|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | """Image processor class for PaddleOCR-VL.""" | 
					
						
						|  |  | 
					
						
						|  | import math | 
					
						
						|  | from typing import Dict, List, Optional, Union | 
					
						
						|  |  | 
					
						
						|  | import numpy as np | 
					
						
						|  | import torch | 
					
						
						|  | from transformers.image_processing_utils import BaseImageProcessor, BatchFeature | 
					
						
						|  | from torchvision.transforms import functional as TF | 
					
						
						|  | from transformers.image_transforms import ( | 
					
						
						|  | convert_to_rgb, | 
					
						
						|  | resize, | 
					
						
						|  | to_channel_dimension_format, | 
					
						
						|  | ) | 
					
						
						|  | from transformers.image_utils import ( | 
					
						
						|  | OPENAI_CLIP_MEAN, | 
					
						
						|  | OPENAI_CLIP_STD, | 
					
						
						|  | ChannelDimension, | 
					
						
						|  | PILImageResampling, | 
					
						
						|  | get_image_size, | 
					
						
						|  | infer_channel_dimension_format, | 
					
						
						|  | is_scaled_image, | 
					
						
						|  | is_valid_image, | 
					
						
						|  | make_list_of_images, | 
					
						
						|  | to_numpy_array, | 
					
						
						|  | valid_images, | 
					
						
						|  | validate_preprocess_arguments, | 
					
						
						|  | ) | 
					
						
						|  | from transformers.utils import TensorType, is_vision_available, logging | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | logger = logging.get_logger(__name__) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if is_vision_available(): | 
					
						
						|  | from PIL import Image | 
					
						
						|  |  | 
					
						
						|  | ImageInput = Union[ | 
					
						
						|  | "PIL.Image.Image", | 
					
						
						|  | np.ndarray, | 
					
						
						|  | "torch.Tensor", | 
					
						
						|  | List["PIL.Image.Image"], | 
					
						
						|  | List[np.ndarray], | 
					
						
						|  | List["torch.Tensor"], | 
					
						
						|  | ] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | VideoInput = Union[ | 
					
						
						|  | List["PIL.Image.Image"], | 
					
						
						|  | "np.ndarray", | 
					
						
						|  | "torch.Tensor", | 
					
						
						|  | List["np.ndarray"], | 
					
						
						|  | List["torch.Tensor"], | 
					
						
						|  | List[List["PIL.Image.Image"]], | 
					
						
						|  | List[List["np.ndarrray"]], | 
					
						
						|  | List[List["torch.Tensor"]], | 
					
						
						|  | ] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def make_batched_images(images) -> List[List[ImageInput]]: | 
					
						
						|  | """ | 
					
						
						|  | Accepts images in list or nested list format, and makes a list of images for preprocessing. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | images (`Union[List[List[ImageInput]], List[ImageInput], ImageInput]`): | 
					
						
						|  | The input image. | 
					
						
						|  |  | 
					
						
						|  | Returns: | 
					
						
						|  | list: A list of images. | 
					
						
						|  | """ | 
					
						
						|  | if ( | 
					
						
						|  | isinstance(images, (list, tuple)) | 
					
						
						|  | and isinstance(images[0], (list, tuple)) | 
					
						
						|  | and is_valid_image(images[0][0]) | 
					
						
						|  | ): | 
					
						
						|  | return [img for img_list in images for img in img_list] | 
					
						
						|  |  | 
					
						
						|  | elif isinstance(images, (list, tuple)) and is_valid_image(images[0]): | 
					
						
						|  | return images | 
					
						
						|  |  | 
					
						
						|  | elif is_valid_image(images): | 
					
						
						|  | return [images] | 
					
						
						|  |  | 
					
						
						|  | raise ValueError(f"Could not make batched images from {images}") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def adjust_size(size, patch_size): | 
					
						
						|  | num_patches = size // patch_size | 
					
						
						|  | if num_patches % 2 != 0: | 
					
						
						|  | num_patches -= 1 | 
					
						
						|  | return num_patches * patch_size | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def make_batched_videos(videos) -> List[VideoInput]: | 
					
