Commit
·
867401e
1
Parent(s):
aeb3812
Gate ROCm grouped_gemm hipBLASLt behind env flag
Browse files- _dev/TODO-gg-linter.md +1 -1
- _dev/TODO-gg.md +1 -1
- _dev/TODO-hip.md +19 -0
- csrc/grouped_gemm/grouped_gemm.cu +181 -51
- csrc/grouped_gemm/grouped_gemm.hip +178 -51
_dev/TODO-gg-linter.md
CHANGED
|
@@ -96,7 +96,7 @@ Both scripts consistently demonstrate:
|
|
| 96 |
- ✅ **Fix implemented** — `_allocate_output` now returns a zeroed tensor
|
| 97 |
- ✅ **Reproduction cases clean** — `_dev/debug-gg-small.py` and `_dev/debug-tensor-copy.py` match the Python reference
|
| 98 |
- ✅ **hipify behavior understood** — edit `.cu`, not `.hip`, or adjust the build pipeline if we need custom HIP-only changes
|
| 99 |
-
- ⚠️ **hipBLASLt path
|
| 100 |
|
| 101 |
## Files Modified During Investigation
|
| 102 |
|
|
|
|
| 96 |
- ✅ **Fix implemented** — `_allocate_output` now returns a zeroed tensor
|
| 97 |
- ✅ **Reproduction cases clean** — `_dev/debug-gg-small.py` and `_dev/debug-tensor-copy.py` match the Python reference
|
| 98 |
- ✅ **hipify behavior understood** — edit `.cu`, not `.hip`, or adjust the build pipeline if we need custom HIP-only changes
|
| 99 |
+
- ⚠️ **hipBLASLt path experimental** — enabling hipBLASLt via `MEGABLOCKS_GG_USE_HIPBLASLT=1` still triggers HIP memory access faults on the large expert setups from `tests/ops_test.py`. Leave the flag off for production; use the FP32 fallback until the hipBLASLt issues are resolved.
|
| 100 |
|
| 101 |
## Files Modified During Investigation
|
| 102 |
|
_dev/TODO-gg.md
CHANGED
|
@@ -149,7 +149,7 @@ python debug-gg-step-by-step.py # Manual computation verification
|
|
| 149 |
- **Misdiagnosed linter**: The perceived “linter” reverting our HIP edits was actually `hipify` regenerating `csrc/grouped_gemm/grouped_gemm.hip` from the CUDA source each time `build.sh` ran. Any HIP-only tweak has to live in `grouped_gemm.cu` (or we adjust the hipify step) to persist.
|
| 150 |
- **Actual corruption cause**: The ROCm fallback path inside `hipblaslt_gmm_internal` accumulates into the output tensor passed from Python. `_allocate_output` in `torch-ext/megablocks/grouped_gemm/backend.py` created that buffer with `torch.empty`, so the accumulation mixed correct products with uninitialised memory, yielding the 10^17–10^25 explosions.
|
| 151 |
- **Workaround**: Switching `_allocate_output` to use `torch.zeros` ensures the accumulation starts from a clean slate. After rebuilding, `_dev/debug-gg-small.py` and `_dev/debug-tensor-copy.py` now match the Python reference for all tested expert counts.
|
| 152 |
-
- **hipBLASLt evaluation**: We briefly reinstated the hipBLASLt-backed path, but large expert batches triggered HIP memory access faults and the `run-tests.sh` suite aborted in `tests/ops_test.py`. We therefore kept the FP32 fallback in place for now,
|
| 153 |
- **Next steps**: Leave the zero-initialisation in place while exploring a higher-performance HIP kernel; if we need HIP-specific logic, implement it in the `.cu` so hipify preserves the change.
|
| 154 |
|
| 155 |
```
|
|
|
|
| 149 |
- **Misdiagnosed linter**: The perceived “linter” reverting our HIP edits was actually `hipify` regenerating `csrc/grouped_gemm/grouped_gemm.hip` from the CUDA source each time `build.sh` ran. Any HIP-only tweak has to live in `grouped_gemm.cu` (or we adjust the hipify step) to persist.
|
| 150 |
- **Actual corruption cause**: The ROCm fallback path inside `hipblaslt_gmm_internal` accumulates into the output tensor passed from Python. `_allocate_output` in `torch-ext/megablocks/grouped_gemm/backend.py` created that buffer with `torch.empty`, so the accumulation mixed correct products with uninitialised memory, yielding the 10^17–10^25 explosions.
|
| 151 |
- **Workaround**: Switching `_allocate_output` to use `torch.zeros` ensures the accumulation starts from a clean slate. After rebuilding, `_dev/debug-gg-small.py` and `_dev/debug-tensor-copy.py` now match the Python reference for all tested expert counts.
|
| 152 |
+
- **hipBLASLt evaluation**: We briefly reinstated the hipBLASLt-backed path, but large expert batches triggered HIP memory access faults and the `run-tests.sh` suite aborted in `tests/ops_test.py`. We therefore kept the FP32 fallback in place for now, gated by the `MEGABLOCKS_GG_USE_HIPBLASLT` env var so we can experiment with hipBLASLt when desired, while production defaults to the stable FP32 path that overwrites (rather than accumulates into) the destination tensor.
