Spaces:
Running
Running
File size: 16,962 Bytes
ea499a0 8be2a67 ea499a0 d68a5db ea499a0 d68a5db ea499a0 d68a5db ea499a0 d68a5db ea499a0 d615edd ea499a0 f93e74c 8be2a67 ea499a0 72a4a4d ea499a0 d68a5db ea499a0 d68a5db ea499a0 d68a5db ea499a0 d68a5db ea499a0 d68a5db ea499a0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 |
import gradio as gr
import os
import json
import uuid
from datetime import datetime
from huggingface_hub import HfApi, create_repo
# Setup local storage
os.makedirs("uploaded_images", exist_ok=True)
os.makedirs("submissions", exist_ok=True)
# --- Hugging Face Configuration ---
HF_TOKEN = os.environ.get("Crowdsourcing")
DATASET_NAME = "1-800-LLMs/se-culture-dataset-results"
DATASET_CREATED = False
# --- Data for Dropdowns ---
states_by_country = {
"India": ["Andhra Pradesh", "Arunachal Pradesh", "Assam", "Bihar", "Chhattisgarh", "Goa", "Gujarat", "Haryana","Himachal Pradesh", "Jharkhand", "Karnataka", "Kerala", "Madhya Pradesh", "Maharashtra", "Manipur","Meghalaya", "Mizoram", "Nagaland", "Odisha", "Punjab", "Rajasthan", "Sikkim", "Tamil Nadu","Telangana", "Tripura", "Uttar Pradesh", "Uttarakhand", "West Bengal", "Andaman and Nicobar Islands","Chandigarh", "Dadra and Nagar Haveli and Daman and Diu", "Delhi", "Jammu and Kashmir", "Ladakh","Lakshadweep", "Puducherry"],
"Pakistan": ["Balochistan", "Khyber Pakhtunkhwa", "Punjab", "Sindh", "Islamabad Capital Territory", "Other"],
"Bangladesh": ["Barisal", "Chittagong", "Dhaka", "Khulnā", "Mymensingh", "Rajshahi", "Rangpur", "Sylhet"],
"Afghanistan": ["Badakhshan", "Badghis", "Baghlan", "Balkh", "Bamyan", "Daykundi", "Farah", "Faryab", "Ghazni","Ghor", "Helmand", "Herat", "Jowzjan", "Kabul", "Kandahar", "Kapisa", "Khost", "Kunar", "Kunduz","Laghman", "Logar", "Nangarhar", "Nimruz", "Nuristan", "Paktia", "Paktika", "Panjshir", "Parwan","Samangan", "Sar-e Pol", "Takhar", "Uruzgan", "Wardak", "Zabul"],
"Bhutan": ["Bumthang", "Chukha", "Dagana", "Gasa", "Haa", "Lhuentse", "Mongar", "Paro", "Pemagatshel", "Punakha","Samdrup Jongkhar", "Samtse", "Sarpang", "Thimphu", "Trashigang", "Trashiyangtse", "Trongsa", "Tsirang","Wangdue Phodrang", "Zhemgang"],
"Nepal": ["Bagmati", "Gandaki", "Karnali", "Koshi", "Lumbini", "Madhesh", "Sudurpashchim"],
"Sri Lanka": ["Central", "Eastern", "North Central", "Northern", "North Western", "Sabaragamuwa", "Southern","Uva", "Western"]
}
countries = ["India", "Pakistan", "Bangladesh", "Afghanistan", "Bhutan", "Nepal", "Sri Lanka","OTHER"]
south_asian_languages = [
"Assamese", "Bengali", "Bhojpuri", "Bodo", "Dari", "Dzongkha", "Dogri", "Gujarati", "Hindi", "Kannada",
"Kashmiri", "Konkani", "Maithili", "Malayalam", "Marathi", "Meitei", "Nepali", "Odia", "Pashto", "Punjabi",
"Sanskrit", "Santali", "Sindhi", "Sinhala", "Tamil", "Telugu", "Tibetan", "Tulu", "Urdu", "OTHER"
]
# --- Helper Functions ---
def setup_hf_dataset():
"""Creates the Hugging Face dataset repository if it doesn't exist."""
global DATASET_CREATED
if not DATASET_CREATED and HF_TOKEN:
try:
api = HfApi()
create_repo(DATASET_NAME, repo_type="dataset", token=HF_TOKEN, exist_ok=True)
DATASET_CREATED = True
print(f"Dataset {DATASET_NAME} is ready on Hugging Face Hub.")
except Exception as e:
print(f"Error setting up Hugging Face dataset: {e}")
elif not HF_TOKEN:
print("Warning: HF_TOKEN not set. Submissions will be stored locally only.")
def update_country_dependents(country):
"""
Updates the state dropdown, other state textbox, and other country textbox
based on the selected country.
