments over various data sets, showing that our method yields competitive performances, in term of accuracy and optimization quality, while scaling up to large problems. Using standard training on the base classes, without resorting to complex meta-learning and episodic-training strategies, our approach outperforms state-of-the-art few-shot methods by significant margins, across various models, settings and data sets. Surprisingly, we found that even standard clustering procedures (e.g., K-means), which correspond to particular, non-regularized cases of our general model, already achieve competitive performances in comparison to the state-of-the-art in few-shot learning. These surprising results point to the limitations of the current few-shot benchmarks, and question the viability of a large body of convoluted few-shot learning techniques in the recent literature.
Loss-to-Loss Prediction: Scaling Laws for All Datasets
While scaling laws provide a reliable methodology for predicting train loss across compute scales for a single data distribution, less is known about how these predictions should change as we change the distribution. In this paper, we derive a strategy for predicting one loss from another and apply it to predict across different pre-training datasets and from pre-training data to downstream task data. Our predictions extrapolate well even at 20x the largest FLOP budget used to fit the curves. More precisely, we find that there are simple shifted power law relationships between (1) the train losses of two models trained on two separate datasets when the models are paired by training compute (train-to-train), (2) the train loss and the test loss on any downstream distribution for a single model (train-to-test), and (3) the test losses of two models trained on two separate train datasets (test-to-test). The results hold up for pre-training datasets that differ substantially (some are entirely code and others have no code at all) and across a variety of downstream tasks. Finally, we find that in some settings these shifted power law relationships can yield more accurate predictions than extrapolating single-dataset scaling laws.
ZIP: Scalable Crowd Counting via Zero-Inflated Poisson Modeling
Most crowd counting methods directly regress blockwise density maps using Mean Squared Error (MSE) losses. This practice has two key limitations: (1) it fails to account for the extreme spatial sparsity of annotations -- over 95% of 8x8 blocks are empty across standard benchmarks, so supervision signals in informative regions are diluted by the predominant zeros; (2) MSE corresponds to a Gaussian error model that poorly matches discrete, non-negative count data. To address these issues, we introduce ZIP, a scalable crowd counting framework that models blockwise counts with a Zero-Inflated Poisson likelihood: a zero-inflation term learns the probability a block is structurally empty (handling excess zeros), while the Poisson component captures expected counts when people are present (respecting discreteness). We provide a generalization analysis showing a tighter risk bound for ZIP than MSE-based losses and DMCount provided that the training resolution is moderately large. To assess the scalability of ZIP, we instantiate it on backbones spanning over 100x in parameters/compute. Experiments on ShanghaiTech A & B, UCF-QNRF, and NWPU-Crowd demonstrate that ZIP consistently surpasses state-of-the-art methods across all model scales.
Repairing without Retraining: Avoiding Disparate Impact with Counterfactual Distributions
When the performance of a machine learning model varies over groups defined by sensitive attributes (e.g., gender or ethnicity), the performance disparity can be expressed in terms of the probability distributions of the input and output variables over each group. In this paper, we exploit this fact to reduce the disparate impact of a fixed classification model over a population of interest. Given a black-box classifier, we aim to eliminate the performance gap by perturbing the distribution of input variables for the disadvantaged group. We refer to the perturbed distribution as a counterfactual distribution, and characterize its properties for common fairness criteria. We introduce a descent algorithm to learn a counterfactual distribution from data. We then discuss how the estimated distribution can be used to build a data preprocessor that can reduce disparate impact without training a new model. We validate our approach through experiments on real-world datasets, showing that it can repair different forms of disparity without a significant drop in accuracy.
Making Reliable and Flexible Decisions in Long-tailed Classification
Long-tailed classification is challenging due to its heavy imbalance in class probabilities. While existing methods often focus on overall accuracy or accuracy for tail classes, they overlook a critical aspect: certain types of errors can carry greater risks than others in real-world long-tailed problems. For example, misclassifying patients (a tail class) as healthy individuals (a head class) entails far more serious consequences than the reverse scenario. To address this critical issue, we introduce Making Reliable and Flexible Decisions in Long-tailed Classification (RF-DLC), a novel framework aimed at reliable predictions in long-tailed problems. Leveraging Bayesian Decision Theory, we introduce an integrated gain to seamlessly combine long-tailed data distributions and the decision-making procedure. We further propose an efficient variational optimization strategy for the decision risk objective. Our method adapts readily to diverse utility matrices, which can be designed for specific tasks, ensuring its flexibility for different problem settings. In empirical evaluation, we design a new metric, False Head Rate, to quantify tail-sensitivity risk, along with comprehensive experiments on multiple real-world tasks, including large-scale image classification and uncertainty quantification, to demonstrate the reliability and flexibility of our method.