|
| 153 |
- **Next steps**: Leave the zero-initialisation in place while exploring a higher-performance HIP kernel; if we need HIP-specific logic, implement it in the `.cu` so hipify preserves the change.
|
| 154 |
|
| 155 |
```
|
_dev/TODO-hip.md
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# HIP Grouped GEMM Status (2025-09-18)
|
| 2 |
+
|
| 3 |
+
## Current toggle
|
| 4 |
+
- Set `MEGABLOCKS_GG_USE_HIPBLASLT=1` to force the ROCm build to run the hipBLASLt backend instead of the FP32 fallback in `hipblaslt_gmm_internal`.
|
| 5 |
+
- Without the flag the code uses the stable FP32 `torch::matmul` path that overwrites the destination buffer.
|
| 6 |
+
|
| 7 |
+
## What works with hipBLASLt enabled
|
| 8 |
+
- `_dev/debug-gg-small.py`, `_dev/debug-tensor-copy.py`, and `_dev/debug-gg-detailed.py` finish with finite outputs (differences are within ~1e-3..1e-2 due to BF16).
|
| 9 |
+
- `python -m pytest tests/test_gg.py -q` passes with the flag set.
|
| 10 |
+
|
| 11 |
+
## Known failures
|
| 12 |
+
- `PYTHONPATH=build/... MEGABLOCKS_GG_USE_HIPBLASLT=1 python -m pytest tests/ops_test.py -q` aborts with a HIP memory access fault (`Memory access fault by GPU node-2` during `OpsTest.testGroupedGemm_FixedSizes`).
|
| 13 |
+
- The same failure occurs early when the test suite is run via `run-tests.sh`, so hipBLASLt is not yet production-ready.
|
| 14 |
+
|
| 15 |
+
## Next steps
|
| 16 |
+
- Reproduce the fault in isolation (likely the large `(z=16, m=128, k=128, n=128)` cases) and inspect the arguments passed into `hipblaslt_run_matmul` (leading dimensions/layout).
|
| 17 |
+
- Investigate whether hipBLASLt requires column-major layouts or non-zero workspace to handle the grouped GEMM shapes.
|
| 18 |
+
- Consider hybrid strategy: attempt hipBLASLt per expert and fall back to FP32 for shapes that exceed stability thresholds (e.g., by catching `hipblaslt_run_matmul` errors once we can reliably detect them).
|
| 19 |
+
- Once hipBLASLt is stable, tighten tolerances/grad checks in `tests/test_gg.py` and re-enable the high-performance path by default.
|
csrc/grouped_gemm/grouped_gemm.cu
CHANGED
|
@@ -7,10 +7,35 @@
|
|
| 7 |
#include <hipblaslt/hipblaslt.h>
|
| 8 |
#include <torch/autograd.h>
|
| 9 |
#include <vector>
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
namespace grouped_gemm {
|
| 12 |
namespace {
|
| 13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
inline void hipblaslt_check(hipblasStatus_t status, const char* expr) {
|
| 15 |
TORCH_CHECK(status == HIPBLAS_STATUS_SUCCESS, "hipBLASLt call failed with status ", status, " when executing ", expr);
|
| 16 |
}
|
|
@@ -152,6 +177,7 @@ torch::Tensor hipblaslt_gmm_internal(torch::Tensor a,
|
|
| 152 |
|
| 153 |
auto device = a.device();
|
| 154 |
auto dtype = a.scalar_type();
|
|
|
|
| 155 |
|
| 156 |
const auto counts_ptr = batch_sizes.data_ptr<int64_t>();
|
| 157 |
const int64_t num_experts = batch_sizes.size(0);
|
|
@@ -174,28 +200,64 @@ torch::Tensor hipblaslt_gmm_internal(torch::Tensor a,
|
|
| 174 |
|
| 175 |
auto b_contig = b.contiguous();
|
| 176 |
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 184 |
start = end;
|
| 185 |
-
continue;
|
| 186 |
}
|
| 187 |
-
|
| 188 |
-
auto a_slice = a.narrow(0, start, rows);
|
| 189 |
-
auto b_slice = b_contig.narrow(0, start, rows);
|
| 190 |
-
|
| 191 |
-
auto a_f32 = a_slice.contiguous().to(torch::kFloat32);
|
| 192 |
-
auto b_f32 = b_slice.contiguous().to(torch::kFloat32);
|
| 193 |
-
|
| 194 |
-
