Upload folder using huggingface_hub
Browse files- README.md +1225 -3
- chat_template.json +3 -0
- config.json +51 -0
- configuration_dots.py +76 -0
- generation_config.json +7 -0
- merges.txt +0 -0
- model-00001-of-00002.safetensors +3 -0
- model-00002-of-00002.safetensors +3 -0
- model.safetensors.index.json +650 -0
- modeling_dots_ocr.py +131 -0
- modeling_dots_ocr_vllm.py +429 -0
- modeling_dots_vision.py +405 -0
- preprocessor_config.json +19 -0
- special_tokens_map.json +25 -0
- tokenizer.json +0 -0
- tokenizer_config.json +391 -0
- vocab.json +0 -0
    	
        README.md
    CHANGED
    
    | @@ -1,3 +1,1225 @@ | |
| 1 | 
            -
            ---
         | 
| 2 | 
            -
            license: mit
         | 
| 3 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            ---
         | 
| 2 | 
            +
            license: mit
         | 
| 3 | 
            +
            library_name: dots_ocr
         | 
| 4 | 
            +
            tags:
         | 
| 5 | 
            +
            - ocr
         | 
| 6 | 
            +
            language:
         | 
| 7 | 
            +
            - en
         | 
| 8 | 
            +
            - zh
         | 
| 9 | 
            +
            - multilingual
         | 
| 10 | 
            +
            ---
         | 
| 11 | 
            +
             | 
| 12 | 
            +
            <div align="center">
         | 
| 13 | 
            +
             | 
| 14 | 
            +
            <p align="center">
         | 
| 15 | 
            +
                <img src="https://raw.githubusercontent.com/rednote-hilab/dots_ocr/main/assets/logo.png" width="300"/>
         | 
| 16 | 
            +
            <p>
         | 
| 17 | 
            +
             | 
| 18 | 
            +
            <h1 align="center">
         | 
| 19 | 
            +
            dots.ocr: Multilingual Document Layout Parsing in a Single Vision-Language Model
         | 
| 20 | 
            +
            </h1>
         | 
| 21 | 
            +
             | 
| 22 | 
            +
            []()
         | 
| 23 | 
            +
            [](https://huggingface.co/rednote-hilab/dots.ocr)
         | 
| 24 | 
            +
             | 
| 25 | 
            +
             | 
| 26 | 
            +
            <div align="center">
         | 
| 27 | 
            +
              <a href="https://dotsocr.xiaohongshu.com" target="_blank" rel="noopener noreferrer"><strong>🖥️ Live Demo</strong></a> | 
         | 
| 28 | 
            +
              <a href="https://raw.githubusercontent.com/rednote-hilab/dots_ocr/main/assets/wechat.jpg" target="_blank" rel="noopener noreferrer"><strong>💬 WeChat</strong></a> | 
         | 
| 29 | 
            +
              <a href="https://www.xiaohongshu.com/user/profile/683ffe42000000001d021a4c" target="_blank" rel="noopener noreferrer"><strong>📕 rednote</strong></a>
         | 
| 30 | 
            +
            </div>
         | 
| 31 | 
            +
             | 
| 32 | 
            +
            </div>
         | 
| 33 | 
            +
             | 
| 34 | 
            +
             | 
| 35 | 
            +
             | 
| 36 | 
            +
            ## Introduction
         | 
| 37 | 
            +
             | 
| 38 | 
            +
            **dots.ocr** is a powerful, multilingual document parser that unifies layout detection and content recognition within a single vision-language model while maintaining good reading order. Despite its compact 1.7B-parameter LLM foundation, it achieves state-of-the-art(SOTA) performance.
         | 
| 39 | 
            +
             | 
| 40 | 
            +
            1. **Powerful Performance:** **dots.ocr** achieves SOTA performance for text, tables, and reading order on [OmniDocBench](https://github.com/opendatalab/OmniDocBench), while delivering formula recognition results comparable to much larger models like Doubao-1.5 and gemini2.5-pro.
         | 
| 41 | 
            +
            2. **Multilingual Support:** **dots.ocr** demonstrates robust parsing capabilities for low-resource languages, achieving decisive advantages across both layout detection and content recognition on our in-house multilingual documents benchmark.
         | 
| 42 | 
            +
            3. **Unified and Simple Architecture:** By leveraging a single vision-language model, **dots.ocr** offers a significantly more streamlined architecture than conventional methods that rely on complex, multi-model pipelines. Switching between tasks is accomplished simply by altering the input prompt, proving that a VLM can achieve competitive detection results compared to traditional detection models like DocLayout-YOLO.
         | 
| 43 | 
            +
            4.  **Efficient and Fast Performance:** Built upon a compact 1.7B LLM, **dots.ocr** provides faster inference speeds than many other high-performing models based on larger foundations.
         | 
| 44 | 
            +
             | 
| 45 | 
            +
             | 
| 46 | 
            +
            ### Performance Comparison: dots.ocr vs. Competing Models
         | 
| 47 | 
            +
            <img src="assets/chart.png" border="0" />
         | 
| 48 | 
            +
             | 
| 49 | 
            +
            > **Notes:** 
         | 
| 50 | 
            +
            > - The EN, ZH metrics are the end2end evaluation results of [OmniDocBench](https://github.com/opendatalab/OmniDocBench), and Multilingual metric is the end2end evaluation results of dots.ocr-bench.
         | 
| 51 | 
            +
             | 
| 52 | 
            +
             | 
| 53 | 
            +
            ## News 
         | 
| 54 | 
            +
            * ```2025.07.30 ``` 🚀 We release [dots.ocr](https://github.com/rednote-hilab/dots_ocr), — a multilingual documents parsing model based on 1.7b llm, with SOTA performance.
         | 
| 55 | 
            +
             | 
| 56 | 
            +
             | 
| 57 | 
            +
             | 
| 58 | 
            +
            ## Benchmark Results
         | 
| 59 | 
            +
             | 
| 60 | 
            +
            ### 1. OmniDocBench
         | 
| 61 | 
            +
             | 
| 62 | 
            +
            #### The end-to-end evaluation results of different tasks.
         | 
| 63 | 
            +
             | 
| 64 | 
            +
            <table>
         | 
| 65 | 
            +
            <thead>
         | 
| 66 | 
            +
            <tr>
         | 
| 67 | 
            +
            <th rowspan="2"><strong>Model<br>Type</strong></th>
         | 
| 68 | 
            +
            <th rowspan="2"><strong>Methods</strong></th>
         | 
| 69 | 
            +
            <th colspan="2"><strong>Overall<sup>Edit</sup>↓</strong></th>
         | 
| 70 | 
            +
            <th colspan="2"><strong>Text<sup>Edit</sup>↓</strong></th>
         | 
| 71 | 
            +
            <th colspan="2"><strong>Formula<sup>Edit</sup>↓</strong></th>
         | 
| 72 | 
            +
            <th colspan="2"><strong>Table<sup>TEDS</sup>↑</strong></th>
         | 
| 73 | 
            +
            <th colspan="2"><strong>Table<sup>Edit</sup>↓</strong></th>
         | 
| 74 | 
            +
            <th colspan="2"><strong>Read Order<sup>Edit</sup>↓</strong></th>
         | 
| 75 | 
            +
            </tr>
         | 
| 76 | 
            +
            <tr>
         | 
| 77 | 
            +
            <th><em>EN</em></th>
         | 
| 78 | 
            +
            <th><em>ZH</em></th>
         | 
| 79 | 
            +
            <th><em>EN</em></th>
         | 
| 80 | 
            +
            <th><em>ZH</em></th>
         | 
| 81 | 
            +
            <th><em>EN</em></th>
         | 
| 82 | 
            +
            <th><em>ZH</em></th>
         | 
| 83 | 
            +
            <th><em>EN</em></th>
         | 
| 84 | 
            +
            <th><em>ZH</em></th>
         | 
| 85 | 
            +
            <th><em>EN</em></th>
         | 
| 86 | 
            +
            <th><em>ZH</em></th>
         | 
| 87 | 
            +
            <th><em>EN</em></th>
         | 
| 88 | 
            +
            <th><em>ZH</em></th>
         | 
| 89 | 
            +
            </tr>
         | 
| 90 | 
            +
            </thead>
         | 
| 91 | 
            +
            <tbody>
         | 
| 92 | 
            +
            <tr>
         | 
| 93 | 
            +
            <td rowspan="8"><strong>Pipeline<br>Tools</strong></td>
         | 
| 94 | 
            +
            <td>MinerU</td>
         | 
| 95 | 
            +
            <td>0.150</td>
         | 
| 96 | 
            +
            <td>0.357</td>
         | 
| 97 | 
            +
            <td>0.061</td>
         | 
| 98 | 
            +
            <td>0.215</td>
         | 
| 99 | 
            +
            <td>0.278</td>
         | 
| 100 | 
            +
            <td>0.577</td>
         | 
| 101 | 
            +
            <td>78.6</td>
         | 
| 102 | 
            +
            <td>62.1</td>
         | 
| 103 | 
            +
            <td>0.180</td>
         | 
| 104 | 
            +
            <td>0.344</td>
         | 
| 105 | 
            +
            <td>0.079</td>
         | 
| 106 | 
            +
            <td>0.292</td>
         | 
| 107 | 
            +
            </tr>
         | 
| 108 | 
            +
            <tr>
         | 
| 109 | 
            +
            <td>Marker</td>
         | 
| 110 | 
            +
            <td>0.336</td>
         | 
| 111 | 
            +
            <td>0.556</td>
         | 
| 112 | 
            +
            <td>0.080</td>
         | 
| 113 | 
            +
            <td>0.315</td>
         | 
| 114 | 
            +
            <td>0.530</td>
         | 
| 115 | 
            +
            <td>0.883</td>
         | 
| 116 | 
            +
            <td>67.6</td>
         | 
| 117 | 
            +
            <td>49.2</td>
         | 
| 118 | 
            +
            <td>0.619</td>
         | 
| 119 | 
            +
            <td>0.685</td>
         | 
| 120 | 
            +
            <td>0.114</td>
         | 
| 121 | 
            +
            <td>0.340</td>
         | 
| 122 | 
            +
            </tr>
         | 
| 123 | 
            +
            <tr>
         | 
| 124 | 
            +
            <td>Mathpix</td>
         | 
| 125 | 
            +
            <td>0.191</td>
         | 
| 126 | 
            +
            <td>0.365</td>
         | 
| 127 | 
            +
            <td>0.105</td>
         | 
| 128 | 
            +
            <td>0.384</td>
         | 
| 129 | 
            +
            <td>0.306</td>
         | 
| 130 | 
            +
            <td>0.454</td>
         | 
| 131 | 
            +
            <td>77.0</td>
         | 
| 132 | 
            +
            <td>67.1</td>
         | 
| 133 | 
            +
            <td>0.243</td>
         | 
| 134 | 
            +
            <td>0.320</td>
         | 
| 135 | 
            +
            <td>0.108</td>
         | 
| 136 | 
            +
            <td>0.304</td>
         | 
| 137 | 
            +
            </tr>
         | 
| 138 | 
            +
            <tr>
         | 
| 139 | 
            +
            <td>Docling</td>
         | 
| 140 | 
            +
            <td>0.589</td>
         | 
| 141 | 
            +
            <td>0.909</td>
         | 
| 142 | 
            +
            <td>0.416</td>
         | 
| 143 | 
            +
            <td>0.987</td>
         | 
| 144 | 
            +
            <td>0.999</td>
         | 
| 145 | 
            +
            <td>1</td>
         | 
| 146 | 
            +
            <td>61.3</td>
         | 
| 147 | 
            +
            <td>25.0</td>
         | 
| 148 | 
            +
            <td>0.627</td>
         | 
| 149 | 
            +
            <td>0.810</td>
         | 
| 150 | 
            +
            <td>0.313</td>
         | 
| 151 | 
            +
            <td>0.837</td>
         | 
| 152 | 
            +
            </tr>
         | 
| 153 | 
            +
            <tr>
         | 
| 154 | 
            +
            <td>Pix2Text</td>
         | 
| 155 | 
            +
            <td>0.320</td>
         | 
| 156 | 
            +
            <td>0.528</td>
         | 
| 157 | 
            +
            <td>0.138</td>
         | 
| 158 | 
            +
            <td>0.356</td>
         | 
| 159 | 
            +
            <td>0.276</td>
         | 
| 160 | 
            +
            <td>0.611</td>
         | 
| 161 | 
            +
            <td>73.6</td>
         | 
| 162 | 
            +
            <td>66.2</td>
         | 
| 163 | 
            +
            <td>0.584</td>
         | 
| 164 | 
            +
            <td>0.645</td>
         | 
| 165 | 
            +
            <td>0.281</td>
         | 
| 166 | 
            +
            <td>0.499</td>
         | 
| 167 | 
            +
            </tr>
         | 
| 168 | 
            +
            <tr>
         | 
| 169 | 
            +
            <td>Unstructured</td>
         | 
| 170 | 
            +
            <td>0.586</td>
         | 
| 171 | 
            +
            <td>0.716</td>
         | 
| 172 | 
            +
            <td>0.198</td>
         | 
| 173 | 
            +
            <td>0.481</td>
         | 
| 174 | 
            +
            <td>0.999</td>
         | 
| 175 | 
            +
            <td>1</td>
         | 
| 176 | 
            +
            <td>0</td>
         | 
| 177 | 
            +
            <td>0.06</td>
         | 
| 178 | 
            +
            <td>1</td>
         | 
| 179 | 
            +
            <td>0.998</td>
         | 
| 180 | 
            +
            <td>0.145</td>
         | 
| 181 | 
            +
            <td>0.387</td>
         | 
| 182 | 
            +
            </tr>
         | 
| 183 | 
            +
            <tr>
         | 
| 184 | 
            +
            <td>OpenParse</td>
         | 
| 185 | 
            +
            <td>0.646</td>
         | 
| 186 | 
            +
            <td>0.814</td>
         | 
| 187 | 
            +
            <td>0.681</td>
         | 
| 188 | 
            +
            <td>0.974</td>
         | 
| 189 | 
            +
            <td>0.996</td>
         | 
| 190 | 
            +
            <td>1</td>
         | 
| 191 | 
            +
            <td>64.8</td>
         | 
| 192 | 
            +
            <td>27.5</td>
         | 
| 193 | 
            +
            <td>0.284</td>
         | 
| 194 | 
            +
            <td>0.639</td>
         | 
| 195 | 
            +
            <td>0.595</td>
         | 
| 196 | 
            +
            <td>0.641</td>
         | 
| 197 | 
            +
            </tr>
         | 
| 198 | 
            +
            <tr>
         | 
| 199 | 
            +
            <td>PPStruct-V3</td>
         | 
| 200 | 
            +
            <td>0.145</td>
         | 
| 201 | 
            +
            <td>0.206</td>
         | 
| 202 | 
            +
            <td>0.058</td>
         | 
| 203 | 
            +
            <td>0.088</td>
         | 
| 204 | 
            +
            <td>0.295</td>
         | 
| 205 | 
            +
            <td>0.535</td>
         | 
| 206 | 
            +
            <td>-</td>
         | 
| 207 | 
            +
            <td>-</td>
         | 
| 208 | 
            +
            <td>0.159</td>
         | 
| 209 | 
            +
            <td>0.109</td>
         | 
| 210 | 
            +
            <td>0.069</td>
         | 
| 211 | 
            +
            <td>0.091</td>
         | 
| 212 | 
            +
            </tr>
         | 
| 213 | 
            +
            <tr>
         | 
| 214 | 
            +
            <td rowspan="9"><strong>Expert<br>VLMs</strong></td>
         | 
| 215 | 
            +
            <td>GOT-OCR</td>
         | 
| 216 | 
            +
            <td>0.287</td>
         | 
| 217 | 
            +
            <td>0.411</td>
         | 
| 218 | 
            +
            <td>0.189</td>
         | 
| 219 | 
            +
            <td>0.315</td>
         | 
| 220 | 
            +
            <td>0.360</td>
         | 
| 221 | 
            +
            <td>0.528</td>
         | 
| 222 | 
            +
            <td>53.2</td>
         | 
| 223 | 
            +
            <td>47.2</td>
         | 
| 224 | 
            +
            <td>0.459</td>
         | 
| 225 | 
            +
            <td>0.520</td>
         | 
| 226 | 
            +
            <td>0.141</td>
         | 
| 227 | 
            +
            <td>0.280</td>
         | 
| 228 | 
            +
            </tr>
         | 
| 229 | 
            +
            <tr>
         | 
| 230 | 
            +
            <td>Nougat</td>
         | 
| 231 | 
            +
            <td>0.452</td>
         | 
| 232 | 
            +
            <td>0.973</td>
         | 
| 233 | 
            +
            <td>0.365</td>
         | 
| 234 | 
            +
            <td>0.998</td>
         | 
| 235 | 
            +
            <td>0.488</td>
         | 
| 236 | 
            +
            <td>0.941</td>
         | 
| 237 | 
            +
            <td>39.9</td>
         | 
| 238 | 
            +
            <td>0</td>
         | 
| 239 | 
            +
            <td>0.572</td>
         | 
| 240 | 
            +
            <td>1.000</td>
         | 
| 241 | 
            +
            <td>0.382</td>
         | 
| 242 | 
            +
            <td>0.954</td>
         | 
| 243 | 
            +
            </tr>
         | 
| 244 | 
            +
            <tr>
         | 
| 245 | 
            +
            <td>Mistral OCR</td>
         | 
| 246 | 
            +
            <td>0.268</td>
         | 
| 247 | 
            +
            <td>0.439</td>
         | 
| 248 | 
            +
            <td>0.072</td>
         | 
| 249 | 
            +
            <td>0.325</td>
         | 
| 250 | 
            +
            <td>0.318</td>
         | 
| 251 | 
            +
            <td>0.495</td>
         | 
| 252 | 
            +
            <td>75.8</td>
         | 
| 253 | 
            +
            <td>63.6</td>
         | 
| 254 | 
            +
            <td>0.600</td>
         | 
| 255 | 
            +
            <td>0.650</td>
         | 
| 256 | 
            +
            <td>0.083</td>
         | 
| 257 | 
            +
            <td>0.284</td>
         | 
| 258 | 
            +
            </tr>
         | 
| 259 | 
            +
            <tr>
         | 
| 260 | 
            +
            <td>OLMOCR-sglang</td>
         | 
| 261 | 
            +
            <td>0.326</td>
         | 
| 262 | 
            +
            <td>0.469</td>
         | 
| 263 | 
            +
            <td>0.097</td>
         | 
| 264 | 
            +
            <td>0.293</td>
         | 
| 265 | 
            +
            <td>0.455</td>
         | 
| 266 | 
            +
            <td>0.655</td>
         | 
| 267 | 
            +
            <td>68.1</td>
         | 
| 268 | 
            +
            <td>61.3</td>
         | 
| 269 | 
            +
            <td>0.608</td>
         | 
| 270 | 
            +
            <td>0.652</td>
         | 
| 271 | 
            +
            <td>0.145</td>
         | 
| 272 | 
            +
            <td>0.277</td>
         | 
| 273 | 
            +
            </tr>
         | 
| 274 | 
            +
            <tr>
         | 
| 275 | 
            +
            <td>SmolDocling-256M</td>
         | 
| 276 | 
            +
            <td>0.493</td>
         | 
| 277 | 
            +
            <td>0.816</td>
         | 
| 278 | 
            +
            <td>0.262</td>
         | 
| 279 | 
            +
            <td>0.838</td>
         | 
| 280 | 
            +
            <td>0.753</td>
         | 
| 281 | 
            +
            <td>0.997</td>
         | 
| 282 | 
            +
            <td>44.9</td>
         | 
| 283 | 
            +
            <td>16.5</td>
         | 
| 284 | 
            +
            <td>0.729</td>
         | 
| 285 | 
            +
            <td>0.907</td>
         | 
| 286 | 
            +
            <td>0.227</td>
         | 
| 287 | 
            +
            <td>0.522</td>
         | 
| 288 | 
            +
            </tr>
         | 
| 289 | 
            +
            <tr>
         | 
| 290 | 
            +
            <td>Dolphin</td>
         | 
| 291 | 
            +
            <td>0.206</td>
         | 
| 292 | 
            +
            <td>0.306</td>
         | 
| 293 | 
            +
            <td>0.107</td>
         | 
| 294 | 
            +
            <td>0.197</td>
         | 
| 295 | 
            +
            <td>0.447</td>
         | 
| 296 | 
            +
            <td>0.580</td>
         | 
| 297 | 
            +
            <td>77.3</td>
         | 
| 298 | 
            +
            <td>67.2</td>
         | 
| 299 | 
            +
            <td>0.180</td>
         | 
| 300 | 
            +
            <td>0.285</td>
         | 
| 301 | 
            +
            <td>0.091</td>
         | 
| 302 | 
            +
            <td>0.162</td>
         | 
| 303 | 
            +
            </tr>
         | 
| 304 | 
            +
            <tr>
         | 
| 305 | 
            +
            <td>MinerU 2</td>
         | 
| 306 | 
            +
            <td>0.139</td>
         | 
| 307 | 
            +
            <td>0.240</td>
         | 
| 308 | 
            +
            <td>0.047</td>
         | 
| 309 | 
            +
            <td>0.109</td>
         | 
| 310 | 
            +
            <td>0.297</td>
         | 
| 311 | 
            +
            <td>0.536</td>
         | 
| 312 | 
            +
            <td>82.5</td>
         | 
| 313 | 
            +
            <td>79.0</td>
         | 
| 314 | 
            +
            <td>0.141</td>
         | 
| 315 | 
            +
            <td>0.195</td>
         | 
| 316 | 
            +
            <td>0.069<</td>
         | 
| 317 | 
            +
            <td>0.118</td>
         | 
| 318 | 
            +
            </tr>
         | 
| 319 | 
            +
            <tr>
         | 
| 320 | 
            +
            <td>OCRFlux</td>
         | 
| 321 | 
            +
            <td>0.195</td>
         | 
| 322 | 
            +
            <td>0.281</td>
         | 
| 323 | 
            +
            <td>0.064</td>
         | 
| 324 | 
            +
            <td>0.183</td>
         | 
| 325 | 
            +
            <td>0.379</td>
         | 
| 326 | 
            +
            <td>0.613</td>
         | 
| 327 | 
            +
            <td>71.6</td>
         | 
| 328 | 
            +
            <td>81.3</td>
         | 
| 329 | 
            +
            <td>0.253</td>
         | 
| 330 | 
            +
            <td>0.139</td>
         | 
| 331 | 
            +
            <td>0.086</td>
         | 
| 332 | 
            +
            <td>0.187</td>
         | 
| 333 | 
            +
            </tr>
         | 
| 334 | 
            +
            <tr>
         | 
| 335 | 
            +
            <td>MonkeyOCR-pro-3B</td>
         | 
| 336 | 
            +
            <td>0.138</td>
         | 
| 337 | 
            +
            <td>0.206</td>
         | 
| 338 | 
            +
            <td>0.067</td>
         | 
| 339 | 
            +
            <td>0.107</td>
         | 
| 340 | 
            +
            <td><strong>0.246</strong></td>
         | 
| 341 | 
            +
            <td>0.421</td>
         | 
| 342 | 
            +
            <td>81.5</td>
         | 
| 343 | 
            +
            <td>87.5</td>
         | 
| 344 | 
            +
            <td>0.139</td>
         | 
| 345 | 
            +
            <td>0.111</td>
         | 
| 346 | 
            +
            <td>0.100</td>
         | 
| 347 | 
            +
            <td>0.185</td>
         | 
| 348 | 
            +
            </tr>
         | 
| 349 | 
            +
            <tr>
         | 
| 350 | 
            +
             | 
| 351 | 
            +
            <td rowspan="5"><strong>General<br>VLMs</strong></td>
         | 
| 352 | 
            +
            <td>GPT4o</td>
         | 
| 353 | 
            +
            <td>0.233</td>
         | 
| 354 | 
            +
            <td>0.399</td>
         | 
| 355 | 
            +
            <td>0.144</td>
         | 
| 356 | 
            +
            <td>0.409</td>
         | 
| 357 | 
            +
            <td>0.425</td>
         | 
| 358 | 
            +
            <td>0.606</td>
         | 
| 359 | 
            +
            <td>72.0</td>
         | 
| 360 | 
            +
            <td>62.9</td>
         | 
| 361 | 
            +
            <td>0.234</td>
         | 
| 362 | 
            +
            <td>0.329</td>
         | 
| 363 | 
            +
            <td>0.128</td>
         | 
| 364 | 
            +
            <td>0.251</td>
         | 
| 365 | 
            +
            </tr>
         | 
| 366 | 
            +
                <tr>
         | 
| 367 | 
            +
                  <td>Qwen2-VL-72B</td>
         | 
| 368 | 
            +
                  <td>0.252</td>
         | 
| 369 | 
            +
                  <td>0.327</td>
         | 
| 370 | 
            +
                  <td>0.096</td>
         | 
| 371 | 
            +
                  <td>0.218</td>
         | 
| 372 | 
            +
                  <td>0.404</td>
         | 
| 373 | 
            +
                  <td>0.487</td>
         | 
| 374 | 
            +
                  <td>76.8</td>
         | 
| 375 | 
            +
                  <td>76.4</td>
         | 
| 376 | 
            +
                  <td>0.387</td>
         | 
| 377 | 
            +
                  <td>0.408</td>
         | 
| 378 | 
            +
                  <td>0.119</td>
         | 
| 379 | 
            +
                  <td>0.193</td>
         | 
| 380 | 
            +
                </tr>
         | 
| 381 | 
            +
                <tr>
         | 
| 382 | 
            +
                  <td>Qwen2.5-VL-72B</td>
         | 
| 383 | 
            +
                  <td>0.214</td>
         | 
| 384 | 
            +
                  <td>0.261</td>
         | 
| 385 | 
            +
                  <td>0.092</td>
         | 
| 386 | 
            +
                  <td>0.18</td>
         | 
| 387 | 
            +
                  <td>0.315</td>
         | 
| 388 | 
            +
                  <td>0.434</td>
         | 
| 389 | 
            +
                  <td>82.9</td>
         | 
| 390 | 
            +
                  <td>83.9</td>
         | 
| 391 | 
            +
                  <td>0.341</td>
         | 
| 392 | 
            +
                  <td>0.262</td>
         | 
| 393 | 
            +
                  <td>0.106</td>
         | 
| 394 | 
            +
                  <td>0.168</td>
         | 
| 395 | 
            +
                </tr>
         | 
| 396 | 
            +
                <tr>
         | 
| 397 | 
            +
                  <td>Gemini2.5-Pro</td>
         | 
| 398 | 
            +
                  <td>0.148</td>
         | 
| 399 | 
            +
                  <td>0.212</td>
         | 
| 400 | 
            +
                  <td>0.055</td>
         | 
| 401 | 
            +
                  <td>0.168</td>
         | 
| 402 | 
            +
                  <td>0.356</td>
         | 
| 403 | 
            +
                  <td>0.439</td>
         | 
| 404 | 
            +
                  <td>85.8</td>
         | 
| 405 | 
            +
                  <td>86.4</td>
         | 
| 406 | 
            +
                  <td>0.13</td>
         | 
| 407 | 
            +
                  <td>0.119</td>
         | 
| 408 | 
            +
                  <td>0.049</td>
         | 
| 409 | 
            +
                  <td>0.121</td>
         | 
| 410 | 
            +
                </tr>
         | 
| 411 | 
            +
                <tr>
         | 
| 412 | 
            +
                  <td>doubao-1-5-thinking-vision-pro-250428</td>
         | 
| 413 | 
            +
                  <td>0.140</td>
         | 
| 414 | 
            +
                  <td>0.162</td>
         | 
| 415 | 
            +
                  <td>0.043</td>
         | 
| 416 | 
            +
                  <td>0.085</td>
         | 
| 417 | 
            +
                  <td>0.295</td>
         | 
| 418 | 
            +
                  <td><strong>0.384</strong></td>
         | 
| 419 | 
            +
                  <td>83.3</td>
         | 
| 420 | 
            +
                  <td><strong>89.3</strong></td>
         | 
| 421 | 
            +
                  <td>0.165</td>
         | 
| 422 | 
            +
                  <td><strong>0.085</strong></td>
         | 
| 423 | 
            +
                  <td>0.058</td>
         | 
| 424 | 
            +
                  <td>0.094</td>
         | 
| 425 | 
            +
                </tr>
         | 
| 426 | 
            +
            <tr>
         | 
| 427 | 
            +
            <td rowspan="1"><strong>Expert VLMs</strong></td>
         | 
| 428 | 
            +
            <td><strong>dots.ocr</strong></td>
         | 
| 429 | 
            +
            <td><strong>0.125</strong></td>
         | 
| 430 | 
            +
            <td><strong>0.160</strong></td>
         | 
| 431 | 
            +
            <td><strong>0.032</strong></td>
         | 
| 432 | 
            +
            <td><strong>0.066</strong></td>
         | 
| 433 | 
            +
            <td>0.329</td>
         | 
| 434 | 
            +
            <td>0.416</td>
         | 
| 435 | 
            +
            <td><strong>88.6</strong></td>
         | 
| 436 | 
            +
            <td>89.0</td>
         | 
| 437 | 
            +
            <td><strong>0.099</strong></td>
         | 
| 438 | 
            +
            <td>0.092</td>
         | 
| 439 | 
            +
            <td><strong>0.040</strong></td>
         | 
| 440 | 
            +
            <td><strong>0.067</strong></td>
         | 
| 441 | 
            +
            </tr>
         | 
| 442 | 
            +
            <tr>
         | 
| 443 | 
            +
            </tbody>
         | 
| 444 | 
            +
            </table>
         | 
| 445 | 
            +
             | 
| 446 | 
            +
             | 
| 447 | 
            +
            #### The end-to-end text recognition performance across 9 PDF page types.
         | 
| 448 | 
            +
             | 
| 449 | 
            +
            <table>
         | 
| 450 | 
            +
            <thead>
         | 
| 451 | 
            +
            <tr>
         | 
| 452 | 
            +
            <th><strong>Model<br>Type</strong></th>
         | 
| 453 | 
            +
            <th><strong>Models</strong></th>
         | 
| 454 | 
            +
            <th><strong>Book</strong></th>
         | 
| 455 | 
            +
            <th><strong>Slides</strong></th>
         | 
| 456 | 
            +
            <th><strong>Financial<br>Report</strong></th>
         | 
| 457 | 
            +
            <th><strong>Textbook</strong></th>
         | 
| 458 | 
            +
            <th><strong>Exam<br>Paper</strong></th>
         | 
| 459 | 
            +
            <th><strong>Magazine</strong></th>
         | 
| 460 | 
            +
            <th><strong>Academic<br>Papers</strong></th>
         | 
| 461 | 
            +
            <th><strong>Notes</strong></th>
         | 
| 462 | 
            +
            <th><strong>Newspaper</strong></th>
         | 
| 463 | 
            +
            <th><strong>Overall</strong></th>
         | 
| 464 | 
            +
            </tr>
         | 
| 465 | 
            +
            </thead>
         | 
| 466 | 
            +
            <tbody>
         | 
| 467 | 
            +
            <tr>
         | 
| 468 | 
            +
            <td rowspan="3"><strong>Pipeline<br>Tools</strong></td>
         | 
| 469 | 
            +
            <td>MinerU</td>
         | 
| 470 | 
            +
            <td>0.055</td>
         | 
| 471 | 
            +
            <td>0.124</td>
         | 
| 472 | 
            +
            <td><u>0.033</u></td>
         | 
| 473 | 
            +
            <td>0.102</td>
         | 
| 474 | 
            +
            <td>0.159</td>
         | 
| 475 | 
            +
            <td><strong>0.072</strong></td>
         | 
| 476 | 
            +
            <td><u>0.025</u></td>
         | 
| 477 | 
            +
            <td>0.984</td>
         | 
| 478 | 
            +
            <td>0.171</td>
         | 
| 479 | 
            +
            <td>0.206</td>
         | 
| 480 | 
            +
            </tr>
         | 
| 481 | 
            +
            <tr>
         | 
| 482 | 
            +
            <td>Marker</td>
         | 
| 483 | 
            +
            <td>0.074</td>
         | 
| 484 | 
            +
            <td>0.340</td>
         | 
| 485 | 
            +
            <td>0.089</td>
         | 
| 486 | 
            +
            <td>0.319</td>
         | 
| 487 | 
            +
            <td>0.452</td>
         | 
| 488 | 
            +
            <td>0.153</td>
         | 
| 489 | 
            +
            <td>0.059</td>
         | 
| 490 | 
            +
            <td>0.651</td>
         | 
| 491 | 
            +
            <td>0.192</td>
         | 
| 492 | 
            +
            <td>0.274</td>
         | 
| 493 | 
            +
            </tr>
         | 
| 494 | 
            +
            <tr>
         | 
| 495 | 
            +
            <td>Mathpix</td>
         | 
| 496 | 
            +
            <td>0.131</td>
         | 
| 497 | 
            +
            <td>0.220</td>
         | 
| 498 | 
            +
            <td>0.202</td>
         | 
| 499 | 
            +
            <td>0.216</td>
         | 
| 500 | 
            +
            <td>0.278</td>
         | 
| 501 | 
            +
            <td>0.147</td>
         | 
| 502 | 
            +
            <td>0.091</td>
         | 
| 503 | 
            +
            <td>0.634</td>
         | 
| 504 | 
            +
            <td>0.690</td>
         | 
| 505 | 
            +
            <td>0.300</td>
         | 
| 506 | 
            +
            </tr>
         | 
| 507 | 
            +
            <tr>
         | 
| 508 | 
            +
            <td rowspan="5"><strong>Expert<br>VLMs</strong></td>
         | 
| 509 | 
            +
            <td>GOT-OCR</td>
         | 
| 510 | 
            +
            <td>0.111</td>
         | 
| 511 | 
            +
            <td>0.222</td>
         | 
| 512 | 
            +
            <td>0.067</td>
         | 
| 513 | 
            +
            <td>0.132</td>
         | 
| 514 | 
            +
            <td>0.204</td>
         | 
| 515 | 
            +
            <td>0.198</td>
         | 
| 516 | 
            +
            <td>0.179</td>
         | 
| 517 | 
            +
            <td>0.388</td>
         | 
| 518 | 
            +
            <td>0.771</td>
         | 
| 519 | 
            +
            <td>0.267</td>
         | 
| 520 | 
            +
            </tr>
         | 
| 521 | 
            +
            <tr>
         | 
| 522 | 
            +
            <td>Nougat</td>
         | 
| 523 | 
            +
            <td>0.734</td>
         | 
| 524 | 
            +
            <td>0.958</td>
         | 
| 525 | 
            +
            <td>1.000</td>
         | 
| 526 | 
            +
            <td>0.820</td>
         | 
| 527 | 
            +
            <td>0.930</td>
         | 
| 528 | 
            +
            <td>0.830</td>
         | 
| 529 | 
            +
            <td>0.214</td>
         | 
| 530 | 
            +
            <td>0.991</td>
         | 
| 531 | 
            +
            <td>0.871</td>
         | 
| 532 | 
            +
            <td>0.806</td>
         | 
| 533 | 
            +
            </tr>
         | 
| 534 | 
            +
            <tr>
         | 
| 535 | 
            +
            <td>Dolphin</td>
         | 
| 536 | 
            +
            <td>0.091</td>
         | 
| 537 | 
            +
            <td>0.131</td>
         | 
| 538 | 
            +
            <td>0.057</td>
         | 
| 539 | 
            +
            <td>0.146</td>
         | 
| 540 | 
            +
            <td>0.231</td>
         | 
| 541 | 
            +
            <td>0.121</td>
         | 
| 542 | 
            +
            <td>0.074</td>
         | 
| 543 | 
            +
            <td>0.363</td>
         | 
| 544 | 
            +
            <td>0.307</td>
         | 
| 545 | 
            +
            <td>0.177</td>
         | 
| 546 | 
            +
            </tr>
         | 
| 547 | 
            +
            <tr>
         | 
| 548 | 
            +
            <td>OCRFlux</td>
         | 
| 549 | 
            +
            <td>0.068</td>
         | 
| 550 | 
            +
            <td>0.125</td>
         | 
| 551 | 
            +
            <td>0.092</td>
         | 
| 552 | 
            +
            <td>0.102</td>
         | 
| 553 | 
            +
            <td>0.119</td>
         | 
| 554 | 
            +
            <td>0.083</td>
         | 
| 555 | 
            +
            <td>0.047</td>
         | 
| 556 | 
            +
            <td>0.223</td>
         | 
| 557 | 
            +
            <td>0.536</td>
         | 
| 558 | 
            +
            <td>0.149</td>
         | 
| 559 | 
            +
            </tr>
         | 
| 560 | 
            +
            <tr>
         | 
| 561 | 
            +
            <td>MonkeyOCR-pro-3B</td>
         | 
| 562 | 
            +
            <td>0.084</td>
         | 
| 563 | 
            +
            <td>0.129</td>
         | 
| 564 | 
            +
            <td>0.060</td>
         | 
| 565 | 
            +
            <td>0.090</td>
         | 
| 566 | 
            +
            <td>0.107</td>
         | 
| 567 | 
            +
            <td>0.073</td>
         | 
| 568 | 
            +
            <td>0.050</td>
         | 
| 569 | 
            +
            <td>0.171</td>
         | 
| 570 | 
            +
            <td>0.107</td>
         | 
| 571 | 
            +
            <td>0.100</td>
         | 
| 572 | 
            +
            </tr>
         | 
| 573 | 
            +
            <tr>
         | 
| 574 | 
            +
            <td rowspan="4"><strong>General<br>VLMs</strong></td>
         | 
| 575 | 
            +
            <td>GPT4o</td>
         | 
| 576 | 
            +
            <td>0.157</td>
         | 
| 577 | 
            +
            <td>0.163</td>
         | 
| 578 | 
            +
            <td>0.348</td>
         | 
| 579 | 
            +
            <td>0.187</td>
         | 
| 580 | 
            +
            <td>0.281</td>
         | 
| 581 | 
            +
            <td>0.173</td>
         | 
| 582 | 
            +
            <td>0.146</td>
         | 
| 583 | 
            +
            <td>0.607</td>
         | 
| 584 | 
            +
            <td>0.751</td>
         | 
| 585 | 
            +
            <td>0.316</td>
         | 
| 586 | 
            +
            </tr>
         | 
| 587 | 
            +
            <tr>
         | 
| 588 | 
            +
            <td>Qwen2.5-VL-7B</td>
         | 
| 589 | 
            +
            <td>0.148</td>
         | 
| 590 | 
            +
            <td>0.053</td>
         | 
| 591 | 
            +
            <td>0.111</td>
         | 
| 592 | 
            +
            <td>0.137</td>
         | 
| 593 | 
            +
            <td>0.189</td>
         | 
| 594 | 
            +
            <td>0.117</td>
         | 
| 595 | 
            +
            <td>0.134</td>
         | 
| 596 | 
            +
            <td>0.204</td>
         | 
| 597 | 
            +
            <td>0.706</td>
         | 
| 598 | 
            +
            <td>0.205</td>
         | 
| 599 | 
            +
            </tr>
         | 
| 600 | 
            +
            <tr>
         | 
| 601 | 
            +
            <td>InternVL3-8B</td>
         | 
| 602 | 
            +
            <td>0.163</td>
         | 
| 603 | 
            +
            <td>0.056</td>
         | 
| 604 | 
            +
            <td>0.107</td>
         | 
| 605 | 
            +
            <td>0.109</td>
         | 
| 606 | 
            +
            <td>0.129</td>
         | 
| 607 | 
            +
            <td>0.100</td>
         | 
| 608 | 
            +
            <td>0.159</td>
         | 
| 609 | 
            +
            <td>0.150</td>
         | 
| 610 | 
            +
            <td>0.681</td>
         | 
| 611 | 
            +
            <td>0.188</td>
         | 
| 612 | 
            +
            </tr>
         | 
| 613 | 
            +
            <tr>
         | 
| 614 | 
            +
            <td>doubao-1-5-thinking-vision-pro-250428</td>
         | 
| 615 | 
            +
            <td>0.048</td>
         | 
| 616 | 
            +
            <td>0.048</td>
         | 
| 617 | 
            +
            <td>0.024</td>
         | 
| 618 | 
            +
            <td><strong>0.062</strong></td>
         | 
| 619 | 
            +
            <td>0.085</td>
         | 
| 620 | 
            +
            <td>0.051</td>
         | 
| 621 | 
            +
            <td>0.039</td>
         | 
| 622 | 
            +
            <td><strong>0.096</strong></td>
         | 
| 623 | 
            +
            <td>0.181</td>
         | 
| 624 | 
            +
            <td>0.073</td>
         | 
| 625 | 
            +
            </tr>
         | 
| 626 | 
            +
            <tr>
         | 
| 627 | 
            +
            <td rowspan="1"><strong>Expert VLMs</strong></td>
         | 
| 628 | 
            +
            <td><strong>dots.ocr</strong></td>
         | 
| 629 | 
            +
            <td><strong>0.031</strong></td>
         | 
| 630 | 
            +
            <td><strong>0.047</strong></td>
         | 
| 631 | 
            +
            <td><strong>0.011</strong></td>
         | 
| 632 | 
            +
            <td>0.082</td>
         | 
| 633 | 
            +
            <td><strong>0.079</strong></td>
         | 
| 634 | 
            +
            <td><strong>0.028</strong></td>
         | 
| 635 | 
            +
