File size: 26,457 Bytes
f6a2150
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
# Once for All: Train One Network and Specialize it for Efficient Deployment
# Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, Song Han
# International Conference on Learning Representations (ICLR), 2020.

import argparse
import numpy as np
import os
import random

# using for distributed training
import horovod.torch as hvd
import torch


from proard.classification.elastic_nn.modules.dynamic_op import (
    DynamicSeparableConv2d,
)
from proard.classification.elastic_nn.networks import DYNMobileNetV3,DYNProxylessNASNets,DYNResNets,DYNProxylessNASNets_Cifar,DYNMobileNetV3_Cifar,DYNResNets_Cifar
from proard.classification.run_manager import DistributedClassificationRunConfig
from proard.classification.run_manager.distributed_run_manager import (
    DistributedRunManager
)
from proard.utils import download_url, MyRandomResizedCrop
from proard.classification.elastic_nn.training.progressive_shrinking import load_models

parser = argparse.ArgumentParser()
parser.add_argument(
    "--task",
    type=str,
    default="expand",
    choices=[
        "kernel", # for architecture except ResNet
        "depth",
        "expand",
        "width", # only for ResNet
    ],
)
parser.add_argument("--phase", type=int, default=2, choices=[1, 2])
parser.add_argument("--resume", action="store_true")
parser.add_argument("--model_name", type=str, default="MBV2", choices=["ResNet50", "MBV3", "ProxylessNASNet","MBV2"])
parser.add_argument("--dataset", type=str, default="cifar100", choices=["cifar10", "cifar100", "imagenet"])
parser.add_argument("--robust_mode", type=bool, default=True)
parser.add_argument("--epsilon", type=float, default=0.031)
parser.add_argument("--num_steps", type=int, default=10)
parser.add_argument("--step_size", type=float, default=0.0078) 
parser.add_argument("--clip_min", type=int, default=0)
parser.add_argument("--clip_max", type=int, default=1)
parser.add_argument("--const_init", type=bool, default=False)
parser.add_argument("--beta", type=float, default=6.0)
parser.add_argument("--distance", type=str, default="l_inf",choices=["l_inf","l2"])
parser.add_argument("--train_criterion", type=str, default="trades",choices=["trades","sat","mart","hat"])
parser.add_argument("--test_criterion", type=str, default="ce",choices=["ce"])
parser.add_argument("--kd_criterion", type=str, default="rslad",choices=["ard","rslad","adaad"])
parser.add_argument("--attack_type", type=str, default="linf-pgd",choices=['fgsm', 'linf-pgd', 'fgm', 'l2-pgd', 'linf-df', 'l2-df', 'linf-apgd', 'l2-apgd','squar_attack','autoattack','apgd_ce'])

