File size: 9,660 Bytes
f6a2150
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
# Once for All: Train One Network and Specialize it for Efficient Deployment
# Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, Song Han
# International Conference on Learning Representations (ICLR), 2020.

import argparse
import numpy as np
import os
import random
# using for distributed training
import horovod.torch as hvd
import torch

from proard.classification.elastic_nn.modules.dynamic_op import (
    DynamicSeparableConv2d,
)
from proard.classification.elastic_nn.networks import DYNResNets,DYNMobileNetV3,DYNProxylessNASNets,DYNMobileNetV3_Cifar,DYNResNets_Cifar,DYNProxylessNASNets_Cifar
from proard.classification.run_manager import DistributedClassificationRunConfig
from proard.classification.networks import WideResNet
from proard.classification.run_manager import DistributedRunManager


parser = argparse.ArgumentParser()
parser.add_argument("--model_name", type=str, default="MBV2", choices=["ResNet50", "MBV3", "ProxylessNASNet","WideResNet","MBV2"])
parser.add_argument("--teacher_model_name", type=str, default="WideResNet", choices=["WideResNet"])
parser.add_argument("--dataset", type=str, default="cifar100", choices=["cifar10", "cifar100", "imagenet"])
parser.add_argument("--robust_mode", type=bool, default=True)
parser.add_argument("--epsilon", type=float, default=0.031)
parser.add_argument("--num_steps", type=int, default=10)
parser.add_argument("--step_size", type=float, default=0.0078) 
parser.add_argument("--clip_min", type=int, default=0)
parser.add_argument("--clip_max", type=int, default=1)
parser.add_argument("--const_init", type=bool, default=False)
parser.add_argument("--beta", type=float, default=6.0)
parser.add_argument("--distance", type=str, default="l_inf",choices=["l_inf","l2"])
parser.add_argument("--train_criterion", type=str, default="trades",choices=["trades","sat","mart","hat"])
parser.add_argument("--test_criterion", type=str, default="ce",choices=["ce"])
parser.add_argument("--kd_criterion", type=str, default="rslad",choices=["ard","rslad","adaad"])
parser.add_argument("--attack_type", type=str, default="linf-pgd",choices=['fgsm', 'linf-pgd', 'fgm', 'l2-pgd', 'linf-df', 'l2-df', 'linf-apgd', 'l2-apgd','squar_attack','autoattack','apgd_ce'])


args = parser.parse_args()
if args.robust_mode:    
    args.path = 'exp/robust/teacher/' + args.dataset + "/" +  args.model_name + '/' + args.train_criterion
else:
    args.path = 'exp/teacher/' + args.dataset + "/" +  args.model_name
args.n_epochs = 120
args.base_lr = 0.1
args.warmup_epochs = 5
args.warmup_lr = -1
args.manual_seed = 0
args.lr_schedule_type = "cosine"
args.base_batch_size = 128
args.valid_size = None
args.opt_type = "sgd"
args.momentum = 0.9
args.no_nesterov = False
args.weight_decay = 2e-4
args.label_smoothing = 0.0
args.no_decay_keys = "bn#bias"
args.fp16_allreduce = False
args.model_init = "he_fout"
args.validation_frequency = 1
args.print_frequency = 10
args.n_worker = 32
if args.dataset =="imagenet":
    args.image_size = "224"
else:
    args.image_size = "32"     
args.continuous_size = True
args.not_sync_distributed_image_size = False
args.bn_momentum = 0.1
args.bn_eps = 1e-5
args.dropout = 0.0
args.base_stage_width = "google"
###### Parameters for MBV3, ProxylessNet, and MBV2
if args.model_name != "ResNet50":
    args.ks_list = '7'
    args.expand_list = '6'
    args.depth_list = '4'
    args.width_mult_list = "1.0"
else: 
    ###### Parameters for ResNet50
    args.ks_list = "3"
    args.expand_list = "0.35"
    args.depth_list = "2"
    args.width_mult_list = "1.0"
########################################
args.dy_conv_scaling_mode = 1
args.independent_distributed_sampling = False
args.kd_ratio = 0.0
args.kd_type = "ce"
args.dynamic_batch_size = 1
args.num_gpus = 4
if __name__ == "__main__":
    os.makedirs(args.path, exist_ok=True)

    # Initialize Horovod
    hvd.init()
    # Pin GPU to be used to process local rank (one GPU per process)
    torch.cuda.set_device(hvd.local_rank())

    num_gpus = hvd.size()
    torch.manual_seed(args.manual_seed)
    torch.cuda.manual_seed_all(args.manual_seed)
    np.random.seed(args.manual_seed)
    random.seed(args.manual_seed)

    # image size
    args.image_size = [int(img_size) for img_size in args.image_size.split(",")]
    if len(args.image_size) == 1:
        args.image_size = args.image_size[0]

    # build run config from args
    args.lr_schedule_param = None
    args.opt_param = {
        "momentum": args.momentum,
        "nesterov": not args.no_nesterov,
    }
    args.init_lr = args.base_lr * num_gpus  # linearly rescale the learning rate
    if args.warmup_lr < 0:
        args.warmup_lr = args.base_lr
    args.train_batch_size = args.base_batch_size
    args.test_batch_size = args.base_batch_size 
    print(args.__dict__)
    run_config = DistributedClassificationRunConfig(
        **args.__dict__,num_replicas=num_gpus, rank=hvd.rank()
    )