            <td><strong>0.029</strong></td>
         | 
| 636 | 
            +
            <td>0.109</td>
         | 
| 637 | 
            +
            <td><strong>0.056</strong></td>
         | 
| 638 | 
            +
            <td><strong>0.055</strong></td>
         | 
| 639 | 
            +
            </tr>
         | 
| 640 | 
            +
             | 
| 641 | 
            +
            </tbody>
         | 
| 642 | 
            +
            </table>
         | 
| 643 | 
            +
             | 
| 644 | 
            +
            > **Notes:** 
         | 
| 645 | 
            +
            > - The metrics are from [MonkeyOCR](https://github.com/Yuliang-Liu/MonkeyOCR), [OmniDocBench](https://github.com/opendatalab/OmniDocBench), and our own internal evaluations.
         | 
| 646 | 
            +
            > - We delete the Page-header and Page-footer cells in the result markdown.
         | 
| 647 | 
            +
            > - We use tikz_preprocess pipeline to upsample the images to dpi 200.
         | 
| 648 | 
            +
             | 
| 649 | 
            +
             | 
| 650 | 
            +
            ### 2. **dots.ocr-bench**
         | 
| 651 | 
            +
             | 
| 652 | 
            +
            This is an inhouse benchmark which contain 1493 pdf images with 100 languages.
         | 
| 653 | 
            +
             | 
| 654 | 
            +
            #### The end-to-end evaluation results of different tasks.
         | 
| 655 | 
            +
             | 
| 656 | 
            +
            <table>
         | 
| 657 | 
            +
            <thead>
         | 
| 658 | 
            +
            <tr>
         | 
| 659 | 
            +
            <th rowspan="1"><strong>Methods</strong></th>
         | 
| 660 | 
            +
            <th colspan="1"><strong>Overall<sup>Edit</sup>↓</strong></th>
         | 
| 661 | 
            +
            <th colspan="1"><strong>Text<sup>Edit</sup>↓</strong></th>
         | 
| 662 | 
            +
            <th colspan="1"><strong>Formula<sup>Edit</sup>↓</strong></th>
         | 
| 663 | 
            +
            <th colspan="1"><strong>Table<sup>TEDS</sup>↑</strong></th>
         | 
| 664 | 
            +
            <th colspan="1"><strong>Table<sup>Edit</sup>↓</strong></th>
         | 
| 665 | 
            +
            <th colspan="1"><strong>Read Order<sup>Edit</sup>↓</strong></th>
         | 
| 666 | 
            +
            </tr>
         | 
| 667 | 
            +
            </thead>
         | 
| 668 | 
            +
            <tbody>
         | 
| 669 | 
            +
            <td>MonkeyOCR-3B</td>
         | 
| 670 | 
            +
            <td>0.483</td>
         | 
| 671 | 
            +
            <td>0.445</td>
         | 
| 672 | 
            +
            <td>0.627</td>
         | 
| 673 | 
            +
            <td>50.93</td>
         | 
| 674 | 
            +
            <td>0.452</td>
         | 
| 675 | 
            +
            <td>0.409</td>
         | 
| 676 | 
            +
            </tr>
         | 
| 677 | 
            +
            <tr>
         | 
| 678 | 
            +
            <td>doubao-1-5-thinking-vision-pro-250428</td>
         | 
| 679 | 
            +
            <td>0.291</td>
         | 
| 680 | 
            +
            <td>0.226</td>
         | 
| 681 | 
            +
            <td>0.440</td>
         | 
| 682 | 
            +
            <td>71.2</td>
         | 
| 683 | 
            +
            <td>0.260</td>
         | 
| 684 | 
            +
            <td>0.238</td>
         | 
| 685 | 
            +
            </tr>
         | 
| 686 | 
            +
            <tr>
         | 
| 687 | 
            +
            <td>doubao-1-6</td>
         | 
| 688 | 
            +
            <td>0.299</td>
         | 
| 689 | 
            +
            <td>0.270</td>
         | 
| 690 | 
            +
            <td>0.417</td>
         | 
| 691 | 
            +
            <td>71.0</td>
         | 
| 692 | 
            +
            <td>0.258</td>
         | 
| 693 | 
            +
            <td>0.253</td>
         | 
| 694 | 
            +
            </tr>
         | 
| 695 | 
            +
            <tr>
         | 
| 696 | 
            +
            <td>Gemini2.5-Pro</td>
         | 
| 697 | 
            +
            <td>0.251</td>
         | 
| 698 | 
            +
            <td>0.163</td>
         | 
| 699 | 
            +
            <td>0.402</td>
         | 
| 700 | 
            +
            <td>77.1</td>
         | 
| 701 | 
            +
            <td>0.236</td>
         | 
| 702 | 
            +
            <td>0.202</td>
         | 
| 703 | 
            +
            </tr>
         | 
| 704 | 
            +
            <tr>
         | 
| 705 | 
            +
            <td><strong>dots.ocr</strong> </td>
         | 
| 706 | 
            +
            <td><strong>0.177</strong></td>
         | 
| 707 | 
            +
            <td><strong>0.075</strong></td>
         | 
| 708 | 
            +
            <td><strong>0.297</strong></td>
         | 
| 709 | 
            +
            <td><strong>79.2</strong></td>
         | 
| 710 | 
            +
            <td><strong>0.186</strong></td>
         | 
| 711 | 
            +
            <td><strong>0.152</strong></td>
         | 
| 712 | 
            +
            </tr>
         | 
| 713 | 
            +
             | 
| 714 | 
            +
            </tbody>
         | 
| 715 | 
            +
            </table>
         | 
| 716 | 
            +
             | 
| 717 | 
            +
            > **Notes:** 
         | 
| 718 | 
            +
            > - We use the same metric calculation pipeline of [OmniDocBench](https://github.com/opendatalab/OmniDocBench).
         | 
| 719 | 
            +
            > - We delete the Page-header and Page-footer cells in the result markdown.
         | 
| 720 | 
            +
             | 
| 721 | 
            +
            #### Layout Detection
         | 
| 722 | 
            +
             | 
| 723 | 
            +
            <table>
         | 
| 724 | 
            +
            <thead>
         | 
| 725 | 
            +
            <tr>
         | 
| 726 | 
            +
            <th rowspan="2"><strong>Method</strong></th>
         | 
| 727 | 
            +
            <th colspan="5" style="text-align: center;"><strong>F1@IoU=.50:.05:.95↑</strong></th>
         | 
| 728 | 
            +
            <th colspan="5" style="text-align: center;"><strong>F1@IoU=.50↑</strong></th>
         | 
| 729 | 
            +
            </tr>
         | 
| 730 | 
            +
            <tr>
         | 
| 731 | 
            +
            <th>Overall</th>
         | 
| 732 | 
            +
            <th>Text</th>
         | 
| 733 | 
            +
            <th>Formula</th>
         | 
| 734 | 
            +
            <th>Table</th>
         | 
| 735 | 
            +
            <th>Picture</th>
         | 
| 736 | 
            +
            <th>Overall</th>
         | 
| 737 | 
            +
            <th>Text</th>
         | 
| 738 | 
            +
            <th>Formula</th>
         | 
| 739 | 
            +
            <th>Table</th>
         | 
| 740 | 
            +
            <th>Picture</th>
         | 
| 741 | 
            +
            </tr>
         | 
| 742 | 
            +
            </thead>
         | 
| 743 | 
            +
             | 
| 744 | 
            +
            <tbody>
         | 
| 745 | 
            +
            <td>DocLayout-YOLO-DocStructBench</td>
         | 
| 746 | 
            +
            <td>0.733</td>
         | 
| 747 | 
            +
            <td>0.694</td>
         | 
| 748 | 
            +
            <td>0.480</td>
         | 
| 749 | 
            +
            <td>0.803</td>
         | 
| 750 | 
            +
            <td>0.619</td>
         | 
| 751 | 
            +
            <td>0.806</td>
         | 
| 752 | 
            +
            <td>0.779</td>
         | 
| 753 | 
            +
            <td>0.620</td>
         | 
| 754 | 
            +
            <td>0.858</td>
         | 
| 755 | 
            +
            <td>0.678</td>
         | 
| 756 | 
            +
            </tr>
         | 
| 757 | 
            +
             | 
| 758 | 
            +
            <tr>
         | 
| 759 | 
            +
            <td>dots.ocr-parse all</td>
         | 
| 760 | 
            +
            <td>0.831</td>
         | 
| 761 | 
            +
            <td>0.801</td>
         | 
| 762 | 
            +
            <td>0.654</td>
         | 
| 763 | 
            +
            <td>0.838</td>
         | 
| 764 | 
            +
            <td>0.748</td>
         | 
| 765 | 
            +
            <td>0.922</td>
         | 
| 766 | 
            +
            <td>0.909</td>
         | 
| 767 | 
            +
            <td>0.770</td>
         | 
| 768 | 
            +
            <td>0.888</td>
         | 
| 769 | 
            +
            <td>0.831</td>
         | 
| 770 | 
            +
            </tr>
         | 
| 771 | 
            +
             | 
| 772 | 
            +
            <tr>
         | 
| 773 | 
            +
            <td> <strong>dots.ocr-detection only</strong> </td>
         | 
| 774 | 
            +
            <td><strong>0.845</strong></td>
         | 
| 775 | 
            +
            <td><strong>0.816</strong></td>
         | 
| 776 | 
            +
            <td><strong>0.716</strong></td>
         | 
| 777 | 
            +
            <td><strong>0.875</strong></td>
         | 
| 778 | 
            +
            <td><strong>0.765</strong></td>
         | 
| 779 | 
            +
            <td><strong>0.930</strong></td>
         | 
| 780 | 
            +
            <td><strong>0.917</strong></td>
         | 
| 781 | 
            +
            <td><strong>0.832</strong></td>
         | 
| 782 | 
            +
            <td><strong>0.918</strong></td>
         | 
| 783 | 
            +
            <td><strong>0.843</strong></td>
         | 
| 784 | 
            +
            </tr>
         | 
| 785 | 
            +
             | 
| 786 | 
            +
            </tbody>
         | 
| 787 | 
            +
            </table>
         | 
| 788 | 
            +
             | 
| 789 | 
            +
            > **Notes:**  
         | 
| 790 | 
            +
            > - prompt_layout_all_en for **parse all**, prompt_layout_only_en for **detection only**, please refer to [prompts](https://github.com/rednote-hilab/dots_ocr/blob/main/dots_ocr/utils/prompts.py)
         | 
| 791 | 
            +
             | 
| 792 | 
            +
             | 
| 793 | 
            +
            ### 3. olmOCR-bench.
         | 
| 794 | 
            +
             | 
| 795 | 
            +
            <table>
         | 
| 796 | 
            +
            <thead>
         | 
| 797 | 
            +
            <tr>
         | 
| 798 | 
            +
            <th>Model</th>
         | 
| 799 | 
            +
            <th>ArXiv</th>
         | 
| 800 | 
            +
            <th>Old Scans<br>Math</th>
         | 
| 801 | 
            +
            <th>Tables</th>
         | 
| 802 | 
            +
            <th>Old Scans</th>
         | 
| 803 | 
            +
            <th>Headers and<br>Footers</th>
         | 
| 804 | 
            +
            <th>Multi<br>column</th>
         | 
| 805 | 
            +
            <th>Long Tiny<br>Text</th>
         | 
| 806 | 
            +
            <th>Base</th>
         | 
| 807 | 
            +
            <th>Overall</th>
         | 
| 808 | 
            +
            </tr>
         | 
| 809 | 
            +
            </thead>
         | 
| 810 | 
            +
            <tbody>
         | 
| 811 | 
            +
            <tr>
         | 
| 812 | 
            +
            <td>GOT OCR</td>
         | 
| 813 | 
            +
            <td>52.7</td>
         | 
| 814 | 
            +
            <td>52.0</td>
         | 
| 815 | 
            +
            <td>0.2</td>
         | 
| 816 | 
            +
            <td>22.1</td>
         | 
| 817 | 
            +
            <td>93.6</td>
         | 
| 818 | 
            +
            <td>42.0</td>
         | 
| 819 | 
            +
            <td>29.9</td>
         | 
| 820 | 
            +
            <td>94.0</td>
         | 
| 821 | 
            +
            <td>48.3 ± 1.1</td>
         | 
| 822 | 
            +
            </tr>
         | 
| 823 | 
            +
            <tr>
         | 
| 824 | 
            +
            <td>Marker</td>
         | 
| 825 | 
            +
            <td>76.0</td>
         | 
| 826 | 
            +
            <td>57.9</td>
         | 
| 827 | 
            +
            <td>57.6</td>
         | 
| 828 | 
            +
            <td>27.8</td>
         | 
| 829 | 
            +
            <td>84.9</td>
         | 
| 830 | 
            +
            <td>72.9</td>
         | 
| 831 | 
            +
            <td>84.6</td>
         | 
| 832 | 
            +
            <td>99.1</td>
         | 
| 833 | 
            +
            <td>70.1 ± 1.1</td>
         | 
| 834 | 
            +
            </tr>
         | 
| 835 | 
            +
            <tr>
         | 
| 836 | 
            +
            <td>MinerU</td>
         | 
| 837 | 
            +
            <td>75.4</td>
         | 
| 838 | 
            +
            <td>47.4</td>
         | 
| 839 | 
            +
            <td>60.9</td>
         | 
| 840 | 
            +
            <td>17.3</td>
         | 
| 841 | 
            +
            <td><strong>96.6</strong></td>
         | 
| 842 | 
            +
            <td>59.0</td>
         | 
| 843 | 
            +
            <td>39.1</td>
         | 
| 844 | 
            +
            <td>96.6</td>
         | 
| 845 | 
            +
            <td>61.5 ± 1.1</td>
         | 
| 846 | 
            +
            </tr>
         | 
| 847 | 
            +
            <tr>
         | 
| 848 | 
            +
            <td>Mistral OCR</td>
         | 
| 849 | 
            +
            <td>77.2</td>
         | 
| 850 | 
            +
            <td>67.5</td>
         | 
| 851 | 
            +
            <td>60.6</td>
         | 
| 852 | 
            +
            <td>29.3</td>
         | 
| 853 | 
            +
            <td>93.6</td>
         | 
| 854 | 
            +
            <td>71.3</td>
         | 
| 855 | 
            +
            <td>77.1</td>
         | 
| 856 | 
            +
            <td>99.4</td>
         | 
| 857 | 
            +
            <td>72.0 ± 1.1</td>
         | 
| 858 | 
            +
            </tr>
         | 
| 859 | 
            +
            <tr>
         | 
| 860 | 
            +
            <td>Nanonets OCR</td>
         | 
| 861 | 
            +
            <td>67.0</td>
         | 
| 862 | 
            +
            <td>68.6</td>
         | 
| 863 | 
            +
            <td><strong>77.7</strong></td>
         | 
| 864 | 
            +
            <td>39.5</td>
         | 
| 865 | 
            +
            <td>40.7</td>
         | 
| 866 | 
            +
            <td>69.9</td>
         | 
| 867 | 
            +
            <td>53.4</td>
         | 
| 868 | 
            +
            <td>99.3</td>
         | 
| 869 | 
            +
            <td>64.5 ± 1.1</td>
         | 
| 870 | 
            +
            </tr>
         | 
| 871 | 
            +
            <tr>
         | 
| 872 | 
            +
            <td>GPT-4o<br>(No Anchor)</td>
         | 
| 873 | 
            +
            <td>51.5</td>
         | 
| 874 | 
            +
            <td><strong>75.5</strong></td>
         | 
| 875 | 
            +
            <td>69.1</td>
         | 
| 876 | 
            +
            <td>40.9</td>
         | 
| 877 | 
            +
            <td>94.2</td>
         | 
| 878 | 
            +
            <td>68.9</td>
         | 
| 879 | 
            +
            <td>54.1</td>
         | 
| 880 | 
            +
            <td>96.7</td>
         | 
| 881 | 
            +
            <td>68.9 ± 1.1</td>
         | 
| 882 | 
            +
            </tr>
         | 
| 883 | 
            +
            <tr>
         | 
| 884 | 
            +
            <td>GPT-4o<br>(Anchored)</td>
         | 
| 885 | 
            +
            <td>53.5</td>
         | 
| 886 | 
            +
            <td>74.5</td>
         | 
| 887 | 
            +
            <td>70.0</td>
         | 
| 888 | 
            +
            <td>40.7</td>
         | 
| 889 | 
            +
            <td>93.8</td>
         | 
| 890 | 
            +
            <td>69.3</td>
         | 
| 891 | 
            +
            <td>60.6</td>
         | 
| 892 | 
            +
            <td>96.8</td>
         | 
| 893 | 
            +
            <td>69.9 ± 1.1</td>
         | 
| 894 | 
            +
            </tr>
         | 
| 895 | 
            +
            <tr>
         | 
| 896 | 
            +
            <td>Gemini Flash 2<br>(No Anchor)</td>
         | 
| 897 | 
            +
            <td>32.1</td>
         | 
| 898 | 
            +
            <td>56.3</td>
         | 
| 899 | 
            +
            <td>61.4</td>
         | 
| 900 | 
            +
            <td>27.8</td>
         | 
| 901 | 
            +
            <td>48.0</td>
         | 
| 902 | 
            +
            <td>58.7</td>
         | 
| 903 | 
            +
            <td><strong>84.4</strong></td>
         | 
| 904 | 
            +
            <td>94.0</td>
         | 
| 905 | 
            +
            <td>57.8 ± 1.1</td>
         | 
| 906 | 
            +
            </tr>
         | 
| 907 | 
            +
            <tr>
         | 
| 908 | 
            +
            <td>Gemini Flash 2<br>(Anchored)</td>
         | 
| 909 | 
            +
            <td>54.5</td>
         | 
| 910 | 
            +
            <td>56.1</td>
         | 
| 911 | 
            +
            <td>72.1</td>
         | 
| 912 | 
            +
            <td>34.2</td>
         | 
| 913 | 
            +
            <td>64.7</td>
         | 
| 914 | 
            +
            <td>61.5</td>
         | 
| 915 | 
            +
            <td>71.5</td>
         | 
| 916 | 
            +
            <td>95.6</td>
         | 
| 917 | 
            +
            <td>63.8 ± 1.2</td>
         | 
| 918 | 
            +
            </tr>
         | 
| 919 | 
            +
            <tr>
         | 
| 920 | 
            +
            <td>Qwen 2 VL<br>(No Anchor)</td>
         | 
| 921 | 
            +
            <td>19.7</td>
         | 
| 922 | 
            +
            <td>31.7</td>
         | 
| 923 | 
            +
            <td>24.2</td>
         | 
| 924 | 
            +
            <td>17.1</td>
         | 
| 925 | 
            +
            <td>88.9</td>
         | 
| 926 | 
            +
            <td>8.3</td>
         | 
| 927 | 
            +
            <td>6.8</td>
         | 
| 928 | 
            +
            <td>55.5</td>
         | 
| 929 | 
            +
            <td>31.5 ± 0.9</td>
         | 
| 930 | 
            +
            </tr>
         | 
| 931 | 
            +
            <tr>
         | 
| 932 | 
            +
            <td>Qwen 2.5 VL<br>(No Anchor)</td>
         | 
| 933 | 
            +
            <td>63.1</td>
         | 
| 934 | 
            +
            <td>65.7</td>
         | 
| 935 | 
            +
            <td>67.3</td>
         | 
| 936 | 
            +
            <td>38.6</td>
         | 
| 937 | 
            +
            <td>73.6</td>
         | 
| 938 | 
            +
            <td>68.3</td>
         | 
| 939 | 
            +
            <td>49.1</td>
         | 
| 940 | 
            +
            <td>98.3</td>
         | 
| 941 | 
            +
            <td>65.5 ± 1.2</td>
         | 
| 942 | 
            +
            </tr>
         | 
| 943 | 
            +
            <tr>
         | 
| 944 | 
            +
            <td>olmOCR v0.1.75<br>(No Anchor)</td>
         | 
| 945 | 
            +
            <td>71.5</td>
         | 
| 946 | 
            +
            <td>71.4</td>
         | 
| 947 | 
            +
            <td>71.4</td>
         | 
| 948 | 
            +
            <td><strong>42.8</strong></td>
         | 
| 949 | 
            +
            <td>94.1</td>
         | 
| 950 | 
            +
            <td>77.7</td>
         | 
| 951 | 
            +
            <td>71.0</td>
         | 
| 952 | 
            +
            <td>97.8</td>
         | 
| 953 | 
            +
            <td>74.7 ± 1.1</td>
         | 
| 954 | 
            +
            </tr>
         | 
| 955 | 
            +
            <tr>
         | 
| 956 | 
            +
            <td>olmOCR v0.1.75<br>(Anchored)</td>
         | 
| 957 | 
            +
            <td>74.9</td>
         | 
| 958 | 
            +
            <td>71.2</td>
         | 
| 959 | 
            +
            <td>71.0</td>
         | 
| 960 | 
            +
            <td>42.2</td>
         | 
| 961 | 
            +
            <td>94.5</td>
         | 
| 962 | 
            +
            <td>78.3</td>
         | 
| 963 | 
            +
            <td>73.3</td>
         | 
| 964 | 
            +
            <td>98.3</td>
         | 
| 965 | 
            +
            <td>75.5 ± 1.0</td>
         | 
| 966 | 
            +
            </tr>
         | 
| 967 | 
            +
            <tr>
         | 
| 968 | 
            +
            <td>MonkeyOCR-pro-3B <a href="http://vlrlabmonkey.xyz:7685/">[Demo]</a></td>
         | 
| 969 | 
            +
            <td><strong>83.8</strong></td>
         | 
| 970 | 
            +
            <td>68.8</td>
         | 
| 971 | 
            +
            <td>74.6</td>
         | 
| 972 | 
            +
            <td>36.1</td>
         | 
| 973 | 
            +
            <td>91.2</td>
         | 
| 974 | 
            +
            <td>76.6</td>
         | 
| 975 | 
            +
            <td>80.1</td>
         | 
| 976 | 
            +
            <td>95.3</td>
         | 
| 977 | 
            +
            <td>75.8 ± 1.0</td>
         | 
| 978 | 
            +
            </tr>
         | 
| 979 | 
            +
            <tr>
         | 
| 980 | 
            +
            <td><strong>dots.ocr</strong></td>
         | 
| 981 | 
            +
            <td>82.1</td>
         | 
| 982 | 
            +
            <td>64.2</td>
         | 
| 983 | 
            +
            <td><strong>88.3</strong></td>
         | 
| 984 | 
            +
            <td>40.9</td>
         | 
| 985 | 
            +
            <td>94.1</td>
         | 
| 986 | 
            +
            <td><strong>82.4</strong></td>
         | 
| 987 | 
            +
            <td>81.2</td>
         | 
| 988 | 
            +
            <td><strong>99.5</strong></td>
         | 
| 989 | 
            +
            <td><strong>79.1 ± 1.0</strong></td>
         | 
| 990 | 
            +
            </tr>
         | 
| 991 | 
            +
            </tbody>
         | 
| 992 | 
            +
            </table>
         | 
| 993 | 
            +
             | 
| 994 | 
            +
             | 
| 995 | 
            +
            > **Note:**
         | 
| 996 | 
            +
            > - The metrics are from [MonkeyOCR](https://github.com/Yuliang-Liu/MonkeyOCR), 
         | 
| 997 | 
            +
            [olmocr](https://github.com/allenai/olmocr), and our own internal evaluations.
         | 
| 998 | 
            +
            > - We delete the Page-header and Page-footer cells in the result markdown.
         | 
| 999 | 
            +
             | 
| 1000 | 
            +
             | 
| 1001 | 
            +
             | 
| 1002 | 
            +
            # Quick Start
         | 
| 1003 | 
            +
            ## 1. Installation
         | 
| 1004 | 
            +
            ### Install dots.ocr
         | 
| 1005 | 
            +
            ```shell
         | 
| 1006 | 
            +
            conda create -n dots_ocr python=3.12
         | 
| 1007 | 
            +
            conda activate dots_ocr
         | 
| 1008 | 
            +
             | 
| 1009 | 
            +
            git clone https://github.com/rednote-hilab/dots.ocr.git
         | 
| 1010 | 
            +
            cd dots.ocr
         | 
| 1011 | 
            +
             | 
| 1012 | 
            +
            # Install pytorch, see https://pytorch.org/get-started/previous-versions/ for your cuda version
         | 
| 1013 | 
            +
            pip install torch==2.7.0 torchvision==0.22.0 torchaudio==2.7.0 --index-url https://download.pytorch.org/whl/cu128
         | 
| 1014 | 
            +
            pip install -e .
         | 
| 1015 | 
            +
            ```
         | 
| 1016 | 
            +
             | 
| 1017 | 
            +
            If you have trouble with the installation, try our [Docker Image](https://hub.docker.com/r/rednotehilab/dots.ocr) for an easier setup, and follow these steps:
         | 
| 1018 | 
            +
            ```shell
         | 
| 1019 | 
            +
            git clone https://github.com/rednote-hilab/dots.ocr.git
         | 
| 1020 | 
            +
            cd dots.ocr
         | 
| 1021 | 
            +
            pip install -e .
         | 
| 1022 | 
            +
            ```
         | 
| 1023 | 
            +
             | 
| 1024 | 
            +
             | 
| 1025 | 
            +
            ### Download Model Weights
         | 
| 1026 | 
            +
            > 💡**Note:** Please use a directory name without periods (e.g., `DotsOCR` instead of `dots.ocr`) for the model save path. This is a temporary workaround pending our integration with Transformers.
         | 
| 1027 | 
            +
            ```shell
         | 
| 1028 | 
            +
            python tools/download_model.py
         | 
| 1029 | 
            +
            ```
         | 
| 1030 | 
            +
             | 
| 1031 | 
            +
             | 
| 1032 | 
            +
            ## 2. Deployment
         | 
| 1033 | 
            +
            ### vLLM inference
         | 
| 1034 | 
            +
            We highly recommend using vllm for deployment and inference. All of our evaluations results are based on vllm version 0.9.1.
         | 
| 1035 | 
            +
            The [Docker Image](https://hub.docker.com/r/rednotehilab/dots.ocr) is based on the official vllm image. You can also follow [Dockerfile](https://github.com/rednote-hilab/dots_ocr/blob/main/docker/Dockerfile) to build the deployment environment by yourself. 
         | 
| 1036 | 
            +
             | 
| 1037 | 
            +
            ```shell
         | 
| 1038 | 
            +
            # You need to register model to vllm at first
         | 
| 1039 | 
            +
            hf_model_path=./weights/DotsOCR  # Path to your downloaded model weights
         | 
| 1040 | 
            +
            export PYTHONPATH=$(dirname "$hf_model_path"):$PYTHONPATH
         | 
| 1041 | 
            +
            sed -i '/^from vllm\.entrypoints\.cli\.main import main$/a\
         | 
| 1042 | 
            +
            from DotsOCR import modeling_dots_ocr_vllm' `which vllm`
         | 
| 1043 | 
            +
             | 
| 1044 | 
            +
            # launch vllm server
         | 
| 1045 | 
            +
            CUDA_VISIBLE_DEVICES=0 vllm serve ${hf_model_path} --tensor-parallel-size 1 --gpu-memory-utilization 0.95  --chat-template-content-format string --served-model-name model --trust-remote-code
         | 
| 1046 | 
            +
             | 
| 1047 | 
            +
            # vllm api demo
         | 
| 1048 | 
            +
            python3 ./demo/demo_vllm.py --prompt_mode prompt_layout_all_en
         | 
| 1049 | 
            +
            ```
         | 
| 1050 | 
            +
             | 
| 1051 | 
            +
            ### Hugginface inference
         | 
| 1052 | 
            +
            ```shell
         | 
| 1053 | 
            +
            python3 demo/demo_hf.py
         | 
| 1054 | 
            +
            ```
         | 
| 1055 | 
            +
             | 
| 1056 | 
            +
            <details>
         | 
| 1057 | 
            +
            <summary><b>Hugginface inference details</b></summary>
         | 
| 1058 | 
            +
             | 
| 1059 | 
            +
            ```python
         | 
| 1060 | 
            +
            import torch
         | 
| 1061 | 
            +
            from transformers import AutoModelForCausalLM, AutoProcessor, AutoTokenizer
         | 
| 1062 | 
            +
            from qwen_vl_utils import process_vision_info
         | 
| 1063 | 
            +
            from dots_ocr.utils import dict_promptmode_to_prompt
         | 
| 1064 | 
            +
             | 
| 1065 | 
            +
            model_path = "./weights/DotsOCR"
         | 
| 1066 | 
            +
            model = AutoModelForCausalLM.from_pretrained(
         | 
| 1067 | 
            +
                model_path,
         | 
| 1068 | 
            +
                attn_implementation="flash_attention_2",
         | 
| 1069 | 
            +
                torch_dtype=torch.bfloat16,
         | 
| 1070 | 
            +
                device_map="auto",
         | 
| 1071 | 
            +
                trust_remote_code=True
         | 
| 1072 | 
            +
            )
         | 
| 1073 | 
            +
            processor = AutoProcessor.from_pretrained(model_path, trust_remote_code=True)
         | 
| 1074 | 
            +
             | 
| 1075 | 
            +
            image_path = "demo/demo_image1.jpg"
         | 
| 1076 | 
            +
            prompt = """Please output the layout information from the PDF image, including each layout element's bbox, its category, and the corresponding text content within the bbox.
         | 
| 1077 | 
            +
             | 
| 1078 | 
            +
            1. Bbox format: [x1, y1, x2, y2]
         | 
| 1079 | 
            +
             | 
| 1080 | 
            +
            2. Layout Categories: The possible categories are ['Caption', 'Footnote', 'Formula', 'List-item', 'Page-footer', 'Page-header', 'Picture', 'Section-header', 'Table', 'Text', 'Title'].
         | 
| 1081 | 
            +
             | 
| 1082 | 
            +
            3. Text Extraction & Formatting Rules:
         | 
| 1083 | 
            +
                - Picture: For the 'Picture' category, the text field should be omitted.
         | 
| 1084 | 
            +
                - Formula: Format its text as LaTeX.
         | 
| 1085 | 
            +
                - Table: Format its text as HTML.
         | 
| 1086 | 
            +
                - All Others (Text, Title, etc.): Format their text as Markdown.
         | 
| 1087 | 
            +
             | 
| 1088 | 
            +
            4. Constraints:
         | 
| 1089 | 
            +
                - The output text must be the original text from the image, with no translation.
         | 
| 1090 | 
            +
                - All layout elements must be sorted according to human reading order.
         | 
| 1091 | 
            +
             | 
| 1092 | 
            +
            5. Final Output: The entire output must be a single JSON object.
         | 
| 1093 | 
            +
            """
         | 
| 1094 | 
            +
             | 
| 1095 | 
            +
            messages = [
         | 
| 1096 | 
            +
                    {
         | 
| 1097 | 
            +
                        "role": "user",
         | 
| 1098 | 
            +
                        "content": [
         | 
| 1099 | 
            +
                            {
         | 
| 1100 | 
            +
                                "type": "image",
         | 
| 1101 | 
            +
                                "image": image_path
         | 
| 1102 | 
            +
                            },
         | 
| 1103 | 
            +
                            {"type": "text", "text": prompt}
         | 
| 1104 | 
            +
                        ]
         | 
| 1105 | 
            +
                    }
         | 
| 1106 | 
            +
                ]
         | 
| 1107 | 
            +
             | 
| 1108 | 
            +
            # Preparation for inference
         | 
| 1109 | 
            +
            text = processor.apply_chat_template(
         | 
| 1110 | 
            +
                messages, 
         | 
| 1111 | 
            +
                tokenize=False, 
         | 
| 1112 | 
            +
                add_generation_prompt=True
         | 
| 1113 | 
            +
            )
         | 
| 1114 | 
            +
            image_inputs, video_inputs = process_vision_info(messages)
         | 
| 1115 | 
            +
            inputs = processor(
         | 
| 1116 | 
            +
                text=[text],
         | 
| 1117 | 
            +
                images=image_inputs,
         | 
| 1118 | 
            +
                videos=video_inputs,
         | 
| 1119 | 
            +
                padding=True,
         | 
| 1120 | 
            +
                return_tensors="pt",
         | 
| 1121 | 
            +
            )
         | 
| 1122 | 
            +
             | 
| 1123 | 
            +
            inputs = inputs.to("cuda")
         | 
| 1124 | 
            +
             | 
| 1125 | 
            +
            # Inference: Generation of the output
         | 
| 1126 | 
            +
            generated_ids = model.generate(**inputs, max_new_tokens=24000)
         | 
| 1127 | 
            +
            generated_ids_trimmed = [
         | 
| 1128 | 
            +
                out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
         | 
| 1129 | 
            +
            ]
         | 
| 1130 | 
            +
            output_text = processor.batch_decode(
         | 
| 1131 | 
            +
                generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
         | 
| 1132 | 
            +
            )
         | 
| 1133 | 
            +
            print(output_text)
         | 
| 1134 | 
            +
             | 
| 1135 | 
            +
            ```
         | 
| 1136 | 
            +
             | 
| 1137 | 
            +
            </details>
         | 
| 1138 | 
            +
             | 
| 1139 | 
            +
            ## 3. Document Parse
         | 
| 1140 | 
            +
            **Based on vLLM server**, you can parse an image or a pdf file using the following commands:
         | 
| 1141 | 
            +
            ```bash
         | 
| 1142 | 
            +
             | 
| 1143 | 
            +
            # Parse all layout info, both detection and recognition
         | 
| 1144 | 
            +
            # Parse a single image
         | 
| 1145 | 
            +
            python3 dots_ocr/parser.py demo/demo_image1.jpg
         | 
| 1146 | 
            +
            # Parse a single PDF
         | 
| 1147 | 
            +
            python3 dots_ocr/parser.py demo/demo_pdf1.pdf  --num_threads 64  # try bigger num_threads for pdf with a large number of pages
         | 
| 1148 | 
            +
             | 
| 1149 | 
            +
            # Layout detection only
         | 
| 1150 | 
            +
            python3 dots_ocr/parser.py demo/demo_image1.jpg --prompt prompt_layout_only_en
         | 
| 1151 | 
            +
             | 
| 1152 | 
            +
            # Parse text only, except Page-header and Page-footer
         | 
| 1153 | 
            +
            python3 dots_ocr/parser.py demo/demo_image1.jpg --prompt prompt_ocr
         | 
| 1154 | 
            +
             | 
| 1155 | 
            +
            # Parse layout info by bbox
         | 
| 1156 | 
            +
            python3 dots_ocr/parser.py demo/demo_image1.jpg --prompt prompt_grounding_ocr --bbox 163 241 1536 705
         | 
| 1157 | 
            +
             | 
| 1158 | 
            +
            ```
         | 
| 1159 | 
            +
             | 
| 1160 | 
            +
            <details>
         | 
| 1161 | 
            +
            <summary><b>Output Results</b></summary>
         | 
| 1162 | 
            +
             | 
| 1163 | 
            +
            1.  **Structured Layout Data** (`demo_image1.json`): A JSON file containing the detected layout elements, including their bounding boxes, categories, and extracted text.
         | 
| 1164 | 
            +
            2.  **Processed Markdown File** (`demo_image1.md`): A Markdown file generated from the concatenated text of all detected cells.
         | 
| 1165 | 
            +
                *   An additional version, `demo_image1_nohf.md`, is also provided, which excludes page headers and footers for compatibility with benchmarks like Omnidocbench and olmOCR-bench.
         | 
| 1166 | 
            +
            3.  **Layout Visualization** (`demo_image1.jpg`): The original image with the detected layout bounding boxes drawn on it.
         | 
| 1167 | 
            +
             | 
| 1168 | 
            +
            </details>
         | 
| 1169 | 
            +
             | 
| 1170 | 
            +
            ## 4. Demo
         | 
| 1171 | 
            +
            You can run the demo with the following command, or try directly at [live demo](https://dotsocr.xiaohongshu.com/)
         | 
| 1172 | 
            +
            ```bash
         | 
| 1173 | 
            +
            python demo/demo_gradio.py
         | 
| 1174 | 
            +
            ```
         | 
| 1175 | 
            +
             | 
| 1176 | 
            +
            We also provide a demo for grounding ocr:
         | 
| 1177 | 
            +
            ```bash
         | 
| 1178 | 
            +
            python demo/demo_gradio_annotion.py
         | 
| 1179 | 
            +
            ```
         | 
| 1180 | 
            +
             | 
| 1181 | 
            +
             | 
| 1182 | 
            +
            ### Example for formula document
         | 
| 1183 | 
            +
            <img src="assets/showcase/formula1.png" alt="formula1.png" border="0" />
         | 
| 1184 | 
            +
            <img src="assets/showcase/formula2.png" alt="formula2.png" border="0" />
         | 
| 1185 | 
            +
            <img src="assets/showcase/formula3.png" alt="formula3.png" border="0" />
         | 
| 1186 | 
            +
             | 
| 1187 | 
            +
            ### Example for table document
         | 
| 1188 | 
            +
            <img src="assets/showcase/table1.png" alt="table1.png" border="0" />
         | 
| 1189 | 
            +
            <img src="assets/showcase/table2.png" alt="table2.png" border="0" />
         | 
| 1190 | 
            +
            <img src="assets/showcase/table3.png" alt="table3.png" border="0" />
         | 
| 1191 | 
            +
             | 
| 1192 | 
            +
            ### Example for multilingual document
         | 
| 1193 | 
            +
            <img src="assets/showcase/Tibetan.png" alt="Tibetan.png" border="0" />
         | 
| 1194 | 
            +
            <img src="assets/showcase/tradition_zh.png" alt="tradition_zh.png" border="0" />
         | 
| 1195 | 
            +
            <img src="assets/showcase/nl.png" alt="nl.png" border="0" />
         | 
| 1196 | 
            +
            <img src="assets/showcase/kannada.png" alt="kannada.png" border="0" />
         | 
| 1197 | 
            +
            <img src="assets/showcase/russian.png" alt="russian.png" border="0" />
         | 
| 1198 | 
            +
             | 
| 1199 | 
            +
            ### Example for reading order
         | 
| 1200 | 
            +
            <img src="assets/showcase/reading_order.png" alt="reading_order.png" border="0" />
         | 
| 1201 | 
            +
             | 
| 1202 | 
            +
            ### Example for grounding ocr
         | 
| 1203 | 
            +
            <img src="assets/showcase/grounding.png" alt="grounding.png" border="0" />
         | 
| 1204 | 
            +
             | 
| 1205 | 
            +
             | 
| 1206 | 
            +
            ## Acknowledgments
         | 
| 1207 | 
            +
            We would like to thank [Qwen2.5-VL](https://github.com/QwenLM/Qwen2.5-VL), [aimv2](https://github.com/apple/ml-aim), [MonkeyOCR](https://github.com/Yuliang-Liu/MonkeyOCR), 
         | 
| 1208 | 
            +
            [OmniDocBench](https://github.com/opendatalab/OmniDocBench), [PyMuPDF](https://github.com/pymupdf/PyMuPDF), for providing code and models. 
         | 
| 1209 | 
            +
             | 
| 1210 | 
            +
            We also thank [DocLayNet](https://github.com/DS4SD/DocLayNet), [M6Doc](https://github.com/HCIILAB/M6Doc), [CDLA](https://github.com/buptlihang/CDLA), [D4LA](https://github.com/AlibabaResearch/AdvancedLiterateMachinery) for providing valuable datasets. 
         | 
| 1211 | 
            +
             | 
| 1212 | 
            +
            ## Limitation & Future Work
         | 
| 1213 | 
            +
             | 
| 1214 | 
            +
            - **Complex Document Elements:**
         | 
| 1215 | 
            +
              - **Table&Formula**: dots.ocr is not yet perfect for high-complexity tables and formula extraction.
         | 
| 1216 | 
            +
              - **Picture**: Pictures in documents are currently not parsed.
         | 
| 1217 | 
            +
             | 
| 1218 | 
            +
            - **Parsing Failures:** The model may fail to parse under certain conditions:
         | 
| 1219 | 
            +
              - When the character-to-pixel ratio is excessively high. Try enlarging the image or increasing the PDF parsing DPI (a setting of 200 is recommended). However, please note that the model performs optimally on images with a resolution under 11289600 pixels.
         | 
| 1220 | 
            +
              - Continuous special characters, such as ellipses (`...`) and underscores (`_`), may cause the prediction output to repeat endlessly. In such scenarios, consider using alternative prompts like `prompt_layout_only_en`, `prompt_ocr`, or `prompt_grounding_ocr` ([details here](https://github.com/rednote-hilab/dots_ocr/blob/main/dots_ocr/utils/prompts.py)).
         | 
| 1221 | 
            +
                
