ProArd / robust_loss /trades.py
smi08's picture
Upload folder using huggingface_hub
381fcd6 verified
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
import torch.optim as optim
from utils.criterion import CrossEntropyWithLabelSmooth
def squared_l2_norm(x):
flattened = x.view(x.unsqueeze(0).shape[0], -1)
return (flattened ** 2).sum(1)
def l2_norm(x):
return squared_l2_norm(x).sqrt()
def trades_loss(model, x_natural, y,optimizer = None, step_size=0.003, epsilon=0.031, perturb_steps=10, beta=1.0,
attack='l_inf',natural_criterion= nn.CrossEntropyLoss() ):
"""
TRADES training (Zhang et al, 2019).
"""
# define KL-loss
criterion_kl = nn.KLDivLoss(size_average=False)
model.eval()
batch_size = len(x_natural)
# generate adversarial example
x_adv = x_natural.detach() + 0.001 * torch.randn(x_natural.shape).cuda().detach()
p_natural = F.softmax(model(x_natural), dim=1)
if attack == 'l_inf':
for _ in range(perturb_steps):
x_adv.requires_grad_()
with torch.enable_grad():
loss_kl = criterion_kl(F.log_softmax(model(x_adv), dim=1), p_natural)
grad = torch.autograd.grad(loss_kl, [x_adv])[0]
x_adv = x_adv.detach() + step_size * torch.sign(grad.detach())
x_adv = torch.min(torch.max(x_adv, x_natural - epsilon), x_natural + epsilon)
x_adv = torch.clamp(x_adv, 0.0, 1.0)
elif attack == 'l2':
delta = 0.001 * torch.randn(x_natural.shape).cuda().detach()
delta = Variable(delta.data, requires_grad=True)
# Setup optimizers
optimizer_delta = optim.SGD([delta], lr=epsilon / perturb_steps * 2)
for _ in range(perturb_steps):
adv = x_natural + delta
# optimize
optimizer_delta.zero_grad()
with torch.enable_grad():
loss = (-1) * criterion_kl(F.log_softmax(model(adv), dim=1), p_natural)
loss.backward(retain_graph=True)
# renorming gradient
grad_norms = delta.grad.view(batch_size, -1).norm(p=2, dim=1)
delta.grad.div_(grad_norms.view(-1, 1, 1, 1))
# avoid nan or inf if gradient is 0
if (grad_norms == 0).any():
delta.grad[grad_norms == 0] = torch.randn_like(delta.grad[grad_norms == 0])
optimizer_delta.step()
# projection
delta.data.add_(x_natural)
delta.data.clamp_(0, 1).sub_(x_natural)
delta.data.renorm_(p=2, dim=0, maxnorm=epsilon)
x_adv = Variable(x_natural + delta, requires_grad=False)
else:
raise ValueError(f'Attack={attack} not supported for TRADES training!')
model.train()
x_adv = Variable(torch.clamp(x_adv, 0.0, 1.0), requires_grad=False)
optimizer.zero_grad()
# calculate robust loss
logits_natural = model(x_natural)
# print("loguts natural:{}".format(logits_natural))
logits_adv = model(x_adv)
# print("loguts adv:{}".format(logits_adv))
loss_natural = natural_criterion(logits_natural, y)
loss_robust = (1.0 / batch_size) * criterion_kl(F.log_softmax(logits_adv, dim=1),
F.softmax(logits_natural, dim=1))
loss = loss_natural + beta * loss_robust
return loss