args = parser.parse_args()
if args.model_name == "ResNet50":
    args.ks_list = "3"
    if args.task == "width":
        if args.robust_mode:
            args.path = "exp/robust/"+ args.dataset + '/' + args.model_name +'/' + args.train_criterion +"/normal2width"
        else:
            args.path = "exp/"+ args.dataset + '/' +args.model_name +'/' + args.train_criterion +"/normal2width"    
        args.dynamic_batch_size = 1
        args.n_epochs = 120
        args.base_lr = 3e-2
        args.warmup_epochs = 5
        args.warmup_lr = -1
        args.width_mult_list = "0.65,0.8,1.0"
        args.expand_list = "0.35"
        args.depth_list = "2"
    elif args.task == "depth":
        if args.robust_mode:
            args.path = "exp/robust/"+ args.dataset + '/'  + args.model_name +'/' + args.train_criterion +"/width2width_depth/phase%d" % args.phase
        else:
            args.path = "exp/"+ args.dataset + '/'  + args.model_name +'/' + args.train_criterion +"/width2width_depth/phase%d" % args.phase     
        args.dynamic_batch_size = 2
        if args.phase == 1:
            args.n_epochs = 25
            args.base_lr = 2.5e-3
            args.warmup_epochs = 0
            args.warmup_lr = -1
            args.width_mult_list = "0.65,0.8,1.0"
            args.expand_list ="0.35"
            args.depth_list = "1,2"
        else:
            args.n_epochs = 120
            args.base_lr = 7.5e-3
            args.warmup_epochs = 5
            args.warmup_lr = -1
            args.width_mult_list = "0.65,0.8,1.0"
            args.expand_list = "0.35"
            args.depth_list = "0,1,2"
    elif args.task == "expand":
        if args.robust_mode : 
            args.path = "exp/robust/"+ args.dataset + '/' + args.model_name +'/' + args.train_criterion +"/width_depth2width_depth_width/phase%d" % args.phase 
        else:
            args.path = "exp/"+ args.dataset + '/' + args.model_name +'/' + args.train_criterion +"/width_depth2width_depth_width/phase%d" % args.phase    
        args.dynamic_batch_size = 4
        if args.phase == 1:
            args.n_epochs = 25
            args.base_lr = 2.5e-3
            args.warmup_epochs = 0
            args.warmup_lr = -1
            args.width_mult_list = "0.65,0.8,1.0"
            args.expand_list = "0.25,0.35"
            args.depth_list = "0,1,2"
        else:
            args.n_epochs = 120
            args.base_lr = 7.5e-3
            args.warmup_epochs = 5
            args.warmup_lr = -1
            args.width_mult_list = "0.65,0.8,1.0"
            args.expand_list = "0.2,0.25,0.35"
            args.depth_list = "0,1,2"
    else:
        raise NotImplementedError
else:
    args.width_mult_list = "1.0"    
    if args.task == "kernel":
        if args.robust_mode:
            args.path = "exp/robust/"+ args.dataset + '/' +  args.model_name +'/' + args.train_criterion +"/normal2kernel"
        else:    
            args.path = "exp/"+ args.dataset + '/' +  args.model_name +'/' + args.train_criterion +"/normal2kernel"
        args.dynamic_batch_size = 1
        args.n_epochs = 120
        args.base_lr = 3e-2
        args.warmup_epochs = 5
        args.warmup_lr = -1
        args.ks_list = "3,5,7"
        args.expand_list = "6"
        args.depth_list = "4"
    elif args.task == "depth":
        if args.robust_mode : 
            args.path = "exp/robust/"+args.dataset + '/' + args.model_name +'/' + args.train_criterion +"/kernel2kernel_depth/phase%d" % args.phase
        else:
            args.path = "exp/"+args.dataset + '/' + args.model_name +'/' + args.train_criterion +"/kernel2kernel_depth/phase%d" % args.phase    
        args.dynamic_batch_size = 2
        if args.phase == 1:
            args.n_epochs = 25
            args.base_lr = 2.5e-3
            args.warmup_epochs = 0
            args.warmup_lr = -1
            args.ks_list = "3,5,7"
            args.expand_list = "6"
            args.depth_list = "3,4"
        else:
            args.n_epochs = 120
            args.base_lr = 7.5e-3
            args.warmup_epochs = 5
            args.warmup_lr = -1
            args.ks_list = "3,5,7"
            args.expand_list = "6"
            args.depth_list = "2,3,4"
    elif args.task == "expand":
        if args.robust_mode:
            args.path = "exp/robust/"+ args.dataset + '/' + args.model_name +'/' + args.train_criterion +"/kernel_depth2kernel_depth_width/phase%d" % args.phase
        else:
            args.path = "exp/"+ args.dataset + '/' + args.model_name +  '/' + args.train_criterion + "/kernel_depth2kernel_depth_width/phase%d" % args.phase    
        args.dynamic_batch_size = 4
        if args.phase == 1:
            args.n_epochs = 25
            args.base_lr = 2.5e-3
            args.warmup_epochs = 0
            args.warmup_lr = -1
            args.ks_list = "3,5,7"
            args.expand_list = "4,6"
            args.depth_list = "2,3,4"
        else:
            args.n_epochs = 120
            args.base_lr = 7.5e-3
            args.warmup_epochs = 5
            args.warmup_lr = -1
            args.ks_list = "3,5,7"
            args.expand_list = "3,4,6"
            args.depth_list = "2,3,4"
    else:
        raise NotImplementedError
args.manual_seed = 0

args.lr_schedule_type = "cosine"

args.base_batch_size = 64
args.valid_size = 64

args.opt_type = "sgd"
args.momentum = 0.9
args.no_nesterov = False
args.weight_decay = 3e-5
args.label_smoothing = 0.1
args.no_decay_keys = "bn#bias"
args.fp16_allreduce = False

args.model_init = "he_fout"
args.validation_frequency = 1
args.print_frequency = 10

args.n_worker = 8
args.resize_scale = 0.08
args.distort_color = "tf"
if args.dataset == "imagenet":  
    args.image_size = "128,160,192,224"
else:
    args.image_size = "32"    
args.continuous_size = True
args.not_sync_distributed_image_size = False

args.bn_momentum = 0.1
args.bn_eps = 1e-5
args.dropout = 0.1
args.base_stage_width = "google"


args.dy_conv_scaling_mode = 1
args.independent_distributed_sampling = False

args.kd_ratio = 1.0
args.kd_type = "ce"


if __name__ == "__main__":
    os.makedirs(args.path, exist_ok=True)

