Spaces:
Configuration error
Configuration error
Upload darkbert.py
Browse files- darkbert.py +151 -0
darkbert.py
ADDED
|
@@ -0,0 +1,151 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2022 Christopher K. Schmitt
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
|
| 15 |
+
from sentence_transformers import SentenceTransformer
|
| 16 |
+
from sklearn.manifold import TSNE
|
| 17 |
+
from sklearn.cluster import DBSCAN
|
| 18 |
+
from sklearn.metrics import silhouette_score, calinski_harabasz_score
|
| 19 |
+
from pathlib import Path
|
| 20 |
+
from bs4 import BeautifulSoup
|
| 21 |
+
from argparse import ArgumentParser
|
| 22 |
+
|
| 23 |
+
import matplotlib.pyplot as plt
|
| 24 |
+
import numpy as np
|
| 25 |
+
import nltk as nltk
|
| 26 |
+
|
| 27 |
+
# The list of huggingface transformers with tensorflow
|
| 28 |
+
# support and compatible tokenizers.
|
| 29 |
+
available_models = {
|
| 30 |
+
"bert": "sentence-transformers/multi-qa-distilbert-cos-v1",
|
| 31 |
+
"albert": "sentence-transformers/paraphrase-albert-small-v2",
|
| 32 |
+
"roberta": "sentence-transformers/all-distilroberta-v1",
|
| 33 |
+
}
|
| 34 |
+
|
| 35 |
+
display_titles = {
|
| 36 |
+
"bert": "BERT",
|
| 37 |
+
"albert": "ALBERT",
|
| 38 |
+
"roberta": "RoBERTa",
|
| 39 |
+
}
|
| 40 |
+
|
| 41 |
+
# Define the CLI interface for modeling our data with
|
| 42 |
+
# different transformer models. We want to control the
|
| 43 |
+
# type of the tokenizer and the transformer we use, as well
|
| 44 |
+
# as the input and output directories
|
| 45 |
+
parser = ArgumentParser()
|
| 46 |
+
parser.add_argument("-m", "--model", choices=available_models.keys(), required=True)
|
| 47 |
+
parser.add_argument("-i", "--input", required=True)
|
| 48 |
+
parser.add_argument("-o", "--output", required=True)
|
| 49 |
+
|
| 50 |
+
args = parser.parse_args()
|
| 51 |
+
input_dir = args.input
|
| 52 |
+
output_dir = args.output
|
| 53 |
+
model_name = available_models[args.model]
|
| 54 |
+
display_name = display_titles[args.model]
|
| 55 |
+
|
| 56 |
+
# To remove random glyphs and other noise, we
|
| 57 |
+
# only extract words in the nltk corpus
|
| 58 |
+
nltk.download("words")
|
| 59 |
+
words = set(nltk.corpus.words.words())
|
| 60 |
+
|
| 61 |
+
def extract_words(document):
|
| 62 |
+
cleaned = ""
|
| 63 |
+
|
| 64 |
+
for word in nltk.wordpunct_tokenize(document):
|
| 65 |
+
if word.lower() in words:
|
| 66 |
+
cleaned += word.lower() + " "
|
| 67 |
+
|
| 68 |
+
return cleaned
|
| 69 |
+
|
| 70 |
+
# Iterate over all of the files in the provided data
|
| 71 |
+
# directory. Parse each file with beautiful soup to parse
|
| 72 |
+
# the relevant text out of the markup.
|
| 73 |
+
data = Path(input_dir).iterdir()
|
| 74 |
+
data = map(lambda doc: doc.read_bytes(), data)
|
| 75 |
+
data = map(lambda doc: BeautifulSoup(doc, "html.parser"), data)
|
| 76 |
+
data = map(lambda doc: doc.get_text(), data)
|
| 77 |
+
data = filter(lambda doc: len(doc) > 0, data)
|
| 78 |
+
data = map(extract_words, data)
|
| 79 |
+
data = filter(lambda doc: len(doc) > 10, data)
|
| 80 |
+
data = list(data)
|
| 81 |
+
|
| 82 |
+
# Initilize transformer models and predict all of the
|
| 83 |
+
# document embeddings as computed by bert and friends
|
| 84 |
+
model = SentenceTransformer(model_name)
|
| 85 |
+
embeddings = model.encode(data, show_progress_bar=True)