         | 
| 1222 | 
            +
            - **Performance Bottleneck:** Despite its 1.7B parameter LLM foundation, **dots.ocr** is not yet optimized for high-throughput processing of large PDF volumes. 
         | 
| 1223 | 
            +
             | 
| 1224 | 
            +
            We are committed to achieving more accurate table and formula parsing, as well as enhancing the model's OCR capabilities for broader generalization, all while aiming for **a more powerful, more efficient model**. Furthermore, we are actively considering the development of **a more general-purpose perception model** based on Vision-Language Models (VLMs), which would integrate general detection, image captioning, and OCR tasks into a unified framework. **Parsing the content of the pictures in the documents** is also a key priority for our future work.
         | 
| 1225 | 
            +
            We believe that collaboration is the key to tackling these exciting challenges. If you are passionate about advancing the frontiers of document intelligence and are interested in contributing to these future endeavors, we would love to hear from you. Please reach out to us via email at: [yanqing4@xiaohongshu.com].
         | 
    	
        chat_template.json
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
                "chat_template": "{% set image_count = namespace(value=0) %}{% set video_count = namespace(value=0) %}{%- for m in messages %}{%- if m.role == 'system' %}{{- '<|system|>' + m.content + '<|endofsystem|>\n' }}{%- elif m.role == 'user' %}{% if m.content is string %}{{- '<|user|>' + m.content + '<|endofuser|>' }}{% else %} {% for content in m.content %}{% if content['type'] == 'image' or 'image' in content or 'image_url' in content %}{% set image_count.value = image_count.value + 1 %}{% if add_vision_id %}Picture {{ image_count.value }}: {% endif %}<|img|><|imgpad|><|endofimg|>{% elif content['type'] == 'video' or 'video' in content %}{% set video_count.value = video_count.value + 1 %}{% if add_vision_id %}Video {{ video_count.value }}: {% endif %}<|img|><|video_pad|><|endofimg|>{% elif 'text' in content %}{{ content['text'] }}{% endif %}{% endfor %}{%- endif %}{%- elif m.role == 'assistant' %}{{- '<|assistant|>' + m.content }}{%- if not loop.last %}{{- '<|endofassistant|>' }}{%- endif %}{%- endif %}{%- endfor %}{%- if messages[-1].role != 'assistant' %}{{- '<|assistant|>' }}{%- endif %}"
         | 
| 3 | 
            +
            }
         | 
    	
        config.json
    ADDED
    
    | @@ -0,0 +1,51 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
                "architectures": [
         | 
| 3 | 
            +
                    "DotsOCRForCausalLM"
         | 
| 4 | 
            +
                ],
         | 
| 5 | 
            +
                "model_type": "dots_ocr",
         | 
| 6 | 
            +
                "auto_map": {
         | 
| 7 | 
            +
                    "AutoConfig": "configuration_dots.DotsOCRConfig",
         | 
| 8 | 
            +
                    "AutoModelForCausalLM": "modeling_dots_ocr.DotsOCRForCausalLM"
         | 
| 9 | 
            +
                    },
         | 
| 10 | 
            +
                "attention_bias": true,
         | 
| 11 | 
            +
                "attention_dropout": 0.0,
         | 
| 12 | 
            +
                "hidden_act": "silu",
         | 
| 13 | 
            +
                "hidden_size": 1536,
         | 
| 14 | 
            +
                "initializer_range": 0.02,
         | 
| 15 | 
            +
                "intermediate_size": 8960,
         | 
| 16 | 
            +
                "max_position_embeddings": 131072,
         | 
| 17 | 
            +
                "max_window_layers": 28,
         | 
| 18 | 
            +
                "num_attention_heads": 12,
         | 
| 19 | 
            +
                "num_hidden_layers": 28,
         | 
| 20 | 
            +
                "num_key_value_heads": 2,
         | 
| 21 | 
            +
                "rms_norm_eps": 1e-06,
         | 
| 22 | 
            +
                "rope_scaling": null,
         | 
| 23 | 
            +
                "rope_theta": 1000000,
         | 
| 24 | 
            +
                "sliding_window": 131072,
         | 
| 25 | 
            +
                "tie_word_embeddings": false,
         | 
| 26 | 
            +
                "torch_dtype": "bfloat16",
         | 
| 27 | 
            +
                "transformers_version": "4.51.0",
         | 
| 28 | 
            +
                "use_cache": true,
         | 
| 29 | 
            +
                "use_sliding_window": false,
         | 
| 30 | 
            +
                "vocab_size": 151936,
         | 
| 31 | 
            +
                "image_token_id": 151665,
         | 
| 32 | 
            +
                "video_token_id": 151656,
         | 
| 33 | 
            +
                "vision_config": {
         | 
| 34 | 
            +
                    "embed_dim": 1536,
         | 
| 35 | 
            +
                    "hidden_size": 1536,
         | 
| 36 | 
            +
                    "intermediate_size": 4224,
         | 
| 37 | 
            +
                    "num_hidden_layers": 42,
         | 
| 38 | 
            +
                    "num_attention_heads": 12,
         | 
| 39 | 
            +
                    "num_channels": 3,
         | 
| 40 | 
            +
                    "patch_size": 14,
         | 
| 41 | 
            +
                    "post_norm": true,
         | 
| 42 | 
            +
                    "rms_norm_eps": 1e-05,
         | 
| 43 | 
            +
                    "spatial_merge_size": 2,
         | 
| 44 | 
            +
                    "temporal_patch_size": 1,
         | 
| 45 | 
            +
                    "use_bias": false,
         | 
| 46 | 
            +
                    "attn_implementation": "flash_attention_2",
         | 
| 47 | 
            +
                    "init_merger_std": 0.02,
         | 
| 48 | 
            +
                    "initializer_range": 0.02,
         | 
| 49 | 
            +
                    "is_causal": false
         | 
| 50 | 
            +
                }
         | 
| 51 | 
            +
            }
         | 
    	
        configuration_dots.py
    ADDED
    
    | @@ -0,0 +1,76 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            from typing import Any, Optional
         | 
| 2 | 
            +
            from transformers.configuration_utils import PretrainedConfig
         | 
| 3 | 
            +
            from transformers.models.qwen2 import Qwen2Config
         | 
| 4 | 
            +
            from transformers import Qwen2_5_VLProcessor, AutoProcessor
         | 
| 5 | 
            +
            from transformers.models.auto.configuration_auto import CONFIG_MAPPING
         | 
| 6 | 
            +
             | 
| 7 | 
            +
             | 
| 8 | 
            +
            class DotsVisionConfig(PretrainedConfig):
         | 
| 9 | 
            +
                model_type: str = "dots_vit"
         | 
| 10 | 
            +
             | 
| 11 | 
            +
                def __init__(
         | 
| 12 | 
            +
                    self,
         | 
| 13 | 
            +
                    embed_dim: int = 1536,  # vision encoder embed size
         | 
| 14 | 
            +
                    hidden_size: int = 1536,  # after merger hidden size
         | 
| 15 | 
            +
                    intermediate_size: int = 4224,
         | 
| 16 | 
            +
                    num_hidden_layers: int = 42,
         | 
| 17 | 
            +
                    num_attention_heads: int = 12,
         | 
| 18 | 
            +
                    num_channels: int = 3,
         | 
| 19 | 
            +
                    patch_size: int = 14,
         | 
| 20 | 
            +
                    spatial_merge_size: int = 2,
         | 
| 21 | 
            +
                    temporal_patch_size: int = 1,
         | 
| 22 | 
            +
                    rms_norm_eps: float = 1e-5,
         | 
| 23 | 
            +
                    use_bias: bool = False,
         | 
| 24 | 
            +
                    attn_implementation="flash_attention_2",  # "eager","sdpa","flash_attention_2"
         | 
| 25 | 
            +
                    initializer_range=0.02,
         | 
| 26 | 
            +
                    init_merger_std=0.02,
         | 
| 27 | 
            +
                    is_causal=False,  # ve causal forward
         | 
| 28 | 
            +
                    post_norm=True,
         | 
| 29 | 
            +
                    gradient_checkpointing=False,
         | 
| 30 | 
            +
                    **kwargs: Any,
         | 
| 31 | 
            +
                ):
         | 
| 32 | 
            +
                    super().__init__(**kwargs)
         | 
| 33 | 
            +
                    self.embed_dim = embed_dim
         | 
| 34 | 
            +
                    self.hidden_size = hidden_size
         | 
| 35 | 
            +
                    self.intermediate_size = intermediate_size
         | 
| 36 | 
            +
                    self.num_hidden_layers = num_hidden_layers
         | 
| 37 | 
            +
                    self.num_attention_heads = num_attention_heads
         | 
| 38 | 
            +
                    self.num_channels = num_channels
         | 
| 39 | 
            +
                    self.patch_size = patch_size
         | 
| 40 | 
            +
                    self.spatial_merge_size = spatial_merge_size
         | 
| 41 | 
            +
                    self.temporal_patch_size = temporal_patch_size
         | 
| 42 | 
            +
                    self.rms_norm_eps = rms_norm_eps
         | 
| 43 | 
            +
                    self.use_bias = use_bias
         | 
| 44 | 
            +
                    self.attn_implementation = attn_implementation
         | 
| 45 | 
            +
                    self.initializer_range = initializer_range
         | 
| 46 | 
            +
                    self.init_merger_std = init_merger_std
         | 
| 47 | 
            +
                    self.is_causal = is_causal
         | 
| 48 | 
            +
                    self.post_norm = post_norm
         | 
| 49 | 
            +
                    self.gradient_checkpointing = gradient_checkpointing
         | 
| 50 | 
            +
             | 
| 51 | 
            +
             | 
| 52 | 
            +
             | 
| 53 | 
            +
            class DotsOCRConfig(Qwen2Config):
         | 
| 54 | 
            +
                model_type = "dots_ocr"
         | 
| 55 | 
            +
                def __init__(self, 
         | 
| 56 | 
            +
                    image_token_id = 151665, 
         | 
| 57 | 
            +
                    video_token_id = 151656,
         | 
| 58 | 
            +
                    vision_config: Optional[dict] = None, *args, **kwargs):
         | 
| 59 | 
            +
                    super().__init__(*args, **kwargs)
         | 
| 60 | 
            +
                    self.image_token_id = image_token_id
         | 
| 61 | 
            +
                    self.video_token_id = video_token_id
         | 
| 62 | 
            +
                    self.vision_config = DotsVisionConfig(**(vision_config or {}))
         | 
| 63 | 
            +
             | 
| 64 | 
            +
                def save_pretrained(self, save_directory, **kwargs):
         | 
| 65 | 
            +
                    self._auto_class = None
         | 
| 66 | 
            +
                    super().save_pretrained(save_directory, **kwargs)
         | 
| 67 | 
            +
             | 
| 68 | 
            +
             | 
| 69 | 
            +
            class DotsVLProcessor(Qwen2_5_VLProcessor):
         | 
| 70 | 
            +
                def __init__(self, image_processor=None, tokenizer=None, chat_template=None, **kwargs):
         | 
| 71 | 
            +
                    super().__init__(image_processor, tokenizer, chat_template=chat_template)
         | 
| 72 | 
            +
                    self.image_token = "<|imgpad|>" if not hasattr(tokenizer, "image_token") else tokenizer.image_token
         | 
| 73 | 
            +
             | 
| 74 | 
            +
             | 
| 75 | 
            +
            AutoProcessor.register("dots_ocr", DotsVLProcessor)
         | 
| 76 | 
            +
            CONFIG_MAPPING.register("dots_ocr", DotsOCRConfig)
         | 
    	