auto prod = torch::matmul(a_f32.transpose(0, 1), b_f32);
|
| 195 |
-
auto prod_bf16 = prod.to(dtype);
|
| 196 |
-
|
| 197 |
-
out_chunk.copy_(prod_bf16);
|
| 198 |
-
start = end;
|
| 199 |
}
|
| 200 |
return out;
|
| 201 |
}
|
|
@@ -208,6 +270,104 @@ torch::Tensor hipblaslt_gmm_internal(torch::Tensor a,
|
|
| 208 |
|
| 209 |
auto b_contig = b.contiguous();
|
| 210 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 211 |
int64_t start = 0;
|
| 212 |
for (int64_t expert = 0; expert < num_experts; ++expert) {
|
| 213 |
const int64_t end = prefix[expert];
|
|
@@ -223,42 +383,12 @@ torch::Tensor hipblaslt_gmm_internal(torch::Tensor a,
|
|
| 223 |
auto a_f32 = a_slice.contiguous().to(torch::kFloat32);
|
| 224 |
auto b_f32 = b_slice.contiguous().to(torch::kFloat32);
|
| 225 |
|
| 226 |
-
auto prod = torch::matmul(a_f32, b_f32
|
| 227 |
auto prod_bf16 = prod.to(dtype);
|
| 228 |
|
| 229 |
out_chunk.copy_(prod_bf16);
|
| 230 |
start = end;
|
| 231 |
}
|
| 232 |
-
return out;
|
| 233 |
-
}
|
| 234 |
-
|
| 235 |
-
const int64_t hidden_out = a.size(1);
|
| 236 |
-
const int64_t hidden_in = b.size(2);
|
| 237 |
-
out = c_opt.value_or(torch::empty({tokens, hidden_in}, a.options()));
|
| 238 |
-
TORCH_CHECK(out.is_contiguous(), "Output tensor must be contiguous");
|
| 239 |
-
|
| 240 |
-
auto b_contig = b.contiguous();
|
| 241 |
-
|
| 242 |
-
int64_t start = 0;
|
| 243 |
-
for (int64_t expert = 0; expert < num_experts; ++expert) {
|
| 244 |
-
const int64_t end = prefix[expert];
|
| 245 |
-
const int64_t rows = end - start;
|
| 246 |
-
if (rows == 0) {
|
| 247 |
-
start = end;
|
| 248 |
-
continue;
|
| 249 |
-
}
|
| 250 |
-
auto a_slice = a.narrow(0, start, rows);
|
| 251 |
-
auto b_slice = b_contig.select(0, expert);
|
| 252 |
-
auto out_chunk = out.narrow(0, start, rows);
|
| 253 |
-
|
| 254 |
-
auto a_f32 = a_slice.contiguous().to(torch::kFloat32);
|
| 255 |
-
auto b_f32 = b_slice.contiguous().to(torch::kFloat32);
|
| 256 |
-
|
| 257 |
-
auto prod = torch::matmul(a_f32, b_f32);
|
| 258 |
-
auto prod_bf16 = prod.to(dtype);
|
| 259 |
-
|
| 260 |
-
out_chunk.copy_(prod_bf16);
|
| 261 |
-
start = end;
|
| 262 |
}
|
| 263 |
return out;
|
| 264 |
}
|
|
|
|
| 7 |
#include <hipblaslt/hipblaslt.h>
|
| 8 |
#include <torch/autograd.h>
|
| 9 |
#include <vector>
|
| 10 |
+
#include <algorithm>
|
| 11 |
+
#include <cctype>
|
| 12 |
+
#include <cstdlib>
|
| 13 |
+
#include <string>
|
| 14 |
|
| 15 |
namespace grouped_gemm {
|
| 16 |
namespace {
|
| 17 |
|
| 18 |
+
// Experimental: toggled via MEGABLOCKS_GG_USE_HIPBLASLT=1. This flag is
|
| 19 |
+
// intentionally off by default because the hipBLASLt path still fails on the
|
| 20 |
+
// largest `tests/ops_test.py` configurations.
|
| 21 |
+
bool use_hipblaslt_backend() {
|
| 22 |
+
static int cached = [] {
|
| 23 |
+
const char* raw = std::getenv("MEGABLOCKS_GG_USE_HIPBLASLT");
|
| 24 |
+
if (raw == nullptr) {
|
| 25 |
+
return 0;
|
| 26 |
+
}
|
| 27 |
+
std::string value(raw);
|
| 28 |
+
std::transform(value.begin(), value.end(), value.begin(), [](unsigned char c) {
|
| 29 |
+
return static_cast<char>(std::tolower(c));
|
| 30 |
+
});
|
| 31 |
+
if (value == "1" || value == "true" || value == "yes" || value == "on") {
|
| 32 |
+
return 1;
|
| 33 |
+
}
|
| 34 |
+
return 0;
|
| 35 |
+
}();
|
| 36 |
+
return cached == 1;
|
| 37 |
+
}
|
| 38 |
+
|
| 39 |
inline void hipblaslt_check(hipblasStatus_t status, const char* expr) {
|
| 40 |
TORCH_CHECK(status == HIPBLAS_STATUS_SUCCESS, "hipBLASLt call failed with status ", status, " when executing ", expr);