						
						|  | if ( | 
					
						
						|  | isinstance(videos, (list, tuple)) | 
					
						
						|  | and isinstance(videos[0], (list, tuple)) | 
					
						
						|  | and is_valid_image(videos[0][0]) | 
					
						
						|  | ): | 
					
						
						|  | return videos | 
					
						
						|  |  | 
					
						
						|  | elif isinstance(videos, (list, tuple)) and is_valid_image(videos[0]): | 
					
						
						|  | if isinstance(videos[0], Image.Image): | 
					
						
						|  | return [videos] | 
					
						
						|  | elif len(videos[0].shape) == 4: | 
					
						
						|  | return [list(video) for video in videos] | 
					
						
						|  |  | 
					
						
						|  | elif is_valid_image(videos) and len(videos.shape) == 4: | 
					
						
						|  | return [list(videos)] | 
					
						
						|  |  | 
					
						
						|  | raise ValueError(f"Could not make batched video from {videos}") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def smart_resize( | 
					
						
						|  | height: int, | 
					
						
						|  | width: int, | 
					
						
						|  | factor: int = 28, | 
					
						
						|  | min_pixels: int = 28 * 28 * 130, | 
					
						
						|  | max_pixels: int = 28 * 28 * 1280, | 
					
						
						|  | ): | 
					
						
						|  | """Rescales the image so that the following conditions are met: | 
					
						
						|  |  | 
					
						
						|  | 1. Both dimensions (height and width) are divisible by 'factor'. | 
					
						
						|  |  | 
					
						
						|  | 2. The total number of pixels is within the range ['min_pixels', 'max_pixels']. | 
					
						
						|  |  | 
					
						
						|  | 3. The aspect ratio of the image is maintained as closely as possible. | 
					
						
						|  |  | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if height < factor: | 
					
						
						|  | print(f"smart_resize: height={height} < factor={factor}, reset height=factor") | 
					
						
						|  | width = round((width * factor) / height) | 
					
						
						|  | height = factor | 
					
						
						|  |  | 
					
						
						|  | if width < factor: | 
					
						
						|  | print(f"smart_resize: width={width} < factor={factor}, reset width=factor") | 
					
						
						|  | height = round((height * factor) / width) | 
					
						
						|  | width = factor | 
					
						
						|  |  | 
					
						
						|  | if max(height, width) / min(height, width) > 200: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"absolute aspect ratio must be smaller than 200, got {max(height, width) / min(height, width)}" | 
					
						
						|  | ) | 
					
						
						|  | h_bar = round(height / factor) * factor | 
					
						
						|  | w_bar = round(width / factor) * factor | 
					
						
						|  | if h_bar * w_bar > max_pixels: | 
					
						
						|  | beta = math.sqrt((height * width) / max_pixels) | 
					
						
						|  | h_bar = math.floor(height / beta / factor) * factor | 
					
						
						|  | w_bar = math.floor(width / beta / factor) * factor | 
					
						
						|  | elif h_bar * w_bar < min_pixels: | 
					
						
						|  | beta = math.sqrt(min_pixels / (height * width)) | 
					
						
						|  | h_bar = math.ceil(height * beta / factor) * factor | 
					
						
						|  | w_bar = math.ceil(width * beta / factor) * factor | 
					
						
						|  | return h_bar, w_bar | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class SiglipImageProcessor(BaseImageProcessor): | 
					
						
						|  | r""" | 
					
						
						|  | Constructs a Siglip image processor that dynamically resizes images based on the original images. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | do_resize (`bool`, *optional*, defaults to `True`): | 
					
						
						|  | Whether to resize the image's (height, width) dimensions. | 
					
						
						|  | resample (`PILImageResampling`, *optional*, defaults to `Resampling.BICUBIC`): | 
					
						
						|  | Resampling filter to use when resizing the image. | 
					
						
						|  | do_rescale (`bool`, *optional*, defaults to `True`): | 
					
						
						|  | Whether to rescale the image by the specified scale `rescale_factor`. | 
					
						
						|  | rescale_factor (`int` or `float`, *optional*, defaults to `1/255`): | 
					
						
						|  | Scale factor to use if rescaling the image. | 
					
						
						|  | do_normalize (`bool`, *optional*, defaults to `True`): | 
					
						
						|  | Whether to normalize the image. | 
					
						
						|  | image_mean (`float` or `List[float]`, *optional*, defaults to `[0.48145466, 0.4578275, 0.40821073]`): | 
					
						
						|  | Mean to use if normalizing the image. This is a float or list of floats for each channel in the image. | 
					