Supersparse Linear Integer Models for Optimized Medical Scoring Systems
Scoring systems are linear classification models that only require users to add, subtract and multiply a few small numbers in order to make a prediction. These models are in widespread use by the medical community, but are difficult to learn from data because they need to be accurate and sparse, have coprime integer coefficients, and satisfy multiple operational constraints. We present a new method for creating data-driven scoring systems called a Supersparse Linear Integer Model (SLIM). SLIM scoring systems are built by solving an integer program that directly encodes measures of accuracy (the 0-1 loss) and sparsity (the ell_0-seminorm) while restricting coefficients to coprime integers. SLIM can seamlessly incorporate a wide range of operational constraints related to accuracy and sparsity, and can produce highly tailored models without parameter tuning. We provide bounds on the testing and training accuracy of SLIM scoring systems, and present a new data reduction technique that can improve scalability by eliminating a portion of the training data beforehand. Our paper includes results from a collaboration with the Massachusetts General Hospital Sleep Laboratory, where SLIM was used to create a highly tailored scoring system for sleep apnea screening
Mining Minority-class Examples With Uncertainty Estimates
In the real world, the frequency of occurrence of objects is naturally skewed forming long-tail class distributions, which results in poor performance on the statistically rare classes. A promising solution is to mine tail-class examples to balance the training dataset. However, mining tail-class examples is a very challenging task. For instance, most of the otherwise successful uncertainty-based mining approaches struggle due to distortion of class probabilities resulting from skewness in data. In this work, we propose an effective, yet simple, approach to overcome these challenges. Our framework enhances the subdued tail-class activations and, thereafter, uses a one-class data-centric approach to effectively identify tail-class examples. We carry out an exhaustive evaluation of our framework on three datasets spanning over two computer vision tasks. Substantial improvements in the minority-class mining and fine-tuned model's performance strongly corroborate the value of our proposed solution.
VertiBench: Advancing Feature Distribution Diversity in Vertical Federated Learning Benchmarks
Vertical Federated Learning (VFL) is a crucial paradigm for training machine learning models on feature-partitioned, distributed data. However, due to privacy restrictions, few public real-world VFL datasets exist for algorithm evaluation, and these represent a limited array of feature distributions. Existing benchmarks often resort to synthetic datasets, derived from arbitrary feature splits from a global set, which only capture a subset of feature distributions, leading to inadequate algorithm performance assessment. This paper addresses these shortcomings by introducing two key factors affecting VFL performance - feature importance and feature correlation - and proposing associated evaluation metrics and dataset splitting methods. Additionally, we introduce a real VFL dataset to address the deficit in image-image VFL scenarios. Our comprehensive evaluation of cutting-edge VFL algorithms provides valuable insights for future research in the field.
Mixture Proportion Estimation Beyond Irreducibility
The task of mixture proportion estimation (MPE) is to estimate the weight of a component distribution in a mixture, given observations from both the component and mixture. Previous work on MPE adopts the irreducibility assumption, which ensures identifiablity of the mixture proportion. In this paper, we propose a more general sufficient condition that accommodates several settings of interest where irreducibility does not hold. We further present a resampling-based meta-algorithm that takes any existing MPE algorithm designed to work under irreducibility and adapts it to work under our more general condition. Our approach empirically exhibits improved estimation performance relative to baseline methods and to a recently proposed regrouping-based algorithm.
