megablocks-hip / _dev /debug-gg-small.py
leonardlin's picture
Fix ROCm grouped_gemm accumulation corruption
104fd3c
#!/usr/bin/env python3
"""Debug with smaller tensor sizes to isolate the issue."""
import pathlib
import sys
from typing import Optional
import torch
def detect_variant(root: pathlib.Path) -> str:
build_dir = root / "build"
variant: Optional[str] = None
if (root / "kernels" / "utils.py").exists():
try:
sys.path.insert(0, str(root))
from kernels.utils import build_variant as _build_variant # type: ignore
variant = _build_variant()
except Exception:
variant = None
finally:
sys.path.pop(0)
if variant is None:
candidates = sorted(build_dir.glob("torch*-rocm64-*") or build_dir.glob("torch*-cu*"))
if candidates:
variant = candidates[0].name
if variant is None:
raise SystemExit("Could not determine build variant; run build.py first.")
return variant
def main() -> None:
repo_root = pathlib.Path(__file__).resolve().parent.parent # Go up from _dev/ to repo root
variant = detect_variant(repo_root)
staged_dir = repo_root / "build" / variant
if str(staged_dir) not in sys.path:
sys.path.insert(0, str(staged_dir))
if str(repo_root) not in sys.path:
sys.path.insert(0, str(repo_root))
import megablocks # type: ignore
from tests.test_gg import gmm, randn # type: ignore
print(f"Using staged variant: {variant}")
# Test with very small sizes first
for z, m, n, k in [(1, 4, 4, 4), (2, 4, 4, 4), (1, 16, 16, 16), (4, 16, 16, 16)]:
print(f"\n=== Testing z={z}, m={m}, n={n}, k={k} ===")
torch.manual_seed(0)
trans_b = False
a = randn(z, m, k).view(-1, k)
b = randn(z, k, n) if not trans_b else randn(z, n, k)
batch_sizes = torch.tensor([m] * z, device="cpu")
print(f"a.shape: {a.shape}, b.shape: {b.shape}")
print(f"Input a range: [{a.min().item():.8f}, {a.max().item():.8f}]")
print(f"Input b range: [{b.min().item():.8f}, {b.max().item():.8f}]")
# Reference computation
a_ref = a.detach().clone().requires_grad_(True)
b_ref = b.detach().clone().requires_grad_(True)
ref = gmm(a_ref, b_ref, batch_sizes.cpu(), trans_b)
print(f"Reference output range: [{ref.min().item():.8f}, {ref.max().item():.8f}]")
# Megablocks computation
a.requires_grad_(True)
b.requires_grad_(True)
out = megablocks.gg_ops.gmm(a, b, batch_sizes, trans_b)
print(f"Megablocks output range: [{out.min().item():.8f}, {out.max().item():.8f}]")
# Check for huge values
huge_values = torch.abs(out) > 1e10
if huge_values.any():
print(f"Found {huge_values.sum().item()} huge values out of {out.numel()} total")
print(f"Max absolute value: {torch.abs(out).max().item():.2e}")
# Check differences
if not torch.isnan(out).any() and not torch.isinf(out).any():
diff = (out - ref).abs().max().item()
print(f"Max abs diff: {diff:.2e}")
if diff < 1e-2:
print("βœ“ PASS")
else:
print("βœ— FAIL")
else:
print("βœ— FAIL (NaN/Inf detected)")
if __name__ == "__main__":
main()