						
						|  | image_std (`float` or `List[float]`, *optional*, defaults to `[0.26862954, 0.26130258, 0.27577711]`): | 
					
						
						|  | Standard deviation to use if normalizing the image. This is a float or list of floats for each channel in the image. | 
					
						
						|  | do_convert_rgb (`bool`, *optional*, defaults to `True`): | 
					
						
						|  | Whether to convert the image to RGB. | 
					
						
						|  | min_pixels (`int`, *optional*, defaults to `28 * 28 * 130`): | 
					
						
						|  | The min pixels of the image to resize the image. | 
					
						
						|  | max_pixels (`int`, *optional*, defaults to `28 * 28 * 1670`): | 
					
						
						|  | The max pixels of the image to resize the image. | 
					
						
						|  | patch_size (`int`, *optional*, defaults to 14): | 
					
						
						|  | The spacial patch size of the vision encoder. | 
					
						
						|  | temporal_patch_size (`int`, *optional*, defaults to 2): | 
					
						
						|  | The temporal patch size of the vision encoder. | 
					
						
						|  | merge_size (`int`, *optional*, defaults to 2): | 
					
						
						|  | The merge size of the vision encoder to llm encoder. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | model_input_names = [ | 
					
						
						|  | "pixel_values", | 
					
						
						|  | "image_grid_thw", | 
					
						
						|  | "pixel_values_videos", | 
					
						
						|  | "video_grid_thw", | 
					
						
						|  | ] | 
					
						
						|  |  | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | do_resize: bool = True, | 
					
						
						|  | resample: PILImageResampling = PILImageResampling.BICUBIC, | 
					
						
						|  | do_rescale: bool = True, | 
					
						
						|  | rescale_factor: Union[int, float] = 1 / 255, | 
					
						
						|  | do_normalize: bool = True, | 
					
						
						|  | image_mean: Optional[Union[float, List[float]]] = None, | 
					
						
						|  | image_std: Optional[Union[float, List[float]]] = None, | 
					
						
						|  | do_convert_rgb: bool = True, | 
					
						
						|  | min_pixels: int = 28 * 28 * 130, | 
					
						
						|  | max_pixels: int = 28 * 28 * 1280, | 
					
						
						|  | patch_size: int = 14, | 
					
						
						|  | temporal_patch_size: int = 1, | 
					
						
						|  | merge_size: int = 2, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ) -> None: | 
					
						
						|  | super().__init__(**kwargs) | 
					
						
						|  | self.do_resize = do_resize | 
					
						
						|  | self.resample = resample | 
					
						
						|  | self.do_rescale = do_rescale | 
					
						
						|  | self.rescale_factor = rescale_factor | 
					
						
						|  | self.do_normalize = do_normalize | 
					
						
						|  | self.image_mean = image_mean if image_mean is not None else OPENAI_CLIP_MEAN | 
					
						
						|  | self.image_std = image_std if image_std is not None else OPENAI_CLIP_STD | 
					
						
						|  | self.min_pixels = min_pixels | 
					
						
						|  | self.max_pixels = max_pixels | 
					
						
						|  | self.patch_size = patch_size | 
					
						
						|  | self.temporal_patch_size = temporal_patch_size | 
					
						
						|  | self.merge_size = merge_size | 
					
						
						|  | self.size = {"min_pixels": min_pixels, "max_pixels": max_pixels} | 
					
						
						|  | self.do_convert_rgb = do_convert_rgb | 
					
						
						|  |  | 
					
						
						|  | def mvit_rescale(self, image: Image.Image, merge_size: int = 2) -> Image.Image: | 
					
