File size: 18,504 Bytes
820ba22 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 |
#!/usr/bin/env python3
"""
Convert SimpleTuner LoRA weights to diffusers-compatible format for AuraFlow.
This script converts LoRA weights saved by SimpleTuner into a format that can be
directly loaded by diffusers' load_lora_weights() method.
Usage:
python convert_simpletuner_lora.py <input_lora.safetensors> <output_lora.safetensors>
Example:
python convert_simpletuner_lora.py input_lora.safetensors diffusers_compatible_lora.safetensors
"""
import argparse
import sys
from pathlib import Path
from typing import Dict
import safetensors.torch
import torch
def detect_lora_format(state_dict: Dict[str, torch.Tensor]) -> str:
"""
Detect the format of the LoRA state dict.
Returns:
"peft" if already in PEFT/diffusers format
"mixed" if mixed format (some lora_A/B, some lora.down/up)
"simpletuner_transformer" if in SimpleTuner format with transformer prefix
"simpletuner_auraflow" if in SimpleTuner AuraFlow format
"kohya" if in Kohya format
"unknown" otherwise
"""
keys = list(state_dict.keys())
# Check the actual weight naming convention (lora_A/lora_B vs lora_down/lora_up)
has_lora_a_b = any((".lora_A." in k or ".lora_B." in k) for k in keys)
has_lora_down_up = any((".lora_down." in k or ".lora_up." in k) for k in keys)
has_lora_dot_down_up = any((".lora.down." in k or ".lora.up." in k) for k in keys)
# Check prefixes
has_transformer_prefix = any(k.startswith("transformer.") for k in keys)
has_lora_transformer_prefix = any(k.startswith("lora_transformer_") for k in keys)
has_lora_unet_prefix = any(k.startswith("lora_unet_") for k in keys)
# Mixed format: has both lora_A/B AND lora.down/up (SimpleTuner hybrid)
if has_transformer_prefix and has_lora_a_b and (has_lora_down_up or has_lora_dot_down_up):
return "mixed"
# Pure PEFT format: transformer.* with ONLY lora_A/lora_B
if has_transformer_prefix and has_lora_a_b and not has_lora_down_up and not has_lora_dot_down_up:
return "peft"
# SimpleTuner with transformer prefix but old naming: transformer.* with lora_down/lora_up
if has_transformer_prefix and (has_lora_down_up or has_lora_dot_down_up):
return "simpletuner_transformer"
# SimpleTuner AuraFlow format: lora_transformer_* with lora_down/lora_up
if has_lora_transformer_prefix and has_lora_down_up:
return "simpletuner_auraflow"
# Traditional Kohya format: lora_unet_* with lora_down/lora_up
if has_lora_unet_prefix and has_lora_down_up:
return "kohya"
return "unknown"
def convert_mixed_lora_to_diffusers(state_dict: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]:
"""
Convert mixed LoRA format to pure PEFT format.
SimpleTuner sometimes saves a hybrid format where some layers use lora_A/lora_B
and others use .lora.down./.lora.up. This converts all to lora_A/lora_B.
"""
new_state_dict = {}
converted_count = 0
kept_count = 0
skipped_count = 0
renames = []
# Get all keys
all_keys = sorted(state_dict.keys())
print("\nProcessing keys:")
print("-" * 80)
for key in all_keys:
# Already in correct format (lora_A or lora_B)
if ".lora_A." in key or ".lora_B." in key:
new_state_dict[key] = state_dict[key]
kept_count += 1
# Needs conversion: .lora.down. -> .lora_A.
elif ".lora.down.weight" in key:
new_key = key.replace(".lora.down.weight", ".lora_A.weight")
new_state_dict[new_key] = state_dict[key]
renames.append((key, new_key))