"""
# Logic for the state dropdown
if country in states_by_country:
state_update = gr.update(
choices=states_by_country[country],
label=f"State/Province in {country}:",
interactive=True,
value=None, # Reset selection
visible=True
)
other_state_update = gr.update(visible=False, value="") # Hide other state textbox
else:
# Hide state dropdown for "None" or "OTHER"
state_update = gr.update(
choices=[],
interactive=False,
value=None,
visible=False
)
# Show 'Other State' textbox ONLY if country is 'OTHER'
other_state_update = gr.update(visible=(country == "OTHER"))
# Logic for the 'Other Country' textbox visibility
other_country_update = gr.update(visible=(country == "OTHER"))
# Return updates for all three components
return state_update, other_country_update, other_state_update
def update_other_language_visibility(selected_language):
"""Shows the 'Other Language' textbox only when 'OTHER' is selected."""
return gr.update(visible=(selected_language == "OTHER"))
def process_submission(input_img, language, country, state, city, se_asia_relevance, culture_knowledge,
native_caption, english_caption, transliterated_caption, domain, email, other_language, other_country, other_state):
"""Validates, saves, and uploads a user submission."""
warnings = {
"img": (not input_img, "<span style='color:red'>⚠️ Please upload an image.</span>"),
"lang": (not language or (language == "OTHER" and not other_language), "<span style='color:red'>⚠️ Please select or specify a language.</span>"),
"country": (not country or country == "None" or (country == "OTHER" and not other_country), "<span style='color:red'>⚠️ Please select or specify a country.</span>"),
"email": (not email, "<span style='color:red'>⚠️ Please provide your email.</span>"),
"relevance": (not se_asia_relevance, "<span style='color:red'>⚠️ Please select the cultural relevance.</span>"),
"knowledge": (not culture_knowledge, "<span style='color:red'>⚠️ Please select your knowledge source.</span>"),
"english": (not english_caption, "<span style='color:red'>⚠️ Please enter an English caption.</span>"),
"transliterated": (not transliterated_caption, "<span style='color:red'>⚠️ Please enter a transliterated caption.</span>"),
}
if any(v[0] for v in warnings.values()):
return (
gr.update(visible=True, value=warnings["img"][1] if warnings["img"][0] else ""),
gr.update(visible=True, value=warnings["lang"][1] if warnings["lang"][0] else ""),
gr.update(visible=True, value=warnings["country"][1] if warnings["country"][0] else ""),
gr.update(visible=False),
gr.update(visible=True, value=warnings["email"][1] if warnings["email"][0] else ""),
gr.update(visible=True, value=warnings["relevance"][1] if warnings["relevance"][0] else ""),
gr.update(visible=True, value=warnings["knowledge"][1] if warnings["knowledge"][0] else ""),
gr.update(visible=False),
gr.update(visible=True, value=warnings["english"][1] if warnings["english"][0] else ""),
gr.update(visible=True, value=warnings["transliterated"][1] if warnings["transliterated"][0] else ""),
gr.update(visible=False), gr.update(visible=False), gr.update(visible=False),
gr.update(visible=False), gr.update(visible=False), gr.update(visible=False),
gr.update(visible=False), gr.update(visible=False)
)
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S_%f")
image_filename = f"{timestamp}.jpg"
image_path = os.path.join("uploaded_images", image_filename)
input_img.save(image_path)
final_language = other_language if language == "OTHER" else language
final_country = other_country if country == "OTHER" else country
final_state = other_state if country == "OTHER" else state
submission_data = {
"id": str(uuid.uuid4()), "timestamp": timestamp, "image_filename": image_filename,
"language": final_language, "country": final_country, "state": final_state, "city": city,
"se_asia_relevance": se_asia_relevance, "cultural_knowledge_source": culture_knowledge,
"native_caption": native_caption, "english_caption": english_caption,
"transliterated_caption": transliterated_caption, "domain": domain, "email": email,
}
json_filename = f"{timestamp}.json"
json_path = os.path.join("submissions", json_filename)
with open(json_path, "w") as f:
json.dump(submission_data, f, indent=2)
if HF_TOKEN:
try:
api = HfApi()
api.upload_file(path_or_fileobj=json_path, path_in_repo=f"data/{json_filename}", repo_id=DATASET_NAME, repo_type="dataset", token=HF_TOKEN)
api.upload_file(path_or_fileobj=image_path, path_in_repo=f"images/{image_filename}", repo_id=DATASET_NAME, repo_type="dataset", token=HF_TOKEN)
print(f"Successfully uploaded {json_filename} and {image_filename} to HF.")