        generation_config.json
    ADDED
    
    | @@ -0,0 +1,7 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "max_length": 32768,
         | 
| 3 | 
            +
              "eos_token_id": [
         | 
| 4 | 
            +
                151643,
         | 
| 5 | 
            +
                151673
         | 
| 6 | 
            +
              ]
         | 
| 7 | 
            +
            }
         | 
    	
        merges.txt
    ADDED
    
    | The diff for this file is too large to render. 
		See raw diff | 
|  | 
    	
        model-00001-of-00002.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:ea1d532184f3adf5cbcfcc00b2cf5b2abfa6fe182768a3ae63d441a9b5fc99ac
         | 
| 3 | 
            +
            size 4292758192
         | 
    	
        model-00002-of-00002.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:26ab1ec6c8b4e4116befbd59af42159f1dbcb0ad0c045a15e890bb2f6e8b0dae
         | 
| 3 | 
            +
            size 1785673544
         | 
    	
        model.safetensors.index.json
    ADDED
    
    | @@ -0,0 +1,650 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "metadata": {
         | 
| 3 | 
            +
                "total_size": 6078358528
         | 
| 4 | 
            +
              },
         | 
| 5 | 
            +
              "weight_map": {
         | 
| 6 | 
            +
                "lm_head.weight": "model-00001-of-00002.safetensors",
         | 
| 7 | 
            +
                "model.embed_tokens.weight": "model-00001-of-00002.safetensors",
         | 
| 8 | 
            +
                "model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 9 | 
            +
                "model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 10 | 
            +
                "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 11 | 
            +
                "model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 12 | 
            +
                "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 13 | 
            +
                "model.layers.0.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
         | 
| 14 | 
            +
                "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 15 | 
            +
                "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 16 | 
            +
                "model.layers.0.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
         | 
| 17 | 
            +
                "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 18 | 
            +
                "model.layers.0.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
         | 
| 19 | 
            +
                "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 20 | 
            +
                "model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 21 | 
            +
                "model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 22 | 
            +
                "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 23 | 
            +
                "model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 24 | 
            +
                "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 25 | 
            +
                "model.layers.1.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
         | 
| 26 | 
            +
                "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 27 | 
            +
                "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 28 | 
            +
                "model.layers.1.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
         | 
| 29 | 
            +
                "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 30 | 
            +
                "model.layers.1.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
         | 
| 31 | 
            +
                "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 32 | 
            +
                "model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 33 | 
            +
                "model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 34 | 
            +
                "model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 35 | 
            +
                "model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 36 | 
            +
                "model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 37 | 
            +
                "model.layers.10.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
         | 
| 38 | 
            +
                "model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 39 | 
            +
                "model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 40 | 
            +
                "model.layers.10.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
         | 
| 41 | 
            +
                "model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 42 | 
            +
                "model.layers.10.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
         | 
| 43 | 
            +
                "model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 44 | 
            +
                "model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 45 | 
            +
                "model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 46 | 
            +
                "model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 47 | 
            +
                "model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 48 | 
            +
                "model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 49 | 
            +
                "model.layers.11.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
         | 
| 50 | 
            +
                "model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 51 | 
            +
                "model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 52 | 
            +
                "model.layers.11.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
         | 
| 53 | 
            +
                "model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 54 | 
            +
                "model.layers.11.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
         | 
| 55 | 
            +
                "model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 56 | 
            +
                "model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 57 | 
            +
                "model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 58 | 
            +
                "model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 59 | 
            +
                "model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 60 | 
            +
                "model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 61 | 
            +
                "model.layers.12.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
         | 
| 62 | 
            +
                "model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 63 | 
            +
                "model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 64 | 
            +
                "model.layers.12.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
         | 
| 65 | 
            +
                "model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 66 | 
            +
                "model.layers.12.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
         | 
| 67 | 
            +
                "model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 68 | 
            +
                "model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 69 | 
            +
                "model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 70 | 
            +
                "model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 71 | 
            +
                "model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 72 | 
            +
                "model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 73 | 
            +
                "model.layers.13.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
         | 
| 74 | 
            +
                "model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 75 | 
            +
                "model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 76 | 
            +
                "model.layers.13.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
         | 
| 77 | 
            +
                "model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 78 | 
            +
                "model.layers.13.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
         | 
| 79 | 
            +
                "model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 80 | 
            +
                "model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 81 | 
            +
                "model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 82 | 
            +
                "model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 83 | 
            +
                "model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 84 | 
            +
                "model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 85 | 
            +
                "model.layers.14.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
         | 
| 86 | 
            +
                "model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 87 | 
            +
                "model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 88 | 
            +
                "model.layers.14.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
         | 
| 89 | 
            +
                "model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 90 | 
            +
                "model.layers.14.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
         | 
| 91 | 
            +
                "model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 92 | 
            +
                "model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 93 | 
            +
                "model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 94 | 
            +
                "model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 95 | 
            +
                "model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 96 | 
            +
                "model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 97 | 
            +
                "model.layers.15.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
         | 
| 98 | 
            +
                "model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 99 | 
            +
                "model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 100 | 
            +
                "model.layers.15.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
         | 
| 101 | 
            +
                "model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 102 | 
            +
                "model.layers.15.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
         | 
| 103 | 
            +
                "model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 104 | 
            +
                "model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 105 | 
            +
                "model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 106 | 
            +
                "model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 107 | 
            +
                "model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 108 | 
            +
                "model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 109 | 
            +
                "model.layers.16.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
         | 
| 110 | 
            +
                "model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 111 | 
            +
                "model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 112 | 
            +
                "model.layers.16.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
         | 
| 113 | 
            +
                "model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 114 | 
            +
                "model.layers.16.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
         | 
| 115 | 
            +
                "model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 116 | 
            +
                "model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 117 | 
            +
                "model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 118 | 
            +
                "model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 119 | 
            +
                "model.layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 120 | 
            +
                "model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 121 | 
            +
                "model.layers.17.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
         | 
| 122 | 
            +
                "model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 123 | 
            +
                "model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 124 | 
            +
                "model.layers.17.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
         | 
| 125 | 
            +
                "model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 126 | 
            +
                "model.layers.17.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
         | 
| 127 | 
            +
                "model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 128 | 
            +
                "model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 129 | 
            +
                "model.layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 130 | 
            +
                "model.layers.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 131 | 
            +
                "model.layers.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 132 | 
            +
                "model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 133 | 
            +
                "model.layers.18.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
         | 
| 134 | 
            +
                "model.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 135 | 
            +
                "model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 136 | 
            +
                "model.layers.18.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
         | 
| 137 | 
            +
                "model.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 138 | 
            +
                "model.layers.18.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
         | 
| 139 | 
            +
                "model.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 140 | 
            +
                "model.layers.19.input_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 141 | 
            +
                "model.layers.19.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 142 | 
            +
                "model.layers.19.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 143 | 
            +
                "model.layers.19.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 144 | 
            +
                "model.layers.19.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 145 | 
            +
                "model.layers.19.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
         | 
| 146 | 
            +
                "model.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 147 | 
            +
                "model.layers.19.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 148 | 
            +
                "model.layers.19.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
         | 
| 149 | 
            +
                "model.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 150 | 
            +
                "model.layers.19.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
         | 
| 151 | 
            +
                "model.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 152 | 
            +
                "model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 153 | 
            +
                "model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 154 | 
            +
                "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 155 | 
            +
                "model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 156 | 
            +
                "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 157 | 
            +
                "model.layers.2.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
         | 
| 158 | 
            +
                "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 159 | 
            +
                "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 160 | 
            +
                "model.layers.2.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
         | 
| 161 | 
            +
                "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 162 | 
            +
                "model.layers.2.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
         | 
| 163 | 
            +
                "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 164 | 
            +
                "model.layers.20.input_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 165 | 
            +
                "model.layers.20.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 166 | 
            +
                "model.layers.20.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 167 | 
            +
                "model.layers.20.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 168 | 
            +
                "model.layers.20.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 169 | 
            +
                "model.layers.20.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
         | 
| 170 | 
            +
                "model.layers.20.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 171 | 
            +
                "model.layers.20.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 172 | 
            +
                "model.layers.20.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
         | 
| 173 | 
            +
                "model.layers.20.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 174 | 
            +
                "model.layers.20.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
         | 
| 175 | 
            +
                "model.layers.20.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 176 | 
            +
                "model.layers.21.input_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 177 | 
            +
                "model.layers.21.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 178 | 
            +
                "model.layers.21.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 179 | 
            +
                "model.layers.21.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 180 | 
            +
                "model.layers.21.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 181 | 
            +
                "model.layers.21.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
         | 
| 182 | 
            +
                "model.layers.21.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 183 | 
            +
                "model.layers.21.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 184 | 
            +
                "model.layers.21.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
         | 
| 185 | 
            +
                "model.layers.21.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 186 | 
            +
                "model.layers.21.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
         | 
| 187 | 
            +
                "model.layers.21.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 188 | 
            +
                "model.layers.22.input_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 189 | 
            +
                "model.layers.22.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 190 | 
            +
                "model.layers.22.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 191 | 
            +
                "model.layers.22.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 192 | 
            +
                "model.layers.22.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 193 | 
            +
                "model.layers.22.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
         | 
| 194 | 
            +
                "model.layers.22.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 195 | 
            +
                "model.layers.22.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 196 | 
            +
                "model.layers.22.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
         | 
| 197 | 
            +
                "model.layers.22.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 198 | 
            +
                "model.layers.22.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
         | 
| 199 | 
            +
                "model.layers.22.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 200 | 
            +
                "model.layers.23.input_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 201 | 
            +
                "model.layers.23.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 202 | 
            +
                "model.layers.23.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 203 | 
            +
                "model.layers.23.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 204 | 
            +
                "model.layers.23.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 205 | 
            +
                "model.layers.23.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
         | 
| 206 | 
            +
                "model.layers.23.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 207 | 
            +
                "model.layers.23.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 208 | 
            +
                "model.layers.23.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
         | 
| 209 | 
            +
                "model.layers.23.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 210 | 
            +
                "model.layers.23.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
         | 
| 211 | 
            +
                "model.layers.23.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 212 | 
            +
                "model.layers.24.input_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 213 | 
            +
                "model.layers.24.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 214 | 
            +
                "model.layers.24.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 215 | 
            +
                "model.layers.24.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 216 | 
            +
                "model.layers.24.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 217 | 
            +
                "model.layers.24.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
         | 
| 218 | 
            +
                "model.layers.24.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 219 | 
            +
                "model.layers.24.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 220 | 
            +
                "model.layers.24.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
         | 
| 221 | 
            +
                "model.layers.24.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 222 | 
            +
                "model.layers.24.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
         | 
| 223 | 
            +
                "model.layers.24.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 224 | 
            +
                "model.layers.25.input_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 225 | 
            +
                "model.layers.25.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 226 | 
            +
                "model.layers.25.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 227 | 
            +
                "model.layers.25.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 228 | 
            +
                "model.layers.25.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 229 | 
            +
                "model.layers.25.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
         | 
| 230 | 
            +
                "model.layers.25.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 231 | 
            +
                "model.layers.25.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 232 | 
            +
                "model.layers.25.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
         | 
| 233 | 
            +
                "model.layers.25.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 234 | 
            +
                "model.layers.25.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
         | 
| 235 | 
            +
                "model.layers.25.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 236 | 
            +
                "model.layers.26.input_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 237 | 
            +
                "model.layers.26.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 238 | 
            +
                "model.layers.26.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 239 | 
            +
                "model.layers.26.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 240 | 
            +
                "model.layers.26.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 241 | 
            +
                "model.layers.26.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
         | 
| 242 | 
            +
                "model.layers.26.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 243 | 
            +
                "model.layers.26.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 244 | 
            +
                "model.layers.26.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
         | 
| 245 | 
            +
                "model.layers.26.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 246 | 
            +
                "model.layers.26.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
         | 
| 247 | 
            +
                "model.layers.26.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 248 | 
            +
                "model.layers.27.input_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 249 | 
            +
                "model.layers.27.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 250 | 
            +
                "model.layers.27.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 251 | 
            +
                "model.layers.27.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 252 | 
            +
                "model.layers.27.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 253 | 
            +
                "model.layers.27.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
         | 
| 254 | 
            +
                "model.layers.27.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 255 | 
            +
                "model.layers.27.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 256 | 
            +
                "model.layers.27.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
         | 
| 257 | 
            +
                "model.layers.27.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 258 | 
            +
                "model.layers.27.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
         | 
| 259 | 
            +
                "model.layers.27.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 260 | 
            +
                "model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 261 | 
            +
                "model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 262 | 
            +
                "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 263 | 
            +
                "model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 264 | 
            +
                "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 265 | 
            +
                "model.layers.3.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
         | 
| 266 | 
            +
                "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 267 | 
            +
                "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 268 | 
            +
                "model.layers.3.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
         | 
| 269 | 
            +
                "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 270 | 
            +
                "model.layers.3.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
         | 
| 271 | 
            +
                "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 272 | 
            +
                "model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 273 | 
            +
                "model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 274 | 
            +
                "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 275 | 
            +
                "model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 276 | 
            +
                "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 277 | 
            +
                "model.layers.4.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
         | 
| 278 | 
            +
                "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 279 | 
            +
                "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 280 | 
            +
                "model.layers.4.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
         | 
| 281 | 
            +
                "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 282 | 
            +
                "model.layers.4.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
         | 
| 283 | 
            +
                "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 284 | 
            +
                "model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 285 | 
            +
                "model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 286 | 
            +
                "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 287 | 
            +
                "model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 288 | 
            +
                "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 289 | 
            +
                "model.layers.5.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
         | 
| 290 | 
            +
                "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 291 | 
            +
                "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 292 | 
            +
                "model.layers.5.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
         | 
| 293 | 
            +
                "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 294 | 
            +
                "model.layers.5.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
         | 
| 295 | 
            +
                "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 296 | 
            +
                "model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 297 | 
            +
                "model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 298 | 
            +
                "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 299 | 
            +
                "model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 300 | 
            +
                "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 301 | 
            +
                "model.layers.6.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
         | 
| 302 | 
            +
                "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 303 | 
            +
                "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 304 | 
            +
                "model.layers.6.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
         | 
| 305 | 
            +
                "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 306 | 
            +
                "model.layers.6.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
         | 
| 307 | 
            +
                "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 308 | 
            +
                "model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 309 | 
            +
                "model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 310 | 
            +
                "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 311 | 
            +
                "model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 312 | 
            +
                "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 313 | 
            +
                "model.layers.7.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
         | 
| 314 | 
            +
                "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 315 | 
            +
                "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 316 | 
            +
                "model.layers.7.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
         | 
| 317 | 
            +
                "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 318 | 
            +
                "model.layers.7.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
         | 
| 319 | 
            +
                "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 320 | 
            +
                "model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 321 | 
            +
                "model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 322 | 
            +
                "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 323 | 
            +
                "model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 324 | 
            +
                "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 325 | 
            +
                "model.layers.8.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
         | 
| 326 | 
            +
                "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 327 | 
            +
                "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 328 | 
            +
                "model.layers.8.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
         | 
| 329 | 
            +
                "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 330 | 
            +
                "model.layers.8.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
         | 
| 331 | 
            +
                "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 332 | 
            +
                "model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 333 | 
            +
                "model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 334 | 
            +
                "model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 335 | 
            +
                "model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 336 | 
            +
                "model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 337 | 
            +
                "model.layers.9.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
         | 
| 338 | 
            +
                "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 339 | 
            +
                "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 340 | 
            +
                "model.layers.9.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
         | 
| 341 | 
            +
                "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 342 | 
            +
                "model.layers.9.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
         | 
| 343 | 
            +
                "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 344 | 
            +
                "model.norm.weight": "model-00001-of-00002.safetensors",
         | 
| 345 | 
            +
                "vision_tower.blocks.0.attn.proj.weight": "model-00001-of-00002.safetensors",
         | 
| 346 | 
            +
                "vision_tower.blocks.0.attn.qkv.weight": "model-00001-of-00002.safetensors",
         | 
| 347 | 
            +
                "vision_tower.blocks.0.mlp.fc1.weight": "model-00001-of-00002.safetensors",
         | 
| 348 | 
            +
                "vision_tower.blocks.0.mlp.fc2.weight": "model-00001-of-00002.safetensors",
         | 
| 349 | 
            +
                "vision_tower.blocks.0.mlp.fc3.weight": "model-00001-of-00002.safetensors",
         | 
| 350 | 
            +
                "vision_tower.blocks.0.norm1.weight": "model-00001-of-00002.safetensors",
         | 
| 351 | 
            +
                "vision_tower.blocks.0.norm2.weight": "model-00001-of-00002.safetensors",
         | 
| 352 | 
            +
                "vision_tower.blocks.1.attn.proj.weight": "model-00001-of-00002.safetensors",