|
| 86 |
+
|
| 87 |
+
# Fit TSNE model for embedding space. Sqush down to 2
|
| 88 |
+
# dimentions for visualization purposes.
|
| 89 |
+
tsne = TSNE(n_components=2, random_state=2, init="pca", learning_rate="auto", perplexity=40)
|
| 90 |
+
tsne = tsne.fit_transform(embeddings)
|
| 91 |
+
|
| 92 |
+
# Hyperparameter optimizations
|
| 93 |
+
silhouettes = []
|
| 94 |
+
outliers = []
|
| 95 |
+
ch = []
|
| 96 |
+
|
| 97 |
+
for eps in np.arange(0.001, 1, 0.001):
|
| 98 |
+
dbscan = DBSCAN(eps, metric="cosine", n_jobs=-1)
|
| 99 |
+
dbscan = dbscan.fit_predict(embeddings)
|
| 100 |
+
|
| 101 |
+
if len(np.unique(dbscan)) > 1:
|
| 102 |
+
silhouettes.append(silhouette_score(embeddings, dbscan, metric="cosine"))
|
| 103 |
+
ch.append(calinski_harabasz_score(embeddings, dbscan))
|
| 104 |
+
else:
|
| 105 |
+
silhouettes.append(0)
|
| 106 |
+
ch.append(0)
|
| 107 |
+
|
| 108 |
+
outliers.append(len(dbscan[dbscan == -1]))
|
| 109 |
+
|
| 110 |
+
for p in range(15, 51):
|
| 111 |
+
best = np.argmax(silhouettes)
|
| 112 |
+
|
| 113 |
+
dbscan = DBSCAN(0.001 + 0.001 * best, metric="cosine", n_jobs=-1)
|
| 114 |
+
dbscan = dbscan.fit_predict(embeddings)
|
| 115 |
+
|
| 116 |
+
tsne = TSNE(n_components=2, perplexity=p, learning_rate="auto", init="pca", metric="cosine")
|
| 117 |
+
tsne = tsne.fit_transform(embeddings)
|
| 118 |
+
|
| 119 |
+
plt.figure()
|
| 120 |
+
plt.scatter(tsne[dbscan != -1][:, 0], tsne[dbscan != -1][:, 1], s=0.5, c=dbscan[dbscan != -1], cmap="hsv")
|
| 121 |
+
plt.scatter(tsne[dbscan == -1][:, 0], tsne[dbscan == -1][:, 1], s=0.5, c="#abb8c3")
|
| 122 |
+
plt.title(f"{display_name} Embeddings Visualized with T-SNE (p = {p})")
|
| 123 |
+
plt.savefig(f"{output_dir}/tnse_{p:02}.png", format="png", dpi=600)
|
| 124 |
+
plt.close()
|
| 125 |
+
|
| 126 |
+
plt.figure()
|
| 127 |
+
plt.plot(np.arange(0.001, 1, 0.001), silhouettes, lw=0.5, color="#dc322f")
|
| 128 |
+
plt.legend()
|
| 129 |
+
plt.xlabel("Epsilon")
|
| 130 |
+
plt.ylabel("silhouette score")
|
| 131 |
+
plt.title("Optimizing Epsilon by Silhouette Score")
|
| 132 |
+
plt.savefig(f"silhouettes.png", format="png", dpi=600)
|
| 133 |
+
plt.close()
|
| 134 |
+
|
| 135 |
+
plt.figure()
|
| 136 |
+
plt.plot(np.arange(0.001, 1, 0.001), outliers, lw=0.5, color="#dc322f")
|
| 137 |
+
plt.legend()
|
| 138 |
+
plt.xlabel("Epsilon")
|
| 139 |
+
plt.ylabel("outliers")
|
| 140 |
+
plt.title("Optimizing Epsilon by Number of Outliers")
|
| 141 |
+
plt.savefig(f"outliers.png", format="png", dpi=600)
|
| 142 |
+
plt.close()
|
| 143 |
+
|
| 144 |
+
plt.figure()
|
| 145 |
+
plt.plot(np.arange(0.001, 1, 0.001), ch, lw=0.5, color="#dc322f")
|
| 146 |
+
plt.legend()
|
| 147 |
+
plt.xlabel("Epsilon")
|
| 148 |
+
plt.ylabel("Calinski-Harabasz score")
|
| 149 |
+
plt.title("Optimizing Epsilon by Calinski-Harabasz Score")
|
| 150 |
+
plt.savefig(f"calinski-harabasz.png", format="png", dpi=600)
|
| 151 |
+
plt.close()
|