|
|
import torch |
|
|
import torch.nn as nn |
|
|
import torch.nn.functional as F |
|
|
from torch.autograd import Variable |
|
|
from utils.criterion import CrossEntropyWithLabelSmooth |
|
|
|
|
|
|
|
|
def mart_loss(model, x_natural, y, optimizer, step_size=0.007, epsilon=0.031, perturb_steps=10, beta=6.0, |
|
|
attack='l_inf',natural_criterion= nn.CrossEntropyLoss()): |
|
|
""" |
|
|
MART training (Wang et al, 2020). |
|
|
""" |
|
|
|
|
|
kl = nn.KLDivLoss(reduction='none') |
|
|
model.eval() |
|
|
batch_size = len(x_natural) |
|
|
|
|
|
|
|
|
x_adv = x_natural.detach() + 0.001 * torch.randn(x_natural.shape).cuda().detach() |
|
|
if attack == 'l_inf': |
|
|
for _ in range(perturb_steps): |
|
|
x_adv.requires_grad_() |
|
|
with torch.enable_grad(): |
|
|
loss_ce = natural_criterion(model(x_adv), y) |
|
|
grad = torch.autograd.grad(loss_ce, [x_adv])[0] |
|
|
x_adv = x_adv.detach() + step_size * torch.sign(grad.detach()) |
|
|
x_adv = torch.min(torch.max(x_adv, x_natural - epsilon), x_natural + epsilon) |
|
|
x_adv = torch.clamp(x_adv, 0.0, 1.0) |
|
|
else: |
|
|
raise ValueError(f'Attack={attack} not supported for MART training!') |
|
|
model.train() |
|
|
|
|
|
x_adv = Variable(torch.clamp(x_adv, 0.0, 1.0), requires_grad=False) |
|
|
|
|
|
optimizer.zero_grad() |
|
|
|
|
|
logits = model(x_natural) |
|
|
logits_adv = model(x_adv) |
|
|
|
|
|
adv_probs = F.softmax(logits_adv, dim=1) |
|
|
tmp1 = torch.argsort(adv_probs, dim=1)[:, -2:] |
|
|
new_y = torch.where(tmp1[:, -1] == y, tmp1[:, -2], tmp1[:, -1]) |
|
|
loss_adv = natural_criterion(logits_adv, y) + F.nll_loss(torch.log(1.0001 - adv_probs + 1e-12), new_y) |
|
|
|
|
|
nat_probs = F.softmax(logits, dim=1) |
|
|
true_probs = torch.gather(nat_probs, 1, (y.unsqueeze(1)).long()).squeeze() |
|
|
|
|
|
loss_robust = (1.0 / batch_size) * torch.sum( |
|
|
torch.sum(kl(torch.log(adv_probs + 1e-12), nat_probs), dim=1) * (1.0000001 - true_probs)) |
|
|
loss = loss_adv + float(beta) * loss_robust |
|
|
|
|
|
|
|
|
|
|
|
return loss |
|
|
|