						
						|  | try: | 
					
						
						|  | w, h = image.size | 
					
						
						|  | except: | 
					
						
						|  | raise ValueError(str((type(image), image))) | 
					
						
						|  | patch_size = self.patch_size | 
					
						
						|  |  | 
					
						
						|  | if (w // patch_size) * (h // patch_size) > self.in_token_limit: | 
					
						
						|  | scale = math.sqrt( | 
					
						
						|  | self.in_token_limit / ((w // patch_size) * (h // patch_size)) | 
					
						
						|  | ) | 
					
						
						|  | new_w, new_h = int(w * scale), int(h * scale) | 
					
						
						|  |  | 
					
						
						|  | image = image.resize((new_w, new_h), Image.Resampling.BICUBIC) | 
					
						
						|  | if self.pad_input: | 
					
						
						|  | new_w, new_h = image.size | 
					
						
						|  | pad_size_h = merge_size * patch_size | 
					
						
						|  | pad_size_w = merge_size * patch_size | 
					
						
						|  |  | 
					
						
						|  | pad_h = (pad_size_h - new_h % pad_size_h) % pad_size_h | 
					
						
						|  | pad_w = (pad_size_w - new_w % pad_size_w) % pad_size_w | 
					
						
						|  |  | 
					
						
						|  | image = TF.pad(image, (0, 0, pad_w, pad_h)) | 
					
						
						|  | else: | 
					
						
						|  | new_w, new_h = image.size | 
					
						
						|  | new_w = new_w - new_w % patch_size | 
					
						
						|  | new_h = new_h - new_h % patch_size | 
					
						
						|  |  | 
					
						
						|  | new_w = adjust_size(new_w, patch_size) | 
					
						
						|  | new_h = adjust_size(new_h, patch_size) | 
					
						
						|  |  | 
					
						
						|  | image = TF.center_crop(image, (new_h, new_w)) | 
					
						
						|  |  | 
					
						
						|  | w, h = image.size | 
					
						
						|  | if w // patch_size >= 512 or h // patch_size >= 512: | 
					
						
						|  | new_h = min(patch_size * 510, h) | 
					
						
						|  | new_w = min(patch_size * 510, w) | 
					
						
						|  | image = TF.center_crop(image, (new_h, new_w)) | 
					
						
						|  |  | 
					
						
						|  | return image | 
					
						
						|  |  | 
					
						
						|  | def _preprocess( | 
					
						
						|  | self, | 
					
						
						|  | images: Union[ImageInput, VideoInput], | 
					
						
						|  | do_resize: bool = None, | 
					
						
						|  | resample: PILImageResampling = None, | 
					
						
						|  | do_rescale: bool = None, | 
					
						
						|  | rescale_factor: float = None, | 
					
						
						|  | do_normalize: bool = None, | 
					
						
						|  | image_mean: Optional[Union[float, List[float]]] = None, | 
					
						
						|  | image_std: Optional[Union[float, List[float]]] = None, | 
					
						
						|  | do_convert_rgb: bool = None, | 
					
						
						|  | data_format: Optional[ChannelDimension] = ChannelDimension.FIRST, | 
					
						
						|  | input_data_format: Optional[Union[str, ChannelDimension]] = None, | 
					
						
						|  | ): | 
					
						
						|  | """ | 
					
						
						|  | Preprocess an image or batch of images. Copy of the `preprocess` method from `CLIPImageProcessor`. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | images (`ImageInput`): | 
					
						
						|  | Image or batch of images to preprocess. Expects pixel values ranging from 0 to 255. If pixel values range from 0 to 1, set `do_rescale=False`. | 
					
						
						|  | vision_info (`List[Dict]`, *optional*): | 
					
						
						|  | Optional list of dictionaries containing additional information about vision inputs. | 
					
						
						|  | do_resize (`bool`, *optional*, defaults to `self.do_resize`): | 
					
						
						|  | Whether to resize the image. | 
					
						
						|  | resample (`PILImageResampling`, *optional*, defaults to `self.resample`): | 
					
						
						|  | Resampling filter to use if resizing the image. This can be one of the `PILImageResampling` enums. | 
					
						
						|  | do_rescale (`bool`, *optional*, defaults to `self.do_rescale`): | 
					
						
						|  | Whether to rescale the image. | 
					
						
						|  | rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`): | 
					
						
						|  | Scale factor to use if rescaling the image. | 
					
						
						|  | do_normalize (`bool`, *optional*, defaults to `self.do_normalize`): | 
					
						
						|  | Whether to normalize the image. | 
					
						
						|  | image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`): | 
					
						
						|  | Mean to use if normalizing the image. Can be a float or a list of floats corresponding to the number of channels in the image. | 
					
						
						|  | image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`): | 
					
						
						|  | Standard deviation to use if normalizing the image. Can be a float or a list of floats corresponding to the number of channels in the image. | 
					
						
						|  | do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`): | 
					
						
						|  | Whether to convert the image to RGB. | 
					
						
						|  | data_format (`ChannelDimension`, *optional*, defaults to `ChannelDimension.FIRST`): | 
					