except Exception as e:
print(f"Error uploading to Hugging Face Hub: {e}")
location_info = f"Location: {city}, {final_state}, {final_country}" if city and final_state else f"Location: {final_country}"
return (
gr.update(value="", visible=False), gr.update(value="", visible=False),
gr.update(value="", visible=False), gr.update(value="", visible=False),
gr.update(value="", visible=False), gr.update(value="", visible=False),
gr.update(value="", visible=False), gr.update(value="", visible=False),
gr.update(value="", visible=False), gr.update(value="", visible=False),
gr.update(value=input_img, visible=True), gr.update(value="✅ Submission successful!", visible=True),
gr.update(value=location_info, visible=True), gr.update(value=se_asia_relevance, visible=True),
gr.update(value=culture_knowledge, visible=True), gr.update(value=native_caption, visible=True),
gr.update(value=english_caption, visible=True), gr.update(value=domain, visible=True)
)
def clear_all_fields():
"""Resets all input and output components in the UI."""
return (
None, "OTHER", "", "None", "", None, "", "", # Add "" for other_state_textbox
None, None, "", "", "", "", "",
gr.update(value="", visible=False), gr.update(value="", visible=False),
gr.update(value="", visible=False), gr.update(value="", visible=False),
gr.update(value="", visible=False), gr.update(value="", visible=False),
gr.update(value="", visible=False), gr.update(value="", visible=False),
gr.update(value="", visible=False), gr.update(value="", visible=False),
gr.update(visible=False, value=None), gr.update(visible=False, value=None),
gr.update(visible=False, value=None), gr.update(visible=False, value=None),
gr.update(visible=False, value=None), gr.update(visible=False, value=None),
gr.update(visible=False, value=None), gr.update(visible=False, value=None)
)
# --- Main Application ---
setup_hf_dataset()
with gr.Blocks(theme='1024m/1024m-1') as gradio_app:
gr.Markdown("# Multilingual Image Captions")
gr.Markdown("Please check the [annotation guidelines](https://docs.google.com/document/d/1GiPRvIP44EMl1lSjREegfYORqXZzdVufBnMHTogNGfw/edit?usp=sharing) and the [discord channel](https://discord.com/channels/987824841656791130/991440413745500210) before proceeding.")