         | 
| 353 | 
            +
                "vision_tower.blocks.1.attn.qkv.weight": "model-00001-of-00002.safetensors",
         | 
| 354 | 
            +
                "vision_tower.blocks.1.mlp.fc1.weight": "model-00001-of-00002.safetensors",
         | 
| 355 | 
            +
                "vision_tower.blocks.1.mlp.fc2.weight": "model-00001-of-00002.safetensors",
         | 
| 356 | 
            +
                "vision_tower.blocks.1.mlp.fc3.weight": "model-00001-of-00002.safetensors",
         | 
| 357 | 
            +
                "vision_tower.blocks.1.norm1.weight": "model-00001-of-00002.safetensors",
         | 
| 358 | 
            +
                "vision_tower.blocks.1.norm2.weight": "model-00001-of-00002.safetensors",
         | 
| 359 | 
            +
                "vision_tower.blocks.10.attn.proj.weight": "model-00001-of-00002.safetensors",
         | 
| 360 | 
            +
                "vision_tower.blocks.10.attn.qkv.weight": "model-00001-of-00002.safetensors",
         | 
| 361 | 
            +
                "vision_tower.blocks.10.mlp.fc1.weight": "model-00001-of-00002.safetensors",
         | 
| 362 | 
            +
                "vision_tower.blocks.10.mlp.fc2.weight": "model-00001-of-00002.safetensors",
         | 
| 363 | 
            +
                "vision_tower.blocks.10.mlp.fc3.weight": "model-00001-of-00002.safetensors",
         | 
| 364 | 
            +
                "vision_tower.blocks.10.norm1.weight": "model-00001-of-00002.safetensors",
         | 
| 365 | 
            +
                "vision_tower.blocks.10.norm2.weight": "model-00001-of-00002.safetensors",
         | 
| 366 | 
            +
                "vision_tower.blocks.11.attn.proj.weight": "model-00001-of-00002.safetensors",
         | 
| 367 | 
            +
                "vision_tower.blocks.11.attn.qkv.weight": "model-00001-of-00002.safetensors",
         | 
| 368 | 
            +
                "vision_tower.blocks.11.mlp.fc1.weight": "model-00001-of-00002.safetensors",
         | 
| 369 | 
            +
                "vision_tower.blocks.11.mlp.fc2.weight": "model-00001-of-00002.safetensors",
         | 
| 370 | 
            +
                "vision_tower.blocks.11.mlp.fc3.weight": "model-00001-of-00002.safetensors",
         | 
| 371 | 
            +
                "vision_tower.blocks.11.norm1.weight": "model-00001-of-00002.safetensors",
         | 
| 372 | 
            +
                "vision_tower.blocks.11.norm2.weight": "model-00001-of-00002.safetensors",
         | 
| 373 | 
            +
                "vision_tower.blocks.12.attn.proj.weight": "model-00001-of-00002.safetensors",
         | 
| 374 | 
            +
                "vision_tower.blocks.12.attn.qkv.weight": "model-00001-of-00002.safetensors",
         | 
| 375 | 
            +
                "vision_tower.blocks.12.mlp.fc1.weight": "model-00001-of-00002.safetensors",
         | 
| 376 | 
            +
                "vision_tower.blocks.12.mlp.fc2.weight": "model-00001-of-00002.safetensors",
         | 
| 377 | 
            +
                "vision_tower.blocks.12.mlp.fc3.weight": "model-00001-of-00002.safetensors",
         | 
| 378 | 
            +
                "vision_tower.blocks.12.norm1.weight": "model-00001-of-00002.safetensors",
         | 
| 379 | 
            +
                "vision_tower.blocks.12.norm2.weight": "model-00001-of-00002.safetensors",
         | 
| 380 | 
            +
                "vision_tower.blocks.13.attn.proj.weight": "model-00001-of-00002.safetensors",
         | 
| 381 | 
            +
                "vision_tower.blocks.13.attn.qkv.weight": "model-00001-of-00002.safetensors",
         | 
| 382 | 
            +
                "vision_tower.blocks.13.mlp.fc1.weight": "model-00001-of-00002.safetensors",
         | 
| 383 | 
            +
                "vision_tower.blocks.13.mlp.fc2.weight": "model-00001-of-00002.safetensors",
         | 
| 384 | 
            +
                "vision_tower.blocks.13.mlp.fc3.weight": "model-00001-of-00002.safetensors",
         | 
| 385 | 
            +
                "vision_tower.blocks.13.norm1.weight": "model-00001-of-00002.safetensors",
         | 
| 386 | 
            +
                "vision_tower.blocks.13.norm2.weight": "model-00001-of-00002.safetensors",
         | 
| 387 | 
            +
                "vision_tower.blocks.14.attn.proj.weight": "model-00001-of-00002.safetensors",
         | 
| 388 | 
            +
                "vision_tower.blocks.14.attn.qkv.weight": "model-00001-of-00002.safetensors",
         | 
| 389 | 
            +
                "vision_tower.blocks.14.mlp.fc1.weight": "model-00001-of-00002.safetensors",
         | 
| 390 | 
            +
                "vision_tower.blocks.14.mlp.fc2.weight": "model-00001-of-00002.safetensors",
         | 
| 391 | 
            +
                "vision_tower.blocks.14.mlp.fc3.weight": "model-00001-of-00002.safetensors",
         | 
| 392 | 
            +
                "vision_tower.blocks.14.norm1.weight": "model-00001-of-00002.safetensors",
         | 
| 393 | 
            +
                "vision_tower.blocks.14.norm2.weight": "model-00001-of-00002.safetensors",
         | 
| 394 | 
            +
                "vision_tower.blocks.15.attn.proj.weight": "model-00001-of-00002.safetensors",
         | 
| 395 | 
            +
                "vision_tower.blocks.15.attn.qkv.weight": "model-00001-of-00002.safetensors",
         | 
| 396 | 
            +
                "vision_tower.blocks.15.mlp.fc1.weight": "model-00001-of-00002.safetensors",
         | 
| 397 | 
            +
                "vision_tower.blocks.15.mlp.fc2.weight": "model-00001-of-00002.safetensors",
         | 
| 398 | 
            +
                "vision_tower.blocks.15.mlp.fc3.weight": "model-00001-of-00002.safetensors",
         | 
| 399 | 
            +
                "vision_tower.blocks.15.norm1.weight": "model-00001-of-00002.safetensors",
         | 
| 400 | 
            +
                "vision_tower.blocks.15.norm2.weight": "model-00001-of-00002.safetensors",
         | 
| 401 | 
            +
                "vision_tower.blocks.16.attn.proj.weight": "model-00001-of-00002.safetensors",
         | 
| 402 | 
            +
                "vision_tower.blocks.16.attn.qkv.weight": "model-00001-of-00002.safetensors",
         | 
| 403 | 
            +
                "vision_tower.blocks.16.mlp.fc1.weight": "model-00001-of-00002.safetensors",
         | 
| 404 | 
            +
                "vision_tower.blocks.16.mlp.fc2.weight": "model-00001-of-00002.safetensors",
         | 
| 405 | 
            +
                "vision_tower.blocks.16.mlp.fc3.weight": "model-00001-of-00002.safetensors",
         | 
| 406 | 
            +
                "vision_tower.blocks.16.norm1.weight": "model-00001-of-00002.safetensors",
         | 
| 407 | 
            +
                "vision_tower.blocks.16.norm2.weight": "model-00001-of-00002.safetensors",
         | 
| 408 | 
            +
                "vision_tower.blocks.17.attn.proj.weight": "model-00001-of-00002.safetensors",
         | 
| 409 | 
            +
                "vision_tower.blocks.17.attn.qkv.weight": "model-00001-of-00002.safetensors",
         | 
| 410 | 
            +
                "vision_tower.blocks.17.mlp.fc1.weight": "model-00001-of-00002.safetensors",
         | 
| 411 | 
            +
                "vision_tower.blocks.17.mlp.fc2.weight": "model-00001-of-00002.safetensors",
         | 
| 412 | 
            +
                "vision_tower.blocks.17.mlp.fc3.weight": "model-00001-of-00002.safetensors",
         | 
| 413 | 
            +
                "vision_tower.blocks.17.norm1.weight": "model-00001-of-00002.safetensors",
         | 
| 414 | 
            +
                "vision_tower.blocks.17.norm2.weight": "model-00001-of-00002.safetensors",
         | 
| 415 | 
            +
                "vision_tower.blocks.18.attn.proj.weight": "model-00001-of-00002.safetensors",
         | 
| 416 | 
            +
                "vision_tower.blocks.18.attn.qkv.weight": "model-00001-of-00002.safetensors",
         | 
| 417 | 
            +
                "vision_tower.blocks.18.mlp.fc1.weight": "model-00001-of-00002.safetensors",
         | 
| 418 | 
            +
                "vision_tower.blocks.18.mlp.fc2.weight": "model-00001-of-00002.safetensors",
         | 
| 419 | 
            +
                "vision_tower.blocks.18.mlp.fc3.weight": "model-00001-of-00002.safetensors",
         | 
| 420 | 
            +
                "vision_tower.blocks.18.norm1.weight": "model-00001-of-00002.safetensors",
         | 
| 421 | 
            +
                "vision_tower.blocks.18.norm2.weight": "model-00001-of-00002.safetensors",
         | 
| 422 | 
            +
                "vision_tower.blocks.19.attn.proj.weight": "model-00001-of-00002.safetensors",
         | 
| 423 | 
            +
                "vision_tower.blocks.19.attn.qkv.weight": "model-00001-of-00002.safetensors",
         | 
| 424 | 
            +
                "vision_tower.blocks.19.mlp.fc1.weight": "model-00001-of-00002.safetensors",
         | 
| 425 | 
            +
                "vision_tower.blocks.19.mlp.fc2.weight": "model-00001-of-00002.safetensors",
         | 
| 426 | 
            +
                "vision_tower.blocks.19.mlp.fc3.weight": "model-00001-of-00002.safetensors",
         | 
| 427 | 
            +
                "vision_tower.blocks.19.norm1.weight": "model-00001-of-00002.safetensors",
         | 
| 428 | 
            +
                "vision_tower.blocks.19.norm2.weight": "model-00001-of-00002.safetensors",
         | 
| 429 | 
            +
                "vision_tower.blocks.2.attn.proj.weight": "model-00001-of-00002.safetensors",
         | 
| 430 | 
            +
                "vision_tower.blocks.2.attn.qkv.weight": "model-00001-of-00002.safetensors",
         | 
| 431 | 
            +
                "vision_tower.blocks.2.mlp.fc1.weight": "model-00001-of-00002.safetensors",
         | 
| 432 | 
            +
                "vision_tower.blocks.2.mlp.fc2.weight": "model-00001-of-00002.safetensors",
         | 
| 433 | 
            +
                "vision_tower.blocks.2.mlp.fc3.weight": "model-00002-of-00002.safetensors",
         | 
| 434 | 
            +
                "vision_tower.blocks.2.norm1.weight": "model-00002-of-00002.safetensors",
         | 
| 435 | 
            +
                "vision_tower.blocks.2.norm2.weight": "model-00002-of-00002.safetensors",
         | 
| 436 | 
            +
                "vision_tower.blocks.20.attn.proj.weight": "model-00002-of-00002.safetensors",
         | 
| 437 | 
            +
                "vision_tower.blocks.20.attn.qkv.weight": "model-00002-of-00002.safetensors",
         | 
| 438 | 
            +
                "vision_tower.blocks.20.mlp.fc1.weight": "model-00002-of-00002.safetensors",
         | 
| 439 | 
            +
                "vision_tower.blocks.20.mlp.fc2.weight": "model-00002-of-00002.safetensors",
         | 
| 440 | 
            +
                "vision_tower.blocks.20.mlp.fc3.weight": "model-00002-of-00002.safetensors",
         | 
| 441 | 
            +
                "vision_tower.blocks.20.norm1.weight": "model-00002-of-00002.safetensors",
         | 
| 442 | 
            +
                "vision_tower.blocks.20.norm2.weight": "model-00002-of-00002.safetensors",
         | 
| 443 | 
            +
                "vision_tower.blocks.21.attn.proj.weight": "model-00002-of-00002.safetensors",
         | 
| 444 | 
            +
                "vision_tower.blocks.21.attn.qkv.weight": "model-00002-of-00002.safetensors",
         | 
| 445 | 
            +
                "vision_tower.blocks.21.mlp.fc1.weight": "model-00002-of-00002.safetensors",
         | 
| 446 | 
            +
                "vision_tower.blocks.21.mlp.fc2.weight": "model-00002-of-00002.safetensors",
         | 
| 447 | 
            +
                "vision_tower.blocks.21.mlp.fc3.weight": "model-00002-of-00002.safetensors",
         | 
| 448 | 
            +
                "vision_tower.blocks.21.norm1.weight": "model-00002-of-00002.safetensors",
         | 
| 449 | 
            +
                "vision_tower.blocks.21.norm2.weight": "model-00002-of-00002.safetensors",
         | 
| 450 | 
            +
                "vision_tower.blocks.22.attn.proj.weight": "model-00002-of-00002.safetensors",
         | 
| 451 | 
            +
                "vision_tower.blocks.22.attn.qkv.weight": "model-00002-of-00002.safetensors",
         | 
| 452 | 
            +
                "vision_tower.blocks.22.mlp.fc1.weight": "model-00002-of-00002.safetensors",
         | 
| 453 | 
            +
                "vision_tower.blocks.22.mlp.fc2.weight": "model-00002-of-00002.safetensors",
         | 
| 454 | 
            +
                "vision_tower.blocks.22.mlp.fc3.weight": "model-00002-of-00002.safetensors",
         | 
| 455 | 
            +
                "vision_tower.blocks.22.norm1.weight": "model-00002-of-00002.safetensors",
         | 
| 456 | 
            +
                "vision_tower.blocks.22.norm2.weight": "model-00002-of-00002.safetensors",
         | 
| 457 | 
            +
                "vision_tower.blocks.23.attn.proj.weight": "model-00002-of-00002.safetensors",
         | 
| 458 | 
            +
                "vision_tower.blocks.23.attn.qkv.weight": "model-00002-of-00002.safetensors",
         | 
| 459 | 
            +
                "vision_tower.blocks.23.mlp.fc1.weight": "model-00002-of-00002.safetensors",
         | 
| 460 | 
            +
                "vision_tower.blocks.23.mlp.fc2.weight": "model-00002-of-00002.safetensors",
         | 
| 461 | 
            +
                "vision_tower.blocks.23.mlp.fc3.weight": "model-00002-of-00002.safetensors",
         | 
| 462 | 
            +
                "vision_tower.blocks.23.norm1.weight": "model-00002-of-00002.safetensors",
         | 
| 463 | 
            +
                "vision_tower.blocks.23.norm2.weight": "model-00002-of-00002.safetensors",
         | 
| 464 | 
            +
                "vision_tower.blocks.24.attn.proj.weight": "model-00002-of-00002.safetensors",
         | 
| 465 | 
            +
                "vision_tower.blocks.24.attn.qkv.weight": "model-00002-of-00002.safetensors",
         | 
| 466 | 
            +
                "vision_tower.blocks.24.mlp.fc1.weight": "model-00002-of-00002.safetensors",
         | 
| 467 | 
            +
                "vision_tower.blocks.24.mlp.fc2.weight": "model-00002-of-00002.safetensors",
         | 
| 468 | 
            +
                "vision_tower.blocks.24.mlp.fc3.weight": "model-00002-of-00002.safetensors",
         | 
| 469 | 
            +
                "vision_tower.blocks.24.norm1.weight": "model-00002-of-00002.safetensors",
         | 
| 470 | 
            +
                "vision_tower.blocks.24.norm2.weight": "model-00002-of-00002.safetensors",
         | 
| 471 | 
            +
                "vision_tower.blocks.25.attn.proj.weight": "model-00002-of-00002.safetensors",
         | 
| 472 | 
            +
                "vision_tower.blocks.25.attn.qkv.weight": "model-00002-of-00002.safetensors",
         | 
| 473 | 
            +
                "vision_tower.blocks.25.mlp.fc1.weight": "model-00002-of-00002.safetensors",
         | 
| 474 | 
            +
                "vision_tower.blocks.25.mlp.fc2.weight": "model-00002-of-00002.safetensors",
         | 
| 475 | 
            +
                "vision_tower.blocks.25.mlp.fc3.weight": "model-00002-of-00002.safetensors",
         | 
| 476 | 
            +
                "vision_tower.blocks.25.norm1.weight": "model-00002-of-00002.safetensors",
         | 
| 477 | 
            +
                "vision_tower.blocks.25.norm2.weight": "model-00002-of-00002.safetensors",
         | 
| 478 | 
            +
                "vision_tower.blocks.26.attn.proj.weight": "model-00002-of-00002.safetensors",
         | 
| 479 | 
            +
                "vision_tower.blocks.26.attn.qkv.weight": "model-00002-of-00002.safetensors",
         | 
| 480 | 
            +
                "vision_tower.blocks.26.mlp.fc1.weight": "model-00002-of-00002.safetensors",
         | 
| 481 | 
            +
                "vision_tower.blocks.26.mlp.fc2.weight": "model-00002-of-00002.safetensors",
         | 
| 482 | 
            +
                "vision_tower.blocks.26.mlp.fc3.weight": "model-00002-of-00002.safetensors",
         | 
| 483 | 
            +
                "vision_tower.blocks.26.norm1.weight": "model-00002-of-00002.safetensors",
         | 
| 484 | 
            +
                "vision_tower.blocks.26.norm2.weight": "model-00002-of-00002.safetensors",
         | 
| 485 | 
            +
                "vision_tower.blocks.27.attn.proj.weight": "model-00002-of-00002.safetensors",
         | 
| 486 | 
            +
                "vision_tower.blocks.27.attn.qkv.weight": "model-00002-of-00002.safetensors",
         | 
| 487 | 
            +
                "vision_tower.blocks.27.mlp.fc1.weight": "model-00002-of-00002.safetensors",
         | 
| 488 | 
            +
                "vision_tower.blocks.27.mlp.fc2.weight": "model-00002-of-00002.safetensors",
         | 
| 489 | 
            +
                "vision_tower.blocks.27.mlp.fc3.weight": "model-00002-of-00002.safetensors",
         | 
| 490 | 
            +
                "vision_tower.blocks.27.norm1.weight": "model-00002-of-00002.safetensors",
         | 
| 491 | 
            +
                "vision_tower.blocks.27.norm2.weight": "model-00002-of-00002.safetensors",
         | 
| 492 | 
            +
                "vision_tower.blocks.28.attn.proj.weight": "model-00002-of-00002.safetensors",
         | 
| 493 | 
            +
                "vision_tower.blocks.28.attn.qkv.weight": "model-00002-of-00002.safetensors",
         | 
| 494 | 
            +
                "vision_tower.blocks.28.mlp.fc1.weight": "model-00002-of-00002.safetensors",
         | 
| 495 | 
            +
                "vision_tower.blocks.28.mlp.fc2.weight": "model-00002-of-00002.safetensors",
         | 
| 496 | 
            +
                "vision_tower.blocks.28.mlp.fc3.weight": "model-00002-of-00002.safetensors",
         | 
| 497 | 
            +
                "vision_tower.blocks.28.norm1.weight": "model-00002-of-00002.safetensors",
         | 
| 498 | 
            +
                "vision_tower.blocks.28.norm2.weight": "model-00002-of-00002.safetensors",
         | 
| 499 | 
            +
                "vision_tower.blocks.29.attn.proj.weight": "model-00002-of-00002.safetensors",
         | 
| 500 | 
            +
                "vision_tower.blocks.29.attn.qkv.weight": "model-00002-of-00002.safetensors",
         | 
| 501 | 
            +
                "vision_tower.blocks.29.mlp.fc1.weight": "model-00002-of-00002.safetensors",
         | 
| 502 | 
            +
                "vision_tower.blocks.29.mlp.fc2.weight": "model-00002-of-00002.safetensors",
         | 
| 503 | 
            +
                "vision_tower.blocks.29.mlp.fc3.weight": "model-00002-of-00002.safetensors",
         | 
| 504 | 
            +
                "vision_tower.blocks.29.norm1.weight": "model-00002-of-00002.safetensors",
         | 
| 505 | 
            +
                "vision_tower.blocks.29.norm2.weight": "model-00002-of-00002.safetensors",
         | 
| 506 | 
            +
                "vision_tower.blocks.3.attn.proj.weight": "model-00002-of-00002.safetensors",
         | 
| 507 | 
            +
                "vision_tower.blocks.3.attn.qkv.weight": "model-00002-of-00002.safetensors",
         | 
| 508 | 
            +
                "vision_tower.blocks.3.mlp.fc1.weight": "model-00002-of-00002.safetensors",
         | 
| 509 | 
            +
                "vision_tower.blocks.3.mlp.fc2.weight": "model-00002-of-00002.safetensors",
         | 
| 510 | 
            +
                "vision_tower.blocks.3.mlp.fc3.weight": "model-00002-of-00002.safetensors",
         | 
| 511 | 
            +
                "vision_tower.blocks.3.norm1.weight": "model-00002-of-00002.safetensors",
         | 
| 512 | 
            +
                "vision_tower.blocks.3.norm2.weight": "model-00002-of-00002.safetensors",
         | 
| 513 | 
            +
                "vision_tower.blocks.30.attn.proj.weight": "model-00002-of-00002.safetensors",
         | 
| 514 | 
            +
                "vision_tower.blocks.30.attn.qkv.weight": "model-00002-of-00002.safetensors",
         | 
| 515 | 
            +
                "vision_tower.blocks.30.mlp.fc1.weight": "model-00002-of-00002.safetensors",
         | 
| 516 | 
            +
                "vision_tower.blocks.30.mlp.fc2.weight": "model-00002-of-00002.safetensors",
         | 
| 517 | 
            +
                "vision_tower.blocks.30.mlp.fc3.weight": "model-00002-of-00002.safetensors",
         | 
| 518 | 
            +
                "vision_tower.blocks.30.norm1.weight": "model-00002-of-00002.safetensors",
         | 
| 519 | 
            +
                "vision_tower.blocks.30.norm2.weight": "model-00002-of-00002.safetensors",
         | 
| 520 | 
            +
                "vision_tower.blocks.31.attn.proj.weight": "model-00002-of-00002.safetensors",
         | 
| 521 | 
            +
                "vision_tower.blocks.31.attn.qkv.weight": "model-00002-of-00002.safetensors",
         | 
| 522 | 
            +
                "vision_tower.blocks.31.mlp.fc1.weight": "model-00002-of-00002.safetensors",
         | 
| 523 | 
            +
                "vision_tower.blocks.31.mlp.fc2.weight": "model-00002-of-00002.safetensors",
         | 
| 524 | 
            +
                "vision_tower.blocks.31.mlp.fc3.weight": "model-00002-of-00002.safetensors",
         | 
| 525 | 
            +
                "vision_tower.blocks.31.norm1.weight": "model-00002-of-00002.safetensors",
         | 
| 526 | 
            +
                "vision_tower.blocks.31.norm2.weight": "model-00002-of-00002.safetensors",
         | 
| 527 | 
            +
                "vision_tower.blocks.32.attn.proj.weight": "model-00002-of-00002.safetensors",
         | 
| 528 | 
            +
                "vision_tower.blocks.32.attn.qkv.weight": "model-00002-of-00002.safetensors",
         | 
| 529 | 
            +
                "vision_tower.blocks.32.mlp.fc1.weight": "model-00002-of-00002.safetensors",
         | 
| 530 | 
            +
                "vision_tower.blocks.32.mlp.fc2.weight": "model-00002-of-00002.safetensors",
         | 
| 531 | 
            +
                "vision_tower.blocks.32.mlp.fc3.weight": "model-00002-of-00002.safetensors",
         | 
| 532 | 
            +
                "vision_tower.blocks.32.norm1.weight": "model-00002-of-00002.safetensors",
         | 
| 533 | 
            +
                "vision_tower.blocks.32.norm2.weight": "model-00002-of-00002.safetensors",
         | 
| 534 | 
            +
                "vision_tower.blocks.33.attn.proj.weight": "model-00002-of-00002.safetensors",
         | 
| 535 | 
            +
                "vision_tower.blocks.33.attn.qkv.weight": "model-00002-of-00002.safetensors",
         | 
| 536 | 
            +
                "vision_tower.blocks.33.mlp.fc1.weight": "model-00002-of-00002.safetensors",
         | 
| 537 | 
            +
                "vision_tower.blocks.33.mlp.fc2.weight": "model-00002-of-00002.safetensors",
         | 
| 538 | 
            +
                "vision_tower.blocks.33.mlp.fc3.weight": "model-00002-of-00002.safetensors",
         | 
| 539 | 
            +
                "vision_tower.blocks.33.norm1.weight": "model-00002-of-00002.safetensors",
         | 
| 540 | 
            +
                "vision_tower.blocks.33.norm2.weight": "model-00002-of-00002.safetensors",
         | 
| 541 | 
            +
                "vision_tower.blocks.34.attn.proj.weight": "model-00002-of-00002.safetensors",
         | 
| 542 | 
            +
                "vision_tower.blocks.34.attn.qkv.weight": "model-00002-of-00002.safetensors",
         | 
| 543 | 
            +
                "vision_tower.blocks.34.mlp.fc1.weight": "model-00002-of-00002.safetensors",
         | 
| 544 | 
            +
                "vision_tower.blocks.34.mlp.fc2.weight": "model-00002-of-00002.safetensors",
         | 
| 545 | 
            +
                "vision_tower.blocks.34.mlp.fc3.weight": "model-00002-of-00002.safetensors",
         | 
| 546 | 
            +
                "vision_tower.blocks.34.norm1.weight": "model-00002-of-00002.safetensors",
         | 
| 547 | 
            +
                "vision_tower.blocks.34.norm2.weight": "model-00002-of-00002.safetensors",
         | 
| 548 | 
            +
                "vision_tower.blocks.35.attn.proj.weight": "model-00002-of-00002.safetensors",
         | 
| 549 | 
            +
                "vision_tower.blocks.35.attn.qkv.weight": "model-00002-of-00002.safetensors",
         | 
| 550 | 
            +
                "vision_tower.blocks.35.mlp.fc1.weight": "model-00002-of-00002.safetensors",
         | 
| 551 | 
            +
                "vision_tower.blocks.35.mlp.fc2.weight": "model-00002-of-00002.safetensors",
         | 
| 552 | 
            +
                "vision_tower.blocks.35.mlp.fc3.weight": "model-00002-of-00002.safetensors",
         | 
| 553 | 
            +
                "vision_tower.blocks.35.norm1.weight": "model-00002-of-00002.safetensors",
         | 
| 554 | 
            +
                "vision_tower.blocks.35.norm2.weight": "model-00002-of-00002.safetensors",
         | 
| 555 | 
            +
                "vision_tower.blocks.36.attn.proj.weight": "model-00002-of-00002.safetensors",
         | 
| 556 | 
            +
                "vision_tower.blocks.36.attn.qkv.weight": "model-00002-of-00002.safetensors",
         | 
| 557 | 
            +
                "vision_tower.blocks.36.mlp.fc1.weight": "model-00002-of-00002.safetensors",
         | 
| 558 | 
            +
                "vision_tower.blocks.36.mlp.fc2.weight": "model-00002-of-00002.safetensors",
         | 
| 559 | 
            +
                "vision_tower.blocks.36.mlp.fc3.weight": "model-00002-of-00002.safetensors",
         | 
| 560 | 
            +
                "vision_tower.blocks.36.norm1.weight": "model-00002-of-00002.safetensors",
         | 
| 561 | 
            +
                "vision_tower.blocks.36.norm2.weight": "model-00002-of-00002.safetensors",
         | 
| 562 | 
            +
                "vision_tower.blocks.37.attn.proj.weight": "model-00002-of-00002.safetensors",
         | 
| 563 | 
            +
                "vision_tower.blocks.37.attn.qkv.weight": "model-00002-of-00002.safetensors",
         | 
| 564 | 
            +
                "vision_tower.blocks.37.mlp.fc1.weight": "model-00002-of-00002.safetensors",
         | 
| 565 | 
            +
                "vision_tower.blocks.37.mlp.fc2.weight": "model-00002-of-00002.safetensors",
         | 
| 566 | 
            +
                "vision_tower.blocks.37.mlp.fc3.weight": "model-00002-of-00002.safetensors",
         | 
| 567 | 
            +
                "vision_tower.blocks.37.norm1.weight": "model-00002-of-00002.safetensors",
         | 
| 568 | 
            +
                "vision_tower.blocks.37.norm2.weight": "model-00002-of-00002.safetensors",
         | 
| 569 | 
            +
                "vision_tower.blocks.38.attn.proj.weight": "model-00002-of-00002.safetensors",
         | 
| 570 | 
            +
                "vision_tower.blocks.38.attn.qkv.weight": "model-00002-of-00002.safetensors",
         | 
| 571 | 
            +
                "vision_tower.blocks.38.mlp.fc1.weight": "model-00002-of-00002.safetensors",
         | 
| 572 | 
            +
                "vision_tower.blocks.38.mlp.fc2.weight": "model-00002-of-00002.safetensors",
         | 
| 573 | 
            +
                "vision_tower.blocks.38.mlp.fc3.weight": "model-00002-of-00002.safetensors",
         | 
| 574 | 
            +
                "vision_tower.blocks.38.norm1.weight": "model-00002-of-00002.safetensors",
         | 
| 575 | 
            +
                "vision_tower.blocks.38.norm2.weight": "model-00002-of-00002.safetensors",
         | 
| 576 | 
            +
                "vision_tower.blocks.39.attn.proj.weight": "model-00002-of-00002.safetensors",
         | 
| 577 | 
            +
                "vision_tower.blocks.39.attn.qkv.weight": "model-00002-of-00002.safetensors",
         | 
| 578 | 
            +
                "vision_tower.blocks.39.mlp.fc1.weight": "model-00002-of-00002.safetensors",
         | 
| 579 | 
            +
                "vision_tower.blocks.39.mlp.fc2.weight": "model-00002-of-00002.safetensors",
         | 
| 580 | 
            +
                "vision_tower.blocks.39.mlp.fc3.weight": "model-00002-of-00002.safetensors",
         | 
| 581 | 
            +
                "vision_tower.blocks.39.norm1.weight": "model-00002-of-00002.safetensors",
         | 
| 582 | 
            +
                "vision_tower.blocks.39.norm2.weight": "model-00002-of-00002.safetensors",
         | 
| 583 | 
            +
                "vision_tower.blocks.4.attn.proj.weight": "model-00002-of-00002.safetensors",
         | 
| 584 | 
            +
                "vision_tower.blocks.4.attn.qkv.weight": "model-00002-of-00002.safetensors",
         | 
| 585 | 
            +
                "vision_tower.blocks.4.mlp.fc1.weight": "model-00002-of-00002.safetensors",
         | 
| 586 | 
            +
                "vision_tower.blocks.4.mlp.fc2.weight": "model-00002-of-00002.safetensors",
         | 
| 587 | 
            +
                "vision_tower.blocks.4.mlp.fc3.weight": "model-00002-of-00002.safetensors",
         | 
| 588 | 
            +
                "vision_tower.blocks.4.norm1.weight": "model-00002-of-00002.safetensors",
         | 
| 589 | 
            +
                "vision_tower.blocks.4.norm2.weight": "model-00002-of-00002.safetensors",
         | 
| 590 | 
            +
                "vision_tower.blocks.40.attn.proj.weight": "model-00002-of-00002.safetensors",
         | 
| 591 | 
            +
                "vision_tower.blocks.40.attn.qkv.weight": "model-00002-of-00002.safetensors",
         | 
| 592 | 
            +
                "vision_tower.blocks.40.mlp.fc1.weight": "model-00002-of-00002.safetensors",
         | 
| 593 | 
            +
                "vision_tower.blocks.40.mlp.fc2.weight": "model-00002-of-00002.safetensors",
         | 
| 594 | 
            +
                "vision_tower.blocks.40.mlp.fc3.weight": "model-00002-of-00002.safetensors",
         | 
| 595 | 
            +
                "vision_tower.blocks.40.norm1.weight": "model-00002-of-00002.safetensors",
         | 
| 596 | 
            +
                "vision_tower.blocks.40.norm2.weight": "model-00002-of-00002.safetensors",
         | 
| 597 | 
            +
                "vision_tower.blocks.41.attn.proj.weight": "model-00002-of-00002.safetensors",
         | 
| 598 | 
            +
                "vision_tower.blocks.41.attn.qkv.weight": "model-00002-of-00002.safetensors",
         | 
| 599 | 
            +
                "vision_tower.blocks.41.mlp.fc1.weight": "model-00002-of-00002.safetensors",
         | 
| 600 | 
            +
                "vision_tower.blocks.41.mlp.fc2.weight": "model-00002-of-00002.safetensors",
         | 
| 601 | 
            +
                "vision_tower.blocks.41.mlp.fc3.weight": "model-00002-of-00002.safetensors",
         | 
| 602 | 
            +
                "vision_tower.blocks.41.norm1.weight": "model-00002-of-00002.safetensors",
         | 
| 603 | 
            +
                "vision_tower.blocks.41.norm2.weight": "model-00002-of-00002.safetensors",
         | 
| 604 | 
            +
                "vision_tower.blocks.5.attn.proj.weight": "model-00002-of-00002.safetensors",
         | 
| 605 | 
            +
                "vision_tower.blocks.5.attn.qkv.weight": "model-00002-of-00002.safetensors",
         | 
| 606 | 
            +
                "vision_tower.blocks.5.mlp.fc1.weight": "model-00002-of-00002.safetensors",
         | 
| 607 | 
            +
                "vision_tower.blocks.5.mlp.fc2.weight": "model-00002-of-00002.safetensors",
         | 
| 608 | 
            +
                "vision_tower.blocks.5.mlp.fc3.weight": "model-00002-of-00002.safetensors",
         | 
| 609 | 
            +
                "vision_tower.blocks.5.norm1.weight": "model-00002-of-00002.safetensors",
         | 
| 610 | 
            +
                "vision_tower.blocks.5.norm2.weight": "model-00002-of-00002.safetensors",
         | 
| 611 | 
            +
                "vision_tower.blocks.6.attn.proj.weight": "model-00002-of-00002.safetensors",
         | 
| 612 | 
            +
                "vision_tower.blocks.6.attn.qkv.weight": "model-00002-of-00002.safetensors",
         | 
| 613 | 
            +
                "vision_tower.blocks.6.mlp.fc1.weight": "model-00002-of-00002.safetensors",
         | 
| 614 | 
            +
                "vision_tower.blocks.6.mlp.fc2.weight": "model-00002-of-00002.safetensors",
         | 
| 615 | 
            +
                "vision_tower.blocks.6.mlp.fc3.weight": "model-00002-of-00002.safetensors",
         | 
| 616 | 
            +
                "vision_tower.blocks.6.norm1.weight": "model-00002-of-00002.safetensors",
         | 
| 617 | 
            +
                "vision_tower.blocks.6.norm2.weight": "model-00002-of-00002.safetensors",
         | 
| 618 | 
            +
                "vision_tower.blocks.7.attn.proj.weight": "model-00002-of-00002.safetensors",
         | 
| 619 | 
            +
                "vision_tower.blocks.7.attn.qkv.weight": "model-00002-of-00002.safetensors",
         | 
| 620 | 
            +
                "vision_tower.blocks.7.mlp.fc1.weight": "model-00002-of-00002.safetensors",
         | 
| 621 | 
            +
                "vision_tower.blocks.7.mlp.fc2.weight": "model-00002-of-00002.safetensors",
         | 
| 622 | 
            +
                "vision_tower.blocks.7.mlp.fc3.weight": "model-00002-of-00002.safetensors",
         | 
| 623 | 
            +
                "vision_tower.blocks.7.norm1.weight": "model-00002-of-00002.safetensors",
         | 
| 624 | 
            +
                "vision_tower.blocks.7.norm2.weight": "model-00002-of-00002.safetensors",
         | 
| 625 | 
            +
                "vision_tower.blocks.8.attn.proj.weight": "model-00002-of-00002.safetensors",
         | 
| 626 | 
            +
                "vision_tower.blocks.8.attn.qkv.weight": "model-00002-of-00002.safetensors",
         | 
| 627 | 
            +
                "vision_tower.blocks.8.mlp.fc1.weight": "model-00002-of-00002.safetensors",
         | 
| 628 | 
            +
                "vision_tower.blocks.8.mlp.fc2.weight": "model-00002-of-00002.safetensors",
         | 
| 629 | 
            +
                "vision_tower.blocks.8.mlp.fc3.weight": "model-00002-of-00002.safetensors",
         | 
| 630 | 
            +
                "vision_tower.blocks.8.norm1.weight": "model-00002-of-00002.safetensors",
         | 
| 631 | 
            +
                "vision_tower.blocks.8.norm2.weight": "model-00002-of-00002.safetensors",
         | 
| 632 | 
            +
                "vision_tower.blocks.9.attn.proj.weight": "model-00002-of-00002.safetensors",
         | 
| 633 | 
            +
                "vision_tower.blocks.9.attn.qkv.weight": "model-00002-of-00002.safetensors",
         | 
| 634 | 
            +
                "vision_tower.blocks.9.mlp.fc1.weight": "model-00002-of-00002.safetensors",
         | 
| 635 | 
            +
                "vision_tower.blocks.9.mlp.fc2.weight": "model-00002-of-00002.safetensors",
         | 
| 636 | 
            +
                "vision_tower.blocks.9.mlp.fc3.weight": "model-00002-of-00002.safetensors",
         | 
| 637 | 
            +
                "vision_tower.blocks.9.norm1.weight": "model-00002-of-00002.safetensors",
         | 
| 638 | 
            +
                "vision_tower.blocks.9.norm2.weight": "model-00002-of-00002.safetensors",
         | 
| 639 | 
            +
                "vision_tower.merger.ln_q.bias": "model-00002-of-00002.safetensors",
         | 
| 640 | 
            +
                "vision_tower.merger.ln_q.weight": "model-00002-of-00002.safetensors",
         | 
| 641 | 
            +
                "vision_tower.merger.mlp.0.bias": "model-00002-of-00002.safetensors",
         | 
| 642 | 
            +
                "vision_tower.merger.mlp.0.weight": "model-00002-of-00002.safetensors",
         | 
| 643 | 
            +
                "vision_tower.merger.mlp.2.bias": "model-00002-of-00002.safetensors",
         | 
| 644 | 
            +
                "vision_tower.merger.mlp.2.weight": "model-00002-of-00002.safetensors",
         | 
| 645 | 
            +
                "vision_tower.patch_embed.patchifier.norm.weight": "model-00002-of-00002.safetensors",
         | 
| 646 | 
            +
                "vision_tower.patch_embed.patchifier.proj.bias": "model-00002-of-00002.safetensors",
         | 
| 647 | 
            +
                "vision_tower.patch_embed.patchifier.proj.weight": "model-00002-of-00002.safetensors",
         | 
| 648 | 
            +
                "vision_tower.post_trunk_norm.weight": "model-00002-of-00002.safetensors"
         | 
| 649 | 
            +
              }
         | 
| 650 | 
            +
            }
         | 
    	