						
						|  | The channel dimension format for the output image. Can be one of: | 
					
						
						|  | - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. | 
					
						
						|  | - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. | 
					
						
						|  | - Unset: Use the channel dimension format of the input image. | 
					
						
						|  | input_data_format (`ChannelDimension` or `str`, *optional*): | 
					
						
						|  | The channel dimension format for the input image. Can be one of: | 
					
						
						|  | - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. | 
					
						
						|  | - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. | 
					
						
						|  | - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.   - `"none"` or `ChannelDimension.NONE`: image in (height, width) format. | 
					
						
						|  | """ | 
					
						
						|  | images = make_list_of_images(images) | 
					
						
						|  |  | 
					
						
						|  | if do_convert_rgb: | 
					
						
						|  | images = [convert_to_rgb(image) for image in images] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | images = [to_numpy_array(image) for image in images] | 
					
						
						|  |  | 
					
						
						|  | if is_scaled_image(images[0]) and do_rescale: | 
					
						
						|  | logger.warning_once( | 
					
						
						|  | "It looks like you are trying to rescale already rescaled images. If the input" | 
					
						
						|  | " images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again." | 
					
						
						|  | ) | 
					
						
						|  | if input_data_format is None: | 
					
						
						|  |  | 
					
						
						|  | input_data_format = infer_channel_dimension_format(images[0]) | 
					
						
						|  |  | 
					
						
						|  | height, width = get_image_size(images[0], channel_dim=input_data_format) | 
					
						
						|  | resized_height, resized_width = height, width | 
					
						
						|  | processed_images = [] | 
					
						
						|  |  | 
					
						
						|  | for image in images: | 
					
						
						|  | if do_resize: | 
					
						
						|  | resized_height, resized_width = smart_resize( | 
					
						
						|  | height, | 
					
						
						|  | width, | 
					
						
						|  | factor=self.patch_size * self.merge_size, | 
					
						
						|  | min_pixels=self.min_pixels, | 
					
						
						|  | max_pixels=self.max_pixels, | 
					
						
						|  | ) | 
					
						
						|  | image = resize( | 
					
						
						|  | image, | 
					
						
						|  | size=(resized_height, resized_width), | 
					
						
						|  | resample=resample, | 
					
						
						|  | input_data_format=input_data_format, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if do_rescale: | 
					
						
						|  | image = self.rescale( | 
					
						
						|  | image, scale=rescale_factor, input_data_format=input_data_format | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if do_normalize: | 
					