Language Models Improve When Pretraining Data Matches Target Tasks
Every data selection method inherently has a target. In practice, these targets often emerge implicitly through benchmark-driven iteration: researchers develop selection strategies, train models, measure benchmark performance, then refine accordingly. This raises a natural question: what happens when we make this optimization explicit? To explore this, we propose benchmark-targeted ranking (BETR), a simple method that selects pretraining documents based on similarity to benchmark training examples. BETR embeds benchmark examples and a sample of pretraining documents in a shared space, scores this sample by similarity to benchmarks, then trains a lightweight classifier to predict these scores for the full corpus. We compare data selection methods by training over 500 models spanning 10^{19} to 10^{22} FLOPs and fitting scaling laws to them. From this, we find that simply aligning pretraining data to evaluation benchmarks using BETR achieves a 2.1x compute multiplier over DCLM-Baseline (4.7x over unfiltered data) and improves performance on 9 out of 10 tasks across all scales. BETR also generalizes well: when targeting a diverse set of benchmarks disjoint from our evaluation suite, it still matches or outperforms baselines. Our scaling analysis further reveals a clear trend: larger models require less aggressive filtering. Overall, our findings show that directly matching pretraining data to target tasks precisely shapes model capabilities and highlight that optimal selection strategies must adapt to model scale.
An Informal Introduction to Multiplet Neural Networks
In the artificial neuron, I replace the dot product with the weighted Lehmer mean, which may emulate different cases of a generalized mean. The single neuron instance is replaced by a multiplet of neurons which have the same averaging weights. A group of outputs feed forward, in lieu of the single scalar. The generalization parameter is typically set to a different value for each neuron in the multiplet. I further extend the concept to a multiplet taken from the Gini mean. Derivatives with respect to the weight parameters and with respect to the two generalization parameters are given. Some properties of the network are investigated, showing the capacity to emulate the classical exclusive-or problem organically in two layers and perform some multiplication and division. The network can instantiate truncated power series and variants, which can be used to approximate different functions, provided that parameters are constrained. Moreover, a mean case slope score is derived that can facilitate a learning-rate novelty based on homogeneity of the selected elements. The multiplet neuron equation provides a way to segment regularization timeframes and approaches.
On Generalizations of Some Distance Based Classifiers for HDLSS Data
In high dimension, low sample size (HDLSS) settings, classifiers based on Euclidean distances like the nearest neighbor classifier and the average distance classifier perform quite poorly if differences between locations of the underlying populations get masked by scale differences. To rectify this problem, several modifications of these classifiers have been proposed in the literature. However, existing methods are confined to location and scale differences only, and often fail to discriminate among populations differing outside of the first two moments. In this article, we propose some simple transformations of these classifiers resulting into improved performance even when the underlying populations have the same location and scale. We further propose a generalization of these classifiers based on the idea of grouping of variables. The high-dimensional behavior of the proposed classifiers is studied theoretically. Numerical experiments with a variety of simulated examples as well as an extensive analysis of real data sets exhibit advantages of the proposed methods.
Algorithmic Collective Action in Machine Learning
We initiate a principled study of algorithmic collective action on digital platforms that deploy machine learning algorithms. We propose a simple theoretical model of a collective interacting with a firm's learning algorithm. The collective pools the data of participating individuals and executes an algorithmic strategy by instructing participants how to modify their own data to achieve a collective goal. We investigate the consequences of this model in three fundamental learning-theoretic settings: the case of a nonparametric optimal learning algorithm, a parametric risk minimizer, and gradient-based optimization. In each setting, we come up with coordinated algorithmic strategies and characterize natural success criteria as a function of the collective's size. Complementing our theory, we conduct systematic experiments on a skill classification task involving tens of thousands of resumes from a gig platform for freelancers. Through more than two thousand model training runs of a BERT-like language model, we see a striking correspondence emerge between our empirical observations and the predictions made by our theory. Taken together, our theory and experiments broadly support the conclusion that algorithmic collectives of exceedingly small fractional size can exert significant control over a platform's learning algorithm.
