Update README.md
Browse files
README.md
CHANGED
|
@@ -1,199 +1,165 @@
|
|
| 1 |
---
|
| 2 |
library_name: transformers
|
| 3 |
-
tags:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
---
|
| 5 |
|
| 6 |
-
# Model Card for
|
| 7 |
-
|
| 8 |
-
<!-- Provide a quick summary of what the model is/does. -->
|
| 9 |
-
|
| 10 |
|
|
|
|
| 11 |
|
| 12 |
## Model Details
|
| 13 |
|
| 14 |
### Model Description
|
| 15 |
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
| 19 |
|
| 20 |
-
- **Developed by:**
|
| 21 |
-
- **
|
| 22 |
-
- **
|
| 23 |
-
- **
|
| 24 |
-
- **
|
| 25 |
-
- **License:** [More Information Needed]
|
| 26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
| 27 |
|
| 28 |
-
### Model Sources
|
| 29 |
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
- **Repository:** [More Information Needed]
|
| 33 |
-
- **Paper [optional]:** [More Information Needed]
|
| 34 |
-
- **Demo [optional]:** [More Information Needed]
|
| 35 |
|
| 36 |
## Uses
|
| 37 |
|
| 38 |
-
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
| 39 |
-
|
| 40 |
### Direct Use
|
| 41 |
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
[More Information Needed]
|
| 45 |
|
| 46 |
-
### Downstream Use
|
| 47 |
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
[More Information Needed]
|
| 51 |
|
| 52 |
### Out-of-Scope Use
|
| 53 |
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
[More Information Needed]
|
| 57 |
|
| 58 |
## Bias, Risks, and Limitations
|
| 59 |
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
[More Information Needed]
|
| 63 |
|
| 64 |
### Recommendations
|
| 65 |
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
| 69 |
|
| 70 |
## How to Get Started with the Model
|
| 71 |
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
## Training Details
|
| 77 |
-
|
| 78 |
-
### Training Data
|
| 79 |
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
### Training Procedure
|
| 85 |
|
| 86 |
-
|
|
|
|
| 87 |
|
| 88 |
-
|
|
|
|
|
|
|
| 89 |
|
| 90 |
-
|
|
|
|
|
|
|
|
|
|
| 91 |
|
|
|
|
|
|
|
| 92 |
|
| 93 |
-
|
| 94 |
|
| 95 |
-
|
| 96 |
|
| 97 |
-
|
| 98 |
|
| 99 |
-
|
| 100 |
|
| 101 |
-
|
|
|
|
|
|
|
|
|
|
| 102 |
|
| 103 |
## Evaluation
|
| 104 |
|
| 105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
| 106 |
-
|
| 107 |
### Testing Data, Factors & Metrics
|
| 108 |
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
| 112 |
-
|
| 113 |
-
[More Information Needed]
|
| 114 |
-
|
| 115 |
-
#### Factors
|
| 116 |
-
|
| 117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
| 118 |
-
|
| 119 |
-
[More Information Needed]
|
| 120 |
-
|
| 121 |
-
#### Metrics
|
| 122 |
-
|
| 123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
| 124 |
-
|
| 125 |
-
[More Information Needed]
|
| 126 |
|
| 127 |
### Results
|
| 128 |
|
| 129 |
-
|
|
|
|
|
|
|
|
|
|
| 130 |
|
| 131 |
-
|
| 132 |
|
|
|
|
| 133 |
|
|
|
|
|
|
|
| 134 |
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
- **Compute Region:** [More Information Needed]
|
| 151 |
-
- **Carbon Emitted:** [More Information Needed]
|
| 152 |
|
| 153 |
-
## Technical Specifications [optional]
|
| 154 |
|
| 155 |
-
|
|
|
|
|
|
|
| 156 |
|
| 157 |
-
|
|
|
|
|
|
|
|
|
|
| 158 |
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
[More Information Needed]
|
| 162 |
-
|
| 163 |
-
#### Hardware
|
| 164 |
-
|
| 165 |
-
[More Information Needed]
|
| 166 |
-
|
| 167 |
-
#### Software
|
| 168 |
-
|
| 169 |
-
[More Information Needed]
|
| 170 |
-
|
| 171 |
-
## Citation [optional]
|
| 172 |
-
|
| 173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
| 174 |
-
|
| 175 |
-
**BibTeX:**
|
| 176 |
-
|
| 177 |
-
[More Information Needed]
|
| 178 |
|
| 179 |
-
|
| 180 |
|
| 181 |
-
[
|
|
|
|
|
|
|
|
|
|
|
|
|
| 182 |
|
| 183 |
-
##
|
| 184 |
|
| 185 |
-
|
| 186 |
|
| 187 |
-
|
|
|
|
| 188 |
|
| 189 |
-
##
|
| 190 |
|
| 191 |
-
[
|
| 192 |
|
| 193 |
-
## Model Card Authors
|
| 194 |
|
| 195 |
-
|
| 196 |
|
| 197 |
## Model Card Contact
|
| 198 |
|
| 199 |
-
[More Information Needed]
|
|
|
|
| 1 |
---
|
| 2 |
library_name: transformers
|
| 3 |
+
tags:
|
| 4 |
+
- cybersecurity
|
| 5 |
+
- mpnet
|
| 6 |
+
- classification
|
| 7 |
+
- fine-tuned
|
| 8 |
---
|
| 9 |
|
| 10 |
+
# Model Card for MPNet Cybersecurity Classifier
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
+
This is a fine-tuned MPNet model specialized for classifying cybersecurity threat groups based on textual descriptions of their tactics and techniques.
