Upload folder using huggingface_hub
Browse files- README.md +50 -0
- handdrawn.png +0 -0
- handler.py +1 -1
- output.png +0 -0
- test_endpoint.py +44 -0
README.md
CHANGED
|
@@ -8,3 +8,53 @@ inference: true
|
|
| 8 |
---
|
| 9 |
|
| 10 |
# Inference Endpoint for [Seg2Sat](https://huggingface.co/rgres/Seg2Sat-sd-controlnet) using [runwayml/stable-diffusion-v1-5](https://huggingface.co/stabilityai/stable-diffusion-2-1-base)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
---
|
| 9 |
|
| 10 |
# Inference Endpoint for [Seg2Sat](https://huggingface.co/rgres/Seg2Sat-sd-controlnet) using [runwayml/stable-diffusion-v1-5](https://huggingface.co/stabilityai/stable-diffusion-2-1-base)
|
| 11 |
+
|
| 12 |
+
You can call the inference endpoint like this :
|
| 13 |
+
|
| 14 |
+
```
|
| 15 |
+
import base64
|
| 16 |
+
import requests
|
| 17 |
+
|
| 18 |
+
API_URL = "https://zqz606ggn85ysase.us-east-1.aws.endpoints.huggingface.cloud"
|
| 19 |
+
|
| 20 |
+
def encode_image(image_path):
|
| 21 |
+
with open(image_path, "rb") as i:
|
| 22 |
+
b64 = base64.b64encode(i.read())
|
| 23 |
+
return b64.decode("utf-8")
|
| 24 |
+
|
| 25 |
+
prompt = "aerial view of jardin princier, Toulouse. Flowers, flowers, garden"
|
| 26 |
+
image = encode_image("handdrawn.png")
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
headers = {
|
| 30 |
+
"Accept": "image/png",
|
| 31 |
+
"Content-Type": "application/json"
|
| 32 |
+
}
|
| 33 |
+
|
| 34 |
+
# test the handler
|
| 35 |
+
def query(payload):
|
| 36 |
+
response = requests.post(API_URL, headers=headers, json=payload)
|
| 37 |
+
return response.content
|
| 38 |
+
|
| 39 |
+
payload = {
|
| 40 |
+
"inputs": prompt,
|
| 41 |
+
"prompt": prompt,
|
| 42 |
+
"image": image,
|
| 43 |
+
"steps": 20,
|
| 44 |
+
"seed": 999
|
| 45 |
+
}
|
| 46 |
+
|
| 47 |
+
import json
|
| 48 |
+
with open('payload.json', 'w') as f:
|
| 49 |
+
json.dump(payload, f)
|
| 50 |
+
|
| 51 |
+
image_bytes = query(payload)
|
| 52 |
+
|
| 53 |
+
# You can access the image with PIL.Image for example
|
| 54 |
+
import io
|
| 55 |
+
from PIL import Image
|
| 56 |
+
image = Image.open(io.BytesIO(image_bytes))
|
| 57 |
+
|
| 58 |
+
image.save("output.png")
|
| 59 |
+
|
| 60 |
+
```
|
handdrawn.png
ADDED
|
handler.py
CHANGED
|
@@ -40,7 +40,7 @@ class EndpointHandler():
|
|
| 40 |
# decode image
|
| 41 |
image = self.decode_base64_image(image)
|
| 42 |
|
| 43 |
-
self.generator = torch.Generator(device="cpu").manual_seed(
|
| 44 |
|
| 45 |
# run inference pipeline
|
| 46 |
image_out = self.pipe(
|
|
|
|
| 40 |
# decode image
|
| 41 |
image = self.decode_base64_image(image)
|
| 42 |
|
| 43 |
+
self.generator = torch.Generator(device="cpu").manual_seed(seed)
|
| 44 |
|
| 45 |
# run inference pipeline
|
| 46 |
image_out = self.pipe(
|
output.png
ADDED
|
test_endpoint.py
ADDED
|
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import base64
|
| 2 |
+
import requests
|
| 3 |
+
|
| 4 |
+
API_URL = "https://zqz606ggn85ysase.us-east-1.aws.endpoints.huggingface.cloud"
|
| 5 |
+
|
| 6 |
+
def encode_image(image_path):
|
| 7 |
+
with open(image_path, "rb") as i:
|
| 8 |
+
b64 = base64.b64encode(i.read())
|
| 9 |
+
return b64.decode("utf-8")
|
| 10 |
+
|
| 11 |
+
prompt = "aerial view of jardin princier, Toulouse. Flowers, flowers, garden"
|
| 12 |
+
image = encode_image("handdrawn.png")
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
headers = {
|
| 16 |
+
"Accept": "image/png",
|
| 17 |
+
"Content-Type": "application/json"
|
| 18 |
+
}
|
| 19 |
+
|
| 20 |
+
# test the handler
|
| 21 |
+
def query(payload):
|
| 22 |
+
response = requests.post(API_URL, headers=headers, json=payload)
|
| 23 |
+
return response.content
|
| 24 |
+
|
| 25 |
+
payload = {
|
| 26 |
+
"inputs": prompt,
|
| 27 |
+
"prompt": prompt,
|
| 28 |
+
"image": image,
|
| 29 |
+
"steps": 20,
|
| 30 |
+
"seed": 999
|
| 31 |
+
}
|
| 32 |
+
|
| 33 |
+
import json
|
| 34 |
+
with open('payload.json', 'w') as f:
|
| 35 |
+
json.dump(payload, f)
|
| 36 |
+
|
| 37 |
+
image_bytes = query(payload)
|
| 38 |
+
|
| 39 |
+
# You can access the image with PIL.Image for example
|
| 40 |
+
import io
|
| 41 |
+
from PIL import Image
|
| 42 |
+
image = Image.open(io.BytesIO(image_bytes))
|
| 43 |
+
|
| 44 |
+
image.save("output.png")
|