Fair and efficient contribution valuation for vertical federated learning
Federated learning is a popular technology for training machine learning models on distributed data sources without sharing data. Vertical federated learning or feature-based federated learning applies to the cases that different data sources share the same sample ID space but differ in feature space. To ensure the data owners' long-term engagement, it is critical to objectively assess the contribution from each data source and recompense them accordingly. The Shapley value (SV) is a provably fair contribution valuation metric originated from cooperative game theory. However, computing the SV requires extensively retraining the model on each subset of data sources, which causes prohibitively high communication costs in federated learning. We propose a contribution valuation metric called vertical federated Shapley value (VerFedSV) based on SV. We show that VerFedSV not only satisfies many desirable properties for fairness but is also efficient to compute, and can be adapted to both synchronous and asynchronous vertical federated learning algorithms. Both theoretical analysis and extensive experimental results verify the fairness, efficiency, and adaptability of VerFedSV.
GW-MoE: Resolving Uncertainty in MoE Router with Global Workspace Theory
Mixture-of-Experts (MoE) has been demonstrated as an efficient method to scale up models. By dynamically and sparsely selecting activated experts, MoE can effectively reduce computational costs. Despite the success, we observe that many tokens in the MoE models have uncertain routing results. These tokens have nearly equal scores for choosing each expert, and we demonstrate that this uncertainty can lead to incorrect selections. Inspired by the Global Workspace Theory (GWT), we propose a new fine-tuning method, GW-MoE, to address this issue. The core idea is to broadcast the uncertain tokens across experts during fine-tuning. Therefore, these tokens can acquire the necessary knowledge from any expert during inference and become less sensitive to the choice. GW-MoE does not introduce additional inference overhead. We validate that GW can mitigate the uncertain problem and consistently improve in different tasks (text classification, question answering, summarization, code generation, and mathematical problem solving) and model sizes (650M and 8B parameters).
A Text Classification Framework for Simple and Effective Early Depression Detection Over Social Media Streams
With the rise of the Internet, there is a growing need to build intelligent systems that are capable of efficiently dealing with early risk detection (ERD) problems on social media, such as early depression detection, early rumor detection or identification of sexual predators. These systems, nowadays mostly based on machine learning techniques, must be able to deal with data streams since users provide their data over time. In addition, these systems must be able to decide when the processed data is sufficient to actually classify users. Moreover, since ERD tasks involve risky decisions by which people's lives could be affected, such systems must also be able to justify their decisions. However, most standard and state-of-the-art supervised machine learning models are not well suited to deal with this scenario. This is due to the fact that they either act as black boxes or do not support incremental classification/learning. In this paper we introduce SS3, a novel supervised learning model for text classification that naturally supports these aspects. SS3 was designed to be used as a general framework to deal with ERD problems. We evaluated our model on the CLEF's eRisk2017 pilot task on early depression detection. Most of the 30 contributions submitted to this competition used state-of-the-art methods. Experimental results show that our classifier was able to outperform these models and standard classifiers, despite being less computationally expensive and having the ability to explain its rationale.
SGMM: Stochastic Approximation to Generalized Method of Moments
We introduce a new class of algorithms, Stochastic Generalized Method of Moments (SGMM), for estimation and inference on (overidentified) moment restriction models. Our SGMM is a novel stochastic approximation alternative to the popular Hansen (1982) (offline) GMM, and offers fast and scalable implementation with the ability to handle streaming datasets in real time. We establish the almost sure convergence, and the (functional) central limit theorem for the inefficient online 2SLS and the efficient SGMM. Moreover, we propose online versions of the Durbin-Wu-Hausman and Sargan-Hansen tests that can be seamlessly integrated within the SGMM framework. Extensive Monte Carlo simulations show that as the sample size increases, the SGMM matches the standard (offline) GMM in terms of estimation accuracy and gains over computational efficiency, indicating its practical value for both large-scale and online datasets. We demonstrate the efficacy of our approach by a proof of concept using two well known empirical examples with large sample sizes.
ReTaSA: A Nonparametric Functional Estimation Approach for Addressing Continuous Target Shift
The presence of distribution shifts poses a significant challenge for deploying modern machine learning models in real-world applications. This work focuses on the target shift problem in a regression setting (Zhang et al., 2013; Nguyen et al., 2016). More specifically, the target variable y (also known as the response variable), which is continuous, has different marginal distributions in the training source and testing domain, while the conditional distribution of features x given y remains the same. While most literature focuses on classification tasks with finite target space, the regression problem has an infinite dimensional target space, which makes many of the existing methods inapplicable. In this work, we show that the continuous target shift problem can be addressed by estimating the importance weight function from an ill-posed integral equation. We propose a nonparametric regularized approach named ReTaSA to solve the ill-posed integral equation and provide theoretical justification for the estimated importance weight function. The effectiveness of the proposed method has been demonstrated with extensive numerical studies on synthetic and real-world datasets.
