Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
|
@@ -30,9 +30,12 @@ More details on model performance across various devices, can be found
|
|
| 30 |
- Model size: 151 MB
|
| 31 |
|
| 32 |
|
|
|
|
|
|
|
| 33 |
| Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
| 34 |
| ---|---|---|---|---|---|---|---|
|
| 35 |
-
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite |
|
|
|
|
| 36 |
|
| 37 |
|
| 38 |
## Installation
|
|
@@ -89,9 +92,21 @@ device. This script does the following:
|
|
| 89 |
python -m qai_hub_models.models.deeplabv3_resnet50.export
|
| 90 |
```
|
| 91 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 92 |
## How does this work?
|
| 93 |
|
| 94 |
-
This [export script](https://
|
| 95 |
leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
|
| 96 |
on-device. Lets go through each step below in detail:
|
| 97 |
|
|
@@ -168,6 +183,7 @@ spot check the output with expected output.
|
|
| 168 |
AI Hub. [Sign up for access](https://myaccount.qualcomm.com/signup).
|
| 169 |
|
| 170 |
|
|
|
|
| 171 |
## Run demo on a cloud-hosted device
|
| 172 |
|
| 173 |
You can also run the demo on-device.
|
|
@@ -204,7 +220,7 @@ Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
|
|
| 204 |
## License
|
| 205 |
- The license for the original implementation of DeepLabV3-ResNet50 can be found
|
| 206 |
[here](https://github.com/pytorch/vision/blob/main/LICENSE).
|
| 207 |
-
- The license for the compiled assets for on-device deployment can be found [here](
|
| 208 |
|
| 209 |
## References
|
| 210 |
* [Rethinking Atrous Convolution for Semantic Image Segmentation](https://arxiv.org/abs/1706.05587)
|
|
|
|
| 30 |
- Model size: 151 MB
|
| 31 |
|
| 32 |
|
| 33 |
+
|
| 34 |
+
|
| 35 |
| Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
| 36 |
| ---|---|---|---|---|---|---|---|
|
| 37 |
+
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 292.98 ms | 2 - 143 MB | FP16 | GPU | [DeepLabV3-ResNet50.tflite](https://huggingface.co/qualcomm/DeepLabV3-ResNet50/blob/main/DeepLabV3-ResNet50.tflite)
|
| 38 |
+
|
| 39 |
|
| 40 |
|
| 41 |
## Installation
|
|
|
|
| 92 |
python -m qai_hub_models.models.deeplabv3_resnet50.export
|
| 93 |
```
|
| 94 |
|
| 95 |
+
```
|
| 96 |
+
Profile Job summary of DeepLabV3-ResNet50
|
| 97 |
+
--------------------------------------------------
|
| 98 |
+
Device: QCS8550 (Proxy) (12)
|
| 99 |
+
Estimated Inference Time: 291.24 ms
|
| 100 |
+
Estimated Peak Memory Range: 5.22-174.24 MB
|
| 101 |
+
Compute Units: GPU (95) | Total (95)
|
| 102 |
+
|
| 103 |
+
|
| 104 |
+
```
|
| 105 |
+
|
| 106 |
+
|
| 107 |
## How does this work?
|
| 108 |
|
| 109 |
+
This [export script](https://aihub.qualcomm.com/models/deeplabv3_resnet50/qai_hub_models/models/DeepLabV3-ResNet50/export.py)
|
| 110 |
leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
|
| 111 |
on-device. Lets go through each step below in detail:
|
| 112 |
|
|
|
|
| 183 |
AI Hub. [Sign up for access](https://myaccount.qualcomm.com/signup).
|
| 184 |
|
| 185 |
|
| 186 |
+
|
| 187 |
## Run demo on a cloud-hosted device
|
| 188 |
|
| 189 |
You can also run the demo on-device.
|
|
|
|
| 220 |
## License
|
| 221 |
- The license for the original implementation of DeepLabV3-ResNet50 can be found
|
| 222 |
[here](https://github.com/pytorch/vision/blob/main/LICENSE).
|
| 223 |
+
- The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)
|
| 224 |
|
| 225 |
## References
|
| 226 |
* [Rethinking Atrous Convolution for Semantic Image Segmentation](https://arxiv.org/abs/1706.05587)
|