File size: 2,938 Bytes
2a9bf79 2cb010b 707cfcb 2a9bf79 f0344e0 2a9bf79 f0344e0 2a9bf79 f0344e0 2a9bf79 1cb00ea 2a9bf79 1cb00ea 2a9bf79 f0344e0 2a9bf79 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 |
---
library_name: transformers
tags:
- safetensors
- pruna-ai
---
# Model Card for pruna-test/test-save-tiny-random-llama4-smashed
This model was created using the [pruna](https://github.com/PrunaAI/pruna) library. Pruna is a model optimization framework built for developers, enabling you to deliver more efficient models with minimal implementation overhead.
## Usage
First things first, you need to install the pruna library:
```bash
pip install pruna
```
You can [use the transformers library to load the model](https://huggingface.co/pruna-test/test-save-tiny-random-llama4-smashed?library=transformers) but this might not include all optimizations by default.
To ensure that all optimizations are applied, use the pruna library to load the model using the following code:
```python
from pruna import PrunaModel
loaded_model = PrunaModel.from_pretrained(
"pruna-test/test-save-tiny-random-llama4-smashed"
)
# we can then run inference using the methods supported by the base model
```
For inference, you can use the inference methods of the original model like shown in [the original model card](https://huggingface.co/hf-internal-testing/tiny-random-llama4?library=transformers).
Alternatively, you can visit [the Pruna documentation](https://docs.pruna.ai/en/stable/) for more information.
## Smash Configuration
The compression configuration of the model is stored in the `smash_config.json` file, which describes the optimization methods that were applied to the model.
```bash
{
"awq": false,
"c_generate": false,
"c_translate": false,
"c_whisper": false,
"deepcache": false,
"diffusers_int8": false,
"fastercache": false,
"flash_attn3": false,
"fora": false,
"gptq": false,
"half": false,
"hqq": false,
"hqq_diffusers": false,
"ifw": false,
"llm_int8": false,
"pab": false,
"qkv_diffusers": false,
"quanto": false,
"stable_fast": false,
"torch_compile": false,
"torch_dynamic": false,
"torch_structured": false,
"torch_unstructured": false,
"torchao": false,
"whisper_s2t": false,
"batch_size": 1,
"device": "cpu",
"device_map": null,
"save_fns": [],
"load_fns": [
"transformers"
],
"reapply_after_load": {}
}
```
## 🌍 Join the Pruna AI community!
[](https://twitter.com/PrunaAI)
[](https://github.com/PrunaAI)
[](https://www.linkedin.com/company/93832878/admin/feed/posts/?feedType=following)
[](https://discord.gg/JFQmtFKCjd)
[](https://www.reddit.com/r/PrunaAI/) |