import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable import torch.optim as optim import numpy as np def attack_pgd(model,train_batch_data,train_batch_labels,attack_iters=10,step_size=2/255.0,epsilon=8.0/255.0): ce_loss = torch.nn.CrossEntropyLoss().cuda() train_ifgsm_data = train_batch_data.detach() + torch.zeros_like(train_batch_data).uniform_(-epsilon,epsilon) train_ifgsm_data = torch.clamp(train_ifgsm_data,0,1) for i in range(attack_iters): train_ifgsm_data.requires_grad_() logits = model(train_ifgsm_data) loss = ce_loss(logits,train_batch_labels.cuda()) loss.backward() train_grad = train_ifgsm_data.grad.detach() train_ifgsm_data = train_ifgsm_data + step_size*torch.sign(train_grad) train_ifgsm_data = torch.clamp(train_ifgsm_data.detach(),0,1) train_ifgsm_pert = train_ifgsm_data - train_batch_data train_ifgsm_pert = torch.clamp(train_ifgsm_pert,-epsilon,epsilon) train_ifgsm_data = train_batch_data + train_ifgsm_pert train_ifgsm_data = train_ifgsm_data.detach() return train_ifgsm_data def ard_inner_loss(model, teacher_logits, x_natural, y, optimizer, step_size=0.0078, epsilon=0.031, perturb_steps=10, beta=6.0): # define KL-loss criterion_kl = nn.KLDivLoss(size_average=False,reduce=False) model.eval() batch_size = len(x_natural) # generate adversarial example x_adv = x_natural.detach() + 0.001 * torch.randn(x_natural.shape).cuda().detach() for _ in range(perturb_steps): x_adv.requires_grad_() with torch.enable_grad(): loss_kl = criterion_kl(F.log_softmax(model(x_adv), dim=1), F.softmax(teacher_logits, dim=1)) loss_kl = torch.sum(loss_kl) grad = torch.autograd.grad(loss_kl, [x_adv])[0] x_adv = x_adv.detach() + step_size * torch.sign(grad.detach()) x_adv = torch.min(torch.max(x_adv, x_natural - epsilon), x_natural + epsilon) x_adv = torch.clamp(x_adv, 0.0, 1.0) model.train() x_adv = Variable(torch.clamp(x_adv, 0.0, 1.0), requires_grad=False) # zero gradient # optimizer.zero_grad() logits = model(x_adv) return logits def ard_loss(teacher_model,model,x_natural,y,optimizer,step_size=0.0078, epsilon=0.031, perturb_steps=10, beta=6.0, alpha = 1.0, temp = 30.0): KL_loss = nn.KLDivLoss() XENT_loss = nn.CrossEntropyLoss() teacher_logits = teacher_model(x_natural) adv_logits = ard_inner_loss(model,teacher_logits,x_natural,y,optimizer,step_size,epsilon,perturb_steps) model.train() nat_logits = model(x_natural) loss = alpha*temp*temp*KL_loss(F.log_softmax(adv_logits/temp, dim=1),F.softmax(teacher_logits/temp, dim=1))+(1.0-alpha)*XENT_loss(nat_logits, y) return loss