Update README.md
Browse files
README.md
CHANGED
|
@@ -25,6 +25,10 @@ tags:
|
|
| 25 |
|
| 26 |
<audio controls src="https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/Y47JDAM9shY-bINP2-Vy1.wav"></audio>
|
| 27 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
## **Model Details**
|
| 29 |
|
| 30 |
- **Base Model:** `canopylabs/orpheus-3b-0.1-ft`
|
|
@@ -63,6 +67,108 @@ notebook_login()
|
|
| 63 |
|
| 64 |
## **Usage**
|
| 65 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
```python
|
| 67 |
import torch
|
| 68 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
|
|
| 25 |
|
| 26 |
<audio controls src="https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/Y47JDAM9shY-bINP2-Vy1.wav"></audio>
|
| 27 |
|
| 28 |
+
[ paralinguistic emotions soft]
|
| 29 |
+
|
| 30 |
+
<audio controls src="https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/k5tHizZbHgSFLzHWlvWUN.wav"></audio>
|
| 31 |
+
|
| 32 |
## **Model Details**
|
| 33 |
|
| 34 |
- **Base Model:** `canopylabs/orpheus-3b-0.1-ft`
|
|
|
|
| 67 |
|
| 68 |
## **Usage**
|
| 69 |
|
| 70 |
+
```py
|
| 71 |
+
import torch
|
| 72 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 73 |
+
import gradio as gr
|
| 74 |
+
from snac import SNAC
|
| 75 |
+
|
| 76 |
+
def redistribute_codes(row):
|
| 77 |
+
"""
|
| 78 |
+
Convert a sequence of token codes into an audio waveform using SNAC.
|
| 79 |
+
The code assumes each 7 tokens represent one group of instructions.
|
| 80 |
+
"""
|
| 81 |
+
row_length = row.size(0)
|
| 82 |
+
new_length = (row_length // 7) * 7
|
| 83 |
+
trimmed_row = row[:new_length]
|
| 84 |
+
code_list = [t - 128266 for t in trimmed_row]
|
| 85 |
+
|
| 86 |
+
layer_1, layer_2, layer_3 = [], [], []
|
| 87 |
+
|
| 88 |
+
for i in range((len(code_list) + 1) // 7):
|
| 89 |
+
layer_1.append(code_list[7 * i][None])
|
| 90 |
+
layer_2.append(code_list[7 * i + 1][None] - 4096)
|
| 91 |
+
layer_3.append(code_list[7 * i + 2][None] - (2 * 4096))
|
| 92 |
+
layer_3.append(code_list[7 * i + 3][None] - (3 * 4096))
|
| 93 |
+
layer_2.append(code_list[7 * i + 4][None] - (4 * 4096))
|
| 94 |
+
layer_3.append(code_list[7 * i + 5][None] - (5 * 4096))
|
| 95 |
+
layer_3.append(code_list[7 * i + 6][None] - (6 * 4096))
|
| 96 |
+
|
| 97 |
+
with torch.no_grad():
|
| 98 |
+
codes = [
|
| 99 |
+
torch.concat(layer_1),
|
| 100 |
+
torch.concat(layer_2),
|
| 101 |
+
torch.concat(layer_3)
|
| 102 |
+
]
|
| 103 |
+
for i in range(len(codes)):
|
| 104 |
+
codes[i][codes[i] < 0] = 0
|
| 105 |
+
codes[i] = codes[i][None]
|
| 106 |
+
|
| 107 |
+
audio_hat = snac_model.decode(codes)
|
| 108 |
+
return audio_hat.cpu()[0, 0]
|
| 109 |
+
|
| 110 |
+
# Load the SNAC model for audio decoding
|
| 111 |
+
snac_model = SNAC.from_pretrained("hubertsiuzdak/snac_24khz").to("cuda")
|
| 112 |
+
|
| 113 |
+
# Load the single-speaker language model
|
| 114 |
+
tokenizer = AutoTokenizer.from_pretrained('prithivMLmods/Llama-3B-Mono-Jim')
|
| 115 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 116 |
+
'prithivMLmods/Llama-3B-Mono-Jim', torch_dtype=torch.bfloat16
|
| 117 |
+
).cuda()
|
| 118 |
+
|
| 119 |
+
def generate_audio(text, temperature, top_p, max_new_tokens):
|
| 120 |
+
"""
|
| 121 |
+
Given input text, generate speech audio.
|
| 122 |
+
"""
|
| 123 |
+
speaker = "Jim"
|
| 124 |
+
prompt = f'<custom_token_3><|begin_of_text|>{speaker}: {text}<|eot_id|><custom_token_4><custom_token_5><custom_token_1>'
|
| 125 |
+
input_ids = tokenizer(prompt, add_special_tokens=False, return_tensors='pt').to('cuda')
|
| 126 |
+
|
| 127 |
+
with torch.no_grad():
|
| 128 |
+
generated_ids = model.generate(
|
| 129 |
+
**input_ids,
|
| 130 |
+
max_new_tokens=max_new_tokens,
|
| 131 |
+
do_sample=True,
|
| 132 |
+
temperature=temperature,
|
| 133 |
+
top_p=top_p,
|
| 134 |
+
repetition_penalty=1.1,
|
| 135 |
+
num_return_sequences=1,
|
| 136 |
+
eos_token_id=128258,
|
| 137 |
+
)
|
| 138 |
+
|
| 139 |
+
row = generated_ids[0, input_ids['input_ids'].shape[1]:]
|
| 140 |
+
y_tensor = redistribute_codes(row)
|
| 141 |
+
y_np = y_tensor.detach().cpu().numpy()
|
| 142 |
+
return (24000, y_np)
|
| 143 |
+
|
| 144 |
+
# Gradio Interface
|
| 145 |
+
with gr.Blocks() as demo:
|
| 146 |
+
gr.Markdown("# Llama-3B-Mono-Jim - Single Speaker Audio Generation")
|
| 147 |
+
gr.Markdown("Generate speech audio using the `prithivMLmods/Llama-3B-Mono-Jim` model.")
|
| 148 |
+
|
| 149 |
+
with gr.Row():
|
| 150 |
+
text_input = gr.Textbox(lines=4, label="Input Text")
|
| 151 |
+
|
| 152 |
+
with gr.Row():
|
| 153 |
+
temp_slider = gr.Slider(minimum=0.1, maximum=2.0, step=0.1, value=0.9, label="Temperature")
|
| 154 |
+
top_p_slider = gr.Slider(minimum=0.1, maximum=1.0, step=0.05, value=0.8, label="Top-p")
|
| 155 |
+
tokens_slider = gr.Slider(minimum=100, maximum=2000, step=50, value=1200, label="Max New Tokens")
|
| 156 |
+
|
| 157 |
+
output_audio = gr.Audio(type="numpy", label="Generated Audio")
|
| 158 |
+
generate_button = gr.Button("Generate Audio")
|
| 159 |
+
|
| 160 |
+
generate_button.click(
|
| 161 |
+
fn=generate_audio,
|
| 162 |
+
inputs=[text_input, temp_slider, top_p_slider, tokens_slider],
|
| 163 |
+
outputs=output_audio
|
| 164 |
+
)
|
| 165 |
+
|
| 166 |
+
if __name__ == "__main__":
|
| 167 |
+
demo.launch()
|
| 168 |
+
```
|
| 169 |
+
|
| 170 |
+
[ or ]
|
| 171 |
+
|
| 172 |
```python
|
| 173 |
import torch
|
| 174 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|