|
| 41 |
}
|
|
|
|
| 177 |
|
| 178 |
auto device = a.device();
|
| 179 |
auto dtype = a.scalar_type();
|
| 180 |
+
const bool use_hip = use_hipblaslt_backend();
|
| 181 |
|
| 182 |
const auto counts_ptr = batch_sizes.data_ptr<int64_t>();
|
| 183 |
const int64_t num_experts = batch_sizes.size(0);
|
|
|
|
| 200 |
|
| 201 |
auto b_contig = b.contiguous();
|
| 202 |
|
| 203 |
+
if (use_hip) {
|
| 204 |
+
int64_t start = 0;
|
| 205 |
+
for (int64_t expert = 0; expert < num_experts; ++expert) {
|
| 206 |
+
const int64_t end = prefix[expert];
|
| 207 |
+
const int64_t rows = end - start;
|
| 208 |
+
auto out_chunk = out.select(0, expert);
|
| 209 |
+
if (rows == 0) {
|
| 210 |
+
out_chunk.zero_();
|
| 211 |
+
start = end;
|
| 212 |
+
continue;
|
| 213 |
+
}
|
| 214 |
+
|
| 215 |
+
auto a_chunk = a.narrow(0, start, rows).contiguous();
|
| 216 |
+
auto b_chunk = b_contig.narrow(0, start, rows).contiguous();
|
| 217 |
+
|
| 218 |
+
hipblaslt_run_matmul(a_chunk.data_ptr(),
|
| 219 |
+
b_chunk.data_ptr(),
|
| 220 |
+
out_chunk.data_ptr(),
|
| 221 |
+
out_chunk.data_ptr(),
|
| 222 |
+
rows,
|
| 223 |
+
hidden_in,
|
| 224 |
+
rows,
|
| 225 |
+
hidden_out,
|
| 226 |
+
hidden_in,
|
| 227 |
+
hidden_out,
|
| 228 |
+
hidden_in,
|
| 229 |
+
hidden_out,
|
| 230 |
+
hidden_out,
|
| 231 |
+
hidden_out,
|
| 232 |
+
HIPBLAS_OP_T,
|
| 233 |
+
HIPBLAS_OP_N,
|
| 234 |
+
/*accumulate=*/false);
|
| 235 |
+
start = end;
|
| 236 |
+
}
|
| 237 |
+
} else {
|
| 238 |
+
int64_t start = 0;
|
| 239 |
+
for (int64_t expert = 0; expert < num_experts; ++expert) {
|
| 240 |
+
const int64_t end = prefix[expert];
|
| 241 |
+
const int64_t rows = end - start;
|
| 242 |
+
auto out_chunk = out.select(0, expert);
|
| 243 |
+
if (rows == 0) {
|
| 244 |
+
out_chunk.zero_();
|
| 245 |
+
start = end;
|
| 246 |
+
continue;
|
| 247 |
+
}
|
| 248 |
+
|
| 249 |
+
auto a_slice = a.narrow(0, start, rows);
|
| 250 |
+
auto b_slice = b_contig.narrow(0, start, rows);
|
| 251 |
+
|
| 252 |
+
auto a_f32 = a_slice.contiguous().to(torch::kFloat32);
|
| 253 |
+
auto b_f32 = b_slice.contiguous().to(torch::kFloat32);
|
| 254 |
+
|
| 255 |
+
auto prod = torch::matmul(a_f32.transpose(0, 1), b_f32);
|
| 256 |
+
auto prod_bf16 = prod.to(dtype);
|
| 257 |
+
|
| 258 |
+
out_chunk.copy_(prod_bf16);
|
| 259 |
start = end;
|
|
|
|
| 260 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 261 |
}
|
| 262 |
return out;
|
| 263 |
}
|
|
|
|
| 270 |
|
| 271 |
auto b_contig = b.contiguous();
|
| 272 |
|
| 273 |
+
if (use_hip) {
|
| 274 |
+
int64_t start = 0;
|
| 275 |
+
for (int64_t expert = 0; expert < num_experts; ++expert) {
|
| 276 |
+
const int64_t end = prefix[expert];
|
| 277 |
+
const int64_t rows = end - start;
|
| 278 |
+
if (rows == 0) {
|
| 279 |
+
start = end;
|
| 280 |
+
continue;
|
| 281 |
+
}
|
| 282 |
+
auto a_chunk = a.narrow(0, start, rows).contiguous();
|
| 283 |
+
auto b_chunk = b_contig.select(0, expert).contiguous();
|
| 284 |
+
auto out_chunk = out.narrow(0, start, rows);
|
| 285 |
+
|
| 286 |
+
hipblaslt_run_matmul(a_chunk.data_ptr(),
|
| 287 |
+
b_chunk.data_ptr(),
|
| 288 |
+
out_chunk.data_ptr(),
|
| 289 |
+
out_chunk.data_ptr(),
|
| 290 |
+
rows,
|
| 291 |
+
hidden_in,
|
| 292 |
+
hidden_out,
|
| 293 |
+
hidden_in,
|
| 294 |
+
rows,
|
| 295 |
+
hidden_out,
|
| 296 |
+
hidden_in,
|
| 297 |
+
hidden_in,
|
| 298 |
+
hidden_out,
|
| 299 |
+
hidden_out,
|
| 300 |
+
HIPBLAS_OP_N,
|
| 301 |
+
HIPBLAS_OP_T,
|
| 302 |