|
| 13 |
|
| 14 |
## Model Details
|
| 15 |
|
| 16 |
### Model Description
|
| 17 |
|
| 18 |
+
This model is a fine-tuned MPNet classifier specialized in categorizing cybersecurity threat groups based on textual descriptions of their tactics, techniques, and procedures (TTPs).
|
|
|
|
|
|
|
| 19 |
|
| 20 |
+
- **Developed by:** Dženan Hamzić
|
| 21 |
+
- **Model type:** Transformer-based classification model (MPNet)
|
| 22 |
+
- **Language(s) (NLP):** English
|
| 23 |
+
- **License:** Apache-2.0
|
| 24 |
+
- **Finetuned from model:** microsoft/mpnet-base (with intermediate MLM fine-tuning)
|
|
|
|
|
|
|
| 25 |
|
| 26 |
+
### Model Sources
|
| 27 |
|
| 28 |
+
- **Base Model:** [microsoft/mpnet-base](https://huggingface.co/microsoft/mpnet-base)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
|
| 30 |
## Uses
|
| 31 |
|
|
|
|
|
|
|
| 32 |
### Direct Use
|
| 33 |
|
| 34 |
+
This model classifies textual cybersecurity descriptions into known cybersecurity threat groups.
|
|
|
|
|
|
|
| 35 |
|
| 36 |
+
### Downstream Use
|
| 37 |
|
| 38 |
+
Integration into Cyber Threat Intelligence platforms, SOC incident analysis tools, and automated threat detection systems.
|
|
|
|
|
|
|
| 39 |
|
| 40 |
### Out-of-Scope Use
|
| 41 |
|
| 42 |
+
- General language tasks unrelated to cybersecurity
|
| 43 |
+
- Tasks outside the cybersecurity domain
|
|
|
|
| 44 |
|
| 45 |
## Bias, Risks, and Limitations
|
| 46 |
|
| 47 |
+
This model specializes in cybersecurity contexts. Predictions for unrelated contexts may be inaccurate.
|
|
|
|
|
|
|
| 48 |
|
| 49 |
### Recommendations
|
| 50 |
|
| 51 |
+
Always verify predictions with cybersecurity analysts before using in critical decision-making scenarios.
|
|
|
|
|
|
|
| 52 |
|
| 53 |
## How to Get Started with the Model
|
| 54 |
|
| 55 |
+
```python
|
| 56 |
+
from transformers import AutoTokenizer, MPNetModel
|
| 57 |
+
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
|
| 59 |
+
model_name = "mpnet_classification_finetuned_v2"
|
| 60 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 61 |
+
model = MPNetModel.from_pretrained(model_name)
|
|
|
|
|
|
|
| 62 |
|
| 63 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 64 |
+
model.to(device)
|
| 65 |
|
| 66 |
+
# Example inference
|
| 67 |
+
sentence = "APT38 has used phishing emails with malicious links to distribute malware."
|
| 68 |
+
inputs = tokenizer(sentence, return_tensors="pt", truncation=True, padding="max_length", max_length=128).to(device)
|
| 69 |
|
| 70 |
+
with torch.no_grad():
|
| 71 |
+
outputs = model(**inputs)
|
| 72 |
+
cls_embedding = outputs.last_hidden_state[:, 0, :]
|
| 73 |
+
predicted_class = classifier_model.classifier(cls_embedding).argmax(dim=1).cpu().item()
|
| 74 |
|
| 75 |
+
print(f"Predicted GroupID: {predicted_class}")
|
| 76 |
+
```
|
| 77 |
|
| 78 |
+
## Training Details
|
| 79 |
|
| 80 |
+
### Training Data
|
| 81 |
|
| 82 |
+
The training dataset comprises balanced textual descriptions of various cybersecurity threat groups' TTPs, augmented through synonym replacement to increase diversity.
