Create README.md
Browse files
    	
        README.md
    ADDED
    
    | 
         @@ -0,0 +1,106 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            ---
         
     | 
| 2 | 
         
            +
            license: apache-2.0
         
     | 
| 3 | 
         
            +
            base_model:
         
     | 
| 4 | 
         
            +
            - distilbert/distilbert-base-uncased
         
     | 
| 5 | 
         
            +
            tags:
         
     | 
| 6 | 
         
            +
            - Safety
         
     | 
| 7 | 
         
            +
            - Content Moderation
         
     | 
| 8 | 
         
            +
            - Hate Speech Detection
         
     | 
| 9 | 
         
            +
            - Toxicity Detection
         
     | 
| 10 | 
         
            +
            language:
         
     | 
| 11 | 
         
            +
            - en
         
     | 
| 12 | 
         
            +
            library_name: transformers
         
     | 
| 13 | 
         
            +
            datasets:
         
     | 
| 14 | 
         
            +
            - Paul/hatecheck
         
     | 
| 15 | 
         
            +
            - dvruette/toxic-completions
         
     | 
| 16 | 
         
            +
            - nvidia/Aegis-AI-Content-Safety-Dataset-2.0
         
     | 
| 17 | 
         
            +
            pipeline_tag: text-classification
         
     | 
| 18 | 
         
            +
            ---
         
     | 
| 19 | 
         
            +
             
     | 
| 20 | 
         
            +
            # 🐾 PurrBERT-v1.1
         
     | 
| 21 | 
         
            +
             
     | 
| 22 | 
         
            +
            **PurrBERT-v1.1** is a lightweight content-safety classifier built on top of [DistilBERT](https://huggingface.co/distilbert/distilbert-base-uncased).  
         
     | 
| 23 | 
         
            +
            It’s designed to flag harmful or unsafe user prompts before they reach an AI assistant.  
         
     | 
| 24 | 
         
            +
             
     | 
| 25 | 
         
            +
            This model is trained on a combination of:
         
     | 
| 26 | 
         
            +
            - [HateCheck](https://huggingface.co/datasets/Paul/hatecheck)
         
     | 
| 27 | 
         
            +
            - [Toxic Completions](https://huggingface.co/datasets/dvruette/toxic-completions)
         
     | 
| 28 | 
         
            +
            - [Aegis AI Content Safety Dataset 2.0](https://huggingface.co/datasets/nvidia/Aegis-AI-Content-Safety-Dataset-2.0)
         
     | 
| 29 | 
         
            +
             
     | 
| 30 | 
         
            +
            ---
         
     | 
| 31 | 
         
            +
             
     | 
| 32 | 
         
            +
            ## 📝 Model Description
         
     | 
| 33 | 
         
            +
             
     | 
| 34 | 
         
            +
            - **Architecture**: DistilBERT with a classification head (2 labels: `SAFE` vs. `FLAGGED`)  
         
     | 
| 35 | 
         
            +
            - **Purpose**: Detect hate speech, toxic content, and unsafe prompts in English text.  
         
     | 
| 36 | 
         
            +
            - **Input**: A single string (prompt text).  
         
     | 
| 37 | 
         
            +
            - **Output**: A binary prediction:  
         
     | 
| 38 | 
         
            +
              - `0` → SAFE  
         
     | 
| 39 | 
         
            +
              - `1` → FLAGGED  
         
     | 
| 40 | 
         
            +
             
     | 
| 41 | 
         
            +
            ---
         
     | 
| 42 | 
         
            +
             
     | 
| 43 | 
         
            +
            ## 🧠 Training Details
         
     | 
| 44 | 
         
            +
             
     | 
| 45 | 
         
            +
            - **Base model**: `distilbert-base-uncased`
         
     | 
| 46 | 
         
            +
            - **Epochs**: 2 (initial run)  
         
     | 
| 47 | 
         
            +
            - **Optimizer**: AdamW  
         
     | 
| 48 | 
         
            +
            - **Batch size**: 16  
         
     | 
| 49 | 
         
            +
            - **Learning rate**: 2e-5  
         
     | 
| 50 | 
         
            +
            - **Weight decay**: 0.01  
         
     | 
| 51 | 
         
            +
             
     | 
| 52 | 
         
            +
            Loss dropped steadily during training, and metrics were evaluated on a held-out test set.
         