+
/*accumulate=*/false);
|
| 303 |
+
start = end;
|
| 304 |
+
}
|
| 305 |
+
} else {
|
| 306 |
+
int64_t start = 0;
|
| 307 |
+
for (int64_t expert = 0; expert < num_experts; ++expert) {
|
| 308 |
+
const int64_t end = prefix[expert];
|
| 309 |
+
const int64_t rows = end - start;
|
| 310 |
+
if (rows == 0) {
|
| 311 |
+
start = end;
|
| 312 |
+
continue;
|
| 313 |
+
}
|
| 314 |
+
auto a_slice = a.narrow(0, start, rows);
|
| 315 |
+
auto b_slice = b_contig.select(0, expert);
|
| 316 |
+
auto out_chunk = out.narrow(0, start, rows);
|
| 317 |
+
|
| 318 |
+
auto a_f32 = a_slice.contiguous().to(torch::kFloat32);
|
| 319 |
+
auto b_f32 = b_slice.contiguous().to(torch::kFloat32);
|
| 320 |
+
|
| 321 |
+
auto prod = torch::matmul(a_f32, b_f32.transpose(0, 1));
|
| 322 |
+
auto prod_bf16 = prod.to(dtype);
|
| 323 |
+
|
| 324 |
+
out_chunk.copy_(prod_bf16);
|
| 325 |
+
start = end;
|
| 326 |
+
}
|
| 327 |
+
}
|
| 328 |
+
return out;
|
| 329 |
+
}
|
| 330 |
+
|
| 331 |
+
const int64_t hidden_out = a.size(1);
|
| 332 |
+
const int64_t hidden_in = b.size(2);
|
| 333 |
+
out = c_opt.value_or(torch::empty({tokens, hidden_in}, a.options()));
|
| 334 |
+
TORCH_CHECK(out.is_contiguous(), "Output tensor must be contiguous");
|
| 335 |
+
|
| 336 |
+
auto b_contig = b.contiguous();
|
| 337 |
+
|
| 338 |
+
if (use_hip) {
|
| 339 |
+
int64_t start = 0;
|
| 340 |
+
for (int64_t expert = 0; expert < num_experts; ++expert) {
|
| 341 |
+
const int64_t end = prefix[expert];
|
| 342 |
+
const int64_t rows = end - start;
|
| 343 |
+
if (rows == 0) {
|
| 344 |
+
start = end;
|
| 345 |
+
continue;
|
| 346 |
+
}
|
| 347 |
+
auto a_chunk = a.narrow(0, start, rows).contiguous();
|
| 348 |
+
auto b_chunk = b_contig.select(0, expert).contiguous();
|
| 349 |
+
auto out_chunk = out.narrow(0, start, rows);
|
| 350 |
+
|
| 351 |
+
hipblaslt_run_matmul(a_chunk.data_ptr(),
|
| 352 |
+
b_chunk.data_ptr(),
|
| 353 |
+
out_chunk.data_ptr(),
|
| 354 |
+
out_chunk.data_ptr(),
|
| 355 |
+
rows,
|
| 356 |
+
hidden_out,
|
| 357 |
+
hidden_out,
|
| 358 |
+
hidden_in,
|
| 359 |
+
rows,
|
| 360 |
+
hidden_in,
|
| 361 |
+
hidden_out,
|
| 362 |
+
hidden_in,
|
| 363 |
+
hidden_in,
|
| 364 |
+
hidden_in,
|
| 365 |
+
HIPBLAS_OP_N,
|
| 366 |
+
HIPBLAS_OP_N,
|
| 367 |
+
/*accumulate=*/false);
|
| 368 |
+
start = end;
|
| 369 |
+
}
|
| 370 |
+
} else {
|
| 371 |
int64_t start = 0;
|
| 372 |
for (int64_t expert = 0; expert < num_experts; ++expert) {
|
| 373 |
const int64_t end = prefix[expert];
|
|
|
|
| 383 |
auto a_f32 = a_slice.contiguous().to(torch::kFloat32);
|
| 384 |
auto b_f32 = b_slice.contiguous().to(torch::kFloat32);
|
| 385 |
|
| 386 |
+
auto prod = torch::matmul(a_f32, b_f32);
|
| 387 |
auto prod_bf16 = prod.to(dtype);
|
| 388 |
|
| 389 |
out_chunk.copy_(prod_bf16);
|
| 390 |
start = end;
|
| 391 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 392 |
}
|
| 393 |
return out;
|
| 394 |
}
|
csrc/grouped_gemm/grouped_gemm.hip
CHANGED
|
@@ -9,10 +9,32 @@
|
|
| 9 |
#include <hipblaslt/hipblaslt.h>
|
| 10 |
#include <torch/autograd.h>
|
| 11 |
#include <vector>
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
namespace grouped_gemm {
|
| 14 |
namespace {
|
| 15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
inline void hipblaslt_check(hipblasStatus_t status, const char* expr) {
|
| 17 |
TORCH_CHECK(status == HIPBLAS_STATUS_SUCCESS, "hipBLASLt call failed with status ", status, " when executing ", expr);
|
| 18 |
}
|
|
@@ -154,6 +176,7 @@ torch::Tensor hipblaslt_gmm_internal(torch::Tensor a,