converted_count += 1
# Needs conversion: .lora.up. -> .lora_B.
elif ".lora.up.weight" in key:
new_key = key.replace(".lora.up.weight", ".lora_B.weight")
new_state_dict[new_key] = state_dict[key]
renames.append((key, new_key))
converted_count += 1
# Skip alpha keys (not used in PEFT format)
elif ".alpha" in key:
skipped_count += 1
continue
# Other keys (shouldn't happen, but keep them just in case)
else:
new_state_dict[key] = state_dict[key]
print(f"β Warning: Unexpected key format: {key}")
print(f"\nSummary:")
print(f" β Kept {kept_count} keys already in correct format (lora_A/lora_B)")
print(f" β Converted {converted_count} keys from .lora.down/.lora.up to lora_A/lora_B")
print(f" β Skipped {skipped_count} alpha keys")
if renames:
print(f"\nRenames applied ({len(renames)} conversions):")
print("-" * 80)
for old_key, new_key in renames:
# Show the difference more clearly
if ".lora.down.weight" in old_key:
layer = old_key.replace(".lora.down.weight", "")
print(f" {layer}")
print(f" .lora.down.weight β .lora_A.weight")
elif ".lora.up.weight" in old_key:
layer = old_key.replace(".lora.up.weight", "")
print(f" {layer}")
print(f" .lora.up.weight β .lora_B.weight")
return new_state_dict
def convert_simpletuner_transformer_to_diffusers(state_dict: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]:
"""
Convert SimpleTuner transformer format (already has transformer. prefix but uses lora_down/lora_up)
to diffusers PEFT format (transformer. prefix with lora_A/lora_B).
This is a simpler conversion since the key structure is already correct.
"""
new_state_dict = {}
renames = []
# Get all unique LoRA layer base names (without .lora_down/.lora_up/.alpha suffix)
all_keys = list(state_dict.keys())
base_keys = set()
for key in all_keys:
if ".lora_down.weight" in key:
base_key = key.replace(".lora_down.weight", "")
base_keys.add(base_key)
print(f"\nFound {len(base_keys)} LoRA layers to convert")
print("-" * 80)
# Convert each layer
for base_key in sorted(base_keys):
down_key = f"{base_key}.lora_down.weight"
up_key = f"{base_key}.lora_up.weight"
alpha_key = f"{base_key}.alpha"
if down_key not in state_dict or up_key not in state_dict:
print(f"β Warning: Missing weights for {base_key}")
continue
down_weight = state_dict.pop(down_key)
up_weight = state_dict.pop(up_key)
# Handle alpha scaling
has_alpha = False
if alpha_key in state_dict:
alpha = state_dict.pop(alpha_key)
lora_rank = down_weight.shape[0]
scale = alpha / lora_rank
# Calculate scale_down and scale_up to preserve the scale value
scale_down = scale
scale_up = 1.0
while scale_down * 2 < scale_up:
scale_down *= 2
scale_up /= 2
down_weight = down_weight * scale_down
up_weight = up_weight * scale_up
has_alpha = True
# Store in PEFT format (lora_A = down, lora_B = up)
new_down_key = f"{base_key}.lora_A.weight"
new_up_key = f"{base_key}.lora_B.weight"
new_state_dict[new_down_key] = down_weight
new_state_dict[new_up_key] = up_weight
renames.append((down_key, new_down_key, has_alpha))
renames.append((up_key, new_up_key, has_alpha))
# Check for any remaining keys
remaining = [k for k in state_dict.keys() if not k.startswith("text_encoder")]
if remaining:
print(f"β Warning: {len(remaining)} keys were not converted: {remaining[:5]}")
print(f"\nRenames applied ({len(renames)} conversions):")
print("-" * 80)
# Group by layer
current_layer = None
for old_key, new_key, has_alpha in renames:
layer = old_key.replace(".lora_down.weight", "").replace(".lora_up.weight", "")
if layer != current_layer:
alpha_str = " (alpha scaled)" if has_alpha else ""
print(f"\n {layer}{alpha_str}")
current_layer = layer
if ".lora_down.weight" in old_key:
print(f" .lora_down.weight β .lora_A.weight")
elif ".lora_up.weight" in old_key:
print(f" .lora_up.weight β .lora_B.weight")
return new_state_dict
def convert_simpletuner_auraflow_to_diffusers(state_dict: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]:
"""
Convert SimpleTuner AuraFlow LoRA format to diffusers PEFT format.
SimpleTuner typically saves LoRAs in a format similar to Kohya's sd-scripts,
but for transformer-based models like AuraFlow, the keys may differ.
