Update README.md
Browse files
README.md
CHANGED
|
@@ -53,33 +53,63 @@ Always verify predictions with cybersecurity analysts before using in critical d
|
|
| 53 |
## How to Get Started with the Model
|
| 54 |
|
| 55 |
```python
|
| 56 |
-
from transformers import AutoTokenizer, MPNetModel
|
| 57 |
import torch
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
|
| 63 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 64 |
-
model
|
|
|
|
| 65 |
|
| 66 |
-
#
|
| 67 |
-
|
| 68 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 69 |
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
cls_embedding = outputs.last_hidden_state[:, 0, :]
|
| 73 |
-
predicted_class = classifier_model.classifier(cls_embedding).argmax(dim=1).cpu().item()
|
| 74 |
|
|
|
|
|
|
|
|
|
|
| 75 |
print(f"Predicted GroupID: {predicted_class}")
|
| 76 |
```
|
|
|
|
|
|
|
| 77 |
|
| 78 |
## Training Details
|
| 79 |
|
| 80 |
### Training Data
|
| 81 |
|
| 82 |
-
|
| 83 |
|
| 84 |
### Training Procedure
|
| 85 |
|
|
|
|
| 53 |
## How to Get Started with the Model
|
| 54 |
|
| 55 |
```python
|
|
|
|
| 56 |
import torch
|
| 57 |
+
import torch.nn as nn
|
| 58 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 59 |
+
import torch.optim as optim
|
| 60 |
+
import numpy as np
|
| 61 |
|
| 62 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 63 |
+
# Load explicitly your fine-tuned MPNet model
|
| 64 |
+
classifier_model = AutoModelForSequenceClassification.from_pretrained("selfconstruct3d/AttackGroup-MPNET").to(device)
|
| 65 |
|
| 66 |
+
# Load explicitly your tokenizer
|
| 67 |
+
tokenizer = AutoTokenizer.from_pretrained("selfconstruct3d/AttackGroup-MPNET")
|
| 68 |
+
|
| 69 |
+
from huggingface_hub import hf_hub_download
|
| 70 |
+
import json
|
| 71 |
+
|
| 72 |
+
label_to_groupid_file = hf_hub_download(
|
| 73 |
+
repo_id="selfconstruct3d/AttackGroup-MPNET",
|
| 74 |
+
filename="label_to_groupid.json"
|
| 75 |
+
)
|
| 76 |
+
|
| 77 |
+
with open(label_to_groupid_file, "r") as f:
|
| 78 |
+
label_to_groupid = json.load(f)
|
| 79 |
+
|
| 80 |
+
def predict_group(sentence):
|
| 81 |
+
classifier_model.eval()
|
| 82 |
+
encoding = tokenizer(
|
| 83 |
+
sentence,
|
| 84 |
+
truncation=True,
|
| 85 |
+
padding="max_length",
|
| 86 |
+
max_length=128,
|
| 87 |
+
return_tensors="pt"
|
| 88 |
+
)
|
| 89 |
+
input_ids = encoding["input_ids"].to(device)
|
| 90 |
+
attention_mask = encoding["attention_mask"].to(device)
|
| 91 |
+
|
| 92 |
+
with torch.no_grad():
|
| 93 |
+
outputs = classifier_model(input_ids=input_ids, attention_mask=attention_mask)
|
| 94 |
+
logits = outputs.logits
|
| 95 |
+
predicted_label = torch.argmax(logits, dim=1).cpu().item()
|
| 96 |
|
| 97 |
+
predicted_groupid = label_to_groupid[str(predicted_label)]
|
| 98 |
+
return predicted_groupid
|
|
|
|
|
|
|
| 99 |
|
| 100 |
+
# Example usage explicitly:
|
| 101 |
+
sentence = "APT38 has used phishing emails with malicious links to distribute malware."
|
| 102 |
+
predicted_class = predict_group(sentence)
|
| 103 |
print(f"Predicted GroupID: {predicted_class}")
|
| 104 |
```
|
| 105 |
+
Predicted GroupID: G0001
|
| 106 |
+
|
| 107 |
|
| 108 |
## Training Details
|
| 109 |
|
| 110 |
### Training Data
|
| 111 |
|
| 112 |
+
To be anounced...
|
| 113 |
|
| 114 |
### Training Procedure
|
| 115 |
|