|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
|
import torch |
|
|
import argparse |
|
|
|
|
|
from proard.classification.data_providers.imagenet import ImagenetDataProvider |
|
|
from proard.classification.data_providers.cifar10 import Cifar10DataProvider |
|
|
from proard.classification.data_providers.cifar100 import Cifar100DataProvider |
|
|
from proard.classification.run_manager import ClassificationRunConfig, RunManager |
|
|
from proard.model_zoo import DYN_net |
|
|
|
|
|
|
|
|
parser = argparse.ArgumentParser() |
|
|
parser.add_argument( |
|
|
"-p", "--path", help="The path of imagenet", type=str, default="/dataset/imagenet" |
|
|
) |
|
|
parser.add_argument("-g", "--gpu", help="The gpu(s) to use", type=str, default="all") |
|
|
parser.add_argument( |
|
|
"-b", |
|
|
"--batch-size", |
|
|
help="The batch on every device for validation", |
|
|
type=int, |
|
|
default=16, |
|
|
) |
|
|
parser.add_argument("-j", "--workers", help="Number of workers", type=int, default=20) |
|
|
parser.add_argument( |
|
|
"-n", |
|
|
"--net", |
|
|
metavar="DYNET", |
|
|
default="ResNet50", |
|
|
choices=[ |
|
|
"ResNet50", |
|
|
"MBV3", |
|
|
"ProxylessNASNet", |
|
|
"MBV2", |
|
|
"WideResNet" |
|
|
], |
|
|
help="dynamic networks", |
|
|
) |
|
|
parser.add_argument( |
|
|
"--dataset", type=str, default="cifar10" ,choices=["cifar10", "cifar100", "imagenet"] |
|
|
) |
|
|
parser.add_argument( |
|
|
"--attack", type=str, default="autoattack" ,choices=['fgsm', 'linf-pgd', 'fgm', 'l2-pgd', 'linf-df', 'l2-df', 'linf-apgd', 'l2-apgd','squar_attack','autoattack','apgd_ce'] |
|
|
) |
|
|
parser.add_argument("--train_criterion", type=str, default="trades",choices=["trades","sat","mart","hat"]) |
|
|
parser.add_argument( |
|
|
"--robust_mode", type=bool, default=True |
|
|
) |
|
|
parser.add_argument( |
|
|
"--WPS", type=bool, default=False |
|
|
) |
|
|
parser.add_argument( |
|
|
"--base", type=bool, default=False |
|
|
) |
|
|
args = parser.parse_args() |
|
|
if args.gpu == "all": |
|
|
device_list = range(torch.cuda.device_count()) |
|
|
args.gpu = ",".join(str(_) for _ in device_list) |
|
|
else: |
|
|
device_list = [int(_) for _ in args.gpu.split(",")] |
|
|
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu |
|
|
args.batch_size = args.batch_size * max(len(device_list), 1) |
|
|
ImagenetDataProvider.DEFAULT_PATH = args.path |
|
|
|
|
|
run_config = ClassificationRunConfig(attack_type=args.attack,dataset= args.dataset, test_batch_size=args.batch_size, n_worker=args.workers,robust_mode=args.robust_mode) |
|
|
dyn_network = DYN_net(args.net,args.robust_mode,args.dataset, args.train_criterion ,pretrained=True,run_config=run_config,WPS=args.WPS,base=args.base) |
|
|
""" Randomly sample a sub-network, |
|
|
you can also manually set the sub-network using: |
|
|
dyn_network.set_active_subnet(ks=7, e=6, d=4) |
|
|
""" |
|
|
if not args.base: |
|
|
|
|
|
dyn_network.set_active_subnet(d=2,e=0.35,w=1.0) |
|
|
|
|
|
|
|
|
subnet = dyn_network.get_active_subnet(preserve_weight=True) |
|
|
|
|
|
else: |
|
|
subnet = dyn_network |
|
|
""" Test sampled subnet |
|
|
""" |
|
|
run_manager = RunManager(".tmp/eval_subnet", subnet, run_config, init=False) |
|
|
run_config.data_provider.assign_active_img_size(32) |
|
|
run_manager.reset_running_statistics(net=subnet) |
|
|
|
|
|
print("Test random subnet:") |
|
|
|
|
|
|
|
|
loss, (top1, top5,robust1,robust5) = run_manager.validate(net=subnet,is_test=True) |
|
|
print("Results: loss=%.5f,\t top1=%.1f,\t top5=%.1f,\t robust1=%.1f,\t robust5=%.1f" % (loss, top1, top5,robust1,robust5)) |
|
|
|