    # Initialize Horovod
    hvd.init()
    # Pin GPU to be used to process local rank (one GPU per process)
    torch.cuda.set_device(hvd.local_rank())
    if args.robust_mode:
        args.teacher_path = 'exp/robust/teacher/' + args.dataset + '/' +  args.model_name + '/' + args.train_criterion + "/checkpoint/model_best.pth.tar"
    else:
        args.teacher_path = 'exp/teacher/' + args.dataset + '/' +  args.model_name +'/' + args.train_criterion + "/checkpoint/model_best.pth.tar"
    num_gpus = hvd.size()

    torch.manual_seed(args.manual_seed)
    torch.cuda.manual_seed_all(args.manual_seed)
    np.random.seed(args.manual_seed)
    random.seed(args.manual_seed)

    # image size
    args.image_size = [int(img_size) for img_size in args.image_size.split(",")]
    if len(args.image_size) == 1:
        args.image_size = args.image_size[0]
    MyRandomResizedCrop.CONTINUOUS = args.continuous_size
    MyRandomResizedCrop.SYNC_DISTRIBUTED = not args.not_sync_distributed_image_size

    # build run config from args
    args.lr_schedule_param = None
    args.opt_param = {
        "momentum": args.momentum,
        "nesterov": not args.no_nesterov,
    }
    args.init_lr = args.base_lr * num_gpus  # linearly rescale the learning rate
    if args.warmup_lr < 0:
        args.warmup_lr = args.base_lr
    args.train_batch_size = args.base_batch_size
    args.test_batch_size = args.base_batch_size * 4
    run_config = DistributedClassificationRunConfig(
        **args.__dict__, num_replicas=num_gpus, rank=hvd.rank()
    )

    # print run config information
    if hvd.rank() == 0:
        print("Run config:")
        for k, v in run_config.config.items():
            print("\t%s: %s" % (k, v))

    if args.dy_conv_scaling_mode == -1:
        args.dy_conv_scaling_mode = None
    DynamicSeparableConv2d.KERNEL_TRANSFORM_MODE = args.dy_conv_scaling_mode

    # build net from args
    args.width_mult_list = [
        float(width_mult) for width_mult in args.width_mult_list.split(",")
    ]
    args.ks_list = [int(ks) for ks in args.ks_list.split(",")]
    if args.model_name == "ResNet50":
        args.expand_list = [float(e) for e in args.expand_list.split(",")]
    else:
        args.expand_list = [int(e) for e in args.expand_list.split(",")]    
    args.depth_list = [int(d) for d in args.depth_list.split(",")]

    args.width_mult_list = (
        args.width_mult_list[0]
        if len(args.width_mult_list) == 1
        else args.width_mult_list
    )