						
						|  | image = self.normalize( | 
					
						
						|  | image=image, | 
					
						
						|  | mean=image_mean, | 
					
						
						|  | std=image_std, | 
					
						
						|  | input_data_format=input_data_format, | 
					
						
						|  | ) | 
					
						
						|  | image = to_channel_dimension_format( | 
					
						
						|  | image, data_format, input_channel_dim=input_data_format | 
					
						
						|  | ) | 
					
						
						|  | processed_images.append(image) | 
					
						
						|  |  | 
					
						
						|  | patches = np.array(processed_images) | 
					
						
						|  | if data_format == ChannelDimension.LAST: | 
					
						
						|  | patches = patches.transpose(0, 3, 1, 2) | 
					
						
						|  | if patches.shape[0] == 1: | 
					
						
						|  | patches = np.tile(patches, (self.temporal_patch_size, 1, 1, 1)) | 
					
						
						|  | init_patches = patches | 
					
						
						|  | channel = patches.shape[1] | 
					
						
						|  | grid_t = patches.shape[0] // self.temporal_patch_size | 
					
						
						|  | grid_h, grid_w = ( | 
					
						
						|  | resized_height // self.patch_size, | 
					
						
						|  | resized_width // self.patch_size, | 
					
						
						|  | ) | 
					
						
						|  | patches = patches.reshape( | 
					
						
						|  | grid_t, | 
					
						
						|  | self.temporal_patch_size, | 
					
						
						|  | channel, | 
					
						
						|  | grid_h, | 
					
						
						|  | self.patch_size, | 
					
						
						|  | grid_w, | 
					
						
						|  | self.patch_size, | 
					
						
						|  | ) | 
					
						
						|  | patches = patches.transpose(0, 3, 5, 2, 1, 4, 6) | 
					
						
						|  | assert self.temporal_patch_size == 1 | 
					
						
						|  | flatten_patches = patches.reshape( | 
					
						
						|  | grid_t * grid_h * grid_w, channel, self.patch_size, self.patch_size | 
					
						
						|  | ) | 
					
						
						|  | return flatten_patches, (grid_t, grid_h, grid_w) | 
					
						
						|  |  | 
					
						
						|  | def preprocess( | 
					
						
						|  | self, | 
					
						
						|  | images: ImageInput, | 
					
						
						|  | videos: VideoInput = None, | 
					
						
						|  | do_resize: bool = None, | 
					
						
						|  | size: Dict[str, int] = None, | 
					
						
						|  | resample: PILImageResampling = None, | 
					
						
						|  | do_rescale: bool = None, | 
					
						
						|  | rescale_factor: float = None, | 
					
						
						|  | do_normalize: bool = None, | 
					
						
						|  | image_mean: Optional[Union[float, List[float]]] = None, | 
					
						
						|  | image_std: Optional[Union[float, List[float]]] = None, | 
					
						
						|  | do_convert_rgb: bool = None, | 
					
						
						|  | return_tensors: Optional[Union[str, TensorType]] = None, | 
					
						
						|  | data_format: Optional[ChannelDimension] = ChannelDimension.FIRST, | 
					
						
						|  | input_data_format: Optional[Union[str, ChannelDimension]] = None, | 
					
						
						|  | ): | 
					
						
						|  | """ | 
					
						
						|  | Args: | 
					
						
						|  | images (`ImageInput`): | 
					
						
						|  | Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If | 
					
						
						|  | passing in images with pixel values between 0 and 1, set `do_rescale=False`. | 
					
						
						|  | videos (`VideoInput`): | 
					
						
						|  | Video to preprocess. Expects a single or batch of videos with pixel values ranging from 0 to 255. If | 
					
						
						|  | passing in videos with pixel values between 0 and 1, set `do_rescale=False`. | 
					
						
						|  | do_resize (`bool`, *optional*, defaults to `self.do_resize`): | 
					
						
						|  | Whether to resize the image. | 
					
						
						|  | size (`Dict[str, int]`, *optional*, defaults to `self.size`): | 
					
						
						|  | Size of the image after resizing. Shortest edge of the image is resized to size["shortest_edge"], with | 
					
						
						|  | the longest edge resized to keep the input aspect ratio. | 
					
						
						|  | resample (`int`, *optional*, defaults to `self.resample`): | 
					
						
						|  | Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`. Only | 
					
						
						|  | has an effect if `do_resize` is set to `True`. | 
					
						
						|  | do_rescale (`bool`, *optional*, defaults to `self.do_rescale`): | 
					
						
						|  | Whether to rescale the image. | 
					
						
						|  | rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`): | 
					
						
						|  | Rescale factor to rescale the image by if `do_rescale` is set to `True`. | 
					
						
						|  | do_normalize (`bool`, *optional*, defaults to `self.do_normalize`): | 
					
						
						|  | Whether to normalize the image. | 
					
						
						|  | image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`): | 
					
						
						|  | Image mean to use for normalization. Only has an effect if `do_normalize` is set to `True`. | 
					
						
						|  | image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`): | 
					
						
						|  | Image standard deviation to use for normalization. Only has an effect if `do_normalize` is set to | 
					
						
						|  | `True`. | 
					
						
						|  | do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`): | 
					
						
						|  | Whether to convert the image to RGB. | 
					
						
						|  | return_tensors (`str` or `TensorType`, *optional*): | 
					
						
						|  | The type of tensors to return. Can be one of: | 
					
						
						|  | - Unset: Return a list of `np.ndarray`. | 
					
						
						|  | - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`. | 
					
						
						|  | - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`. | 
					
						
						|  | - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`. | 
					
						
						|  | - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`. | 
					
						
						|  | data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`): | 
					
						
						|  | The channel dimension format for the output image. Can be one of: | 
					
						
						|  | - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. | 
					
						
						|  | - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. | 
					
						
						|  | - Unset: Use the channel dimension format of the input image. | 
					
						
						|  | input_data_format (`ChannelDimension` or `str`, *optional*): | 
					
						
						|  | The channel dimension format for the input image. If unset, the channel dimension format is inferred | 
					