|
| 83 |
|
| 84 |
+
### Training Procedure
|
| 85 |
|
| 86 |
+
- Fine-tuned from: MLM fine-tuned MPNet ("mpnet_mlm_cyber_finetuned-v2")
|
| 87 |
+
- Epochs: 20
|
| 88 |
+
- Learning rate: 5e-6
|
| 89 |
+
- Batch size: 16
|
| 90 |
|
| 91 |
## Evaluation
|
| 92 |
|
|
|
|
|
|
|
| 93 |
### Testing Data, Factors & Metrics
|
| 94 |
|
| 95 |
+
- **Testing Data:** Stratified sample from original dataset.
|
| 96 |
+
- **Metrics:** Accuracy, Weighted F1 Score
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 97 |
|
| 98 |
### Results
|
| 99 |
|
| 100 |
+
| Metric | Value |
|
| 101 |
+
|------------------------|---------|
|
| 102 |
+
| Classification Accuracy (Test) | 0.7161 |
|
| 103 |
+
| Weighted F1 Score | [More Information Needed] |
|
| 104 |
|
| 105 |
+
### Single Prediction Example
|
| 106 |
|
| 107 |
+
```python
|
| 108 |
|
| 109 |
+
# Create explicit mapping from numeric labels to original GroupIDs
|
| 110 |
+
label_to_groupid = dict(enumerate(train_df["GroupID"].astype("category").cat.categories))
|
| 111 |
|
| 112 |
+
def predict_group(sentence):
|
| 113 |
+
classifier_model.eval()
|
| 114 |
+
encoding = tokenizer(
|
| 115 |
+
sentence,
|
| 116 |
+
truncation=True,
|
| 117 |
+
padding="max_length",
|
| 118 |
+
max_length=128,
|
| 119 |
+
return_tensors="pt"
|
| 120 |
+
)
|
| 121 |
+
input_ids = encoding["input_ids"].to(device)
|
| 122 |
+
attention_mask = encoding["attention_mask"].to(device)
|
| 123 |
|
| 124 |
+
with torch.no_grad():
|
| 125 |
+
logits = classifier_model(input_ids, attention_mask)
|
| 126 |
+
predicted_label = torch.argmax(logits, dim=1).cpu().item()
|
|
|
|
|
|
|
| 127 |
|
|
|
|
| 128 |
|
| 129 |
+
# Explicitly convert numeric label to original GroupID
|
| 130 |
+
predicted_groupid = label_to_groupid[predicted_label]
|
| 131 |
+
return predicted_groupid
|
| 132 |
|
| 133 |
+
sentence = "APT38 has used phishing emails with malicious links to distribute malware."
|
| 134 |
+
predicted_class = predict_group(sentence)
|
| 135 |
+
print(f"Predicted GroupID: {predicted_class}") # e.g., Predicted GroupID: G0081
|
| 136 |
+
```
|
| 137 |
|
| 138 |
+
## Environmental Impact
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 139 |
|
| 140 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute).
|
| 141 |
|
| 142 |
+
- **Hardware Type:** [To be filled by user]
|
| 143 |
+
- **Hours used:** [To be filled by user]
|
| 144 |
+
- **Cloud Provider:** [To be filled by user]
|
| 145 |
+
- **Compute Region:** [To be filled by user]
|
| 146 |
+
- **Carbon Emitted:** [To be filled by user]
|
| 147 |
|
| 148 |
+
## Technical Specifications
|
| 149 |
|
| 150 |
+
### Model Architecture
|
| 151 |
|
| 152 |
+
- MPNet architecture with classification head (768 -> 512 -> num_labels)
|
| 153 |
+
- Last 10 transformer layers fine-tuned explicitly
|
| 154 |
|
| 155 |
+
## Environmental Impact
|
| 156 |
|
| 157 |
+
Carbon emissions should be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute).
|
| 158 |
|
| 159 |
+
## Model Card Authors
|
| 160 |
|
| 161 |
+
- Dženan Hamzić
|
| 162 |
|
| 163 |
## Model Card Contact
|
| 164 |
|
| 165 |
+
- [More Information Needed]
|