Create example.txt
Browse files- example.txt +75 -0
example.txt
ADDED
|
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
###Instruction: Generate a small python repo for matplotlib to visualize timeseries data to read from timeseries.csv file using polars.
|
| 2 |
+
###Response: The repository should include the following:
|
| 3 |
+
- A `src` directory for the Python source files.
|
| 4 |
+
- A `data` directory for the input CSV file.
|
| 5 |
+
- A `requirements.txt` file listing the necessary libraries.
|
| 6 |
+
- A `README.md` file explaining how to use the tool.
|
| 7 |
+
- A `run.sh` script to execute the main program.
|
| 8 |
+
|
| 9 |
+
Create the repository structure and populate it with the necessary files. ```python
|
| 10 |
+
<libs>matplotlib,polars</libs>
|
| 11 |
+
<planning>
|
| 12 |
+
#1 Create the repository structure.
|
| 13 |
+
- Initialize the git repository.
|
| 14 |
+
- Create the `src`, `data`, and `docs` directories.
|
| 15 |
+
#2 Populate the repository with necessary files.
|
| 16 |
+
- Add a `requirements.txt` file with the necessary libraries.
|
| 17 |
+
- Add a `README.md` file explaining how to use the tool.
|
| 18 |
+
- Add a `run.sh` script to execute the main program.
|
| 19 |
+
- Add a Python script in `src` to visualize timeseries data.
|
| 20 |
+
</planning>
|
| 21 |
+
<requirements>matplotlib==3.5.1
|
| 22 |
+
polars==0.17.0</requirements>
|
| 23 |
+
<output><file1>src/visualize_timeseries.py<content>
|
| 24 |
+
import polars as pl
|
| 25 |
+
import matplotlib.pyplot as plt
|
| 26 |
+
|
| 27 |
+
def load_timeseries_data(file_path):
|
| 28 |
+
"""Load timeseries data from a CSV file."""
|
| 29 |
+
return pl.read_csv(file_path, has_headers=True)
|
| 30 |
+
|
| 31 |
+
def visualize_timeseries(data):
|
| 32 |
+
"""Visualize the timeseries data."""
|
| 33 |
+
plt.figure(figsize=(10, 6))
|
| 34 |
+
plt.plot(data['timestamp'], data['value'], label='Timeseries Data')
|
| 35 |
+
plt.xlabel('Timestamp')
|
| 36 |
+
plt.ylabel('Value')
|
| 37 |
+
plt.title('Timeseries Visualization')
|
| 38 |
+
plt.legend()
|
| 39 |
+
plt.grid(True)
|
| 40 |
+
plt.show()
|
| 41 |
+
|
| 42 |
+
if __name__ == "__main__":
|
| 43 |
+
file_path = 'data/timeseries.csv'
|
| 44 |
+
data = load_timeseries_data(file_path)
|
| 45 |
+
visualize_timeseries(data)
|
| 46 |
+
</content></file1>
|
| 47 |
+
<bashfile>run.sh<content>python3 src/visualize_timeseries.py</content></bashfile>
|
| 48 |
+
<readme>README.md<content>
|
| 49 |
+
# Timeseries Visualization Tool
|
| 50 |
+
|
| 51 |
+
This tool visualizes timeseries data loaded from a CSV file using `pandas` for data handling and `matplotlib` for plotting.
|
| 52 |
+
|
| 53 |
+
## Requirements
|
| 54 |
+
|
| 55 |
+
Ensure you have the following libraries installed:
|
| 56 |
+
|
| 57 |
+
```bash
|
| 58 |
+
pip install -r requirements.txt
|
| 59 |
+
```
|
| 60 |
+
|
| 61 |
+
## Usage
|
| 62 |
+
|
| 63 |
+
To run the visualization tool, execute the following command:
|
| 64 |
+
|
| 65 |
+
```bash
|
| 66 |
+
bash run.sh
|
| 67 |
+
```
|
| 68 |
+
|
| 69 |
+
## Data
|
| 70 |
+
|
| 71 |
+
The tool expects a CSV file named `timeseries.csv` in the `data` directory with the following columns:
|
| 72 |
+
- `timestamp`: Timestamp of the data point.
|
| 73 |
+
- `value`: Value of the timeseries data.
|
| 74 |
+
</content></readme>
|
| 75 |
+
</output>
|