						
						|  | from the input image. Can be one of: | 
					
						
						|  | - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. | 
					
						
						|  | - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. | 
					
						
						|  | - `"none"` or `ChannelDimension.NONE`: image in (height, width) format. | 
					
						
						|  |  | 
					
						
						|  | """ | 
					
						
						|  | do_resize = do_resize if do_resize is not None else self.do_resize | 
					
						
						|  | size = size if size is not None else self.size | 
					
						
						|  | resample = resample if resample is not None else self.resample | 
					
						
						|  | do_rescale = do_rescale if do_rescale is not None else self.do_rescale | 
					
						
						|  | rescale_factor = ( | 
					
						
						|  | rescale_factor if rescale_factor is not None else self.rescale_factor | 
					
						
						|  | ) | 
					
						
						|  | do_normalize = do_normalize if do_normalize is not None else self.do_normalize | 
					
						
						|  | image_mean = image_mean if image_mean is not None else self.image_mean | 
					
						
						|  | image_std = image_std if image_std is not None else self.image_std | 
					
						
						|  | do_convert_rgb = ( | 
					
						
						|  | do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if images is not None: | 
					
						
						|  | images = make_batched_images(images) | 
					
						
						|  | if videos is not None: | 
					
						
						|  | videos = make_batched_videos(videos) | 
					
						
						|  |  | 
					
						
						|  | if images is not None and not valid_images(images): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " | 
					
						
						|  | "torch.Tensor, tf.Tensor or jax.ndarray." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | validate_preprocess_arguments( | 
					
						
						|  | rescale_factor=rescale_factor, | 
					
						
						|  | do_normalize=do_normalize, | 
					
						
						|  | image_mean=image_mean, | 
					
						
						|  | image_std=image_std, | 
					
						
						|  | do_resize=do_resize, | 
					
						
						|  | size=size, | 
					
						
						|  | resample=resample, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if images is not None: | 
					
						
						|  | pixel_values, vision_grid_thws = [], [] | 
					
						
						|  | for image in images: | 
					
						
						|  | patches, image_grid_thw = self._preprocess( | 
					
						
						|  | image, | 
					
						
						|  | do_resize=do_resize, | 
					
						
						|  | resample=resample, | 
					
						
						|  | do_rescale=do_rescale, | 
					
						
						|  | rescale_factor=rescale_factor, | 
					
						
						|  | do_normalize=do_normalize, | 
					
						
						|  | image_mean=image_mean, | 
					
						
						|  | image_std=image_std, | 
					
						
						|  | data_format=data_format, | 
					
						
						|  | do_convert_rgb=do_convert_rgb, | 
					
						
						|  | input_data_format=input_data_format, | 
					
						
						|  | ) | 
					
						
						|  | pixel_values.extend(patches) | 
					
						
						|  | vision_grid_thws.append(image_grid_thw) | 
					
						
						|  | pixel_values = np.array(pixel_values) | 
					
						
						|  | vision_grid_thws = np.array(vision_grid_thws) | 
					
						
						|  | data = {"pixel_values": pixel_values, "image_grid_thw": vision_grid_thws} | 
					
						
						|  |  | 
					
						
						|  | if videos is not None: | 
					
						
						|  | pixel_values, vision_grid_thws = [], [] | 
					
						
						|  | for images in videos: | 
					
						
						|  | patches, video_grid_thw = self._preprocess( | 
					
						
						|  | images, | 
					
						
						|  | do_resize=do_resize, | 
					
						
						|  | resample=resample, | 
					
						
						|  | do_rescale=do_rescale, | 
					
						
						|  | rescale_factor=rescale_factor, | 
					
						
						|  | do_normalize=do_normalize, | 
					
						
						|  | image_mean=image_mean, | 
					
						
						|  | image_std=image_std, | 
					
						
						|  | data_format=data_format, | 
					
						
						|  | do_convert_rgb=do_convert_rgb, | 
					
						
						|  | input_data_format=input_data_format, | 
					
						
						|  | ) | 
					
						
						|  | pixel_values.extend(patches) | 
					
						
						|  | vision_grid_thws.append(video_grid_thw) | 
					
						
						|  | pixel_values = np.array(pixel_values) | 
					
						
						|  | vision_grid_thws = np.array(vision_grid_thws) | 
					
						
						|  | data = { | 
					
						
						|  | "pixel_values_videos": pixel_values, | 
					
						
						|  | "video_grid_thw": vision_grid_thws, | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  | return BatchFeature(data=data, tensor_type=return_tensors) | 
					
						
						|  |  |