File size: 14,015 Bytes
d89eaa3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 |
# compressor.py
from __future__ import annotations
import functools, json, logging, re
from difflib import SequenceMatcher
from io import StringIO
from typing import Dict, List, Tuple
import pandas as pd
import regex # needed by tiktoken
import tiktoken
from bs4 import BeautifulSoup
from config import CFG
from web_helpers import retry
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# 0. shared helpers
# ------------------------------------------------------------------------
enc = tiktoken.get_encoding("cl100k_base")
_tok = lambda s: len(enc.encode(s)) # fast inline counter
@functools.lru_cache(maxsize=1)
def _nlp():
import spacy
return spacy.load("en_core_web_sm")
def _openai_client():
"""Import OpenAI lazily to avoid overhead when not needed."""
import importlib
mod = importlib.import_module("openai")
return getattr(mod, "OpenAI", None)() if hasattr(mod, "OpenAI") else mod
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# 1. regex patterns (compiled once)
# ------------------------------------------------------------------------
DATE_PATS = [re.compile(p, re.I) for p in [
r"\d{4}-\d{2}-\d{2}",
r"(?:Jan|Feb|Mar|Apr|May|Jun|Jul|Aug|Sep|Oct|Nov|Dec)\s+\d{1,2},\s+\d{4}",
r"(?:January|February|March|April|May|June|July|August|September|October|November|December)\s+\d{1,2},\s+\d{4}",
r"\d{1,2}\s+(?:Jan|Feb|Mar|Apr|May|Jun|Jul|Aug|Sep|Oct|Nov|Dec)\s+\d{4}",
r"\b\d{4}/\d{2}\b",
r"\b\d{4}\b(?!\s*(?:%|million|billion|thousand))",
]]
EMAIL_PAT = re.compile(r"[a-zA-Z0-9_.+-]+@[a-zA-Z0-9-]+\.[a-zA-Z0-9-.]+")
URL_PAT = re.compile(r"https?://[^\s\)]+")
PHONE_PAT = re.compile(r"\+?\d[\d\s\-().]{7,}\d")
CURR_PAT = re.compile(r"(\$\s?\d+(?:,\d{3})*(?:\.\d+)?|\d+(?:,\d{3})*(?:\.\d+)?\s*(USD|EUR|GBP|INR|Β₯|β©|βΉ|β¬))", re.I)
DEF_PAT = re.compile(r"([A-Z][A-Za-z0-9\s]+?)\s+(is|are|refers to|means)\s+(.*?)(?:[\.\n])")
MD_TABLE_PAT = re.compile(
r"(?:^\|.*?\|\n?)+(?:^\|[-:\s|]+\|\n?)?(?:^\|.*?\|\n?)+", re.M)
CSV_PAT = re.compile(r"((?:^.*?,.*?\n){2,})", re.M)
TSV_PAT = re.compile(r"((?:^.*?\t.*?\n){2,})", re.M)
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# 2. core utilities
# ------------------------------------------------------------------------
def deduplicate_items(items: List[str], *, similarity=0.5,
other: List[str] | None = None) -> List[str]:
"""Drop nearβduplicates; prefer the longest variant."""