with gr.Row():
with gr.Column(scale=1):
input_img = gr.Image(label="Upload an image", sources=['upload', 'webcam'], type="pil")
img_warning = gr.Markdown(visible=False)
language = gr.Dropdown(choices=south_asian_languages, label="Language:", interactive=True, value=south_asian_languages[-1])
lang_warning = gr.Markdown(visible=False)
other_language = gr.Textbox(label="Other Language:", info="If not listed above", visible=True)
countries = ["India", "Pakistan", "Bangladesh", "Afghanistan", "Bhutan", "Nepal", "Sri Lanka", "OTHER"]
country_dropdown = gr.Dropdown(choices=countries, label="Country where the image was taken:", interactive=True, value=countries[-1])
country_warning = gr.Markdown(visible=False)
other_country = gr.Textbox(label="Other Country:", info="If not listed above", visible=True)
state_dropdown = gr.Dropdown(choices=[], label="State/Province (Optional but preferred):", interactive=False, visible=True)
other_state_textbox = gr.Textbox(label="Other State/Province:", info="If country is 'OTHER'", visible=False)
city_textbox = gr.Textbox(label="City (Optional but preferred):", placeholder="Enter city name")
city_warning = gr.Markdown(visible=False)
email_input = gr.Textbox(label="Your Email:", placeholder="Enter your email address", info="Used as unique contributor ID")
email_warning = gr.Markdown(visible=False)
with gr.Column(scale=1):
se_asia_relevance = gr.Radio(choices=["Yes. Unique to South Asia", "Yes, people will likely think of South Asia when seeing the picture, but it may have low degree of similarity to other cultures.", "Maybe, this culture did not originate from South Asia, but it's quite dominant in South Asia", "Not really. It has some affiliation to South Asia, but actually does not represent South Asia or has stronger affiliation to cultures outside South Asia", "No. Totally unrelated to South Asia"], label="Is the image culturally relevant in South Asia?")
relevance_warning = gr.Markdown(visible=False)
culture_knowledge = gr.Radio(choices=["I'm from this country/culture", "I checked online resources (e.g., Wikipedia, articles, blogs)"], label="How do you know about this culture?", info="Please do not consult LLMs (e.g., GPT-4o, Claude, Command-R, etc.)")
knowledge_warning = gr.Markdown(visible=False)
native_caption = gr.Textbox(label="Caption in Native Language (Optional but preferred):", placeholder="Enter caption in the native language (script only)")
native_warning = gr.Markdown(visible=False)
english_caption = gr.Textbox(label="English Caption:", placeholder="Enter caption in English (script only)")
english_warning = gr.Markdown(visible=False)
transliterated_caption = gr.Textbox(label="Transliterated Caption:", placeholder="Enter caption in transliterated (English script only)")
transliterated_warning = gr.Markdown(visible=False)
domain = gr.Textbox(label="Domain (Optional but preferred):", placeholder="1-2 word description")
with gr.Row():
clear_btn = gr.Button("Clear")
submit_btn = gr.Button("Submit")
with gr.Row():
with gr.Column(scale=1):
output_img = gr.Image(label="Submitted Image", visible=False)
output_text = gr.Text(label="Submission Status", visible=False)
output_location = gr.Text(label="Location Information", visible=False)
with gr.Column(scale=1):
output_relevance = gr.Text(label="South Asia Cultural Relevance", visible=False)
output_knowledge = gr.Text(label="Cultural Knowledge Source", visible=False)
output_native = gr.Text(label="Native Language Caption", visible=False)
output_english = gr.Text(label="English Caption", visible=False)
output_domain = gr.Text(label="Domain", visible=False)
# Event bindings
language.change(update_other_language_visibility, inputs=language, outputs=other_language)
country_dropdown.change(
fn=update_country_dependents,
inputs=country_dropdown,
outputs=[state_dropdown, other_country, other_state_textbox]
)
submit_btn.click(
fn=process_submission,
inputs=[
input_img, language, country_dropdown, state_dropdown, city_textbox,
se_asia_relevance, culture_knowledge, native_caption, english_caption,
transliterated_caption, domain, email_input, other_language, other_country,
other_state_textbox
],
outputs=[
img_warning, lang_warning, country_warning, city_warning, email_warning,
relevance_warning, knowledge_warning, native_warning, english_warning, transliterated_warning,
output_img, output_text, output_location,
output_relevance, output_knowledge, output_native, output_english, output_domain
]
)
components_to_clear = [
input_img, language, other_language, country_dropdown, other_country, state_dropdown,
other_state_textbox, city_textbox, se_asia_relevance, culture_knowledge, native_caption,
english_caption, transliterated_caption, domain, email_input,
img_warning, lang_warning, country_warning, city_warning, email_warning, relevance_warning,
knowledge_warning, native_warning, english_warning, transliterated_warning,
output_img, output_text,
output_location, output_relevance, output_knowledge, output_native, output_english, output_domain
]
clear_btn.click(fn=clear_all_fields, inputs=None, outputs=components_to_clear)
if __name__ == "__main__":
gradio_app.launch(debug=True) |