    if args.model_name == "ResNet50":
        if args.dataset == "cifar10" or args.dataset == "cifar100":
            net = DYNResNets_Cifar( n_classes=run_config.data_provider.n_classes,
                bn_param=(args.bn_momentum, args.bn_eps),
                dropout_rate=args.dropout,
                depth_list=args.depth_list,
                expand_ratio_list=args.expand_list,
                width_mult_list=args.width_mult_list,)
        else:
            net = DYNResNets( n_classes=run_config.data_provider.n_classes,
                bn_param=(args.bn_momentum, args.bn_eps),
                dropout_rate=args.dropout,
                depth_list=args.depth_list,
                expand_ratio_list=args.expand_list,
                width_mult_list=args.width_mult_list,)   
    elif args.model_name == "MBV3":  
        if args.dataset == "cifar10" or args.dataset == "cifar100":  
            net = DYNMobileNetV3_Cifar(n_classes=run_config.data_provider.n_classes,bn_param=(args.bn_momentum,args.bn_eps),
                                dropout_rate= args.dropout, ks_list=args.ks_list , expand_ratio_list= args.expand_list , depth_list= args.depth_list,width_mult=args.width_mult_list)
        else:
            net = DYNMobileNetV3(n_classes=run_config.data_provider.n_classes,bn_param=(args.bn_momentum,args.bn_eps),
                                dropout_rate= args.dropout, ks_list=args.ks_list , expand_ratio_list= args.expand_list , depth_list= args.depth_list,width_mult=args.width_mult_list)    
    elif args.model_name == "ProxylessNASNet": 
        if args.dataset == "cifar10" or args.dataset == "cifar100":     
            net = DYNProxylessNASNets_Cifar(n_classes=run_config.data_provider.n_classes,bn_param=(args.bn_momentum,args.bn_eps),
                                dropout_rate= args.dropout, ks_list=args.ks_list , expand_ratio_list= args.expand_list , depth_list= args.depth_list,width_mult=args.width_mult_list)
        else:
            net = DYNProxylessNASNets(n_classes=run_config.data_provider.n_classes,bn_param=(args.bn_momentum,args.bn_eps),
                                dropout_rate= args.dropout, ks_list=args.ks_list , expand_ratio_list= args.expand_list , depth_list= args.depth_list,width_mult=args.width_mult_list)   
    elif args.model_name == "MBV2": 
        if args.dataset == "cifar10" or args.dataset == "cifar100":     
            net = DYNProxylessNASNets_Cifar(n_classes=run_config.data_provider.n_classes,bn_param=(args.bn_momentum,args.bn_eps),
                                dropout_rate= args.dropout, ks_list=args.ks_list , expand_ratio_list= args.expand_list , depth_list= args.depth_list,width_mult=args.width_mult_list,base_stage_width=args.base_stage_width)
        else:
            net = DYNProxylessNASNets(n_classes=run_config.data_provider.n_classes,bn_param=(args.bn_momentum,args.bn_eps),
                                dropout_rate= args.dropout, ks_list=args.ks_list , expand_ratio_list= args.expand_list , depth_list= args.depth_list,width_mult=args.width_mult_list,base_stage_width=args.base_stage_width)             
    else: 
        raise NotImplementedError  
    # teacher model
    if args.kd_ratio > 0:
        
        if args.model_name =="ResNet50":
            if args.dataset == "cifar10" or args.dataset == "cifar100":
                args.teacher_model = DYNResNets_Cifar(
                    n_classes=run_config.data_provider.n_classes,
                    bn_param=(args.bn_momentum, args.bn_eps),
                    dropout_rate=args.dropout,
                    depth_list=[2],
                    expand_ratio_list=[0.35],
                    width_mult_list=[1.0],
                )
            else:
                args.teacher_model = DYNResNets(
                    n_classes=run_config.data_provider.n_classes,
                    bn_param=(args.bn_momentum, args.bn_eps),
                    dropout_rate=args.dropout,
                    depth_list=[2],
                    expand_ratio_list=[0.35],
                    width_mult_list=[1.0],
                )   
        elif args.model_name =="MBV3":    
            if args.dataset == "cifar10" or args.dataset == "cifar100":
                args.teacher_model = DYNMobileNetV3_Cifar(
                    n_classes=run_config.data_provider.n_classes,
                    bn_param=(args.bn_momentum, args.bn_eps),
                    dropout_rate=0,
                    width_mult=1.0,
                    ks_list=[7],
                    expand_ratio_list=[6],
                    depth_list=[4]
                )
            else:
                args.teacher_model = DYNMobileNetV3(
                    n_classes=run_config.data_provider.n_classes,
                    bn_param=(args.bn_momentum, args.bn_eps),
                    dropout_rate=0,
                    width_mult=1.0,
                    ks_list=[7],
                    expand_ratio_list=[6],
                    depth_list=[4]
                )    
        elif args.model_name == "ProxylessNASNet":
            if args.dataset == "cifar10" or args.dataset == "cifar100":
                args.teacher_model  = DYNProxylessNASNets_Cifar(n_classes=run_config.data_provider.n_classes,
                    bn_param=(args.bn_momentum, args.bn_eps),
                    dropout_rate=0,
                    width_mult=1.0,
                    ks_list=[7],
                    expand_ratio_list=[6],
                    depth_list=[4])   
            else:
                args.teacher_model  = DYNProxylessNASNets(n_classes=run_config.data_provider.n_classes,
                    bn_param=(args.bn_momentum, args.bn_eps),
                    dropout_rate=0,
                    width_mult=1.0,
                    ks_list=[7],
                    expand_ratio_list=[6],
                    depth_list=[4]) 
        elif args.model_name == "MBV2":
            if args.dataset == "cifar10" or args.dataset == "cifar100":
                args.teacher_model  = DYNProxylessNASNets_Cifar(n_classes=run_config.data_provider.n_classes,
                    bn_param=(args.bn_momentum, args.bn_eps),
                    dropout_rate=0,
                    width_mult=1.0,
                    ks_list=[7],
                    expand_ratio_list=[6],
                    depth_list=[4],base_stage_width=args.base_stage_width)   
            else:
                args.teacher_model  = DYNProxylessNASNets(n_classes=run_config.data_provider.n_classes,
                    bn_param=(args.bn_momentum, args.bn_eps),
                    dropout_rate=0,
                    width_mult=1.0,
                    ks_list=[7],
                    expand_ratio_list=[6],
                    depth_list=[4],base_stage_width=args.base_stage_width)                 
        args.teacher_model.cuda()
    
