|  | import torch | 
					
						
						|  | import torch.nn as nn | 
					
						
						|  | from torch.utils.data import Dataset | 
					
						
						|  |  | 
					
						
						|  | class BilingualDataset(Dataset): | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, ds, tokenizer_src, tokenizer_tgt, src_lang, tgt_lang, seq_len): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.seq_len = seq_len | 
					
						
						|  |  | 
					
						
						|  | self.ds = ds | 
					
						
						|  | self.tokenizer_src = tokenizer_src | 
					
						
						|  | self.tokenizer_tgt = tokenizer_tgt | 
					
						
						|  | self.src_lang = src_lang | 
					
						
						|  | self.tgt_lang = tgt_lang | 
					
						
						|  |  | 
					
						
						|  | self.sos_token = torch.tensor([tokenizer_tgt.token_to_id("[SOS]")], dtype=torch.int64) | 
					
						
						|  | self.eos_token = torch.tensor([tokenizer_tgt.token_to_id("[EOS]")], dtype=torch.int64) | 
					
						
						|  | self.pad_token = torch.tensor([tokenizer_tgt.token_to_id("[PAD]")], dtype=torch.int64) | 
					
						
						|  |  | 
					
						
						|  | def __len__(self): | 
					
						
						|  | return len(self.ds) | 
					
						
						|  |  | 
					
						
						|  | def __getitem__(self, idx): | 
					
						
						|  | src_target_pair = self.ds[idx] | 
					
						
						|  | src_text = src_target_pair['translation'][self.src_lang] | 
					
						
						|  | tgt_text = src_target_pair['translation'][self.tgt_lang] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | enc_input_tokens = self.tokenizer_src.encode(src_text).ids | 
					
						
						|  | dec_input_tokens = self.tokenizer_tgt.encode(tgt_text).ids | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | enc_num_padding_tokens = self.seq_len - len(enc_input_tokens) - 2 | 
					
						
						|  |  | 
					
						
						|  | dec_num_padding_tokens = self.seq_len - len(dec_input_tokens) - 1 | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if enc_num_padding_tokens < 0 or dec_num_padding_tokens < 0: | 
					
						
						|  | raise ValueError("Sentence is too long") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | encoder_input = torch.cat( | 
					
						
						|  | [ | 
					
						
						|  | self.sos_token, | 
					
						
						|  | torch.tensor(enc_input_tokens, dtype=torch.int64), | 
					
						
						|  | self.eos_token, | 
					
						
						|  | torch.tensor([self.pad_token] * enc_num_padding_tokens, dtype=torch.int64), | 
					
						
						|  | ], | 
					
						
						|  | dim=0, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | decoder_input = torch.cat( | 
					
						
						|  | [ | 
					
						
						|  | self.sos_token, | 
					
						
						|  | torch.tensor(dec_input_tokens, dtype=torch.int64), | 
					
						
						|  | torch.tensor([self.pad_token] * dec_num_padding_tokens, dtype=torch.int64), | 
					
						
						|  | ], | 
					
						
						|  | dim=0, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | label = torch.cat( | 
					
						
						|  | [ | 
					
						
						|  | torch.tensor(dec_input_tokens, dtype=torch.int64), | 
					
						
						|  | self.eos_token, | 
					
						
						|  | torch.tensor([self.pad_token] * dec_num_padding_tokens, dtype=torch.int64), | 
					
						
						|  | ], | 
					
						
						|  | dim=0, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | assert encoder_input.size(0) == self.seq_len | 
					
						
						|  | assert decoder_input.size(0) == self.seq_len | 
					
						
						|  | assert label.size(0) == self.seq_len | 
					
						
						|  |  | 
					
						
						|  | return { | 
					
						
						|  | "encoder_input": encoder_input, | 
					
						
						|  | "decoder_input": decoder_input, | 
					
						
						|  | "encoder_mask": (encoder_input != self.pad_token).unsqueeze(0).unsqueeze(0).int(), | 
					
						
						|  | "decoder_mask": (decoder_input != self.pad_token).unsqueeze(0).int() & causal_mask(decoder_input.size(0)), | 
					
						
						|  | "label": label, | 
					
						
						|  | "src_text": src_text, | 
					
						
						|  | "tgt_text": tgt_text, | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  | def causal_mask(size): | 
					
						
						|  | mask = torch.triu(torch.ones((1, size, size)), diagonal=1).type(torch.int) | 
					
						
						|  | return mask == 0 |