|
|
import os |
|
|
import torch |
|
|
import argparse |
|
|
|
|
|
from proard.classification.data_providers.imagenet import ImagenetDataProvider |
|
|
from proard.classification.run_manager import DistributedClassificationRunConfig, DistributedRunManager |
|
|
from proard.model_zoo import DYN_net |
|
|
from proard.nas.accuracy_predictor import AccuracyRobustnessDataset |
|
|
import horovod.torch as hvd |
|
|
parser = argparse.ArgumentParser() |
|
|
parser.add_argument( |
|
|
"-p", "--path", help="The path of cifar10", type=str, default="/dataset/cifar10" |
|
|
) |
|
|
parser.add_argument("-g", "--gpu", help="The gpu(s) to use", type=str, default="all") |
|
|
parser.add_argument( |
|
|
"-b", |
|
|
"--batch_size", |
|
|
help="The batch on every device for validation", |
|
|
type=int, |
|
|
default=32, |
|
|
) |
|
|
parser.add_argument("-j", "--workers", help="Number of workers", type=int, default=20) |
|
|
parser.add_argument( |
|
|
"-n", |
|
|
"--net", |
|
|
metavar="DYNNET", |
|
|
default="ResNet50", |
|
|
choices=[ |
|
|
"ResNet50", |
|
|
"MBV3", |
|
|
"ProxylessNASNet", |
|
|
"MBV2" |
|
|
], |
|
|
help="Dynamic networks", |
|
|
) |
|
|
parser.add_argument( |
|
|
"--dataset", type=str, default="cifar10" ,choices=["cifar10", "cifar100", "imagenet"] |
|
|
) |
|
|
parser.add_argument("--train_criterion", type=str, default="trades",choices=["trades","sat","mart","hat"]) |
|
|
parser.add_argument( |
|
|
"--robust_mode", type=bool, default=True |
|
|
) |
|
|
parser.add_argument( |
|
|
"--WPS", type=bool, default=True |
|
|
) |
|
|
parser.add_argument( |
|
|
"--base", type=bool, default=False |
|
|
) |
|
|
|
|
|
hvd.init() |
|
|
|
|
|
torch.cuda.set_device(hvd.local_rank()) |
|
|
num_gpus = hvd.size() |
|
|
|
|
|
args = parser.parse_args() |
|
|
if args.gpu == "all": |
|
|
device_list = range(torch.cuda.device_count()) |
|
|
args.gpu = ",".join(str(_) for _ in device_list) |
|
|
else: |
|
|
device_list = [int(_) for _ in args.gpu.split(",")] |
|
|
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu |
|
|
args.test_batch_size = args.batch_size |
|
|
ImagenetDataProvider.DEFAULT_PATH = args.path |
|
|
|
|
|
|
|
|
distributed_run_config = DistributedClassificationRunConfig(**args.__dict__, num_replicas=num_gpus, rank=hvd.rank()) |
|
|
dyn_network = DYN_net(args.net, args.robust_mode , args.dataset, args.train_criterion, pretrained=True,run_config=distributed_run_config,WPS=args.WPS) |
|
|
compression = hvd.Compression.none |
|
|
distributed_run_manager = DistributedRunManager(".tmp/eval_subnet", dyn_network, distributed_run_config,compression,is_root=(hvd.rank() == 0),init=False) |
|
|
distributed_run_manager.save_config() |
|
|
|
|
|
distributed_run_manager.broadcast() |
|
|
acc_data = AccuracyRobustnessDataset("./acc_rob_data_WPS_{}_{}_{}".format(args.dataset,args.net,args.train_criterion)) |
|
|
|
|
|
acc_data.build_acc_rob_dataset(distributed_run_manager,dyn_network,image_size_list=[224 if args.dataset == "imagenet" else 32]) |