    """ Distributed RunManager """
    # Horovod: (optional) compression algorithm.
    compression = hvd.Compression.fp16 if args.fp16_allreduce else hvd.Compression.none
    distributed_run_manager = DistributedRunManager(
        args.path,
        net,
        run_config,
        compression,
        backward_steps=args.dynamic_batch_size,
        is_root=(hvd.rank() == 0),
    )
    distributed_run_manager.save_config()
    # hvd broadcast
    distributed_run_manager.broadcast()

    # load teacher net weights
    if args.kd_ratio > 0:
        load_models(
            distributed_run_manager, args.teacher_model, model_path=args.teacher_path
        )

    # training
    from proard.classification.elastic_nn.training.progressive_shrinking import (
        validate,
        train,
    )
    if args.model_name =="ResNet50":
        validate_func_dict = {
            "image_size_list": {224 if args.dataset == "imagenet" else 32}
            if isinstance(args.image_size, int)
            else sorted({160, 224}),
            "width_mult_list": sorted({min(args.width_mult_list), max(args.width_mult_list)}),
            "expand_ratio_list": sorted({min(args.expand_list), max(args.expand_list)}),
            "depth_list": sorted({min(net.depth_list), max(net.depth_list)}),
        }
    else:
        validate_func_dict = {
            "image_size_list": {224 if args.dataset == "imagenet" else 32}
            if isinstance(args.image_size, int)
            else sorted({160, 224}),
            "width_mult_list": [1.0],
            "ks_list": sorted({min(args.ks_list), max(args.ks_list)}),
            "expand_ratio_list": sorted({min(args.expand_list), max(args.expand_list)}),
            "depth_list": sorted({min(net.depth_list), max(net.depth_list)}),
        }  

    if args.task == "width":
        from proard.classification.elastic_nn.training.progressive_shrinking import (
            train_elastic_width_mult,
        )
        if distributed_run_manager.start_epoch == 0:
            if args.robust_mode:
                args.dyn_checkpoint_path ='exp/robust/teacher/' +args.dataset + '/' +  args.model_name +'/' + args.train_criterion + "/checkpoint/model_best.pth.tar"
            else:
                args.dyn_checkpoint_path ='exp/teacher/' +args.dataset + '/' +  args.model_name +'/' + args.train_criterion + "/checkpoint/model_best.pth.tar"   
            load_models(
                distributed_run_manager,
                distributed_run_manager.net,
                args.dyn_checkpoint_path,
            )
            distributed_run_manager.write_log(
                "%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%s"
                % validate(distributed_run_manager, is_test=True, **validate_func_dict),
                "valid",
            )
        else:
            assert args.resume
        train_elastic_width_mult (train,distributed_run_manager,args,validate_func_dict)    