if not items: return []
other = other or []
def _clean(x: str) -> str:
x = re.sub(r'\[edit\]|\[\d+\]', '', x)
return re.sub(r'\s+', ' ', x).strip()
out, out_clean = [], []
for orig in items:
clean = _clean(orig)
dup = False
for ref in out_clean + list(map(_clean, other)):
sim = SequenceMatcher(None, clean, ref).ratio()
if sim >= similarity or clean in ref or ref in clean:
dup = True
# if current is longer than stored, replace
if clean not in out_clean and len(clean) > len(ref):
idx = out_clean.index(ref)
out[idx], out_clean[idx] = orig, clean
break
if not dup:
out.append(orig)
out_clean.append(clean)
return out
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# 3. fact & table extractor
# ------------------------------------------------------------------------
def extract_facts_and_tables(text: str) -> Tuple[str, List[str], List[str]]:
facts, spans = [], []
def _add(match):
facts.append(match.group())
spans.append(match.span())
for pat in DATE_PATS: [_add(m) for m in pat.finditer(text)]
for m in EMAIL_PAT.finditer(text): _add(m)
for m in URL_PAT.finditer(text): _add(m)
for m in PHONE_PAT.finditer(text): _add(m)
for m in CURR_PAT.finditer(text): _add(m)
for m in DEF_PAT.finditer(text): _add(m)
# contextual sentences around facts
doc = _nlp()(text)
ctx = [s.text.strip() for s in doc.sents
if any(s.start_char <= s_ <= s.end_char for s_, _ in spans)]
facts.extend(ctx)
facts = sorted(set(facts))
# ββ tables
tables = []
for tbl in MD_TABLE_PAT.findall(text):
cleaned = "\n".join(l for l in tbl.splitlines()
if l.strip() and not re.match(r"^\|[-:\s|]+\|$", l))
if len(cleaned.splitlines()) < 2: continue
try:
df = pd.read_csv(StringIO(cleaned), sep="|").dropna(how="all", axis=1)
tables.append(df.to_markdown(index=False))
except Exception:
tables.append(cleaned)
soup = BeautifulSoup(text, "lxml")
for html_tbl in soup.find_all("table"):
try:
df = pd.read_html(str(html_tbl))[0]
tables.append(df.to_markdown(index=False))
except Exception:
tables.append(str(html_tbl))
for m in CSV_PAT.finditer(text):
try:
df = pd.read_csv(StringIO(m.group(1)))
if not df.empty:
tables.append(df.to_markdown(index=False))
except Exception:
pass
for m in TSV_PAT.finditer(text):
try:
df = pd.read_csv(StringIO(m.group(1)), sep="\t")
if not df.empty:
tables.append(df.to_markdown(index=False))
except Exception:
pass
# ββ clean narrative (remove facts & tables)
narrative = text
for tbl in tables: narrative = narrative.replace(tbl, " ")
for s, e in sorted(spans, reverse=True): narrative = narrative[:s] + narrative[e:]
narrative = re.sub(r"\s{2,}", " ", narrative).strip()
return narrative, facts, tables
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# 4. OpenAI summariser helpers
# ------------------------------------------------------------------------
def _summarise(text: str, pct: float, model: str) -> str:
target_tokens = int(_tok(text) * pct)
sys_prompt = (
"You are an expert abstractor. Summarize the text below to "
f"approximately {pct*100:.0f}% of its original length (β{target_tokens} tokens), "
"while **retaining all key facts, figures, names, dates, places, and events**. "
"Ensure the summary remains accurate, informative, and faithful to the original content."
)
client = _openai_client()
rsp = client.chat.completions.create(
model=model, temperature=0.2,
messages=[{"role":"system","content":sys_prompt},
{"role":"user","content":text}],
max_tokens=CFG.output_limit_per_link
)
return rsp.choices[0].message.content
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# 5. compress_text (public)
# ------------------------------------------------------------------------
def compress_text(text: str, *, pct: float = 0.3,
model: str = "gpt-4o-mini") -> Dict[str, str]:
FACTS_TABLES_LIMIT = CFG.output_limit_per_link - CFG.disable_narrative_compress_thresh
narrative, facts, tables = extract_facts_and_tables(text)
# narrative compression
if _tok(narrative) > CFG.disable_narrative_compress_thresh:
narrative_txt = _summarise(narrative, pct, model)
else:
narrative_txt = narrative
return narrative_txt
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# 6. query_text (goalβoriented extraction)
# ------------------------------------------------------------------------
EXTRACTOR_SYS_PROMPT = (
"You are a highly skilled information extraction agent. Your job is to analyze long, complex webpages "
"in the context of a specific user goal. You excel at identifying relevant sections, capturing supporting evidence "
"in full original context, and providing logically structured summaries. Always ensure precision, completeness, "
"and alignment with the userβs intent."
