File size: 5,769 Bytes
f6a2150 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 |
import os
import torch
import argparse
import torch.nn as nn
from tqdm.auto import tqdm
from torch.utils.data import DataLoader
import torch.nn as nn
import torch
from torch import nn
from torch.optim import *
from torch.optim.lr_scheduler import *
from torch.utils.data import DataLoader
from torchprofile import profile_macs
from torchvision.datasets import *
from torchvision.transforms import *
from proard.classification.data_providers.imagenet import ImagenetDataProvider
from proard.classification.run_manager import DistributedClassificationRunConfig, DistributedRunManager
from proard.model_zoo import DYN_net
from proard.nas.accuracy_predictor import AccuracyDataset,AccuracyPredictor,ResNetArchEncoder,RobustnessPredictor,MobileNetArchEncoder,AccuracyRobustnessDataset,Accuracy_Robustness_Predictor
parser = argparse.ArgumentParser()
def RMSELoss(yhat,y):
return torch.sqrt(torch.mean((yhat-y)**2))
def train(
model: nn.Module,
dataloader: DataLoader,
criterion: nn.Module,
optimizer: Optimizer,
callbacks = None,
epochs = 10,
save_path = None
) -> None:
model.cuda()
model.train()
for epoch in range(epochs):
print(epoch)
for inputs, targets_acc, targets_rob in tqdm(dataloader, desc='train', leave=False):
inputs = inputs.float().cuda()
targets_acc = targets_acc.cuda()
targets_rob = targets_rob.cuda()
# Reset the gradients (from the last iteration)
optimizer.zero_grad()
# Forward inference
outputs = model(inputs)
loss = criterion(outputs[:,0], targets_acc) + criterion(outputs[:,1], targets_rob)
# Backward propagation
loss.backward()
# Update optimizer and LR scheduler
optimizer.step()
# scheduler.step(epoch)
if callbacks is not None:
for callback in callbacks:
callback()
torch.save(model.state_dict(), save_path)
return model
@torch.inference_mode()
def evaluate(
model: nn.Module,
dataloader: DataLoader,
) -> float:
model.eval()
for inputs, targets_acc, targets_rob in tqdm(dataloader, desc="eval", leave=False):
# Move the data from CPU to GPU
inputs = inputs.cuda()
targets_acc = targets_acc.cuda()
targets_rob = targets_rob.cuda()
# Inference
outputs = model(inputs)
# Convert logits to class indices
print(RMSELoss(outputs[:,0],targets_acc),RMSELoss(outputs[:,1],targets_rob))
return RMSELoss(outputs[:,0],targets_acc) + RMSELoss(outputs[:,1],targets_rob)
def get_model_flops(model, inputs):
num_macs = profile_macs(model, inputs)
return num_macs
def get_model_size(model: nn.Module, data_width=32):
"""
calculate the model size in bits
:param data_width: #bits per element
"""
num_elements = 0
for param in model.parameters():
num_elements += param.numel()
return num_elements * data_width
parser.add_argument(
"-p", "--path", help="The path of cifar10", type=str, default="/dataset/cifar10"
)
parser.add_argument("-g", "--gpu", help="The gpu(s) to use", type=str, default="all")
parser.add_argument(
"-b",
"--batch_size",
help="The batch on every device for validation",
type=int,
default=32,
)
parser.add_argument("-j", "--workers", help="Number of workers", type=int, default=20)
parser.add_argument(
"-n",
"--net",
metavar="DYNNET",
default="ResNet50",
choices=[
"ResNet50",
"MBV3",
"ProxylessNASNet",
],
help="Dyanmic networks",
)
parser.add_argument(
"--dataset", type=str, default="cifar10" ,choices=["cifar10", "cifar100", "imagenet"]
)
parser.add_argument("--train_criterion", type=str, default="trades",choices=["trades","sat","mart","hat"])
parser.add_argument(
"--robust_mode", type=bool, default=True
)
args = parser.parse_args()
if args.net == "ResNet50":
arch = ResNetArchEncoder(image_size_list=[224 if args.dataset == 'imagenet' else 32],depth_list=[0,1,2],expand_list=[0.2,0.25,0.35],width_mult_list=[0.65,0.8,1.0])
else:
arch = MobileNetArchEncoder (image_size_list=[224 if args.dataset == 'imagenet' else 32],depth_list=[2,3,4],expand_list=[3,4,6],ks_list=[3,5,7])
print(arch)
acc_data = AccuracyRobustnessDataset("./acc_rob_data_{}_{}_{}".format(args.dataset,args.net,args.train_criterion))
train_loader, valid_loader, base_acc ,base_rob = acc_data.build_acc_data_loader(arch)
acc_pred_network = Accuracy_Robustness_Predictor(arch_encoder=arch,base_acc_val=None)
# optimizer_ = torch.optim.Adam(acc_pred_network.parameters(),lr=1e-3,weight_decay=1e-4)
# criterion = nn.MSELoss()
# acc_pred_network = train(acc_pred_network,train_loader,criterion,optimizer_,callbacks=None, epochs=50,save_path ="./acc_rob_data_{}_{}_{}/src/model_acc_rob.pth".format(args.dataset,args.net,args.train_criterion).format(args.dataset))
acc_pred_network.load_state_dict(torch.load("./acc_rob_data_{}_{}_{}/src/model_acc_rob.pth".format(args.dataset,args.net,args.train_criterion)))
print(evaluate(acc_pred_network,valid_loader))
# import numpy as np
# accs=[]
# robs=[]
# pred_accs=[]
# pred_robs=[]
# for x,acc,rob, in valid_loader:
# for ac in acc:
# accs.append(ac.item()*100)
# for ro in rob:
# robs.append(ro.item()*100)
# for x,acc,rob, in valid_loader:
# for arch in x:
# acc ,rob = acc_pred_network(arch.cuda())
# pred_accs.append(acc.item()*100)
# pred_robs.append(rob.item()*100)
# print(accs,robs)
# print(pred_accs,pred_robs)
# np.savetxt("./results/accs.csv", np.array(accs), delimiter=",")
# np.savetxt("./results/robs.csv", np.array(robs), delimiter=",")
# np.savetxt("./results/pred_accs.csv", np.array(pred_accs), delimiter=",")
# np.savetxt("./results/pred_robs.csv", np.array(pred_robs), delimiter=",")
|