    elif args.task == "kernel":
        validate_func_dict["ks_list"] = sorted(args.ks_list)
        if distributed_run_manager.start_epoch == 0:
            if args.robust_mode:
                args.dyn_checkpoint_path ='exp/robust/teacher/' + args.dataset + '/' +  args.model_name +'/' + args.train_criterion + "/checkpoint/model_best.pth.tar"
            else: 
                args.dyn_checkpoint_path ='exp/teacher/' + args.dataset + '/' +  args.model_name +'/' + args.train_criterion + "/checkpoint/model_best.pth.tar"    
            load_models(
                distributed_run_manager,
                distributed_run_manager.net,
                args.dyn_checkpoint_path,
            )
            distributed_run_manager.write_log(
               "%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%s"
                % validate(distributed_run_manager, is_test=True, **validate_func_dict),
                "valid",
            )
        else:
            assert args.resume
        train(
            distributed_run_manager,
            args,
            lambda _run_manager, epoch, is_test: validate(
                _run_manager, epoch, is_test, **validate_func_dict
            ),
        )
    elif args.task == "depth":
        from proard.classification.elastic_nn.training.progressive_shrinking import (
            train_elastic_depth,
        )
        if args.robust_mode:
            if args.model_name =="ResNet50":
                if args.phase == 1:
                    args.dyn_checkpoint_path =  "exp/robust/"+ args.dataset + '/'+ args.model_name +'/' + args.train_criterion +"/normal2width" +"/checkpoint/model_best.pth.tar"
                else:
                    args.dyn_checkpoint_path = "exp/robust/"+ args.dataset + '/' + args.model_name +'/' + args.train_criterion +"/width2width_depth/phase1" + "/checkpoint/model_best.pth.tar"
            else:
                if args.phase == 1:
                    args.dyn_checkpoint_path =  "exp/robust/"+ args.dataset + '/' +  args.model_name +'/' + args.train_criterion +"/normal2kernel" +"/checkpoint/model_best.pth.tar"
                else:
                    args.dyn_checkpoint_path = "exp/robust/"+ args.dataset + '/' + args.model_name +'/' + args.train_criterion +"/kernel2kernel_depth/phase1" + "/checkpoint/model_best.pth.tar"     
        else :
            if args.model_name =="ResNet50":
                if args.phase == 1:
                    args.dyn_checkpoint_path =  "exp/"+ args.dataset + '/'+ args.model_name +'/' + args.train_criterion +"/normal2width" +"/checkpoint/model_best.pth.tar"
                else:
                    args.dyn_checkpoint_path = "exp/"+ args.dataset + '/' + args.model_name +'/' + args.train_criterion +"/width2width_depth/phase1" + "/checkpoint/model_best.pth.tar"
            else:
                if args.phase == 1:
                    args.dyn_checkpoint_path =  "exp/"+ args.dataset + '/' +  args.model_name +'/' + args.train_criterion +"/normal2kernel" +"/checkpoint/model_best.pth.tar"
                else:
                    args.dyn_checkpoint_path = "exp/"+ args.dataset + '/' + args.model_name +'/' + args.train_criterion +"/kernel2kernel_depth/phase1" + "/checkpoint/model_best.pth.tar"                  
        train_elastic_depth(train, distributed_run_manager, args, validate_func_dict)
    elif args.task == "expand":
        from proard.classification.elastic_nn.training.progressive_shrinking import (
            train_elastic_expand,
        )
        if args.robust_mode : 
            if args.model_name =="ResNet50":
                if args.phase == 1:
                    args.dyn_checkpoint_path =  "exp/robust/"+ args.dataset + '/'+ args.model_name +'/' + args.train_criterion +"/width2width_depth/phase2" + "/checkpoint/model_best.pth.tar"
                else:
                    args.dyn_checkpoint_path = "exp/robust/"+ args.dataset + '/'+ args.model_name +'/' + args.train_criterion +"/width_depth2width_depth_width/phase1" + "/checkpoint/model_best.pth.tar"
            else:
                if args.phase == 1:
                    args.dyn_checkpoint_path =  "exp/robust/"+ args.dataset + '/'+ args.model_name +'/' + args.train_criterion +"/kernel2kernel_depth/phase2" + "/checkpoint/model_best.pth.tar"  
                else:
                    args.dyn_checkpoint_path = "exp/robust/"+ args.dataset + '/'+ args.model_name +'/' + args.train_criterion +"/kernel_depth2kernel_depth_width/phase1" +  "/checkpoint/model_best.pth.tar" 
        else:
            if args.model_name =="ResNet50":
                if args.phase == 1:
                    args.dyn_checkpoint_path =  "exp/"+ args.dataset + '/'+ args.model_name +'/' + args.train_criterion +"/width2width_depth/phase2" + "/checkpoint/model_best.pth.tar"
                else:
                    args.dyn_checkpoint_path = "exp/"+ args.dataset + '/'+ args.model_name +'/' + args.train_criterion +"/width_depth2width_depth_width/phase1" + "/checkpoint/model_best.pth.tar"
            else:
                if args.phase == 1:
                    args.dyn_checkpoint_path =  "exp/"+ args.dataset + '/'+ args.model_name +'/' + args.train_criterion +"/kernel2kernel_depth/phase2" + "/checkpoint/model_best.pth.tar"  
                else:
                    args.dyn_checkpoint_path = "exp/"+ args.dataset + '/'+ args.model_name +'/' + args.train_criterion +"/kernel_depth2kernel_depth_width/phase1" +  "/checkpoint/model_best.pth.tar" 

        train_elastic_expand(train, distributed_run_manager, args, validate_func_dict)
    else:
        raise NotImplementedError