"""
new_state_dict = {}
def _convert(original_key, diffusers_key, state_dict, new_state_dict):
"""Helper to convert a single LoRA layer."""
down_key = f"{original_key}.lora_down.weight"
if down_key not in state_dict:
return False
down_weight = state_dict.pop(down_key)
lora_rank = down_weight.shape[0]
up_weight_key = f"{original_key}.lora_up.weight"
up_weight = state_dict.pop(up_weight_key)
# Handle alpha scaling
alpha_key = f"{original_key}.alpha"
if alpha_key in state_dict:
alpha = state_dict.pop(alpha_key)
scale = alpha / lora_rank
# Calculate scale_down and scale_up to preserve the scale value
scale_down = scale
scale_up = 1.0
while scale_down * 2 < scale_up:
scale_down *= 2
scale_up /= 2
down_weight = down_weight * scale_down
up_weight = up_weight * scale_up
# Store in PEFT format (lora_A = down, lora_B = up)
diffusers_down_key = f"{diffusers_key}.lora_A.weight"
new_state_dict[diffusers_down_key] = down_weight
new_state_dict[diffusers_down_key.replace(".lora_A.", ".lora_B.")] = up_weight
return True
# Get all unique LoRA layer names
all_unique_keys = {
k.replace(".lora_down.weight", "").replace(".lora_up.weight", "").replace(".alpha", "")
for k in state_dict
if ".lora_down.weight" in k or ".lora_up.weight" in k or ".alpha" in k
}
# Process transformer blocks
for original_key in sorted(all_unique_keys):
if original_key.startswith("lora_transformer_single_transformer_blocks_"):
# Single transformer blocks
parts = original_key.split("lora_transformer_single_transformer_blocks_")[-1].split("_")
block_idx = int(parts[0])
diffusers_key = f"single_transformer_blocks.{block_idx}"
# Map the rest of the key
remaining = "_".join(parts[1:])
if "attn_to_q" in remaining:
diffusers_key += ".attn.to_q"
elif "attn_to_k" in remaining:
diffusers_key += ".attn.to_k"
elif "attn_to_v" in remaining:
diffusers_key += ".attn.to_v"
elif "proj_out" in remaining:
diffusers_key += ".proj_out"
elif "proj_mlp" in remaining:
diffusers_key += ".proj_mlp"
elif "norm_linear" in remaining:
diffusers_key += ".norm.linear"
else:
print(f"Warning: Unhandled single block key pattern: {original_key}")
continue
elif original_key.startswith("lora_transformer_transformer_blocks_"):
# Double transformer blocks
parts = original_key.split("lora_transformer_transformer_blocks_")[-1].split("_")
block_idx = int(parts[0])
diffusers_key = f"transformer_blocks.{block_idx}"
# Map the rest of the key
remaining = "_".join(parts[1:])
if "attn_to_out_0" in remaining:
diffusers_key += ".attn.to_out.0"
elif "attn_to_add_out" in remaining:
diffusers_key += ".attn.to_add_out"
elif "attn_to_q" in remaining:
diffusers_key += ".attn.to_q"
elif "attn_to_k" in remaining:
diffusers_key += ".attn.to_k"
elif "attn_to_v" in remaining:
diffusers_key += ".attn.to_v"
elif "attn_add_q_proj" in remaining:
diffusers_key += ".attn.add_q_proj"
elif "attn_add_k_proj" in remaining:
diffusers_key += ".attn.add_k_proj"
elif "attn_add_v_proj" in remaining:
diffusers_key += ".attn.add_v_proj"
elif "ff_net_0_proj" in remaining:
diffusers_key += ".ff.net.0.proj"
elif "ff_net_2" in remaining:
diffusers_key += ".ff.net.2"
elif "ff_context_net_0_proj" in remaining:
diffusers_key += ".ff_context.net.0.proj"
elif "ff_context_net_2" in remaining:
diffusers_key += ".ff_context.net.2"
elif "norm1_linear" in remaining:
diffusers_key += ".norm1.linear"
elif "norm1_context_linear" in remaining:
diffusers_key += ".norm1_context.linear"
else:
print(f"Warning: Unhandled double block key pattern: {original_key}")
continue
elif original_key.startswith("lora_te1_") or original_key.startswith("lora_te_"):
# Text encoder keys - handle separately
print(f"Found text encoder key: {original_key}")
continue
else:
print(f"Warning: Unknown key pattern: {original_key}")
continue
# Perform the conversion
_convert(original_key, diffusers_key, state_dict, new_state_dict)
# Add "transformer." prefix to all keys
transformer_state_dict = {
f"transformer.{k}": v for k, v in new_state_dict.items() if not k.startswith("text_model.")
