File size: 4,215 Bytes
104fd3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
#!/usr/bin/env python3
"""Enhanced numerical diagnostic for megablocks.gg_ops.gmm on ROCm builds."""

import pathlib
import sys
from typing import Optional

import torch


def detect_variant(root: pathlib.Path) -> str:
    build_dir = root / "build"
    variant: Optional[str] = None

    if (root / "kernels" / "utils.py").exists():
        try:
            sys.path.insert(0, str(root))
            from kernels.utils import build_variant as _build_variant  # type: ignore

            variant = _build_variant()
        except Exception:
            variant = None
        finally:
            sys.path.pop(0)

    if variant is None:
        candidates = sorted(build_dir.glob("torch*-rocm64-*") or build_dir.glob("torch*-cu*"))
        if candidates:
            variant = candidates[0].name

    if variant is None:
        raise SystemExit("Could not determine build variant; run build.py first.")

    return variant


def main() -> None:
    repo_root = pathlib.Path(__file__).resolve().parent.parent  # Go up from _dev/ to repo root
    variant = detect_variant(repo_root)
    staged_dir = repo_root / "build" / variant

    if str(staged_dir) not in sys.path:
        sys.path.insert(0, str(staged_dir))
    if str(repo_root) not in sys.path:
        sys.path.insert(0, str(repo_root))

    import megablocks  # type: ignore
    from tests.test_gg import gmm, randn  # type: ignore

    print(f"Using staged variant: {variant}")
    print(f"megablocks module: {megablocks.__file__}")

    torch.manual_seed(0)

    z = m = n = k = 128
    trans_b = False

    a = randn(z, m, k).view(-1, k)
    b = randn(z, k, n) if not trans_b else randn(z, n, k)
    batch_sizes = torch.tensor([m] * z, device="cpu")

    # Check input tensors for NaNs
    print(f"Input a has NaNs: {torch.isnan(a).any().item()}")
    print(f"Input b has NaNs: {torch.isnan(b).any().item()}")
    print(f"Input a range: [{a.min().item():.6f}, {a.max().item():.6f}]")
    print(f"Input b range: [{b.min().item():.6f}, {b.max().item():.6f}]")

    a.requires_grad_(True)
    b.requires_grad_(True)

    a_ref = a.detach().clone().requires_grad_(True)
    b_ref = b.detach().clone().requires_grad_(True)

    # First run reference computation
    ref = gmm(a_ref, b_ref, batch_sizes.cpu(), trans_b)
    print(f"Reference computation completed")
    print(f"ref has NaNs: {torch.isnan(ref).any().item()}")
    print(f"ref range: [{ref.min().item():.6f}, {ref.max().item():.6f}]")

    # Now run the problematic implementation
    print(f"Running megablocks.gg_ops.gmm...")
    out = megablocks.gg_ops.gmm(a, b, batch_sizes, trans_b)
    print(f"megablocks computation completed")

    print(f"out has NaNs: {torch.isnan(out).any().item()}")
    if not torch.isnan(out).all():
        print(f"out range: [{out.min().item():.6f}, {out.max().item():.6f}]")
    else:
        print("out is all NaN")

    # Check if inputs were modified (shouldn't happen with NoGradGuard)
    print(f"Input a modified: {not torch.equal(a[:5], a_ref[:5])}")
    print(f"Input b modified: {not torch.equal(b[0, :5, :5], b_ref[0, :5, :5])}")

    if not torch.isnan(out).any():
        forward_abs = (out - ref).abs().max().item()
        forward_rel = ((out - ref).abs() / (ref.abs() + 1e-9)).max().item()
        print(f"forward max abs diff: {forward_abs:.6e}")
        print(f"forward max rel diff: {forward_rel:.6e}")
    else:
        print(f"forward max abs diff: nan")
        print(f"forward max rel diff: nan")

    # Test gradients
    out.sum().backward()
    ref.sum().backward()

    print(f"a.grad has NaNs: {torch.isnan(a.grad).any().item()}")
    print(f"b.grad has NaNs: {torch.isnan(b.grad).any().item()}")

    if not torch.isnan(a.grad).any() and not torch.isnan(a_ref.grad).any():
        a_grad_abs = (a.grad - a_ref.grad).abs().max().item()
        print(f"a grad max abs diff: {a_grad_abs:.6e}")
    else:
        print(f"a grad max abs diff: nan")

    if not torch.isnan(b.grad).any() and not torch.isnan(b_ref.grad).any():
        b_grad_abs = (b.grad - b_ref.grad).abs().max().item()
        print(f"b grad max abs diff: {b_grad_abs:.6e}")
    else:
        print(f"b grad max abs diff: nan")


if __name__ == "__main__":
    main()