Adaptive Sampling Strategies to Construct Equitable Training Datasets
In domains ranging from computer vision to natural language processing, machine learning models have been shown to exhibit stark disparities, often performing worse for members of traditionally underserved groups. One factor contributing to these performance gaps is a lack of representation in the data the models are trained on. It is often unclear, however, how to operationalize representativeness in specific applications. Here we formalize the problem of creating equitable training datasets, and propose a statistical framework for addressing this problem. We consider a setting where a model builder must decide how to allocate a fixed data collection budget to gather training data from different subgroups. We then frame dataset creation as a constrained optimization problem, in which one maximizes a function of group-specific performance metrics based on (estimated) group-specific learning rates and costs per sample. This flexible approach incorporates preferences of model-builders and other stakeholders, as well as the statistical properties of the learning task. When data collection decisions are made sequentially, we show that under certain conditions this optimization problem can be efficiently solved even without prior knowledge of the learning rates. To illustrate our approach, we conduct a simulation study of polygenic risk scores on synthetic genomic data -- an application domain that often suffers from non-representative data collection. We find that our adaptive sampling strategy outperforms several common data collection heuristics, including equal and proportional sampling, demonstrating the value of strategic dataset design for building equitable models.
Lite-RVFL: A Lightweight Random Vector Functional-Link Neural Network for Learning Under Concept Drift
The change in data distribution over time, also known as concept drift, poses a significant challenge to the reliability of online learning methods. Existing methods typically require model retraining or drift detection, both of which demand high computational costs and are often unsuitable for real-time applications. To address these limitations, a lightweight, fast and efficient random vector functional-link network termed Lite-RVFL is proposed, capable of adapting to concept drift without drift detection and retraining. Lite-RVFL introduces a novel objective function that assigns weights exponentially increasing to new samples, thereby emphasizing recent data and enabling timely adaptation. Theoretical analysis confirms the feasibility of this objective function for drift adaptation, and an efficient incremental update rule is derived. Experimental results on a real-world safety assessment task validate the efficiency, effectiveness in adapting to drift, and potential to capture temporal patterns of Lite-RVFL. The source code is available at https://github.com/songqiaohu/Lite-RVFL.
Group-robust Sample Reweighting for Subpopulation Shifts via Influence Functions
Machine learning models often have uneven performance among subpopulations (a.k.a., groups) in the data distributions. This poses a significant challenge for the models to generalize when the proportions of the groups shift during deployment. To improve robustness to such shifts, existing approaches have developed strategies that train models or perform hyperparameter tuning using the group-labeled data to minimize the worst-case loss over groups. However, a non-trivial amount of high-quality labels is often required to obtain noticeable improvements. Given the costliness of the labels, we propose to adopt a different paradigm to enhance group label efficiency: utilizing the group-labeled data as a target set to optimize the weights of other group-unlabeled data. We introduce Group-robust Sample Reweighting (GSR), a two-stage approach that first learns the representations from group-unlabeled data, and then tinkers the model by iteratively retraining its last layer on the reweighted data using influence functions. Our GSR is theoretically sound, practically lightweight, and effective in improving the robustness to subpopulation shifts. In particular, GSR outperforms the previous state-of-the-art approaches that require the same amount or even more group labels.
Prior and Posterior Networks: A Survey on Evidential Deep Learning Methods For Uncertainty Estimation
Popular approaches for quantifying predictive uncertainty in deep neural networks often involve distributions over weights or multiple models, for instance via Markov Chain sampling, ensembling, or Monte Carlo dropout. These techniques usually incur overhead by having to train multiple model instances or do not produce very diverse predictions. This comprehensive and extensive survey aims to familiarize the reader with an alternative class of models based on the concept of Evidential Deep Learning: For unfamiliar data, they aim to admit "what they don't know", and fall back onto a prior belief. Furthermore, they allow uncertainty estimation in a single model and forward pass by parameterizing distributions over distributions. This survey recapitulates existing works, focusing on the implementation in a classification setting, before surveying the application of the same paradigm to regression. We also reflect on the strengths and weaknesses compared to other existing methods and provide the most fundamental derivations using a unified notation to aid future research.