        modeling_dots_ocr.py
    ADDED
    
    | @@ -0,0 +1,131 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            from typing import List, Optional, Tuple, Union
         | 
| 2 | 
            +
             | 
| 3 | 
            +
            import torch
         | 
| 4 | 
            +
            from transformers.modeling_outputs import CausalLMOutputWithPast
         | 
| 5 | 
            +
            from transformers.models.qwen2 import Qwen2ForCausalLM
         | 
| 6 | 
            +
             | 
| 7 | 
            +
            from .configuration_dots import DotsVisionConfig, DotsOCRConfig
         | 
| 8 | 
            +
            from .modeling_dots_vision import DotsVisionTransformer
         | 
| 9 | 
            +
             | 
| 10 | 
            +
             | 
| 11 | 
            +
            DOTS_VLM_MAX_IMAGES = 200
         | 
| 12 | 
            +
             | 
| 13 | 
            +
             | 
| 14 | 
            +
            class DotsOCRForCausalLM(Qwen2ForCausalLM):
         | 
| 15 | 
            +
                config_class = DotsOCRConfig
         | 
| 16 | 
            +
             | 
| 17 | 
            +
                def __init__(self, config: DotsOCRConfig):
         | 
| 18 | 
            +
                    super().__init__(config)
         | 
| 19 | 
            +
             | 
| 20 | 
            +
                    if isinstance(self.config.vision_config, dict):
         | 
| 21 | 
            +
                        vision_config = DotsVisionConfig(**self.config.vision_config)
         | 
| 22 | 
            +
                        self.config.vision_config = vision_config
         | 
| 23 | 
            +
                    else:
         | 
| 24 | 
            +
                        vision_config = self.config.vision_config
         | 
| 25 | 
            +
             | 
| 26 | 
            +
                    self.vision_tower = DotsVisionTransformer(vision_config)
         | 
| 27 | 
            +
             | 
| 28 | 
            +
                def prepare_inputs_embeds(
         | 
| 29 | 
            +
                    self,
         | 
| 30 | 
            +
                    input_ids: torch.LongTensor,
         | 
| 31 | 
            +
                    pixel_values: Optional[torch.FloatTensor] = None,
         | 
| 32 | 
            +
                    grid_thw: Optional[torch.FloatTensor] = None,
         | 
| 33 | 
            +
                    img_mask: Optional[torch.BoolTensor] = None,
         | 
| 34 | 
            +
                ) -> torch.Tensor:
         | 
| 35 | 
            +
                    inputs_embeds = self.get_input_embeddings()(input_ids)
         | 
| 36 | 
            +
             | 
| 37 | 
            +
                    if pixel_values is not None:
         | 
| 38 | 
            +
                        assert img_mask is not None
         | 
| 39 | 
            +
                        if grid_thw.shape[0] > DOTS_VLM_MAX_IMAGES:
         | 
| 40 | 
            +
                            print(
         | 
| 41 | 
            +
                                f"Num image exceeded: {grid_thw.shape[0]} > {DOTS_VLM_MAX_IMAGES}, which may cause FSDP hang"
         | 
| 42 | 
            +
                            )
         | 
| 43 | 
            +
             | 
| 44 | 
            +
                        vision_embeddings = self.vision_tower(pixel_values, grid_thw)
         | 
| 45 | 
            +
             | 
| 46 | 
            +
                        true_indices = torch.nonzero(img_mask).squeeze()
         | 
| 47 | 
            +
                        if len(true_indices) > vision_embeddings.size(0):
         | 
| 48 | 
            +
                            print(
         | 
| 49 | 
            +
                                f"img_mask sum > VE and will be truncated, mask.sum()={len(true_indices)} {vision_embeddings.size(0)=}"
         | 
| 50 | 
            +
                            )
         | 
| 51 | 
            +
                            true_indices = true_indices[: vision_embeddings.size(0)]
         | 
| 52 | 
            +
                            new_img_mask = torch.zeros_like(img_mask, device=img_mask.device)
         | 
| 53 | 
            +
                            new_img_mask[true_indices[:, 0], true_indices[:, 1]] = True
         | 
| 54 | 
            +
                        else:
         | 
| 55 | 
            +
                            new_img_mask = img_mask
         | 
| 56 | 
            +
             | 
| 57 | 
            +
                        assert (
         | 
| 58 | 
            +
                            vision_embeddings.size(0) == new_img_mask.sum()
         | 
| 59 | 
            +
                        ), f"{vision_embeddings.size(0)=}, {new_img_mask.sum()=}"
         | 
| 60 | 
            +
             | 
| 61 | 
            +
                        inputs_embeds = inputs_embeds.masked_scatter(
         | 
| 62 | 
            +
                            new_img_mask.to(inputs_embeds.device).unsqueeze(-1).expand_as(inputs_embeds),
         | 
| 63 | 
            +
                            vision_embeddings.to(inputs_embeds.device).type(inputs_embeds.dtype),
         | 
| 64 | 
            +
                        )
         | 
| 65 | 
            +
             | 
| 66 | 
            +
                    return inputs_embeds
         | 
| 67 | 
            +
             | 
| 68 | 
            +
                def forward(
         | 
| 69 | 
            +
                    self,
         | 
| 70 | 
            +
                    input_ids: torch.LongTensor,
         | 
| 71 | 
            +
                    pixel_values: Optional[torch.FloatTensor] = None,
         | 
| 72 | 
            +
                    image_grid_thw: Optional[torch.FloatTensor] = None,
         | 
| 73 | 
            +
                    inputs_embeds: Optional[torch.Tensor] = None,
         | 
| 74 | 
            +
                    attention_mask: Optional[torch.Tensor] = None,
         | 
| 75 | 
            +
                    position_ids: Optional[torch.LongTensor] = None,
         | 
| 76 | 
            +
                    past_key_values: Optional[List[torch.FloatTensor]] = None,
         | 
| 77 | 
            +
                    labels: Optional[torch.LongTensor] = None,
         | 
| 78 | 
            +
                    output_attentions: Optional[bool] = None,
         | 
| 79 | 
            +
                    output_hidden_states: Optional[bool] = None,
         | 
| 80 | 
            +
                    return_dict: Optional[bool] = None,
         | 
| 81 | 
            +
                    use_cache: Optional[bool] = None,
         | 
| 82 | 
            +
                    logits_to_keep: int = 0,
         | 
| 83 | 
            +
                    **loss_kwargs,
         | 
| 84 | 
            +
                ) -> Union[Tuple, CausalLMOutputWithPast]:
         | 
| 85 | 
            +
                    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
         | 
| 86 | 
            +
                    assert len(input_ids) >= 1, f"empty input_ids {input_ids.shape=} will cause gradnorm nan"
         | 
| 87 | 
            +
                    if inputs_embeds is None:
         | 
| 88 | 
            +
                        img_mask = input_ids == self.config.image_token_id
         | 
| 89 | 
            +
                        inputs_embeds = self.prepare_inputs_embeds(input_ids, pixel_values, image_grid_thw, img_mask)
         | 
| 90 | 
            +
             | 
| 91 | 
            +
                    outputs = super().forward(
         | 
| 92 | 
            +
                        inputs_embeds=inputs_embeds,
         | 
| 93 | 
            +
                        attention_mask=attention_mask,
         | 
| 94 | 
            +
                        position_ids=position_ids,
         | 
| 95 | 
            +
                        past_key_values=past_key_values,
         | 
| 96 | 
            +
                        labels=labels,
         | 
| 97 | 
            +
                        use_cache=use_cache if use_cache is not None else self.config.use_cache,
         | 
| 98 | 
            +
                        output_attentions=output_attentions,
         | 
| 99 | 
            +
                        output_hidden_states=output_hidden_states,
         | 
| 100 | 
            +
                        # return_dict=return_dict,
         | 
| 101 | 
            +
                        logits_to_keep=logits_to_keep,
         | 
| 102 | 
            +
                        **loss_kwargs,
         | 
| 103 | 
            +
                    )
         | 
| 104 | 
            +
             | 
| 105 | 
            +
                    return outputs
         | 
| 106 | 
            +
             | 
| 107 | 
            +
                def prepare_inputs_for_generation(
         | 
| 108 | 
            +
                    self,
         | 
| 109 | 
            +
                    input_ids,
         | 
| 110 | 
            +
                    past_key_values=None,
         | 
| 111 | 
            +
                    inputs_embeds=None,
         | 
| 112 | 
            +
                    pixel_values=None,
         | 
| 113 | 
            +
                    attention_mask=None,
         | 
| 114 | 
            +
                    cache_position=None,
         | 
| 115 | 
            +
                    num_logits_to_keep=None,
         | 
| 116 | 
            +
                    **kwargs,
         | 
| 117 | 
            +
                ):
         | 
| 118 | 
            +
                    model_inputs = super().prepare_inputs_for_generation(
         | 
| 119 | 
            +
                        input_ids,
         | 
| 120 | 
            +
                        past_key_values=past_key_values,
         | 
| 121 | 
            +
                        inputs_embeds=inputs_embeds,
         | 
| 122 | 
            +
                        attention_mask=attention_mask,
         | 
| 123 | 
            +
                        cache_position=cache_position,
         | 
| 124 | 
            +
                        num_logits_to_keep=num_logits_to_keep,
         | 
| 125 | 
            +
                        **kwargs,
         | 
| 126 | 
            +
                    )
         | 
| 127 | 
            +
             | 
| 128 | 
            +
                    if cache_position[0] == 0:
         | 
| 129 | 
            +
                        model_inputs["pixel_values"] = pixel_values
         | 
| 130 | 
            +
             | 
| 131 | 
            +
                    return model_inputs
         | 
    	
        modeling_dots_ocr_vllm.py
    ADDED
    
    | @@ -0,0 +1,429 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            from functools import cached_property
         | 
| 2 | 
            +
            from typing import Iterable, Literal, Mapping, Optional, Set, Tuple, TypedDict, Union
         | 
| 3 | 
            +
             | 
| 4 | 
            +
            import torch
         | 
| 5 | 
            +
            import torch.nn as nn
         | 
| 6 | 
            +
            from transformers.models.qwen2_vl import Qwen2VLImageProcessor, Qwen2VLProcessor
         | 
| 7 | 
            +
            from transformers.models.qwen2_vl.image_processing_qwen2_vl import smart_resize
         | 
| 8 | 
            +
            from vllm import ModelRegistry
         | 
| 9 | 
            +
            from vllm.config import VllmConfig
         | 
| 10 | 
            +
            from vllm.model_executor.layers.sampler import SamplerOutput, get_sampler
         | 
| 11 | 
            +
            from vllm.model_executor.models.interfaces import MultiModalEmbeddings, SupportsMultiModal
         | 
| 12 | 
            +
            from vllm.model_executor.models.qwen2 import Qwen2ForCausalLM
         | 
| 13 | 
            +
            from vllm.model_executor.models.qwen2_5_vl import (
         | 
| 14 | 
            +
                Qwen2_5_VLMultiModalProcessor,
         | 
| 15 | 
            +
                Qwen2_5_VLProcessingInfo,
         | 
| 16 | 
            +
            )
         | 
| 17 | 
            +
            from vllm.model_executor.models.qwen2_vl import Qwen2VLDummyInputsBuilder
         | 
| 18 | 
            +
            from vllm.model_executor.models.utils import (
         | 
| 19 | 
            +
                AutoWeightsLoader,
         | 
| 20 | 
            +
                WeightsMapper,
         | 
| 21 | 
            +
                init_vllm_registered_model,
         | 
| 22 | 
            +
                maybe_prefix,
         | 
| 23 | 
            +
                merge_multimodal_embeddings,
         | 
| 24 | 
            +
            )
         | 
| 25 | 
            +
            from vllm.model_executor.sampling_metadata import SamplingMetadata
         | 
| 26 | 
            +
            from vllm.multimodal import MULTIMODAL_REGISTRY
         | 
| 27 | 
            +
            from vllm.multimodal.inputs import MultiModalDataDict
         | 
| 28 | 
            +
            from vllm.multimodal.parse import ImageSize
         | 
| 29 | 
            +
            from vllm.sequence import IntermediateTensors
         | 
| 30 | 
            +
             | 
| 31 | 
            +
            from .configuration_dots import DotsVisionConfig
         | 
| 32 | 
            +
            from .configuration_dots import DotsOCRConfig
         | 
| 33 | 
            +
            from .modeling_dots_vision import DotsVisionTransformer
         | 
| 34 | 
            +
             | 
| 35 | 
            +
             | 
| 36 | 
            +
            class DotsOCRImagePixelInputs(TypedDict):
         | 
| 37 | 
            +
                type: Literal["pixel_values", "image_grid_thw"]
         | 
| 38 | 
            +
             | 
| 39 | 
            +
                pixel_values: torch.Tensor
         | 
| 40 | 
            +
                image_grid_thw: torch.Tensor
         | 
| 41 | 
            +
             | 
| 42 | 
            +
             | 
| 43 | 
            +
            class DotsOCRImageEmbeddingInputs(TypedDict):
         | 
| 44 | 
            +
                type: Literal["image_embeds", "image_grid_thw"]
         | 
| 45 | 
            +
                image_embeds: torch.Tensor
         | 
| 46 | 
            +
                """Supported types:
         | 
| 47 | 
            +
                - List[`torch.Tensor`]: A list of tensors holding all images' features.
         | 
| 48 | 
            +
                    Each tensor holds an image's features.
         | 
| 49 | 
            +
                - `torch.Tensor`: A tensor holding all images' features
         | 
| 50 | 
            +
                    (concatenation of all images' feature tensors).
         | 
| 51 | 
            +
             | 
| 52 | 
            +
                Tensor shape: `(num_image_features, hidden_size)`
         | 
| 53 | 
            +
                - `num_image_features` varies based on
         | 
| 54 | 
            +
                    the number and resolution of the images.
         | 
| 55 | 
            +
                - `hidden_size` must match the hidden size of language model backbone.
         | 
| 56 | 
            +
                """
         | 
| 57 | 
            +
             | 
| 58 | 
            +
                image_grid_thw: torch.Tensor
         | 
| 59 | 
            +
             | 
| 60 | 
            +
             | 
| 61 | 
            +
            DotsOCRImageInputs = Union[DotsOCRImagePixelInputs, DotsOCRImageEmbeddingInputs]
         | 
| 62 | 
            +
             | 
| 63 | 
            +
             | 
| 64 | 
            +
            class DotsOCRMultiModalProcessor(Qwen2_5_VLMultiModalProcessor):
         | 
| 65 | 
            +
                pass
         | 
| 66 | 
            +
             | 
| 67 | 
            +
             | 
| 68 | 
            +
            class DotsOCRDummyInputsBuilder(Qwen2VLDummyInputsBuilder):
         | 
| 69 | 
            +
                def get_dummy_mm_data(
         | 
| 70 | 
            +
                    self,
         | 
| 71 | 
            +
                    seq_len: int,
         | 
| 72 | 
            +
                    mm_counts: Mapping[str, int],
         | 
| 73 | 
            +
                ) -> MultiModalDataDict:
         | 
| 74 | 
            +
                    num_images = mm_counts.get("image", 0)
         | 
| 75 | 
            +
             | 
| 76 | 
            +
                    target_width, target_height = self.info.get_image_size_with_most_features()
         | 
| 77 | 
            +
             | 
| 78 | 
            +
                    return {
         | 
| 79 | 
            +
                        "image": self._get_dummy_images(width=target_width, height=target_height, num_images=num_images),
         | 
| 80 | 
            +
                    }
         | 
| 81 | 
            +
             | 
| 82 | 
            +
             | 
| 83 | 
            +
            class DotsOCRProcessingInfo(Qwen2_5_VLProcessingInfo):
         | 
| 84 | 
            +
                def get_hf_config(self) -> DotsOCRConfig:
         | 
| 85 | 
            +
                    config = self.ctx.get_hf_config()
         | 
| 86 | 
            +
                    if not config.__class__.__name__ == 'DotsOCRConfig':
         | 
| 87 | 
            +
                        raise TypeError(f"Expected DotsOCRConfig, got {type(config)}")
         | 
| 88 | 
            +
             | 
| 89 | 
            +
                    if hasattr(config, "vision_config") and isinstance(config.vision_config, dict):
         | 
| 90 | 
            +
                        config.vision_config = DotsVisionConfig(**config.vision_config)
         | 
| 91 | 
            +
                        
         | 
| 92 | 
            +
                    return config
         | 
| 93 | 
            +
             | 
| 94 | 
            +
                def get_hf_processor(
         | 
| 95 | 
            +
                    self,
         | 
| 96 | 
            +
                    *,
         | 
| 97 | 
            +
                    min_pixels: Optional[int] = None,
         | 
| 98 | 
            +
                    max_pixels: Optional[int] = None,
         | 
| 99 | 
            +
                    size: Optional[dict[str, int]] = None,
         | 
| 100 | 
            +
                    **kwargs: object,
         | 
| 101 | 
            +
                ) -> Qwen2VLProcessor:
         | 
| 102 | 
            +
                    processor = self.ctx.get_hf_processor(
         | 
| 103 | 
            +
                        Qwen2VLProcessor,
         | 
| 104 | 
            +
                        image_processor=self.get_image_processor(min_pixels=min_pixels, max_pixels=max_pixels, size=size),
         | 
| 105 | 
            +
                        **kwargs,
         | 
| 106 | 
            +
                    )
         | 
| 107 | 
            +
                    processor.image_token = "<|imgpad|>"
         | 
| 108 | 
            +
                    processor.video_token = "<|video_pad|>"
         | 
| 109 | 
            +
                    return processor
         | 
| 110 | 
            +
             | 
| 111 | 
            +
                def _get_vision_info(
         | 
| 112 | 
            +
                    self,
         | 
| 113 | 
            +
                    *,
         | 
| 114 | 
            +
                    image_width: int,
         | 
| 115 | 
            +
                    image_height: int,
         | 
| 116 | 
            +
                    num_frames: int = 1,
         | 
| 117 | 
            +
                    do_resize: bool = True,
         | 
| 118 | 
            +
                    image_processor: Optional[Qwen2VLImageProcessor],
         | 
| 119 | 
            +
                ) -> tuple[ImageSize, int]:
         | 
| 120 | 
            +
                    if image_processor is None:
         | 
| 121 | 
            +
                        image_processor = self.get_image_processor()
         | 
| 122 | 
            +
             | 
| 123 | 
            +
                    hf_config: DotsOCRConfig = self.get_hf_config()
         | 
| 124 | 
            +
                    vision_config = hf_config.vision_config
         | 
| 125 | 
            +
                    patch_size = vision_config.patch_size
         | 
| 126 | 
            +
                    merge_size = vision_config.spatial_merge_size
         | 
| 127 | 
            +
                    temporal_patch_size = vision_config.temporal_patch_size
         | 
| 128 | 
            +
             | 
| 129 | 
            +
                    if do_resize:
         | 
| 130 | 
            +
                        resized_height, resized_width = smart_resize(
         | 
| 131 | 
            +
                            height=image_height,
         | 
| 132 | 
            +
                            width=image_width,
         | 
| 133 | 
            +
                            factor=patch_size * merge_size,
         | 
| 134 | 
            +
                            min_pixels=image_processor.min_pixels,
         | 
| 135 | 
            +
                            max_pixels=image_processor.max_pixels,
         | 
| 136 | 
            +
                        )
         | 
| 137 | 
            +
                        preprocessed_size = ImageSize(width=resized_width, height=resized_height)
         | 
| 138 | 
            +
                    else:
         | 
| 139 | 
            +
                        preprocessed_size = ImageSize(width=image_width, height=image_height)
         | 
| 140 | 
            +
             | 
| 141 | 
            +
                    # NOTE: Frames are padded to be divisible by `temporal_patch_size`
         | 
| 142 | 
            +
                    # https://github.com/huggingface/transformers/blob/v4.48.3/src/transformers/models/qwen2_vl/image_processing_qwen2_vl.py#L294
         | 
| 143 | 
            +
                    padded_num_frames = num_frames + num_frames % temporal_patch_size
         | 
| 144 | 
            +
             | 
| 145 | 
            +
                    grid_t = max(padded_num_frames // temporal_patch_size, 1)
         | 
| 146 | 
            +
                    grid_h = preprocessed_size.height // patch_size
         | 
| 147 | 
            +
                    grid_w = preprocessed_size.width // patch_size
         | 
| 148 | 
            +
             | 
| 149 | 
            +
                    num_patches = grid_t * grid_h * grid_w
         | 
| 150 | 
            +
                    num_vision_tokens = num_patches // (merge_size**2)
         | 
| 151 | 
            +
             | 
| 152 | 
            +
                    return preprocessed_size, num_vision_tokens
         | 
| 153 | 
            +
             | 
| 154 | 
            +
             | 
| 155 | 
            +
            @MULTIMODAL_REGISTRY.register_processor(
         | 
| 156 | 
            +
                Qwen2_5_VLMultiModalProcessor,
         | 
| 157 | 
            +
                info=DotsOCRProcessingInfo,
         | 
| 158 | 
            +
                dummy_inputs=DotsOCRDummyInputsBuilder,
         | 
| 159 | 
            +
            )
         | 
| 160 | 
            +
            class DotsOCRForCausalLM(nn.Module, SupportsMultiModal):
         | 
| 161 | 
            +
                hf_to_vllm_mapper = WeightsMapper(
         | 
| 162 | 
            +
                    orig_to_new_prefix={
         | 
| 163 | 
            +
                        "lm_head.": "language_model.lm_head.",
         | 
| 164 | 
            +
                        "model.": "language_model.model.",
         | 
| 165 | 
            +
                    }
         | 
| 166 | 
            +
                )
         | 
| 167 | 
            +
                _tp_plan = {}
         | 
| 168 | 
            +
             | 
| 169 | 
            +
                def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
         | 
| 170 | 
            +
                    super().__init__()
         | 
| 171 | 
            +
             | 
| 172 | 
            +
                    self.config: DotsOCRConfig = vllm_config.model_config.hf_config
         | 
| 173 | 
            +
                    self.quant_config = vllm_config.quant_config
         | 
| 174 | 
            +
                    self.multimodal_config = vllm_config.model_config.multimodal_config
         | 
| 175 | 
            +
             | 
| 176 | 
            +
                    if isinstance(self.config.vision_config, dict):
         | 
| 177 | 
            +
                        vision_config = DotsVisionConfig(**self.config.vision_config)
         | 
| 178 | 
            +
                        self.config.vision_config = vision_config
         | 
| 179 | 
            +
                    else:
         | 
| 180 | 
            +
                        vision_config = self.config.vision_config
         | 
| 181 | 
            +
             | 
| 182 | 
            +
                    self.vision_tower = DotsVisionTransformer(vision_config)
         | 
| 183 | 
            +
                    self.language_model: Qwen2ForCausalLM = init_vllm_registered_model(
         | 
| 184 | 
            +
                        vllm_config=vllm_config,
         | 
| 185 | 
            +
                        hf_config=self.config,
         | 
| 186 | 
            +
                        prefix=maybe_prefix(prefix, "language_model"),
         | 
| 187 | 
            +
                        architectures=["Qwen2ForCausalLM"],
         | 
| 188 | 
            +
                    )
         | 
| 189 | 
            +
             | 
| 190 | 
            +
                @cached_property
         | 
| 191 | 
            +
                def sampler(self):
         | 
| 192 | 
            +
                    if hasattr(self.language_model, "sampler"):
         | 
| 193 | 
            +
                        return self.language_model.sampler
         | 
| 194 | 
            +
             | 
| 195 | 
            +
                    return get_sampler()
         | 
| 196 | 
            +
             | 
| 197 | 
            +
                def _validate_and_reshape_mm_tensor(self, mm_input: object, name: str) -> torch.Tensor:
         | 
| 198 | 
            +
                    if not isinstance(mm_input, (torch.Tensor, list)):
         | 
| 199 | 
            +
                        raise ValueError(f"Incorrect type of {name}. " f"Got type: {type(mm_input)}")
         | 
| 200 | 
            +
                    if isinstance(mm_input, torch.Tensor):
         | 
| 201 | 
            +
                        if mm_input.ndim == 2:
         | 
| 202 | 
            +
                            return mm_input
         | 
| 203 | 
            +
                        if mm_input.ndim != 3:
         | 
| 204 | 
            +
                            raise ValueError(
         | 
| 205 | 
            +
                                f"{name} should be 2D or batched 3D tensor. "
         | 
| 206 | 
            +
                                f"Got ndim: {mm_input.ndim} "
         | 
| 207 | 
            +
                                f"(shape={mm_input.shape})"
         | 
| 208 | 
            +
                            )
         | 
| 209 | 
            +
                        return torch.concat(list(mm_input))
         | 
| 210 | 
            +
                    else:
         | 
| 211 | 
            +
                        return torch.concat(mm_input)
         | 
| 212 | 
            +
             | 
| 213 | 
            +
                def _parse_and_validate_image_input(self, **kwargs: object) -> Optional[DotsOCRImageInputs]:
         | 
| 214 | 
            +
                    pixel_values = kwargs.pop("pixel_values", None)
         | 
| 215 | 
            +
                    image_embeds = kwargs.pop("image_embeds", None)
         | 
| 216 | 
            +
                    image_grid_thw = kwargs.pop("image_grid_thw", None)
         | 
| 217 | 
            +
             | 
| 218 | 
            +
                    if pixel_values is None and image_embeds is None:
         | 
| 219 | 
            +
                        return None
         | 
| 220 | 
            +
             | 
| 221 | 
            +
                    if pixel_values is not None:
         | 
| 222 | 
            +
                        pixel_values = self._validate_and_reshape_mm_tensor(pixel_values, "image pixel values")
         | 
| 223 | 
            +
                        image_grid_thw = self._validate_and_reshape_mm_tensor(image_grid_thw, "image grid_thw")
         | 
| 224 | 
            +
             | 
| 225 | 
            +
                        if not isinstance(pixel_values, (torch.Tensor, list)):
         | 
| 226 | 
            +
                            raise ValueError("Incorrect type of image pixel values. " f"Got type: {type(pixel_values)}")
         | 
| 227 | 
            +
             | 
| 228 | 
            +
                        return DotsOCRImagePixelInputs(
         | 
| 229 | 
            +
                            type="pixel_values", pixel_values=pixel_values, image_grid_thw=image_grid_thw
         | 
| 230 | 
            +
                        )
         | 
| 231 | 
            +
             | 
| 232 | 
            +
                    if image_embeds is not None:
         | 
| 233 | 
            +
                        image_embeds = self._validate_and_reshape_mm_tensor(image_embeds, "image embeds")
         | 
| 234 | 
            +
                        image_grid_thw = self._validate_and_reshape_mm_tensor(image_grid_thw, "image grid_thw")
         | 
| 235 | 
            +
             | 
| 236 | 
            +
                        if not isinstance(image_embeds, torch.Tensor):
         | 
| 237 | 
            +
                            raise ValueError("Incorrect type of image embeddings. " f"Got type: {type(image_embeds)}")
         | 
| 238 | 
            +
                        return DotsOCRImageEmbeddingInputs(
         | 
| 239 | 
            +
                            type="image_embeds", image_embeds=image_embeds, image_grid_thw=image_grid_thw
         | 
| 240 | 
            +
                        )
         | 
| 241 | 
            +
             | 
| 242 | 
            +
                def vision_forward(self, pixel_values: torch.Tensor, image_grid_thw: torch.Tensor):
         | 
| 243 | 
            +
                    from vllm.distributed import (
         | 
| 244 | 
            +
                        get_tensor_model_parallel_group,
         | 
| 245 | 
            +
                        get_tensor_model_parallel_rank,
         | 
| 246 | 
            +
                        get_tensor_model_parallel_world_size,
         | 
| 247 | 
            +
                    )
         | 
| 248 | 
            +
             | 
| 249 | 
            +
                    assert self.vision_tower is not None
         | 
| 250 | 
            +
             | 
| 251 | 
            +
                    tp_rank = get_tensor_model_parallel_rank()
         | 
| 252 | 
            +
                    tp = get_tensor_model_parallel_world_size()
         | 
| 253 | 
            +
             | 
| 254 | 
            +
                    image_grid_thw_chunk = image_grid_thw.chunk(tp)
         | 
| 255 | 
            +
                    image_sizes_consum = torch.tensor([i.prod(-1).sum() for i in image_grid_thw_chunk]).cumsum(dim=0)
         | 
| 256 | 
            +
                    merge_size_square = self.vision_tower.config.spatial_merge_size**2
         | 
| 257 | 
            +
                    image_embedding = torch.zeros(
         | 
| 258 | 
            +
                        (
         | 
| 259 | 
            +
                            pixel_values.shape[0] // merge_size_square,
         | 
| 260 | 
            +
                            self.vision_tower.config.hidden_size,
         | 
| 261 | 
            +
                        ),
         | 
| 262 | 
            +
                        device=pixel_values.device,
         | 
| 263 | 
            +
                        dtype=pixel_values.dtype,
         | 
| 264 | 
            +
                    )
         | 
| 265 | 
            +
             | 
| 266 | 
            +
                    if tp_rank < len(image_sizes_consum):
         | 
| 267 | 
            +
                        idx_start = 0 if tp_rank == 0 else image_sizes_consum[tp_rank - 1].item()
         | 
| 268 | 
            +
                        idx_end = image_sizes_consum[tp_rank].item()
         | 
| 269 | 
            +
                        pixel_values_part = pixel_values[idx_start:idx_end]
         | 
| 270 | 
            +
                        image_grid_thw_part = image_grid_thw_chunk[tp_rank]
         | 
| 271 | 
            +
                        image_embedding_part = self.vision_tower(pixel_values_part, image_grid_thw_part)
         | 
| 272 | 
            +
                        image_embedding[idx_start // merge_size_square : idx_end // merge_size_square] = image_embedding_part
         | 
| 273 | 
            +
             | 
| 274 | 
            +
                    group = get_tensor_model_parallel_group().device_group
         | 
| 275 | 
            +
                    torch.distributed.all_reduce(image_embedding, group=group)
         | 
| 276 | 
            +
                    return image_embedding
         | 
| 277 | 
            +
             | 
| 278 | 
            +
                def _process_image_input(self, image_input: DotsOCRImageInputs) -> tuple[torch.Tensor, ...]:
         | 
| 279 | 
            +
                    grid_thw = image_input["image_grid_thw"]
         | 
| 280 | 
            +
                    assert grid_thw.ndim == 2
         | 
| 281 | 
            +
             | 
| 282 | 
            +
                    if image_input["type"] == "image_embeds":
         | 
| 283 | 
            +
                        image_embeds = image_input["image_embeds"].type(self.vision_tower.dtype)
         | 
| 284 | 
            +
                    else:
         | 
| 285 | 
            +
                        pixel_values = image_input["pixel_values"].type(self.vision_tower.dtype)
         | 
| 286 | 
            +
                        image_embeds = self.vision_forward(pixel_values, grid_thw)[
         | 
| 287 | 
            +
                            :, : self.config.hidden_size
         | 
| 288 | 
            +
                        ]
         | 
| 289 | 
            +
             | 
| 290 | 
            +
                    # Split concatenated embeddings for each image item.
         | 
| 291 | 
            +
                    merge_size = self.vision_tower.config.spatial_merge_size
         | 
| 292 | 
            +
                    sizes = grid_thw.prod(-1) // merge_size // merge_size
         | 
| 293 | 
            +
             | 
| 294 | 
            +
                    return image_embeds.split(sizes.tolist())
         | 
| 295 | 
            +
             | 
| 296 | 
            +
                def _parse_and_validate_multimodal_inputs(self, **kwargs: object) -> dict:
         | 
| 297 | 
            +
                    modalities = {}
         | 
| 298 | 
            +
             | 
| 299 | 
            +
                    # Preserve the order of modalities if there are multiple of them
         | 
| 300 | 
            +
                    # from the order of kwargs.
         | 
| 301 | 
            +
                    for input_key in kwargs:
         | 
| 302 | 
            +
                        if input_key in ("pixel_values", "image_embeds") and "images" not in modalities:
         | 
| 303 | 
            +
                            modalities["images"] = self._parse_and_validate_image_input(**kwargs)
         | 
| 304 | 
            +
                    return modalities
         | 
| 305 | 
            +
             | 
| 306 | 
            +
                def get_language_model(self) -> torch.nn.Module:
         | 
| 307 | 
            +
                    return self.language_model
         | 
| 308 | 
            +
             | 
| 309 | 
            +
                def get_multimodal_embeddings(self, **kwargs: object) -> Optional[MultiModalEmbeddings]:
         | 
| 310 | 
            +
                    modalities = self._parse_and_validate_multimodal_inputs(**kwargs)
         | 
| 311 | 
            +
                    if not modalities:
         | 
| 312 | 
            +
                        return None
         | 
| 313 | 
            +
             | 
| 314 | 
            +
                    # The result multimodal_embeddings is tuple of tensors, with each
         | 
| 315 | 
            +
                    # tensor correspoending to a multimodal data item (image or video).
         | 
| 316 | 
            +
                    multimodal_embeddings: tuple[torch.Tensor, ...] = ()
         | 
| 317 | 
            +
             | 
| 318 | 
            +
                    # NOTE: It is important to iterate over the keys in this dictionary
         | 
| 319 | 
            +
                    # to preserve the order of the modalities.
         | 
| 320 | 
            +
                    for modality in modalities:
         | 
| 321 | 
            +
                        if modality == "images":
         | 
| 322 | 
            +
                            image_input = modalities["images"]
         | 
| 323 | 
            +
                            vision_embeddings = self._process_image_input(image_input)
         | 
| 324 | 
            +
                            multimodal_embeddings += vision_embeddings
         | 
| 325 | 
            +
             | 
| 326 | 
            +
                    return multimodal_embeddings
         | 
| 327 | 
            +
             | 
| 328 | 
            +
                def get_input_embeddings(
         | 
| 329 | 
            +
                    self,
         | 
| 330 | 
            +
                    input_ids: torch.Tensor,
         | 
| 331 | 
            +
                    multimodal_embeddings: Optional[MultiModalEmbeddings] = None,
         | 
| 332 | 
            +
                ) -> torch.Tensor:
         | 
| 333 | 
            +
                    inputs_embeds = self.language_model.get_input_embeddings(input_ids)
         | 
| 334 | 
            +
                    if multimodal_embeddings is not None:
         | 
| 335 | 
            +
                        inputs_embeds = merge_multimodal_embeddings(
         | 
| 336 | 
            +
                            input_ids,
         | 
| 337 | 
            +
                            inputs_embeds,
         | 
| 338 | 
            +
                            multimodal_embeddings,
         | 
| 339 | 
            +
                            [self.config.image_token_id, self.config.video_token_id],
         | 
| 340 | 
            +
                        )
         | 
| 341 | 
            +
             | 
| 342 | 
            +
                    return inputs_embeds
         | 
| 343 | 
            +
             | 
| 344 | 
            +
                def get_input_embeddings_v0(
         | 
| 345 | 
            +
                    self,
         | 
| 346 | 
            +
                    input_ids: torch.Tensor,
         | 
| 347 | 
            +
                    image_input: Optional[DotsOCRImagePixelInputs] = None,
         | 
| 348 | 
            +
                ) -> torch.Tensor:
         | 
| 349 | 
            +
                    inputs_embeds = self.get_input_embeddings(input_ids)
         | 
| 350 | 
            +
                    if image_input is not None:
         | 
| 351 | 
            +
                        image_embeds = self._process_image_input(image_input)
         | 
| 352 | 
            +
                        inputs_embeds = merge_multimodal_embeddings(
         | 
| 353 | 
            +
                            input_ids,
         | 
| 354 | 
            +
                            inputs_embeds,
         | 
| 355 | 
            +
                            image_embeds,
         | 
| 356 | 
            +
                            placeholder_token_id=self.config.image_token_id,
         | 
| 357 | 
            +
                        )
         | 
| 358 | 
            +
                    return inputs_embeds
         | 
| 359 | 
            +
             | 
| 360 | 
            +
                def forward(
         | 
| 361 | 
            +
                    self,
         | 
| 362 | 
            +
                    input_ids: Optional[torch.Tensor],
         | 
| 363 | 
            +
                    positions: torch.Tensor,
         | 
| 364 | 
            +
                    intermediate_tensors: Optional[IntermediateTensors] = None,
         | 
| 365 | 
            +
                    inputs_embeds: Optional[torch.Tensor] = None,
         | 
| 366 | 
            +
                    **kwargs,
         | 
| 367 | 
            +
                ) -> Union[torch.Tensor, IntermediateTensors]:
         | 
| 368 | 
            +
                    if intermediate_tensors is not None:
         | 
| 369 | 
            +
                        inputs_embeds = None
         | 
| 370 | 
            +
                    elif inputs_embeds is None and kwargs.get("pixel_values") is not None:
         | 
| 371 | 
            +
                        image_input = self._parse_and_validate_image_input(**kwargs)
         | 
| 372 | 
            +
                        if image_input is None:
         | 
| 373 | 
            +
                            inputs_embeds = None
         | 
| 374 | 
            +
                        else:
         | 
| 375 | 
            +
                            assert input_ids is not None
         | 
| 376 | 
            +
                            inputs_embeds = self.get_input_embeddings_v0(
         | 
| 377 | 
            +
                                input_ids,
         | 
| 378 | 
            +
                                image_input=image_input,
         | 
| 379 | 
            +
                            )
         | 
| 380 | 
            +
                            input_ids = None
         | 
| 381 | 
            +
             | 
| 382 | 
            +
                    hidden_states = self.language_model(
         | 
| 383 | 
            +
                        input_ids=input_ids,
         | 
| 384 | 
            +
                        positions=positions,
         | 
| 385 | 
            +
                        intermediate_tensors=intermediate_tensors,
         | 
| 386 | 
            +
                        inputs_embeds=inputs_embeds,
         | 
| 387 | 
            +
                    )
         | 
| 388 | 
            +
             | 
| 389 | 
            +
                    return hidden_states
         | 
| 390 | 
            +
             | 
| 391 | 
            +
                def compute_logits(
         | 
| 392 | 
            +
                    self,
         | 
| 393 | 
            +
                    hidden_states: torch.Tensor,
         | 
| 394 | 
            +
                    sampling_metadata: SamplingMetadata,
         | 
| 395 | 
            +
                ) -> Optional[torch.Tensor]:
         | 
| 396 | 
            +
                    return self.language_model.compute_logits(hidden_states, sampling_metadata)
         | 
| 397 | 
            +
             | 
| 398 | 
            +
                def sample(
         | 
| 399 | 
            +
                    self,
         | 
| 400 | 
            +
                    logits: Optional[torch.Tensor],
         | 
| 401 | 
            +
                    sampling_metadata: SamplingMetadata,
         | 
| 402 | 
            +
                ) -> Optional[SamplerOutput]:
         | 
| 403 | 
            +
                    next_tokens = self.sampler(logits, sampling_metadata)
         | 
| 404 | 
            +
                    return next_tokens
         | 
| 405 | 
            +
             | 
| 406 | 
            +
                def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]) -> Set[str]:
         | 
| 407 | 
            +
                    loader = AutoWeightsLoader(self)
         | 
| 408 | 
            +
                    return loader.load_weights(weights, mapper=self.hf_to_vllm_mapper)
         | 
| 409 | 
            +
             | 
| 410 | 
            +
             | 
| 411 | 
            +
            def patch_vllm_chat_placeholder():
         | 
| 412 | 
            +
                from vllm.entrypoints.chat_utils import BaseMultiModalItemTracker
         | 
| 413 | 
            +
             | 
| 414 | 
            +
                ori = BaseMultiModalItemTracker._placeholder_str
         | 
| 415 | 
            +
             | 
| 416 | 
            +
                def _placeholder_str(self, modality, current_count: int) -> Optional[str]:
         | 
| 417 | 
            +
                    hf_config = self._model_config.hf_config
         | 
| 418 | 
            +
                    model_type = hf_config.model_type
         | 
| 419 | 
            +
                    if modality in ("image",) and model_type in ["dots_ocr"]:
         | 
| 420 | 
            +
                        return "<|img|><|imgpad|><|endofimg|>"
         | 
| 421 | 
            +
                    return ori(self, modality, current_count)
         | 
| 422 | 
            +
             | 
| 423 | 
            +
                BaseMultiModalItemTracker._placeholder_str = _placeholder_str
         | 
| 424 | 
            +
             | 
| 425 | 
            +
            ModelRegistry.register_model(
         | 
| 426 | 
            +
                "DotsOCRForCausalLM", DotsOCRForCausalLM,
         | 
| 427 | 
            +
            )
         | 
| 428 | 
            +
             | 
| 429 | 
            +
            patch_vllm_chat_placeholder()
         | 
    	
