Spaces:
Sleeping
Sleeping
| from diffusers import DiffusionPipeline | |
| import torch | |
| import PIL.Image | |
| import gradio as gr | |
| import numpy as np | |
| pipeline = DiffusionPipeline.from_pretrained("1aurent/ddpm-mnist") | |
| def predict(steps, seed): | |
| generator = torch.manual_seed(seed) | |
| for i in range(1,steps): | |
| yield pipeline(generator=generator, num_inference_steps=i).images[0] | |
| gr.Interface( | |
| predict, | |
| inputs=[ | |
| gr.inputs.Slider(1, 100, label='Inference Steps', default=12, step=1), | |
| gr.inputs.Slider(0, 2147483647, label='Seed', default=69420, step=1), | |
| ], | |
| outputs=gr.Image(shape=[28,28], type="pil", elem_id="output_image"), | |
| css="#output_image{width: 256px}", | |
| title="Unconditional MNIST", | |
| description="A DDIM scheduler and UNet model trained on the MNIST dataset for unconditional image generation.", | |
| ).queue().launch() |