Less is More: Efficient Black-box Attribution via Minimal Interpretable Subset Selection
To develop a trustworthy AI system, which aim to identify the input regions that most influence the models decisions. The primary task of existing attribution methods lies in efficiently and accurately identifying the relationships among input-prediction interactions. Particularly when the input data is discrete, such as images, analyzing the relationship between inputs and outputs poses a significant challenge due to the combinatorial explosion. In this paper, we propose a novel and efficient black-box attribution mechanism, LiMA (Less input is More faithful for Attribution), which reformulates the attribution of important regions as an optimization problem for submodular subset selection. First, to accurately assess interactions, we design a submodular function that quantifies subset importance and effectively captures their impact on decision outcomes. Then, efficiently ranking input sub-regions by their importance for attribution, we improve optimization efficiency through a novel bidirectional greedy search algorithm. LiMA identifies both the most and least important samples while ensuring an optimal attribution boundary that minimizes errors. Extensive experiments on eight foundation models demonstrate that our method provides faithful interpretations with fewer regions and exhibits strong generalization, shows an average improvement of 36.3% in Insertion and 39.6% in Deletion. Our method also outperforms the naive greedy search in attribution efficiency, being 1.6 times faster. Furthermore, when explaining the reasons behind model prediction errors, the average highest confidence achieved by our method is, on average, 86.1% higher than that of state-of-the-art attribution algorithms. The code is available at https://github.com/RuoyuChen10/LIMA.
Tuning Pre-trained Model via Moment Probing
Recently, efficient fine-tuning of large-scale pre-trained models has attracted increasing research interests, where linear probing (LP) as a fundamental module is involved in exploiting the final representations for task-dependent classification. However, most of the existing methods focus on how to effectively introduce a few of learnable parameters, and little work pays attention to the commonly used LP module. In this paper, we propose a novel Moment Probing (MP) method to further explore the potential of LP. Distinguished from LP which builds a linear classification head based on the mean of final features (e.g., word tokens for ViT) or classification tokens, our MP performs a linear classifier on feature distribution, which provides the stronger representation ability by exploiting richer statistical information inherent in features. Specifically, we represent feature distribution by its characteristic function, which is efficiently approximated by using first- and second-order moments of features. Furthermore, we propose a multi-head convolutional cross-covariance (MHC^3) to compute second-order moments in an efficient and effective manner. By considering that MP could affect feature learning, we introduce a partially shared module to learn two recalibrating parameters (PSRP) for backbones based on MP, namely MP_{+}. Extensive experiments on ten benchmarks using various models show that our MP significantly outperforms LP and is competitive with counterparts at less training cost, while our MP_{+} achieves state-of-the-art performance.
A predict-and-optimize approach to profit-driven churn prevention
In this paper, we introduce a novel predict-and-optimize method for profit-driven churn prevention. We frame the task of targeting customers for a retention campaign as a regret minimization problem. The main objective is to leverage individual customer lifetime values (CLVs) to ensure that only the most valuable customers are targeted. In contrast, many profit-driven strategies focus on churn probabilities while considering average CLVs. This often results in significant information loss due to data aggregation. Our proposed model aligns with the guidelines of Predict-and-Optimize (PnO) frameworks and can be efficiently solved using stochastic gradient descent methods. Results from 12 churn prediction datasets underscore the effectiveness of our approach, which achieves the best average performance compared to other well-established strategies in terms of average profit.