|
|
| 154 |
|
| 155 |
auto device = a.device();
|
| 156 |
auto dtype = a.scalar_type();
|
|
|
|
| 157 |
|
| 158 |
const auto counts_ptr = batch_sizes.data_ptr<int64_t>();
|
| 159 |
const int64_t num_experts = batch_sizes.size(0);
|
|
@@ -176,28 +199,64 @@ torch::Tensor hipblaslt_gmm_internal(torch::Tensor a,
|
|
| 176 |
|
| 177 |
auto b_contig = b.contiguous();
|
| 178 |
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 186 |
start = end;
|
| 187 |
-
continue;
|
| 188 |
}
|
| 189 |
-
|
| 190 |
-
auto a_slice = a.narrow(0, start, rows);
|
| 191 |
-
auto b_slice = b_contig.narrow(0, start, rows);
|
| 192 |
-
|
| 193 |
-
auto a_f32 = a_slice.contiguous().to(torch::kFloat32);
|
| 194 |
-
auto b_f32 = b_slice.contiguous().to(torch::kFloat32);
|
| 195 |
-
|
| 196 |
-
auto prod = torch::matmul(a_f32.transpose(0, 1), b_f32);
|
| 197 |
-
auto prod_bf16 = prod.to(dtype);
|
| 198 |
-
|
| 199 |
-
out_chunk.copy_(prod_bf16);
|
| 200 |
-
start = end;
|
| 201 |
}
|
| 202 |
return out;
|
| 203 |
}
|
|
@@ -210,6 +269,104 @@ torch::Tensor hipblaslt_gmm_internal(torch::Tensor a,
|
|
| 210 |
|
| 211 |
auto b_contig = b.contiguous();
|
| 212 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 213 |
int64_t start = 0;
|
| 214 |
for (int64_t expert = 0; expert < num_experts; ++expert) {
|
| 215 |
const int64_t end = prefix[expert];
|
|
@@ -225,42 +382,12 @@ torch::Tensor hipblaslt_gmm_internal(torch::Tensor a,
|
|
| 225 |
auto a_f32 = a_slice.contiguous().to(torch::kFloat32);
|
| 226 |
auto b_f32 = b_slice.contiguous().to(torch::kFloat32);
|
| 227 |
|
| 228 |
-
auto prod = torch::matmul(a_f32, b_f32
|
| 229 |
auto prod_bf16 = prod.to(dtype);
|
| 230 |
|
| 231 |
out_chunk.copy_(prod_bf16);
|
| 232 |
start = end;
|
| 233 |
}
|
| 234 |
-
return out;
|
| 235 |
-
}
|
| 236 |
-
|
| 237 |
-
const int64_t hidden_out = a.size(1);
|
| 238 |
-
const int64_t hidden_in = b.size(2);
|
| 239 |
-
out = c_opt.value_or(torch::empty({tokens, hidden_in}, a.options()));
|
| 240 |
-
TORCH_CHECK(out.is_contiguous(), "Output tensor must be contiguous");
|
| 241 |
-
|
| 242 |
-
auto b_contig = b.contiguous();
|
| 243 |
-
|
| 244 |
-
int64_t start = 0;
|
| 245 |
-
for (int64_t expert = 0; expert < num_experts; ++expert) {
|
| 246 |
-
const int64_t end = prefix[expert];
|
| 247 |
-
const int64_t rows = end - start;
|
| 248 |
-
if (rows == 0) {
|
| 249 |
-
start = end;
|
| 250 |
-
continue;
|
| 251 |
-
}
|
| 252 |
-
auto a_slice = a.narrow(0, start, rows);
|
| 253 |
-
auto b_slice = b_contig.select(0, expert);
|
| 254 |
-
auto out_chunk = out.narrow(0, start, rows);
|
| 255 |
-
|
| 256 |
-
auto a_f32 = a_slice.contiguous().to(torch::kFloat32);
|
| 257 |
-
auto b_f32 = b_slice.contiguous().to(torch::kFloat32);
|
| 258 |
-
|
| 259 |
-
auto prod = torch::matmul(a_f32, b_f32);
|
| 260 |
-
auto prod_bf16 = prod.to(dtype);
|
| 261 |
-
|
| 262 |
-
out_chunk.copy_(prod_bf16);
|
| 263 |
-
start = end;
|
| 264 |
}
|
| 265 |
return out;
|
| 266 |
}
|
|
|
|
| 9 |
#include <hipblaslt/hipblaslt.h>
|
| 10 |
#include <torch/autograd.h>
|
| 11 |
#include <vector>
|
| 12 |
+
#include <algorithm>
|
| 13 |
+
#include <cctype>
|
| 14 |
+
#include <cstdlib>
|
| 15 |
+
#include <string>
|
| 16 |
|
| 17 |
namespace grouped_gemm {
|
| 18 |
namespace {
|
| 19 |
|
| 20 |
+
bool use_hipblaslt_backend() {
|
| 21 |
+
static int cached = [] {
|
| 22 |
+
const char* raw = std::getenv("MEGABLOCKS_GG_USE_HIPBLASLT");
|
| 23 |
+
if (raw == nullptr) {
|
| 24 |