        modeling_dots_vision.py
    ADDED
    
    | @@ -0,0 +1,405 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            import math
         | 
| 2 | 
            +
             | 
| 3 | 
            +
            import torch
         | 
| 4 | 
            +
            import torch.nn as nn
         | 
| 5 | 
            +
            import torch.nn.functional as F
         | 
| 6 | 
            +
            import torch.utils.checkpoint
         | 
| 7 | 
            +
            from flash_attn import flash_attn_varlen_func
         | 
| 8 | 
            +
            from torch.nn import LayerNorm
         | 
| 9 | 
            +
            from transformers.modeling_utils import PreTrainedModel
         | 
| 10 | 
            +
            from .configuration_dots import DotsVisionConfig
         | 
| 11 | 
            +
             | 
| 12 | 
            +
             | 
| 13 | 
            +
            def rotate_half(x):
         | 
| 14 | 
            +
                """Rotates half the hidden dims of the input."""
         | 
| 15 | 
            +
                x1 = x[..., : x.shape[-1] // 2]
         | 
| 16 | 
            +
                x2 = x[..., x.shape[-1] // 2 :]
         | 
| 17 | 
            +
                return torch.cat((-x2, x1), dim=-1)
         | 
| 18 | 
            +
             | 
| 19 | 
            +
             | 
| 20 | 
            +
            def apply_rotary_pos_emb_vision(tensor: torch.Tensor, freqs: torch.Tensor) -> torch.Tensor:
         | 
| 21 | 
            +
                orig_dtype = tensor.dtype
         | 
| 22 | 
            +
                tensor = tensor.float()
         | 
| 23 | 
            +
             | 
| 24 | 
            +
                cos = freqs.cos()
         | 
| 25 | 
            +
                sin = freqs.sin()
         | 
| 26 | 
            +
             | 
| 27 | 
            +
                cos = cos.unsqueeze(1).repeat(1, 1, 2).unsqueeze(0).float()
         | 
| 28 | 
            +
                sin = sin.unsqueeze(1).repeat(1, 1, 2).unsqueeze(0).float()
         | 
| 29 | 
            +
             | 
| 30 | 
            +
                output = (tensor * cos) + (rotate_half(tensor) * sin)
         | 
| 31 | 
            +
             | 
| 32 | 
            +
                output = output.to(orig_dtype)
         | 
| 33 | 
            +
             | 
| 34 | 
            +
                return output
         | 
| 35 | 
            +
             | 
| 36 | 
            +
             | 
| 37 | 
            +
            class VisionRotaryEmbedding(nn.Module):
         | 
| 38 | 
            +
                def __init__(self, dim: int, theta: float = 10000.0) -> None:
         | 
| 39 | 
            +
                    super().__init__()
         | 
| 40 | 
            +
                    inv_freq = 1.0 / (theta ** (torch.arange(0, dim, 2, dtype=torch.float) / dim))
         | 
| 41 | 
            +
                    self.register_buffer("inv_freq", inv_freq, persistent=False)
         | 
| 42 | 
            +
             | 
| 43 | 
            +
                def forward(self, seqlen: int) -> torch.Tensor:
         | 
| 44 | 
            +
                    seq = torch.arange(seqlen, device=self.inv_freq.device, dtype=self.inv_freq.dtype)
         | 
| 45 | 
            +
                    freqs = torch.outer(seq, self.inv_freq)
         | 
| 46 | 
            +
                    return freqs
         | 
| 47 | 
            +
             | 
| 48 | 
            +
             | 
| 49 | 
            +
            class PatchMerger(nn.Module):
         | 
| 50 | 
            +
                def __init__(
         | 
| 51 | 
            +
                    self,
         | 
| 52 | 
            +
                    dim: int,
         | 
| 53 | 
            +
                    context_dim: int,
         | 
| 54 | 
            +
                    spatial_merge_size: int = 2,
         | 
| 55 | 
            +
                    pre_norm="layernorm",
         | 
| 56 | 
            +
                    init_merger_std=None,
         | 
| 57 | 
            +
                ) -> None:
         | 
| 58 | 
            +
                    super().__init__()
         | 
| 59 | 
            +
                    self.hidden_size = context_dim * (spatial_merge_size**2)
         | 
| 60 | 
            +
                    self.pre_norm = pre_norm
         | 
| 61 | 
            +
                    if self.pre_norm == "layernorm":
         | 
| 62 | 
            +
                        self.ln_q = LayerNorm(context_dim, eps=1e-6)
         | 
| 63 | 
            +
                    elif self.pre_norm == "rmsnorm":
         | 
| 64 | 
            +
                        self.ln_q = RMSNorm(context_dim, eps=1e-6)
         | 
| 65 | 
            +
                    else:
         | 
| 66 | 
            +
                        print("no norm in patch merger")
         | 
| 67 | 
            +
             | 
| 68 | 
            +
                    self.mlp = nn.Sequential(
         | 
| 69 | 
            +
                        nn.Linear(self.hidden_size, self.hidden_size),
         | 
| 70 | 
            +
                        nn.GELU(),
         | 
| 71 | 
            +
                        nn.Linear(self.hidden_size, dim),
         | 
| 72 | 
            +
                    )
         | 
| 73 | 
            +
             | 
| 74 | 
            +
                    if init_merger_std is not None:
         | 
| 75 | 
            +
                        nn.init.normal_(self.mlp[0].weight, mean=0.0, std=init_merger_std)
         | 
| 76 | 
            +
                        nn.init.zeros_(self.mlp[0].bias)
         | 
| 77 | 
            +
                        nn.init.normal_(self.mlp[2].weight, mean=0.0, std=init_merger_std)
         | 
| 78 | 
            +
                        nn.init.zeros_(self.mlp[2].bias)
         | 
| 79 | 
            +
             | 
| 80 | 
            +
                def forward(self, x: torch.Tensor) -> torch.Tensor:
         | 
| 81 | 
            +
                    if self.pre_norm:
         | 
| 82 | 
            +
                        x = self.mlp(self.ln_q(x).view(-1, self.hidden_size))
         | 
| 83 | 
            +
                    else:
         | 
| 84 | 
            +
                        x = self.mlp(x.view(-1, self.hidden_size))
         | 
| 85 | 
            +
                    return x
         | 
| 86 | 
            +
             | 
| 87 | 
            +
             | 
| 88 | 
            +
            class VisionAttention(nn.Module):
         | 
| 89 | 
            +
                def __init__(self, config, dim: int, num_heads: int = 16, bias=True) -> None:
         | 
| 90 | 
            +
                    super().__init__()
         | 
| 91 | 
            +
                    self.num_heads = num_heads
         | 
| 92 | 
            +
                    self.head_dim = dim // num_heads
         | 
| 93 | 
            +
                    self.qkv = nn.Linear(dim, dim * 3, bias=bias)
         | 
| 94 | 
            +
                    self.proj = nn.Linear(dim, dim, bias=bias)
         | 
| 95 | 
            +
             | 
| 96 | 
            +
                def forward(
         | 
| 97 | 
            +
                    self,
         | 
| 98 | 
            +
                    hidden_states: torch.Tensor,
         | 
| 99 | 
            +
                    cu_seqlens: torch.Tensor,
         | 
| 100 | 
            +
                    rotary_pos_emb: torch.Tensor = None,
         | 
| 101 | 
            +
                ) -> torch.Tensor:
         | 
| 102 | 
            +
                    seq_length = hidden_states.shape[0]
         | 
| 103 | 
            +
             | 
| 104 | 
            +
                    q, k, v = self.qkv(hidden_states).reshape(seq_length, 3, self.num_heads, -1).permute(1, 0, 2, 3).unbind(0)
         | 
| 105 | 
            +
                    q = apply_rotary_pos_emb_vision(q.unsqueeze(0), rotary_pos_emb).squeeze(0)
         | 
| 106 | 
            +
                    k = apply_rotary_pos_emb_vision(k.unsqueeze(0), rotary_pos_emb).squeeze(0)
         | 
| 107 | 
            +
             | 
| 108 | 
            +
                    attention_mask = torch.full(
         | 
| 109 | 
            +
                        [1, seq_length, seq_length], torch.finfo(q.dtype).min, device=q.device, dtype=q.dtype
         | 
| 110 | 
            +
                    )
         | 
| 111 | 
            +
                    for i in range(1, len(cu_seqlens)):
         | 
| 112 | 
            +
                        attention_mask[..., cu_seqlens[i - 1] : cu_seqlens[i], cu_seqlens[i - 1] : cu_seqlens[i]] = 0
         | 
| 113 | 
            +
             | 
| 114 | 
            +
                    q = q.transpose(0, 1)
         | 
| 115 | 
            +
                    k = k.transpose(0, 1)
         | 
| 116 | 
            +
                    v = v.transpose(0, 1)
         | 
| 117 | 
            +
                    attn_weights = torch.matmul(q, k.transpose(1, 2)) / math.sqrt(self.head_dim)
         | 
| 118 | 
            +
                    attn_weights = attn_weights + attention_mask
         | 
| 119 | 
            +
                    attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(q.dtype)
         | 
| 120 | 
            +
                    attn_output = torch.matmul(attn_weights, v)
         | 
| 121 | 
            +
                    attn_output = attn_output.transpose(0, 1)
         | 
| 122 | 
            +
                    attn_output = attn_output.reshape(seq_length, -1)
         | 
| 123 | 
            +
                    attn_output = self.proj(attn_output)
         | 
| 124 | 
            +
                    return attn_output
         | 
| 125 | 
            +
             | 
| 126 | 
            +
             | 
| 127 | 
            +
            class VisionFlashAttention2(nn.Module):
         | 
| 128 | 
            +
                def __init__(self, config, dim: int, num_heads: int = 16, bias=True) -> None:
         | 
| 129 | 
            +
                    super().__init__()
         | 
| 130 | 
            +
                    self.num_heads = num_heads
         | 
| 131 | 
            +
                    self.qkv = nn.Linear(dim, dim * 3, bias=bias)
         | 
| 132 | 
            +
                    self.proj = nn.Linear(dim, dim, bias=bias)
         | 
| 133 | 
            +
                    self.config = config
         | 
| 134 | 
            +
                    self.is_causal = config.is_causal
         | 
| 135 | 
            +
             | 
| 136 | 
            +
                def forward(
         | 
| 137 | 
            +
                    self,
         | 
| 138 | 
            +
                    hidden_states: torch.Tensor,
         | 
| 139 | 
            +
                    cu_seqlens: torch.Tensor,
         | 
| 140 | 
            +
                    rotary_pos_emb: torch.Tensor = None,
         | 
| 141 | 
            +
                ) -> torch.Tensor:
         | 
| 142 | 
            +
                    seq_length = hidden_states.shape[0]
         | 
| 143 | 
            +
                    q, k, v = (
         | 
| 144 | 
            +
                        self.qkv(hidden_states).reshape(seq_length, 3, self.num_heads, -1).permute(1, 0, 2, 3).unbind(0)
         | 
| 145 | 
            +
                    )  # 'shd'
         | 
| 146 | 
            +
                    q = apply_rotary_pos_emb_vision(q.unsqueeze(0), rotary_pos_emb).squeeze(0)
         | 
| 147 | 
            +
                    k = apply_rotary_pos_emb_vision(k.unsqueeze(0), rotary_pos_emb).squeeze(0)
         | 
| 148 | 
            +
                    max_seqlen = (cu_seqlens[1:] - cu_seqlens[:-1]).max().item()
         | 
| 149 | 
            +
                    attn_output = flash_attn_varlen_func(
         | 
| 150 | 
            +
                        q, k, v, cu_seqlens, cu_seqlens, max_seqlen, max_seqlen, causal=self.is_causal
         | 
| 151 | 
            +
                    ).reshape(seq_length, -1)
         | 
| 152 | 
            +
                    attn_output = self.proj(attn_output)
         | 
| 153 | 
            +
             | 
| 154 | 
            +
                    return attn_output
         | 
| 155 | 
            +
             | 
| 156 | 
            +
             | 
| 157 | 
            +
            class VisionSdpaAttention(nn.Module):
         | 
| 158 | 
            +
                def __init__(self, config, dim: int, num_heads: int = 16, bias=True) -> None:
         | 
| 159 | 
            +
                    super().__init__()
         | 
| 160 | 
            +
                    self.num_heads = num_heads
         | 
| 161 | 
            +
                    self.qkv = nn.Linear(dim, dim * 3, bias=bias)
         | 
| 162 | 
            +
                    self.proj = nn.Linear(dim, dim, bias=bias)
         | 
| 163 | 
            +
                    self.config = config
         | 
| 164 | 
            +
             | 
| 165 | 
            +
                def forward(
         | 
| 166 | 
            +
                    self,
         | 
| 167 | 
            +
                    hidden_states: torch.Tensor,
         | 
| 168 | 
            +
                    cu_seqlens: torch.Tensor,
         | 
| 169 | 
            +
                    rotary_pos_emb: torch.Tensor = None,
         | 
| 170 | 
            +
                ) -> torch.Tensor:
         | 
| 171 | 
            +
                    seq_length = hidden_states.shape[0]
         | 
| 172 | 
            +
                    q, k, v = self.qkv(hidden_states).reshape(seq_length, 3, self.num_heads, -1).permute(1, 0, 2, 3).unbind(0)
         | 
| 173 | 
            +
             | 
| 174 | 
            +
                    q = apply_rotary_pos_emb_vision(q.unsqueeze(0), rotary_pos_emb).squeeze(0)
         | 
| 175 | 
            +
                    k = apply_rotary_pos_emb_vision(k.unsqueeze(0), rotary_pos_emb).squeeze(0)
         | 
| 176 | 
            +
             | 
| 177 | 
            +
                    attention_mask = torch.zeros([1, seq_length, seq_length], device=q.device, dtype=torch.bool)
         | 
| 178 | 
            +
                    for i in range(1, len(cu_seqlens)):
         | 
| 179 | 
            +
                        attention_mask[..., cu_seqlens[i - 1] : cu_seqlens[i], cu_seqlens[i - 1] : cu_seqlens[i]] = True
         | 
| 180 | 
            +
             | 
| 181 | 
            +
                    q = q.transpose(0, 1)
         | 
| 182 | 
            +
                    k = k.transpose(0, 1)
         | 
| 183 | 
            +
                    v = v.transpose(0, 1)
         | 
| 184 | 
            +
             | 
| 185 | 
            +
                    attn_output = F.scaled_dot_product_attention(q, k, v, attention_mask, dropout_p=0.0)
         | 
| 186 | 
            +
                    attn_output = attn_output.transpose(0, 1)
         | 
| 187 | 
            +
                    attn_output = attn_output.reshape(seq_length, -1)
         | 
| 188 | 
            +
             | 
| 189 | 
            +
                    attn_output = self.proj(attn_output)
         | 
| 190 | 
            +
                    return attn_output
         | 
| 191 | 
            +
             | 
| 192 | 
            +
             | 
| 193 | 
            +
            DOTS_VISION_ATTENTION_CLASSES = {
         | 
| 194 | 
            +
                "eager": VisionAttention,
         | 
| 195 | 
            +
                "flash_attention_2": VisionFlashAttention2,
         | 
| 196 | 
            +
                "sdpa": VisionSdpaAttention,
         | 
| 197 | 
            +
            }
         | 
| 198 | 
            +
             | 
| 199 | 
            +
             | 
| 200 | 
            +
            class RMSNorm(nn.Module):
         | 
| 201 | 
            +
                def __init__(self, dim: int, eps: float = 1e-6):
         | 
| 202 | 
            +
                    super().__init__()
         | 
| 203 | 
            +
                    self.weight = nn.Parameter(torch.ones(dim))
         | 
| 204 | 
            +
                    self.eps = eps
         | 
| 205 | 
            +
             | 
| 206 | 
            +
                def forward(self, x: torch.Tensor) -> torch.Tensor:
         | 
| 207 | 
            +
                    output = self._norm(x.float()).type_as(x)
         | 
| 208 | 
            +
                    return output * self.weight
         | 
| 209 | 
            +
             | 
| 210 | 
            +
                def extra_repr(self) -> str:
         | 
| 211 | 
            +
                    return f"{tuple(self.weight.shape)}, eps={self.eps}"
         | 
| 212 | 
            +
             | 
| 213 | 
            +
                def _norm(self, x: torch.Tensor) -> torch.Tensor:
         | 
| 214 | 
            +
                    return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
         | 
| 215 | 
            +
             | 
| 216 | 
            +
             | 
| 217 | 
            +
            class DotsSwiGLUFFN(nn.Module):
         | 
| 218 | 
            +
                def __init__(self, config):
         | 
| 219 | 
            +
                    super().__init__()
         | 
| 220 | 
            +
                    hidden_features = config.intermediate_size
         | 
| 221 | 
            +
                    in_features = config.embed_dim
         | 
| 222 | 
            +
                    bias = config.use_bias
         | 
| 223 | 
            +
             | 
| 224 | 
            +
                    self.fc1 = nn.Linear(in_features, hidden_features, bias=bias)
         | 
| 225 | 
            +
                    self.fc2 = nn.Linear(hidden_features, in_features, bias=bias)
         | 
| 226 | 
            +
                    self.fc3 = nn.Linear(in_features, hidden_features, bias=bias)
         | 
| 227 | 
            +
             | 
| 228 | 
            +
                def forward(self, x: torch.Tensor) -> torch.Tensor:
         | 
| 229 | 
            +
                    x = F.silu(self.fc1(x)) * self.fc3(x)
         | 
| 230 | 
            +
                    x = self.fc2(x)
         | 
| 231 | 
            +
                    return x
         | 
| 232 | 
            +
             | 
| 233 | 
            +
             | 
| 234 | 
            +
             | 
| 235 | 
            +
            class DotsPatchEmbed(nn.Module):
         | 
| 236 | 
            +
                def __init__(self, config):
         | 
| 237 | 
            +
                    super().__init__()
         | 
| 238 | 
            +
                    self.num_channels = config.num_channels
         | 
| 239 | 
            +
                    self.patch_size = config.patch_size
         | 
| 240 | 
            +
                    self.temporal_patch_size = config.temporal_patch_size
         | 
| 241 | 
            +
                    self.embed_dim = config.embed_dim
         | 
| 242 | 
            +
                    self.config = config
         | 
| 243 | 
            +
                    self.proj = nn.Conv2d(
         | 
| 244 | 
            +
                        config.num_channels,
         | 
| 245 | 
            +
                        config.embed_dim,
         | 
| 246 | 
            +
                        kernel_size=(config.patch_size, config.patch_size),
         | 
| 247 | 
            +
                        stride=(config.patch_size, config.patch_size),
         | 
| 248 | 
            +
                    )
         | 
| 249 | 
            +
                    self.norm = RMSNorm(config.embed_dim, eps=config.rms_norm_eps)
         | 
| 250 | 
            +
             | 
| 251 | 
            +
                def forward(self, x: torch.Tensor, grid_thw=None) -> torch.Tensor:
         | 
| 252 | 
            +
                    x = x.view(-1, self.num_channels, self.temporal_patch_size, self.patch_size, self.patch_size)[:, :, 0] 
         | 
| 253 | 
            +
                    x = self.proj(x).view(-1, self.embed_dim)
         | 
| 254 | 
            +
                    x = self.norm(x)
         | 
| 255 | 
            +
                    return x
         | 
| 256 | 
            +
             | 
| 257 | 
            +
             | 
| 258 | 
            +
            class DotsViTPreprocessor(nn.Module):
         | 
| 259 | 
            +
                def __init__(self, config):
         | 
| 260 | 
            +
                    super().__init__()
         | 
| 261 | 
            +
                    self.patch_h = config.patch_size
         | 
| 262 | 
            +
                    self.patch_w = config.patch_size
         | 
| 263 | 
            +
                    self.embed_dim = config.embed_dim
         | 
| 264 | 
            +
                    self.config = config
         | 
| 265 | 
            +
                    self.patchifier = DotsPatchEmbed(config)
         | 
| 266 | 
            +
             | 
| 267 | 
            +
                def forward(self, x: torch.Tensor, grid_thw=None) -> torch.Tensor:
         | 
| 268 | 
            +
                    tokens = self.patchifier(x, grid_thw)
         | 
| 269 | 
            +
                    return tokens
         | 
| 270 | 
            +
             | 
| 271 | 
            +
             | 
| 272 | 
            +
            class DotsVisionBlock(nn.Module):
         | 
| 273 | 
            +
                def __init__(self, config, attn_implementation: str = "flash_attention_2"):
         | 
| 274 | 
            +
                    super().__init__()
         | 
| 275 | 
            +
                    self.attn = DOTS_VISION_ATTENTION_CLASSES[attn_implementation](
         | 
| 276 | 
            +
                        config, config.embed_dim, num_heads=config.num_attention_heads, bias=config.use_bias
         | 
| 277 | 
            +
                    )
         | 
| 278 | 
            +
                    self.norm1 = RMSNorm(config.embed_dim, eps=config.rms_norm_eps)
         | 
| 279 | 
            +
                    self.mlp = DotsSwiGLUFFN(config)
         | 
| 280 | 
            +
                    self.norm2 = RMSNorm(config.embed_dim, eps=config.rms_norm_eps)
         | 
| 281 | 
            +
             | 
| 282 | 
            +
                def forward(self, hidden_states, cu_seqlens, rotary_pos_emb) -> torch.Tensor:
         | 
| 283 | 
            +
                    hidden_states = hidden_states + self.attn(
         | 
| 284 | 
            +
                        self.norm1(hidden_states), cu_seqlens=cu_seqlens, rotary_pos_emb=rotary_pos_emb
         | 
| 285 | 
            +
                    )
         | 
| 286 | 
            +
                    hidden_states = hidden_states + self.mlp(self.norm2(hidden_states))
         | 
| 287 | 
            +
                    return hidden_states
         | 
| 288 | 
            +
             | 
| 289 | 
            +
             | 
| 290 | 
            +
            class DotsVisionTransformer(PreTrainedModel):
         | 
| 291 | 
            +
                def __init__(self, config: DotsVisionConfig) -> None:
         | 
| 292 | 
            +
                    super().__init__(config)
         | 
| 293 | 
            +
                    self.config = config
         | 
| 294 | 
            +
                    self.spatial_merge_size = config.spatial_merge_size
         | 
| 295 | 
            +
             | 
| 296 | 
            +
                    self.patch_embed = DotsViTPreprocessor(config)
         | 
| 297 | 
            +
                    self._init_weights(self.patch_embed.patchifier.proj)
         | 
| 298 | 
            +
             | 
| 299 | 
            +
                    head_dim = config.embed_dim // config.num_attention_heads
         | 
| 300 | 
            +
             | 
| 301 | 
            +
                    self.rotary_pos_emb = VisionRotaryEmbedding(head_dim // 2)
         | 
| 302 | 
            +
             | 
| 303 | 
            +
                    _num_hidden_layers = config.num_hidden_layers
         | 
| 304 | 
            +
                    self.blocks = nn.ModuleList(
         | 
| 305 | 
            +
                        [DotsVisionBlock(config, config.attn_implementation) for _ in range(_num_hidden_layers)]
         | 
| 306 | 
            +
                    )
         | 
| 307 | 
            +
             | 
| 308 | 
            +
                    if self.config.post_norm:
         | 
| 309 | 
            +
                        self.post_trunk_norm = RMSNorm(config.embed_dim, eps=config.rms_norm_eps)
         | 
| 310 | 
            +
             | 
| 311 | 
            +
                    self.merger = PatchMerger(
         | 
| 312 | 
            +
                        dim=config.hidden_size,
         | 
| 313 | 
            +
                        context_dim=config.embed_dim,
         | 
| 314 | 
            +
                        spatial_merge_size=config.spatial_merge_size,
         | 
| 315 | 
            +
                        init_merger_std=self.config.init_merger_std,
         | 
| 316 | 
            +
                    )
         | 
| 317 | 
            +
             | 
| 318 | 
            +
                    self.gradient_checkpointing = False
         | 
| 319 | 
            +
                    self._gradient_checkpointing_func = torch.utils.checkpoint.checkpoint
         | 
| 320 | 
            +
             | 
| 321 | 
            +
                def _init_weights(self, module):
         | 
| 322 | 
            +
                    std = self.config.initializer_range
         | 
| 323 | 
            +
                    if isinstance(module, (nn.Linear, nn.Conv3d)):
         | 
| 324 | 
            +
                        module.weight.data.normal_(mean=0.0, std=std)
         | 
| 325 | 
            +
                        if module.bias is not None:
         | 
| 326 | 
            +
                            module.bias.data.zero_()
         | 
| 327 | 
            +
                    elif isinstance(module, nn.Embedding):
         | 
| 328 | 
            +
                        module.weight.data.normal_(mean=0.0, std=std)
         | 
| 329 | 
            +
                        if module.padding_idx is not None:
         | 
| 330 | 
            +
                            module.weight.data[module.padding_idx].zero_()
         | 
| 331 | 
            +
             | 
| 332 | 
            +
                @property
         | 
| 333 | 
            +
                def dtype(self) -> torch.dtype:
         | 
| 334 | 
            +
                    return self.blocks[0].mlp.fc2.weight.dtype
         | 
| 335 | 
            +
             | 
| 336 | 
            +
                @property
         | 
| 337 | 
            +
                def device(self) -> torch.device:
         | 
| 338 | 
            +
                    return self.blocks[0].mlp.fc2.weight.device
         | 
| 339 | 
            +
             | 
| 340 | 
            +
                def get_pos_ids_by_grid(self, grid_thw):
         | 
| 341 | 
            +
                    pos_ids = []
         | 
| 342 | 
            +
                    for t, h, w in grid_thw:
         | 
| 343 | 
            +
                        hpos_ids = torch.arange(h).unsqueeze(1).expand(-1, w)
         | 
| 344 | 
            +
                        hpos_ids = hpos_ids.reshape(
         | 
| 345 | 
            +
                            h // self.spatial_merge_size,
         | 
| 346 | 
            +
                            self.spatial_merge_size,
         | 
| 347 | 
            +
                            w // self.spatial_merge_size,
         | 
| 348 | 
            +
                            self.spatial_merge_size,
         | 
| 349 | 
            +
                        )
         | 
| 350 | 
            +
                        hpos_ids = hpos_ids.permute(0, 2, 1, 3)
         | 
| 351 | 
            +
                        hpos_ids = hpos_ids.flatten()
         | 
| 352 | 
            +
             | 
| 353 | 
            +
                        wpos_ids = torch.arange(w).unsqueeze(0).expand(h, -1)
         | 
| 354 | 
            +
                        wpos_ids = wpos_ids.reshape(
         | 
| 355 | 
            +
                            h // self.spatial_merge_size,
         | 
| 356 | 
            +
                            self.spatial_merge_size,
         | 
| 357 | 
            +
                            w // self.spatial_merge_size,
         | 
| 358 | 
            +
                            self.spatial_merge_size,
         | 
| 359 | 
            +
                        )
         | 
| 360 | 
            +
                        wpos_ids = wpos_ids.permute(0, 2, 1, 3)
         | 
| 361 | 
            +
                        wpos_ids = wpos_ids.flatten()
         | 
| 362 | 
            +
                        pos_ids.append(
         | 
| 363 | 
            +
                            torch.stack([hpos_ids, wpos_ids], dim=-1).repeat(t, 1)
         | 
| 364 | 
            +
                        )
         | 
| 365 | 
            +
             | 
| 366 | 
            +
                    return pos_ids
         | 
| 367 | 
            +
             | 
| 368 | 
            +
                def rot_pos_emb(self, grid_thw):
         | 
| 369 | 
            +
                    pos_ids = self.get_pos_ids_by_grid(grid_thw)
         | 
| 370 | 
            +
                    pos_ids = torch.cat(pos_ids, dim=0)
         | 
| 371 | 
            +
                    max_grid_size = grid_thw[:, 1:].max()
         | 
| 372 | 
            +
                    rotary_pos_emb_full = self.rotary_pos_emb(max_grid_size)
         | 
| 373 | 
            +
                    rotary_pos_emb = rotary_pos_emb_full[pos_ids].flatten(1)
         | 
| 374 | 
            +
                    return rotary_pos_emb
         | 
| 375 | 
            +
             | 
| 376 | 
            +
                def forward(self, hidden_states: torch.Tensor, grid_thw: torch.Tensor, bf16=True) -> torch.Tensor:
         | 
| 377 | 
            +
                    if bf16:
         | 
| 378 | 
            +
                        hidden_states = hidden_states.bfloat16()
         | 
| 379 | 
            +
                    hidden_states = self.patch_embed(hidden_states, grid_thw)
         | 
| 380 | 
            +
             | 
| 381 | 
            +
                    rotary_pos_emb = self.rot_pos_emb(grid_thw)
         | 
| 382 | 
            +
             | 
| 383 | 
            +
                    cu_seqlens = torch.repeat_interleave(grid_thw[:, 1] * grid_thw[:, 2], grid_thw[:, 0]).cumsum(
         | 
| 384 | 
            +
                        dim=0,
         | 
| 385 | 
            +
                        dtype=grid_thw.dtype if torch.jit.is_tracing() else torch.int32,
         | 
| 386 | 
            +
                    )
         | 
| 387 | 
            +
                    cu_seqlens = F.pad(cu_seqlens, (1, 0), value=0)
         | 
| 388 | 
            +
             | 
| 389 | 
            +
                    for blk in self.blocks:
         | 
| 390 | 
            +
                        if self.gradient_checkpointing and self.training:
         | 
| 391 | 
            +
                            hidden_states = self._gradient_checkpointing_func(
         | 
| 392 | 
            +
                                blk.__call__,
         | 
| 393 | 
            +
                                hidden_states,
         | 
| 394 | 
            +
                                cu_seqlens,
         | 
| 395 | 
            +
                                rotary_pos_emb,
         | 
| 396 | 
            +
                                use_reentrant=(self.config.ckpt_use_reentrant or self.config.ve_ckpt_use_reentrant),
         | 
| 397 | 
            +
                            )
         | 
| 398 | 
            +
                        else:
         | 
| 399 | 
            +
                            hidden_states = blk(hidden_states, cu_seqlens=cu_seqlens, rotary_pos_emb=rotary_pos_emb)
         | 
| 400 | 
            +
             | 
| 401 | 
            +
                    if self.config.post_norm:
         | 
| 402 | 
            +
                        hidden_states = self.post_trunk_norm(hidden_states)
         | 
| 403 | 
            +
             | 
| 404 | 
            +
                    hidden_states = self.merger(hidden_states)
         | 
| 405 | 
            +
                    return hidden_states
         | 
    	