     | 
| 53 | 
         
            +
             
     | 
| 54 | 
         
            +
            ---
         
     | 
| 55 | 
         
            +
             
     | 
| 56 | 
         
            +
            ## 📊 Evaluation Results
         
     | 
| 57 | 
         
            +
             
     | 
| 58 | 
         
            +
            On an Aegis test slice:
         
     | 
| 59 | 
         
            +
             
     | 
| 60 | 
         
            +
            | Metric     | Score  | v1     | v2     |
         
     | 
| 61 | 
         
            +
            |------------|--------|--------|--------|
         
     | 
| 62 | 
         
            +
            | Accuracy   |        | 0.8050 | 0.8200 |
         
     | 
| 63 | 
         
            +
            | Precision  |        | 0.7731 | 0.8091 |
         
     | 
| 64 | 
         
            +
            | Recall     |        | 0.8846 | 0.8558 |
         
     | 
| 65 | 
         
            +
            | F1 Score   |        | 0.8251 | 0.8318 |
         
     | 
| 66 | 
         
            +
             
     | 
| 67 | 
         
            +
            Latency per prompt on GPU: **~0.0230 sec**
         
     | 
| 68 | 
         
            +
             
     | 
| 69 | 
         
            +
            ---
         
     | 
| 70 | 
         
            +
             
     | 
| 71 | 
         
            +
            ## 🚀 Usage
         
     | 
| 72 | 
         
            +
             
     | 
| 73 | 
         
            +
            ```python
         
     | 
| 74 | 
         
            +
            from transformers import DistilBertTokenizerFast, DistilBertForSequenceClassification
         
     | 
| 75 | 
         
            +
            import torch
         
     | 
| 76 | 
         
            +
             
     | 
| 77 | 
         
            +
            # Load trained model and tokenizer
         
     | 
| 78 | 
         
            +
            model = DistilBertForSequenceClassification.from_pretrained("purrgpt-community/purrbert-v1.1")
         
     | 
| 79 | 
         
            +
            tokenizer = DistilBertTokenizerFast.from_pretrained("purrgpt-community/purrbert-v1.1")
         
     | 
| 80 | 
         
            +
            model.eval()
         
     | 
| 81 | 
         
            +
             
     | 
| 82 | 
         
            +
            def classify_prompt(prompt):
         
     | 
| 83 | 
         
            +
                inputs = tokenizer(prompt, return_tensors="pt", truncation=True, padding=True)
         
     | 
| 84 | 
         
            +
                with torch.no_grad():
         
     | 
| 85 | 
         
            +
                    outputs = model(**inputs)
         
     | 
| 86 | 
         
            +
                    pred = torch.argmax(outputs.logits, dim=-1).item()
         
     | 
| 87 | 
         
            +
                return "SAFE" if pred == 0 else "FLAGGED"
         
     | 
| 88 | 
         
            +
             
     | 
| 89 | 
         
            +
            print(classify_prompt("You are worthless and nobody likes you!"))
         
     | 
| 90 | 
         
            +
            # → FLAGGED
         
     | 
| 91 | 
         
            +
            ````
         
     | 
| 92 | 
         
            +
             
     | 
| 93 | 
         
            +
            ---
         
     | 
| 94 | 
         
            +
             
     | 
| 95 | 
         
            +
            ## ⚠️ Limitations & Bias
         
     | 
| 96 | 
         
            +
             
     | 
| 97 | 
         
            +
            * The model is trained primarily on English datasets.
         
     | 
| 98 | 
         
            +
            * It may produce false positives on edgy but non-harmful speech, or false negatives on subtle harms.
         
     | 
| 99 | 
         
            +
            * It reflects biases present in its training datasets.
         
     | 
| 100 | 
         
            +
             
     | 
| 101 | 
         
            +
            ---
         
     | 
| 102 | 
         
            +
             
     | 
| 103 | 
         
            +
            ## 🐾 Intended Use
         
     | 
| 104 | 
         
            +
             
     | 
| 105 | 
         
            +
            PurrBERT is intended for **moderating prompts** before they’re passed to AI models or for content-safety tasks.
         
     | 
| 106 | 
         
            +
            It is **not** a replacement for professional moderation in high-risk settings.
         
     |