+
return 0;
|
| 25 |
+
}
|
| 26 |
+
std::string value(raw);
|
| 27 |
+
std::transform(value.begin(), value.end(), value.begin(), [](unsigned char c) {
|
| 28 |
+
return static_cast<char>(std::tolower(c));
|
| 29 |
+
});
|
| 30 |
+
if (value == "1" || value == "true" || value == "yes" || value == "on") {
|
| 31 |
+
return 1;
|
| 32 |
+
}
|
| 33 |
+
return 0;
|
| 34 |
+
}();
|
| 35 |
+
return cached == 1;
|
| 36 |
+
}
|
| 37 |
+
|
| 38 |
inline void hipblaslt_check(hipblasStatus_t status, const char* expr) {
|
| 39 |
TORCH_CHECK(status == HIPBLAS_STATUS_SUCCESS, "hipBLASLt call failed with status ", status, " when executing ", expr);
|
| 40 |
}
|
|
|
|
| 176 |
|
| 177 |
auto device = a.device();
|
| 178 |
auto dtype = a.scalar_type();
|
| 179 |
+
const bool use_hip = use_hipblaslt_backend();
|
| 180 |
|
| 181 |
const auto counts_ptr = batch_sizes.data_ptr<int64_t>();
|
| 182 |
const int64_t num_experts = batch_sizes.size(0);
|
|
|
|
| 199 |
|
| 200 |
auto b_contig = b.contiguous();
|
| 201 |
|
| 202 |
+
if (use_hip) {
|
| 203 |
+
int64_t start = 0;
|
| 204 |
+
for (int64_t expert = 0; expert < num_experts; ++expert) {
|
| 205 |
+
const int64_t end = prefix[expert];
|
| 206 |
+
const int64_t rows = end - start;
|
| 207 |
+
auto out_chunk = out.select(0, expert);
|
| 208 |
+
if (rows == 0) {
|
| 209 |
+
out_chunk.zero_();
|
| 210 |
+
start = end;
|
| 211 |
+
continue;
|
| 212 |
+
}
|
| 213 |
+
|
| 214 |
+
auto a_chunk = a.narrow(0, start, rows).contiguous();
|
| 215 |
+
auto b_chunk = b_contig.narrow(0, start, rows).contiguous();
|
| 216 |
+
|
| 217 |
+
hipblaslt_run_matmul(a_chunk.data_ptr(),
|
| 218 |
+
b_chunk.data_ptr(),
|
| 219 |
+
out_chunk.data_ptr(),
|
| 220 |
+
out_chunk.data_ptr(),
|
| 221 |
+
rows,
|
| 222 |
+
hidden_in,
|
| 223 |
+
rows,
|
| 224 |
+
hidden_out,
|
| 225 |
+
hidden_in,
|
| 226 |
+
hidden_out,
|
| 227 |
+
hidden_in,
|
| 228 |
+
hidden_out,
|
| 229 |
+
hidden_out,
|
| 230 |
+
hidden_out,
|
| 231 |
+
HIPBLAS_OP_T,
|
| 232 |
+
HIPBLAS_OP_N,
|
| 233 |
+
/*accumulate=*/false);
|
| 234 |
+
start = end;
|
| 235 |
+
}
|
| 236 |
+
} else {
|
| 237 |
+
int64_t start = 0;
|
| 238 |
+
for (int64_t expert = 0; expert < num_experts; ++expert) {
|
| 239 |
+
const int64_t end = prefix[expert];
|
| 240 |
+
const int64_t rows = end - start;
|
| 241 |
+
auto out_chunk = out.select(0, expert);
|
| 242 |
+
if (rows == 0) {
|
| 243 |
+
out_chunk.zero_();
|
| 244 |
+
start = end;
|
| 245 |
+
continue;
|
| 246 |
+
}
|
| 247 |
+
|
| 248 |
+
auto a_slice = a.narrow(0, start, rows);
|
| 249 |
+
auto b_slice = b_contig.narrow(0, start, rows);
|
| 250 |
+
|
| 251 |
+
auto a_f32 = a_slice.contiguous().to(torch::kFloat32);
|
| 252 |
+
auto b_f32 = b_slice.contiguous().to(torch::kFloat32);
|
| 253 |
+
|
| 254 |
+
auto prod = torch::matmul(a_f32.transpose(0, 1), b_f32);
|
| 255 |
+
auto prod_bf16 = prod.to(dtype);
|
| 256 |
+
|
| 257 |
+
out_chunk.copy_(prod_bf16);
|
| 258 |
start = end;
|
|
|
|
| 259 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 260 |
}
|
| 261 |
return out;
|
| 262 |
}
|
|
|
|
| 269 |
|
| 270 |
auto b_contig = b.contiguous();
|
| 271 |
|
| 272 |
+
if (use_hip) {
|
| 273 |
+
int64_t start = 0;
|
| 274 |
+
for (int64_t expert = 0; expert < num_experts; ++expert) {
|
| 275 |
+
const int64_t end = prefix[expert];
|
| 276 |
+
const int64_t rows = end - start;
|
| 277 |
+
if (rows == 0) {
|
| 278 |
+
start = end;
|
| 279 |
+
continue;
|
| 280 |
+
}
|
| 281 |
+
auto a_chunk = a.narrow(0, start, rows).contiguous();