        preprocessor_config.json
    ADDED
    
    | @@ -0,0 +1,19 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "min_pixels": 3136,
         | 
| 3 | 
            +
              "max_pixels": 11289600,
         | 
| 4 | 
            +
              "patch_size": 14,
         | 
| 5 | 
            +
              "temporal_patch_size": 1,
         | 
| 6 | 
            +
              "merge_size": 2,
         | 
| 7 | 
            +
              "image_mean": [
         | 
| 8 | 
            +
                0.48145466,
         | 
| 9 | 
            +
                0.4578275,
         | 
| 10 | 
            +
                0.40821073
         | 
| 11 | 
            +
              ],
         | 
| 12 | 
            +
              "image_std": [
         | 
| 13 | 
            +
                0.26862954,
         | 
| 14 | 
            +
                0.26130258,
         | 
| 15 | 
            +
                0.27577711
         | 
| 16 | 
            +
              ],
         | 
| 17 | 
            +
              "image_processor_type": "Qwen2VLImageProcessor",
         | 
| 18 | 
            +
              "processor_class": "DotsVLProcessor"
         | 
| 19 | 
            +
            }
         | 
    	
        special_tokens_map.json
    ADDED
    
    | @@ -0,0 +1,25 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "additional_special_tokens": [
         | 
| 3 | 
            +
                "<|im_start|>",
         | 
| 4 | 
            +
                "<|im_end|>",
         | 
| 5 | 
            +
                "<|object_ref_start|>",
         | 
| 6 | 
            +
                "<|object_ref_end|>",
         | 
| 7 | 
            +
                "<|box_start|>",
         | 
| 8 | 
            +
                "<|box_end|>",
         | 
| 9 | 
            +
                "<|quad_start|>",
         | 
| 10 | 
            +
                "<|quad_end|>",
         | 
| 11 | 
            +
                "<|vision_start|>",
         | 
| 12 | 
            +
                "<|vision_end|>",
         | 
| 13 | 
            +
                "<|vision_pad|>",
         | 
| 14 | 
            +
                "<|image_pad|>",
         | 
| 15 | 
            +
                "<|video_pad|>"
         | 
| 16 | 
            +
              ],
         | 
| 17 | 
            +
              "eos_token": {
         | 
| 18 | 
            +
                "content": "<|endoftext|>",
         | 
| 19 | 
            +
                "lstrip": false,
         | 
| 20 | 
            +
                "normalized": false,
         | 
| 21 | 
            +
                "rstrip": false,
         | 
| 22 | 
            +
                "single_word": false
         | 
| 23 | 
            +
              },
         | 
| 24 | 
            +
              "pad_token": "[PAD]"
         | 
| 25 | 
            +
            }
         | 
    	
        tokenizer.json
    ADDED
    
    | The diff for this file is too large to render. 
		See raw diff | 
|  | 
    	
        tokenizer_config.json
    ADDED
    
    | @@ -0,0 +1,391 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "add_bos_token": false,
         | 
| 3 | 
            +
              "add_prefix_space": false,
         | 
| 4 | 
            +
              "added_tokens_decoder": {
         | 
| 5 | 
            +
                "151643": {
         | 
| 6 | 
            +
                  "content": "<|endoftext|>",
         | 
| 7 | 
            +
                  "lstrip": false,
         | 
| 8 | 
            +
                  "normalized": false,
         | 
| 9 | 
            +
                  "rstrip": false,
         | 
| 10 | 
            +
                  "single_word": false,
         | 
| 11 | 
            +
                  "special": true
         | 
| 12 | 
            +
                },
         | 
| 13 | 
            +
                "151644": {
         | 
| 14 | 
            +
                  "content": "<|im_start|>",
         | 
| 15 | 
            +
                  "lstrip": false,
         | 
| 16 | 
            +
                  "normalized": false,
         | 
| 17 | 
            +
                  "rstrip": false,
         | 
| 18 | 
            +
                  "single_word": false,
         | 
| 19 | 
            +
                  "special": true
         | 
| 20 | 
            +
                },
         | 
| 21 | 
            +
                "151645": {
         | 
| 22 | 
            +
                  "content": "<|im_end|>",
         | 
| 23 | 
            +
                  "lstrip": false,
         | 
| 24 | 
            +
                  "normalized": false,
         | 
| 25 | 
            +
                  "rstrip": false,
         | 
| 26 | 
            +
                  "single_word": false,
         | 
| 27 | 
            +
                  "special": true
         | 
| 28 | 
            +
                },
         | 
| 29 | 
            +
                "151646": {
         | 
| 30 | 
            +
                  "content": "<|object_ref_start|>",
         | 
| 31 | 
            +
                  "lstrip": false,
         | 
| 32 | 
            +
                  "normalized": false,
         | 
| 33 | 
            +
                  "rstrip": false,
         | 
| 34 | 
            +
                  "single_word": false,
         | 
| 35 | 
            +
                  "special": true
         | 
| 36 | 
            +
                },
         | 
| 37 | 
            +
                "151647": {
         | 
| 38 | 
            +
                  "content": "<|object_ref_end|>",
         | 
| 39 | 
            +
                  "lstrip": false,
         | 
| 40 | 
            +
                  "normalized": false,
         | 
| 41 | 
            +
                  "rstrip": false,
         | 
| 42 | 
            +
                  "single_word": false,
         | 
| 43 | 
            +
                  "special": true
         | 
| 44 | 
            +
                },
         | 
| 45 | 
            +
                "151648": {
         | 
| 46 | 
            +
                  "content": "<|box_start|>",
         | 
| 47 | 
            +
                  "lstrip": false,
         | 
| 48 | 
            +
                  "normalized": false,
         | 
| 49 | 
            +
                  "rstrip": false,
         | 
| 50 | 
            +
                  "single_word": false,
         | 
| 51 | 
            +
                  "special": true
         | 
| 52 | 
            +
                },
         | 
| 53 | 
            +
                "151649": {
         | 
| 54 | 
            +
                  "content": "<|box_end|>",
         | 
| 55 | 
            +
                  "lstrip": false,
         | 
| 56 | 
            +
                  "normalized": false,
         | 
| 57 | 
            +
                  "rstrip": false,
         | 
| 58 | 
            +
                  "single_word": false,
         | 
| 59 | 
            +
                  "special": true
         | 
| 60 | 
            +
                },
         | 
| 61 | 
            +
                "151650": {
         | 
| 62 | 
            +
                  "content": "<|quad_start|>",
         | 
| 63 | 
            +
                  "lstrip": false,
         | 
| 64 | 
            +
                  "normalized": false,
         | 
| 65 | 
            +
                  "rstrip": false,
         | 
| 66 | 
            +
                  "single_word": false,
         | 
| 67 | 
            +
                  "special": true
         | 
| 68 | 
            +
                },
         | 
| 69 | 
            +
                "151651": {
         | 
| 70 | 
            +
                  "content": "<|quad_end|>",
         | 
| 71 | 
            +
                  "lstrip": false,
         | 
| 72 | 
            +
                  "normalized": false,
         | 
| 73 | 
            +
                  "rstrip": false,
         | 
| 74 | 
            +
                  "single_word": false,
         | 
| 75 | 
            +
                  "special": true
         | 
| 76 | 
            +
                },
         | 
| 77 | 
            +
                "151652": {
         | 
| 78 | 
            +
                  "content": "<|vision_start|>",
         | 
| 79 | 
            +
                  "lstrip": false,
         | 
| 80 | 
            +
                  "normalized": false,
         | 
| 81 | 
            +
                  "rstrip": false,
         | 
| 82 | 
            +
                  "single_word": false,
         | 
| 83 | 
            +
                  "special": true
         | 
| 84 | 
            +
                },
         | 
| 85 | 
            +
                "151653": {
         | 
| 86 | 
            +
                  "content": "<|vision_end|>",
         | 
| 87 | 
            +
                  "lstrip": false,
         | 
| 88 | 
            +
                  "normalized": false,
         | 
| 89 | 
            +
                  "rstrip": false,
         | 
| 90 | 
            +
                  "single_word": false,
         | 
| 91 | 
            +
                  "special": true
         | 
| 92 | 
            +
                },
         | 
| 93 | 
            +
                "151654": {
         | 
| 94 | 
            +
                  "content": "<|vision_pad|>",
         | 
| 95 | 
            +
                  "lstrip": false,
         | 
| 96 | 
            +
                  "normalized": false,
         | 
| 97 | 
            +
                  "rstrip": false,
         | 
| 98 | 
            +
                  "single_word": false,
         | 
| 99 | 
            +
                  "special": true
         | 
| 100 | 
            +
                },
         | 
| 101 | 
            +
                "151655": {
         | 
| 102 | 
            +
                  "content": "<|image_pad|>",
         | 
| 103 | 
            +
                  "lstrip": false,
         | 
| 104 | 
            +
                  "normalized": false,
         | 
| 105 | 
            +
                  "rstrip": false,
         | 
| 106 | 
            +
                  "single_word": false,
         | 
| 107 | 
            +
                  "special": true
         | 
| 108 | 
            +
                },
         | 
| 109 | 
            +
                "151656": {
         | 
| 110 | 
            +
                  "content": "<|video_pad|>",
         | 
| 111 | 
            +
                  "lstrip": false,
         | 
| 112 | 
            +
                  "normalized": false,
         | 
| 113 | 
            +
                  "rstrip": false,
         | 
| 114 | 
            +
                  "single_word": false,
         | 
| 115 | 
            +
                  "special": true
         | 
| 116 | 
            +
                },
         | 
| 117 | 
            +
                "151657": {
         | 
| 118 | 
            +
                  "content": "<tool_call>",
         | 
| 119 | 
            +
                  "lstrip": false,
         | 
| 120 | 
            +
                  "normalized": false,
         | 
| 121 | 
            +
                  "rstrip": false,
         | 
| 122 | 
            +
                  "single_word": false,
         | 
| 123 | 
            +
                  "special": false
         | 
| 124 | 
            +
                },
         | 
| 125 | 
            +
                "151658": {
         | 
| 126 | 
            +
                  "content": "</tool_call>",
         | 
| 127 | 
            +
                  "lstrip": false,
         | 
| 128 | 
            +
                  "normalized": false,
         | 
| 129 | 
            +
                  "rstrip": false,
         | 
| 130 | 
            +
                  "single_word": false,
         | 
| 131 | 
            +
                  "special": false
         | 
| 132 | 
            +
                },
         | 
| 133 | 
            +
                "151659": {
         | 
| 134 | 
            +
                  "content": "<|fim_prefix|>",
         | 
| 135 | 
            +
                  "lstrip": false,
         | 
| 136 | 
            +
                  "normalized": false,
         | 
| 137 | 
            +
                  "rstrip": false,
         | 
| 138 | 
            +
                  "single_word": false,
         | 
| 139 | 
            +
                  "special": false
         | 
| 140 | 
            +
                },
         | 
| 141 | 
            +
                "151660": {
         | 
| 142 | 
            +
                  "content": "<|fim_middle|>",
         | 
| 143 | 
            +
                  "lstrip": false,
         | 
| 144 | 
            +
                  "normalized": false,
         | 
| 145 | 
            +
                  "rstrip": false,
         | 
| 146 | 
            +
                  "single_word": false,
         | 
| 147 | 
            +
                  "special": false
         | 
| 148 | 
            +
                },
         | 
| 149 | 
            +
                "151661": {
         | 
| 150 | 
            +
                  "content": "<|fim_suffix|>",
         | 
| 151 | 
            +
                  "lstrip": false,
         | 
| 152 | 
            +
                  "normalized": false,
         | 
| 153 | 
            +
                  "rstrip": false,
         | 
| 154 | 
            +
                  "single_word": false,
         | 
| 155 | 
            +
                  "special": false
         | 
| 156 | 
            +
                },
         | 
| 157 | 
            +
                "151662": {
         | 
| 158 | 
            +
                  "content": "<|fim_pad|>",
         | 
| 159 | 
            +
                  "lstrip": false,
         | 
| 160 | 
            +
                  "normalized": false,
         | 
| 161 | 
            +
                  "rstrip": false,
         | 
| 162 | 
            +
                  "single_word": false,
         | 
| 163 | 
            +
                  "special": false
         | 
| 164 | 
            +
                },
         | 
| 165 | 
            +
                "151663": {
         | 
| 166 | 
            +
                  "content": "<|repo_name|>",
         | 
| 167 | 
            +
                  "lstrip": false,
         | 
| 168 | 
            +
                  "normalized": false,
         | 
| 169 | 
            +
                  "rstrip": false,
         | 
| 170 | 
            +
                  "single_word": false,
         | 
| 171 | 
            +
                  "special": false
         | 
| 172 | 
            +
                },
         | 
| 173 | 
            +
                "151664": {
         | 
| 174 | 
            +
                  "content": "<|file_sep|>",
         | 
| 175 | 
            +
                  "lstrip": false,
         | 
| 176 | 
            +
                  "normalized": false,
         | 
| 177 | 
            +
                  "rstrip": false,
         | 
| 178 | 
            +
                  "single_word": false,
         | 
| 179 | 
            +
                  "special": false
         | 
| 180 | 
            +
                },
         | 
| 181 | 
            +
                "151665": {
         | 
| 182 | 
            +
                  "content": "<|imgpad|>",
         | 
| 183 | 
            +
                  "lstrip": false,
         | 
| 184 | 
            +
                  "normalized": false,
         | 
| 185 | 
            +
                  "rstrip": false,
         | 
| 186 | 
            +
                  "single_word": false,
         | 
| 187 | 
            +
                  "special": true
         | 
| 188 | 
            +
                },
         | 
| 189 | 
            +
                "151666": {
         | 
| 190 | 
            +
                  "content": "<|img|>",
         | 
| 191 | 
            +
                  "lstrip": false,
         | 
| 192 | 
            +
                  "normalized": false,
         | 
| 193 | 
            +
                  "rstrip": false,
         | 
| 194 | 
            +
                  "single_word": false,
         | 
| 195 | 
            +
                  "special": true
         | 
| 196 | 
            +
                },
         | 
| 197 | 
            +
                "151667": {
         | 
| 198 | 
            +
                  "content": "<|endofimg|>",
         | 
| 199 | 
            +
                  "lstrip": false,
         | 
| 200 | 
            +
                  "normalized": false,
         | 
| 201 | 
            +
                  "rstrip": false,
         | 
| 202 | 
            +
                  "single_word": false,
         | 
| 203 | 
            +
                  "special": true
         | 
| 204 | 
            +
                },
         | 
| 205 | 
            +
                "151668": {
         | 
| 206 | 
            +
                  "content": "<|systemprompt|>",
         | 
| 207 | 
            +
                  "lstrip": false,
         | 
| 208 | 
            +
                  "normalized": false,
         | 
| 209 | 
            +
                  "rstrip": false,
         | 
| 210 | 
            +
                  "single_word": false,
         | 
| 211 | 
            +
                  "special": true
         | 
| 212 | 
            +
                },
         | 
| 213 | 
            +
                "151669": {
         | 
| 214 | 
            +
                  "content": "<|endofsystemprompt|>",
         | 
| 215 | 
            +
                  "lstrip": false,
         | 
| 216 | 
            +
                  "normalized": false,
         | 
| 217 | 
            +
                  "rstrip": false,
         | 
| 218 | 
            +
                  "single_word": false,
         | 
| 219 | 
            +
                  "special": true
         | 
| 220 | 
            +
                },
         | 
| 221 | 
            +
                "151670": {
         | 
| 222 | 
            +
                  "content": "<|user|>",
         | 
| 223 | 
            +
                  "lstrip": false,
         | 
| 224 | 
            +
                  "normalized": false,
         | 
| 225 | 
            +
                  "rstrip": false,
         | 
| 226 | 
            +
                  "single_word": false,
         | 
| 227 | 
            +
                  "special": true
         | 
| 228 | 
            +
                },
         | 
| 229 | 
            +
                "151671": {
         | 
| 230 | 
            +
                  "content": "<|endofuser|>",
         | 
| 231 | 
            +
                  "lstrip": false,
         | 
| 232 | 
            +
                  "normalized": false,
         | 
| 233 | 
            +
                  "rstrip": false,
         | 
| 234 | 
            +
                  "single_word": false,
         | 
| 235 | 
            +
                  "special": true
         | 
| 236 | 
            +
                },
         | 
| 237 | 
            +
                "151672": {
         | 
| 238 | 
            +
                  "content": "<|assistant|>",
         | 
| 239 | 
            +
                  "lstrip": false,
         | 
| 240 | 
            +
                  "normalized": false,
         | 
| 241 | 
            +
                  "rstrip": false,
         | 
| 242 | 
            +
                  "single_word": false,
         | 
| 243 | 
            +
                  "special": true
         | 
| 244 | 
            +
                },
         | 
| 245 | 
            +
                "151673": {
         | 
| 246 | 
            +
                  "content": "<|endofassistant|>",
         | 
| 247 | 
            +
                  "lstrip": false,
         | 
| 248 | 
            +
                  "normalized": false,
         | 
| 249 | 
            +
                  "rstrip": false,
         | 
| 250 | 
            +
                  "single_word": false,
         | 
| 251 | 
            +
                  "special": true
         | 
| 252 | 
            +
                },
         | 
| 253 | 
            +
                "151674": {
         | 
| 254 | 
            +
                  "content": "<|ref_start|>",
         | 
| 255 | 
            +
                  "lstrip": false,
         | 
| 256 | 
            +
                  "normalized": false,
         | 
| 257 | 
            +
                  "rstrip": false,
         | 
| 258 | 
            +
                  "single_word": false,
         | 
| 259 | 
            +
                  "special": true
         | 
| 260 | 
            +
                },
         | 
| 261 | 
            +
                "151675": {
         | 
| 262 | 
            +
                  "content": "<|ref_end|>",
         | 
| 263 | 
            +
                  "lstrip": false,
         | 
| 264 | 
            +
                  "normalized": false,
         | 
| 265 | 
            +
                  "rstrip": false,
         | 
| 266 | 
            +
                  "single_word": false,
         | 
| 267 | 
            +
                  "special": true
         | 
| 268 | 
            +
                },
         | 
| 269 | 
            +
                "151676": {
         | 
| 270 | 
            +
                  "content": "[SEP]",
         | 
| 271 | 
            +
                  "lstrip": false,
         | 
| 272 | 
            +
                  "normalized": false,
         | 
| 273 | 
            +
                  "rstrip": false,
         | 
| 274 | 
            +
                  "single_word": false,
         | 
| 275 | 
            +
                  "special": true
         | 
| 276 | 
            +
                },
         | 
| 277 | 
            +
                "151677": {
         | 
| 278 | 
            +
                  "content": "<|pic|>",
         | 
| 279 | 
            +
                  "lstrip": false,
         | 
| 280 | 
            +
                  "normalized": false,
         | 
| 281 | 
            +
                  "rstrip": false,
         | 
| 282 | 
            +
                  "single_word": false,
         | 
| 283 | 
            +
                  "special": true
         | 
| 284 | 
            +
                },
         | 
| 285 | 
            +
                "151678": {
         | 
| 286 | 
            +
                  "content": "<|text|>",
         | 
| 287 | 
            +
                  "lstrip": false,
         | 
| 288 | 
            +
                  "normalized": false,
         | 
| 289 | 
            +
                  "rstrip": false,
         | 
| 290 | 
            +
                  "single_word": false,
         | 
| 291 | 
            +
                  "special": true
         | 
| 292 | 
            +
                },
         | 
| 293 | 
            +
                "151679": {
         | 
| 294 | 
            +
                  "content": "<|pictotext|>",
         | 
| 295 | 
            +
                  "lstrip": false,
         | 
| 296 | 
            +
                  "normalized": false,
         | 
| 297 | 
            +
                  "rstrip": false,
         | 
| 298 | 
            +
                  "single_word": false,
         | 
| 299 | 
            +
                  "special": true
         | 
| 300 | 
            +
                },
         | 
| 301 | 
            +
                "151680": {
         | 
| 302 | 
            +
                  "content": "[PAD]",
         | 
| 303 | 
            +
                  "lstrip": false,
         | 
| 304 | 
            +
                  "normalized": false,
         | 
| 305 | 
            +
                  "rstrip": false,
         | 
| 306 | 
            +
                  "single_word": false,
         | 
| 307 | 
            +
                  "special": true
         | 
| 308 | 
            +
                },
         | 
| 309 | 
            +
                "151681": {
         | 
| 310 | 
            +
                  "content": "<|slice|>",
         | 
| 311 | 
            +
                  "lstrip": false,
         | 
| 312 | 
            +
                  "normalized": false,
         | 
| 313 | 
            +
                  "rstrip": false,
         | 
| 314 | 
            +
                  "single_word": false,
         | 
| 315 | 
            +
                  "special": true
         | 
| 316 | 
            +
                },
         | 
| 317 | 
            +
                "151682": {
         | 
| 318 | 
            +
                  "content": "<|endofslice|>",
         | 
| 319 | 
            +
                  "lstrip": false,
         | 
| 320 | 
            +
                  "normalized": false,
         | 
| 321 | 
            +
                  "rstrip": false,
         | 
| 322 | 
            +
                  "single_word": false,
         | 
| 323 | 
            +
                  "special": true
         | 
| 324 | 
            +
                },
         | 
| 325 | 
            +
                "151683": {
         | 
| 326 | 
            +
                  "content": "<|imgrowend|>",
         | 
| 327 | 
            +
                  "lstrip": false,
         | 
| 328 | 
            +
                  "normalized": false,
         | 
| 329 | 
            +
                  "rstrip": false,
         | 
| 330 | 
            +
                  "single_word": false,
         | 
| 331 | 
            +
                  "special": true
         | 
| 332 | 
            +
                },
         | 
| 333 | 
            +
                "151684": {
         | 
| 334 | 
            +
                  "content": "<|polygon_start|>",
         | 
| 335 | 
            +
                  "lstrip": false,
         | 
| 336 | 
            +
                  "normalized": false,
         | 
| 337 | 
            +
                  "rstrip": false,
         | 
| 338 | 
            +
                  "single_word": false,
         | 
| 339 | 
            +
                  "special": true
         | 
| 340 | 
            +
                },
         | 
| 341 | 
            +
                "151685": {
         | 
| 342 | 
            +
                  "content": "<|polygon_end|>",
         | 
| 343 | 
            +
                  "lstrip": false,
         | 
| 344 | 
            +
                  "normalized": false,
         | 
| 345 | 
            +
                  "rstrip": false,
         | 
| 346 | 
            +
                  "single_word": false,
         | 
| 347 | 
            +
                  "special": true
         | 
| 348 | 
            +
                },
         | 
| 349 | 
            +
                "151686": {
         | 
| 350 | 
            +
                  "content": "<|image_gen_start|>",
         | 
| 351 | 
            +
                  "lstrip": false,
         | 
| 352 | 
            +
                  "normalized": false,
         | 
| 353 | 
            +
                  "rstrip": false,
         | 
| 354 | 
            +
                  "single_word": false,
         | 
| 355 | 
            +
                  "special": true
         | 
| 356 | 
            +
                },
         | 
| 357 | 
            +
                "151687": {
         | 
| 358 | 
            +
                  "content": "<|image_gen_end|>",
         | 
| 359 | 
            +
                  "lstrip": false,
         | 
| 360 | 
            +
                  "normalized": false,
         | 
| 361 | 
            +
                  "rstrip": false,
         | 
| 362 | 
            +
                  "single_word": false,
         | 
| 363 | 
            +
                  "special": true
         | 
| 364 | 
            +
                }
         | 
| 365 | 
            +
              },
         | 
| 366 | 
            +
              "additional_special_tokens": [
         | 
| 367 | 
            +
                "<|im_start|>",
         | 
| 368 | 
            +
                "<|im_end|>",
         | 
| 369 | 
            +
                "<|object_ref_start|>",
         | 
| 370 | 
            +
                "<|object_ref_end|>",
         | 
| 371 | 
            +
                "<|box_start|>",
         | 
| 372 | 
            +
                "<|box_end|>",
         | 
| 373 | 
            +
                "<|quad_start|>",
         | 
| 374 | 
            +
                "<|quad_end|>",
         | 
| 375 | 
            +
                "<|vision_start|>",
         | 
| 376 | 
            +
                "<|vision_end|>",
         | 
| 377 | 
            +
                "<|vision_pad|>",
         | 
| 378 | 
            +
                "<|image_pad|>",
         | 
| 379 | 
            +
                "<|video_pad|>"
         | 
| 380 | 
            +
              ],
         | 
| 381 | 
            +
              "bos_token": null,
         | 
| 382 | 
            +
              "chat_template": "{%- for m in messages %}\n    {%- if m.role == 'system' %}\n        {{- '<|system|>' + m.content + '<|endofsystem|>\\n' }}\n    {%- elif m.role == 'user' %}\n        {{- '<|user|>' + m.content + '<|endofuser|>' }}\n    {%- elif m.role == 'assistant' %}\n        {{- '<|assistant|>' + m.content }}\n        {%- if not loop.last %}\n            {{- '<|endofassistant|>' }}\n        {%- endif %}\n    {%- endif %}\n{%- endfor %}\n{%- if messages[-1].role != 'assistant' %}\n    {{- '<|assistant|>' }}\n{%- endif %}",
         | 
| 383 | 
            +
              "clean_up_tokenization_spaces": false,
         | 
| 384 | 
            +
              "eos_token": "<|endoftext|>",
         | 
| 385 | 
            +
              "errors": "replace",
         | 
| 386 | 
            +
              "model_max_length": 131072,
         | 
| 387 | 
            +
              "pad_token": "[PAD]",
         | 
| 388 | 
            +
              "split_special_tokens": false,
         | 
| 389 | 
            +
              "tokenizer_class": "Qwen2Tokenizer",
         | 
| 390 | 
            +
              "unk_token": null
         | 
| 391 | 
            +
            }
         | 
    	
        vocab.json
    ADDED
    
    | The diff for this file is too large to render. 
		See raw diff | 
|  | 
