|
|
import torch |
|
|
import torch.nn as nn |
|
|
import torch.nn.functional as F |
|
|
from torch.autograd import Variable |
|
|
import torch.optim as optim |
|
|
import numpy as np |
|
|
def adaad_inner_loss(model, |
|
|
teacher_model, |
|
|
x_natural, |
|
|
step_size=2/255, |
|
|
steps=10, |
|
|
epsilon=8/255, |
|
|
BN_eval=True, |
|
|
random_init=True, |
|
|
clip_min=0.0, |
|
|
clip_max=1.0): |
|
|
|
|
|
criterion_kl = nn.KLDivLoss(reduction='none') |
|
|
if BN_eval: |
|
|
model.eval() |
|
|
|
|
|
|
|
|
teacher_model.eval() |
|
|
|
|
|
if random_init: |
|
|
x_adv = x_natural.detach() + 0.001 * torch.randn(x_natural.shape).cuda().detach() |
|
|
else: |
|
|
x_adv = x_natural.detach() |
|
|
for _ in range(steps): |
|
|
x_adv.requires_grad_() |
|
|
with torch.enable_grad(): |
|
|
loss_kl = criterion_kl(F.log_softmax(model(x_adv), dim=1), |
|
|
F.softmax(teacher_model(x_adv), dim=1)) |
|
|
loss_kl = torch.sum(loss_kl) |
|
|
grad = torch.autograd.grad(loss_kl, [x_adv])[0] |
|
|
x_adv = x_adv.detach() + step_size * torch.sign(grad.detach()) |
|
|
x_adv = torch.min(torch.max(x_adv, x_natural - |
|
|
epsilon), x_natural + epsilon) |
|
|
x_adv = torch.clamp(x_adv, clip_min, clip_max) |
|
|
|
|
|
if BN_eval: |
|
|
model.train() |
|
|
model.train() |
|
|
|
|
|
x_adv = Variable(torch.clamp(x_adv, clip_min, clip_max), |
|
|
requires_grad=False) |
|
|
return x_adv |
|
|
def adaad_loss(teacher_model,model,x_natural,y,optimizer,step_size=0.0078, |
|
|
epsilon=0.031, |
|
|
perturb_steps=10, |
|
|
beta = 6.0, |
|
|
AdaAD_alpha=1.0): |
|
|
adv_inputs = adaad_inner_loss(model,teacher_model,x_natural,step_size,perturb_steps,epsilon) |
|
|
ori_outputs = model(x_natural) |
|
|
adv_outputs = model(adv_inputs) |
|
|
with torch.no_grad(): |
|
|
teacher_model.eval() |
|
|
t_ori_outputs = teacher_model(x_natural) |
|
|
t_adv_outputs = teacher_model(adv_inputs) |
|
|
kl_loss1 = nn.KLDivLoss()(F.log_softmax(adv_outputs, dim=1), |
|
|
F.softmax(t_adv_outputs.detach(), dim=1)) |
|
|
kl_loss2 = nn.KLDivLoss()(F.log_softmax(ori_outputs, dim=1), |
|
|
F.softmax(t_ori_outputs.detach(), dim=1)) |
|
|
loss = AdaAD_alpha*kl_loss1 + (1-AdaAD_alpha)*kl_loss2 |
|
|
return loss |