}
# Check for remaining unconverted keys
if len(state_dict) > 0:
remaining_keys = [k for k in state_dict.keys() if not k.startswith("lora_te")]
if remaining_keys:
print(f"Warning: Some keys were not converted: {remaining_keys[:10]}")
return transformer_state_dict
def convert_lora(input_path: str, output_path: str) -> None:
"""
Main conversion function.
Args:
input_path: Path to input LoRA safetensors file
output_path: Path to output diffusers-compatible safetensors file
"""
print(f"Loading LoRA from: {input_path}")
state_dict = safetensors.torch.load_file(input_path)
print(f"Detecting LoRA format...")
format_type = detect_lora_format(state_dict)
print(f"Detected format: {format_type}")
if format_type == "peft":
print("LoRA is already in diffusers-compatible PEFT format!")
print("No conversion needed. Copying file...")
import shutil
shutil.copy(input_path, output_path)
return
elif format_type == "mixed":
print("Converting MIXED format LoRA to pure PEFT format...")
print("(Some layers use lora_A/B, others use .lora.down/.lora.up)")
converted_state_dict = convert_mixed_lora_to_diffusers(state_dict.copy())
elif format_type == "simpletuner_transformer":
print("Converting SimpleTuner transformer format to diffusers...")
print("(has transformer. prefix but uses lora_down/lora_up naming)")
converted_state_dict = convert_simpletuner_transformer_to_diffusers(state_dict.copy())
elif format_type == "simpletuner_auraflow":
print("Converting SimpleTuner AuraFlow format to diffusers...")
converted_state_dict = convert_simpletuner_auraflow_to_diffusers(state_dict.copy())
elif format_type == "kohya":
print("Note: Detected Kohya format. This converter is optimized for AuraFlow.")
print("For other models, diffusers has built-in conversion.")
converted_state_dict = convert_simpletuner_auraflow_to_diffusers(state_dict.copy())
else:
print("Error: Unknown LoRA format!")
print("Sample keys from the state dict:")
for i, key in enumerate(list(state_dict.keys())[:20]):
print(f" {key}")
sys.exit(1)
print(f"Saving converted LoRA to: {output_path}")
safetensors.torch.save_file(converted_state_dict, output_path)
print("\nConversion complete!")
print(f"Original keys: {len(state_dict)}")
print(f"Converted keys: {len(converted_state_dict)}")
def main():
parser = argparse.ArgumentParser(
description="Convert SimpleTuner LoRA to diffusers-compatible format",
formatter_class=argparse.RawDescriptionHelpFormatter,
epilog="""
Examples:
# Convert a SimpleTuner LoRA for AuraFlow
python convert_simpletuner_lora.py my_lora.safetensors diffusers_lora.safetensors
# Check format without converting
python convert_simpletuner_lora.py my_lora.safetensors /tmp/test.safetensors
"""
)
parser.add_argument(
"input",
type=str,
help="Input LoRA file (SimpleTuner format)"
)
parser.add_argument(
"output",
type=str,
help="Output LoRA file (diffusers-compatible format)"
)
parser.add_argument(
"--dry-run",
action="store_true",
help="Only detect format, don't convert"
)
args = parser.parse_args()
# Validate input file exists
if not Path(args.input).exists():
print(f"Error: Input file not found: {args.input}")
sys.exit(1)
if args.dry_run:
print(f"Loading LoRA from: {args.input}")
state_dict = safetensors.torch.load_file(args.input)
format_type = detect_lora_format(state_dict)
print(f"Detected format: {format_type}")
print(f"\nSample keys ({min(10, len(state_dict))} of {len(state_dict)}):")
for key in list(state_dict.keys())[:10]:
print(f" {key}")
return
convert_lora(args.input, args.output)
if __name__ == "__main__":
main()
|