|
| 282 |
+
auto b_chunk = b_contig.select(0, expert).contiguous();
|
| 283 |
+
auto out_chunk = out.narrow(0, start, rows);
|
| 284 |
+
|
| 285 |
+
hipblaslt_run_matmul(a_chunk.data_ptr(),
|
| 286 |
+
b_chunk.data_ptr(),
|
| 287 |
+
out_chunk.data_ptr(),
|
| 288 |
+
out_chunk.data_ptr(),
|
| 289 |
+
rows,
|
| 290 |
+
hidden_in,
|
| 291 |
+
hidden_out,
|
| 292 |
+
hidden_in,
|
| 293 |
+
rows,
|
| 294 |
+
hidden_out,
|
| 295 |
+
hidden_in,
|
| 296 |
+
hidden_in,
|
| 297 |
+
hidden_out,
|
| 298 |
+
hidden_out,
|
| 299 |
+
HIPBLAS_OP_N,
|
| 300 |
+
HIPBLAS_OP_T,
|
| 301 |
+
/*accumulate=*/false);
|
| 302 |
+
start = end;
|
| 303 |
+
}
|
| 304 |
+
} else {
|
| 305 |
+
int64_t start = 0;
|
| 306 |
+
for (int64_t expert = 0; expert < num_experts; ++expert) {
|
| 307 |
+
const int64_t end = prefix[expert];
|
| 308 |
+
const int64_t rows = end - start;
|
| 309 |
+
if (rows == 0) {
|
| 310 |
+
start = end;
|
| 311 |
+
continue;
|
| 312 |
+
}
|
| 313 |
+
auto a_slice = a.narrow(0, start, rows);
|
| 314 |
+
auto b_slice = b_contig.select(0, expert);
|
| 315 |
+
auto out_chunk = out.narrow(0, start, rows);
|
| 316 |
+
|
| 317 |
+
auto a_f32 = a_slice.contiguous().to(torch::kFloat32);
|
| 318 |
+
auto b_f32 = b_slice.contiguous().to(torch::kFloat32);
|
| 319 |
+
|
| 320 |
+
auto prod = torch::matmul(a_f32, b_f32.transpose(0, 1));
|
| 321 |
+
auto prod_bf16 = prod.to(dtype);
|
| 322 |
+
|
| 323 |
+
out_chunk.copy_(prod_bf16);
|
| 324 |
+
start = end;
|
| 325 |
+
}
|
| 326 |
+
}
|
| 327 |
+
return out;
|
| 328 |
+
}
|
| 329 |
+
|
| 330 |
+
const int64_t hidden_out = a.size(1);
|
| 331 |
+
const int64_t hidden_in = b.size(2);
|
| 332 |
+
out = c_opt.value_or(torch::empty({tokens, hidden_in}, a.options()));
|
| 333 |
+
TORCH_CHECK(out.is_contiguous(), "Output tensor must be contiguous");
|
| 334 |
+
|
| 335 |
+
auto b_contig = b.contiguous();
|
| 336 |
+
|
| 337 |
+
if (use_hip) {
|
| 338 |
+
int64_t start = 0;
|
| 339 |
+
for (int64_t expert = 0; expert < num_experts; ++expert) {
|
| 340 |
+
const int64_t end = prefix[expert];
|
| 341 |
+
const int64_t rows = end - start;
|
| 342 |
+
if (rows == 0) {
|
| 343 |
+
start = end;
|
| 344 |
+
continue;
|
| 345 |
+
}
|
| 346 |
+
auto a_chunk = a.narrow(0, start, rows).contiguous();
|
| 347 |
+
auto b_chunk = b_contig.select(0, expert).contiguous();
|
| 348 |
+
auto out_chunk = out.narrow(0, start, rows);
|
| 349 |
+
|
| 350 |
+
hipblaslt_run_matmul(a_chunk.data_ptr(),
|
| 351 |
+
b_chunk.data_ptr(),
|
| 352 |
+
out_chunk.data_ptr(),
|
| 353 |
+
out_chunk.data_ptr(),
|
| 354 |
+
rows,
|
| 355 |
+
hidden_out,
|
| 356 |
+
hidden_out,
|
| 357 |
+
hidden_in,
|
| 358 |
+
rows,
|
| 359 |
+
hidden_in,
|
| 360 |
+
hidden_out,
|
| 361 |
+
hidden_in,
|
| 362 |
+
hidden_in,
|
| 363 |
+
hidden_in,
|
| 364 |
+
HIPBLAS_OP_N,
|
| 365 |
+
HIPBLAS_OP_N,
|
| 366 |
+
/*accumulate=*/false);
|
| 367 |
+
start = end;
|
| 368 |
+
}
|
| 369 |
+
} else {
|
| 370 |
int64_t start = 0;
|
| 371 |
for (int64_t expert = 0; expert < num_experts; ++expert) {
|
| 372 |
const int64_t end = prefix[expert];
|
|
|
|
| 382 |
auto a_f32 = a_slice.contiguous().to(torch::kFloat32);
|
| 383 |
auto b_f32 = b_slice.contiguous().to(torch::kFloat32);
|
| 384 |
|
| 385 |
+
auto prod = torch::matmul(a_f32, b_f32);
|
| 386 |
auto prod_bf16 = prod.to(dtype);
|
| 387 |
|
| 388 |
out_chunk.copy_(prod_bf16);
|
| 389 |
start = end;
|
| 390 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 391 |
}
|
| 392 |
return out;
|
| 393 |
}
|