Optimizing Deep Learning Models to Address Class Imbalance in Code Comment Classification
Developers rely on code comments to document their work, track issues, and understand the source code. As such, comments provide valuable insights into developers' understanding of their code and describe their various intentions in writing the surrounding code. Recent research leverages natural language processing and deep learning to classify comments based on developers' intentions. However, such labelled data are often imbalanced, causing learning models to perform poorly. This work investigates the use of different weighting strategies of the loss function to mitigate the scarcity of certain classes in the dataset. In particular, various RoBERTa-based transformer models are fine-tuned by means of a hyperparameter search to identify their optimal parameter configurations. Additionally, we fine-tuned the transformers with different weighting strategies for the loss function to address class imbalances. Our approach outperforms the STACC baseline by 8.9 per cent on the NLBSE'25 Tool Competition dataset in terms of the average F1_c score, and exceeding the baseline approach in 17 out of 19 cases with a gain ranging from -5.0 to 38.2. The source code is publicly available at https://github.com/moritzmock/NLBSE2025.
AnyLoss: Transforming Classification Metrics into Loss Functions
Many evaluation metrics can be used to assess the performance of models in binary classification tasks. However, most of them are derived from a confusion matrix in a non-differentiable form, making it very difficult to generate a differentiable loss function that could directly optimize them. The lack of solutions to bridge this challenge not only hinders our ability to solve difficult tasks, such as imbalanced learning, but also requires the deployment of computationally expensive hyperparameter search processes in model selection. In this paper, we propose a general-purpose approach that transforms any confusion matrix-based metric into a loss function, AnyLoss, that is available in optimization processes. To this end, we use an approximation function to make a confusion matrix represented in a differentiable form, and this approach enables any confusion matrix-based metric to be directly used as a loss function. The mechanism of the approximation function is provided to ensure its operability and the differentiability of our loss functions is proved by suggesting their derivatives. We conduct extensive experiments under diverse neural networks with many datasets, and we demonstrate their general availability to target any confusion matrix-based metrics. Our method, especially, shows outstanding achievements in dealing with imbalanced datasets, and its competitive learning speed, compared to multiple baseline models, underscores its efficiency.
DA-MoE: Towards Dynamic Expert Allocation for Mixture-of-Experts Models
Transformer-based Mixture-of-Experts (MoE) models have been driving several recent technological advancements in Natural Language Processing (NLP). These MoE models adopt a router mechanism to determine which experts to activate for routing input tokens. However, existing router mechanisms allocate a fixed number of experts to each token, which neglects the varying importance of different input tokens. In this study, we propose a novel dynamic router mechanism that Dynamically Allocates a variable number of experts for Mixture-of-Experts (DA-MoE) models based on an effective token importance measure. First, we show that the Transformer attention mechanism provides a natural and effective way of calculating token importance. Second, we propose a dynamic router mechanism that effectively decides the optimal number of experts (K) and allocates the top-K experts for each input token. Third, comprehensive experiments on several benchmark datasets demonstrate that our DA-MoE approach consistently outperforms the state-of-the-art Transformer based MoE model on the popular GLUE benchmark.
Analytical confidence intervals for the number of different objects in data streams
This paper develops a new mathematical-statistical approach to analyze a class of Flajolet-Martin algorithms (FMa), and provides analytical confidence intervals for the number F0 of distinct elements in a stream, based on Chernoff bounds. The class of FMa has reached a significant popularity in bigdata stream learning, and the attention of the literature has mainly been based on algorithmic aspects, basically complexity optimality, while the statistical analysis of these class of algorithms has been often faced heuristically. The analysis provided here shows deep connections with mathematical special functions and with extreme value theory. The latter connection may help in explaining heuristic considerations, while the first opens many numerical issues, faced at the end of the present paper. Finally, the algorithms are tested on an anonymized real data stream and MonteCarlo simulations are provided to support our analytical choice in this context.
A Fast Incremental Gaussian Mixture Model
This work builds upon previous efforts in online incremental learning, namely the Incremental Gaussian Mixture Network (IGMN). The IGMN is capable of learning from data streams in a single-pass by improving its model after analyzing each data point and discarding it thereafter. Nevertheless, it suffers from the scalability point-of-view, due to its asymptotic time complexity of Obigl(NKD^3bigr) for N data points, K Gaussian components and D dimensions, rendering it inadequate for high-dimensional data. In this paper, we manage to reduce this complexity to Obigl(NKD^2bigr) by deriving formulas for working directly with precision matrices instead of covariance matrices. The final result is a much faster and scalable algorithm which can be applied to high dimensional tasks. This is confirmed by applying the modified algorithm to high-dimensional classification datasets.