)
EXTRACTOR_PROMPT_TEMPLATE = """You are a highly skilled information extraction agent. Your task is to analyze the following webpage content in light of a specific user goal, and extract accurate, well-structured information using plain text format.
## Webpage Content
{webpage_content}
## User Goal
{goal}
## Task Guidelines
1. **Rational**: Briefly explain why this content is relevant to the userβs goal.
2. **Evidence**: Quote the most relevant parts of the webpage that directly support or address the goal. Use bullet points or numbered lines separated by newlines.
3. **Summary**: Provide a clear, logically structured summary of the extracted evidence that addresses the user's goal.
## Output Format
Your response must follow **exactly this format** with the three sections:
Rational: <one paragraph>
Evidence: <first point>\n<second point>...
Summary:<concise paragraph summarizing the evidence>
"""
def extract_regex(text: str) -> Dict[str, str]:
def extract_section(header: str) -> str:
# Match the section starting with `Header:` until the next capitalized line followed by `:` or end
pattern = rf"{header}:\s*(.*?)(?=\n[A-Z][a-z]+:|\Z)"
match = re.search(pattern, text, re.DOTALL | re.IGNORECASE)
return match.group(1).strip() if match else "(not found)"
return {
"rational": extract_section("Rational"),
"evidence": extract_section("Evidence"),
"summary": extract_section("Summary")
}
def query_text(
url: str,
text: str,
goal: str,
*,
model: str = "gpt-4.1-mini",
max_attempts: int = 3,
) -> Dict[str, str]:
"""Goalβoriented extractor with retries β compress fallback β token trim fallback."""
prompt = EXTRACTOR_PROMPT_TEMPLATE.format(
webpage_content=text[:15_000], # clip for safety
goal=goal,
)
client = _openai_client()
for attempt in range(1, max_attempts + 1):
try:
rsp = client.chat.completions.create(
model=model,
temperature=0.0,
messages=[
{"role": "system", "content": EXTRACTOR_SYS_PROMPT},
{"role": "user", "content": prompt},
],
max_tokens = 1024
).choices[0].message.content
extracted = extract_regex(rsp)
# Sanity check: evidence + summary must be > 20 characters
if len(extracted.get("evidence", "")) + len(extracted.get("summary", "")) > 20:
return {
"extracted_info": (
f"The useful information in {url} for goal β{goal}β:\n\n"
f"Rationale:\n{extracted.get('rational')}\n\n"
f"Evidence:\n{extracted.get('evidence')}\n\n"
f"Summary:\n{extracted.get('summary')}"
)
}
raise ValueError("LLM returned empty or malformed extraction")
except Exception as e:
logging.warning("Attempt %d/%d failed for query-based extraction: %s",
attempt, max_attempts, e)
# ββ Retry fallback: compress text βββββββββββββββββββββββββββββββββββββ
try:
compressed = compress_text(text, model=model)
return {
"extracted_info": (
f"Goal-based extraction failed after {max_attempts} attempts; "
f"returning compressed webpage:\n\n{compressed}"
)
}
except Exception as ce:
logging.error("compress_text also failed: %s", ce)
# ββ Final fallback: hard truncate to token budget ββββββββββββββββββββ
return {
"extracted_info": (
"Goal-based extraction and compression both failed; "
"returning truncated webpage content:\n\n" +
trim_to_budget(text, CFG.output_limit_per_link, model=model)
)
}
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# 7. helper: trim long lists to token budget
# ------------------------------------------------------------------------
def trim_to_budget(items: List[str], budget: int, *,
is_table: bool) -> Tuple[str, int]:
build, used = [], 0
for it in items:
toks = _tok(it)
if used + toks > budget:
break
build.append(it)
used += toks
if len(build) < len(items):
build.append(f"[{len(items)-len(build)} {'tables' if is_table else 'facts'} omitted]")
joined = "\n\n".join(build) if is_table else "\n".join(build)
return joined, _tok(joined)
|