    # print run config information
    if hvd.rank() == 0:
        print("Run config:")
        for k, v in run_config.config.items():
            print("\t%s: %s" % (k, v))

    if args.dy_conv_scaling_mode == -1:
        args.dy_conv_scaling_mode = None
    DynamicSeparableConv2d.KERNEL_TRANSFORM_MODE = args.dy_conv_scaling_mode

    # build net from args
    args.width_mult_list = [
        float(width_mult) for width_mult in args.width_mult_list.split(",")
    ]
    args.ks_list = [int(ks) for ks in args.ks_list.split(",")]
    args.expand_list = [float(e) for e in args.expand_list.split(",")]
    args.depth_list = [int(d) for d in args.depth_list.split(",")]

    args.width_mult_list = (
        args.width_mult_list[0]
        if len(args.width_mult_list) == 1
        else args.width_mult_list
    )
    if args.model_name == "ResNet50":
        if args.dataset == "cifar10" or args.dataset == "cifar100":
            # net = ResNet50_Cifar(n_classes=run_config.data_provider.n_classes)
            net = DYNResNets_Cifar( n_classes=run_config.data_provider.n_classes,
                bn_param=(args.bn_momentum, args.bn_eps),
                dropout_rate=args.dropout,
                depth_list=args.depth_list,
                expand_ratio_list=args.expand_list,
                width_mult_list=args.width_mult_list,)
        else:
            net = DYNResNets( n_classes=run_config.data_provider.n_classes,
                bn_param=(args.bn_momentum, args.bn_eps),
                dropout_rate=args.dropout,
                depth_list=args.depth_list,
                expand_ratio_list=args.expand_list,
                width_mult_list=args.width_mult_list,)   
    elif args.model_name == "MBV3":  
        if args.dataset == "cifar10" or args.dataset == "cifar100":  
            net = DYNMobileNetV3_Cifar(n_classes=run_config.data_provider.n_classes,bn_param=(args.bn_momentum,args.bn_eps),
                                dropout_rate= args.dropout, ks_list=args.ks_list , expand_ratio_list= args.expand_list , depth_list= args.depth_list)
        else:
            net = DYNMobileNetV3(n_classes=run_config.data_provider.n_classes,bn_param=(args.bn_momentum,args.bn_eps),
                                dropout_rate= args.dropout, ks_list=args.ks_list , expand_ratio_list= args.expand_list , depth_list= args.depth_list)    
    elif args.model_name == "ProxylessNASNet": 
        if args.dataset == "cifar10" or args.dataset == "cifar100":     
            net = DYNProxylessNASNets_Cifar(n_classes=run_config.data_provider.n_classes,bn_param=(args.bn_momentum,args.bn_eps),
                                dropout_rate= args.dropout, ks_list=args.ks_list , expand_ratio_list= args.expand_list , depth_list= args.depth_list)
        else:
            net = DYNProxylessNASNets(n_classes=run_config.data_provider.n_classes,bn_param=(args.bn_momentum,args.bn_eps),
                                dropout_rate= args.dropout, ks_list=args.ks_list , expand_ratio_list= args.expand_list , depth_list= args.depth_list) 
             
    elif args.model_name == "MBV2": 
        if args.dataset == "cifar10" or args.dataset == "cifar100":     
            net = DYNProxylessNASNets_Cifar(n_classes=run_config.data_provider.n_classes,bn_param=(args.bn_momentum,args.bn_eps),base_stage_width=args.base_stage_width,
                                dropout_rate= args.dropout, ks_list=args.ks_list , expand_ratio_list= args.expand_list , depth_list= args.depth_list)
        else:
            net = DYNProxylessNASNets(n_classes=run_config.data_provider.n_classes,bn_param=(args.bn_momentum,args.bn_eps),base_stage_width=args.base_stage_width,
                                dropout_rate= args.dropout, ks_list=args.ks_list , expand_ratio_list= args.expand_list , depth_list= args.depth_list) 
    else: 
        raise NotImplementedError                    
    if args.teacher_model_name == "WideResNet":  
        if args.dataset == "cifar10" or args.dataset == "cifar100":  
            net = WideResNet(num_classes=run_config.data_provider.n_classes)
        else:
           raise NotImplementedError 
    else: 
        raise NotImplementedError  
    args.teacher_model = None #'exp/teacher/' + args.dataset + "/" +  "WideResNet"
    
    """ Distributed RunManager """
    #Horovod: (optional) compression algorithm.
    compression = hvd.Compression.fp16 if args.fp16_allreduce else hvd.Compression.none
    distributed_run_manager = DistributedRunManager(
        args.path,
        net,
        run_config,
        compression,
        backward_steps=args.dynamic_batch_size,
        is_root=(hvd.rank() == 0),
    )
    distributed_run_manager.save_config()
    distributed_run_manager.broadcast()

   
    distributed_run_manager.train(args)