# Once for All: Train One Network and Specialize it for Efficient Deployment # Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, Song Han # International Conference on Learning Representations (ICLR), 2020. import os import torch import argparse import sys from proard.classification.data_providers.imagenet import ImagenetDataProvider from proard.classification.data_providers.cifar10 import Cifar10DataProvider from proard.classification.data_providers.cifar100 import Cifar100DataProvider from proard.classification.run_manager import ClassificationRunConfig, RunManager,DistributedRunManager from proard.model_zoo import DYN_net from proard.nas.accuracy_predictor import AccuracyDataset,AccuracyPredictor,ResNetArchEncoder,RobustnessPredictor,MobileNetArchEncoder,AccuracyRobustnessDataset,Accuracy_Robustness_Predictor parser = argparse.ArgumentParser() parser.add_argument( "-p", "--path", help="The path of imagenet", type=str, default="/dataset/imagenet" ) parser.add_argument("-g", "--gpu", help="The gpu(s) to use", type=str, default="all") parser.add_argument( "-b", "--batch-size", help="The batch on every device for validation", type=int, default=128, ) parser.add_argument("-j", "--workers", help="Number of workers", type=int, default=20) parser.add_argument( "-n", "--net", metavar="DYNNET", default="MBV3", choices=[ "ResNet50", "MBV3", "ProxylessNASNet", "MBV2" ], help="dynamic networks", ) parser.add_argument( "--dataset", type=str, default="cifar10" ,choices=["cifar10", "cifar100", "imagenet"] ) parser.add_argument("--train_criterion", type=str, default="trades",choices=["trades","sat","mart","hat"]) parser.add_argument( "--robust_mode", type=bool, default=True ) parser.add_argument( "--WPS", type=bool, default=False ) args = parser.parse_args() if args.gpu == "all": device_list = range(torch.cuda.device_count()) args.gpu = ",".join(str(_) for _ in device_list) else: device_list = [int(_) for _ in args.gpu.split(",")] os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu args.batch_size = args.batch_size * max(len(device_list), 1) ImagenetDataProvider.DEFAULT_PATH = args.path run_config = ClassificationRunConfig(dataset= args.dataset, test_batch_size=args.batch_size, n_worker=args.workers,robust_mode=args.robust_mode) dyn_network = DYN_net(args.net,args.robust_mode,args.dataset, args.train_criterion ,pretrained=True,run_config=run_config,WPS=args.WPS) """ Randomly sample a sub-network, you can also manually set the sub-network using: dyn_network.set_active_subnet(ks=7, e=6, d=4) """ # dyn_network.set_active_subnet(ks=3, e=3, d=2) # dyn_network.set_active_subnet(d=4,e=0.25,w=1) import random import numpy as np random.seed(0) np.random.seed(0) acc1,rob1,acc2,rob2 =[],[],[],[] if args.net == "ResNet50": arch = ResNetArchEncoder(image_size_list=[224 if args.dataset == 'imagenet' else 32],depth_list=[0,1,2],expand_list=[0.2,0.25,0.35],width_mult_list=[0.65,0.8,1.0]) else: arch = MobileNetArchEncoder (image_size_list=[224 if args.dataset == 'imagenet' else 32],depth_list=[2,3,4],expand_list=[3,4,6],ks_list=[3,5,7]) print(arch) acc_data = AccuracyRobustnessDataset("./acc_rob_data_{}_{}_{}".format(args.dataset,args.net,args.train_criterion)) train_loader, valid_loader, base_acc ,base_rob = acc_data.build_acc_data_loader(arch) for inputs, targets_acc, targets_rob in train_loader: for i in range(len(targets_acc)): acc1.append(targets_acc[i].item() * 100) rob1.append(targets_rob[i].item() * 100) np.save("./results/acc_mbv3.npy",np.array(acc1)) np.save("./results/rob_mbv3.npy",np.array(rob1))